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Abstract. We present a novel, generic model of the grid that emphasises
roles of individual organizations that form the system. Tiedel allows us to
study the global behaviour of the system without introdgcexternal forms

of recompense. Using game-theory and equitable multi@itgptimization, we

study three diverse types of computational grids: an of-Isystem with dedi-
cated uniprocessors, an on-line system with divisible kad an off-line system
with parallel jobs. Results show that, unless strong astongare made, the
complete decentralization leads to a significant loss dbperance.
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1 Introduction

Grids are systems that allow users to access resourceggirgjaio different adminis-
trative entities [1]. Such an administrative decentrdl@maimposes new requirements
on resource management systems, which must not only ogtithe efficiency of the
whole system, but also ensure that all the parties are ti¢airy. Otherwise, resulting
conflicts may break the grid agreements.

The goal of this paper is to present the generic multi-orgational model of the
computational grid. The model allows us to study the proldéfair scheduling without
the need to introduce any external forms of recompense, asichoney. The analysis
of the global behaviour of the system is thus fairly strafighward and does not require
many out-of-modelassumptions (such as e.g. supply-demamnds). At the same time,
the model is general enough to be applied in a variety of systéVe use equitable
optimization to study grids with strong central control ayeime-theory, when central
control is weak.

The problem of grid scheduling was addressed in a numbenErgaGrid economy
approaches [2] introduce free market economy. [3] usesicnitéria optimization in
context of divisible load scheduling. In [4], each job is edhbled independently by
a broker. The global behaviour of the system cannot be, hexveasily studied with
those approaches.
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This paper is organized as follows. In Section 2 we brieflyspré game theory
and equitable optimization, tools used in analysis of oudei® Section 3 presents
the generic multi-organizational grid model and three apphes used for theoretical
analysis. The following sections present example appdinatof the model: Section 4
in grids composed of dedicated uniprocessors; Section %visildle load scheduling;
Section 6 in parallel job scheduling.

2 Tools: Game-Theory and Equitable Optimization

Game theory [5] studies situations in which independentigmflayery make deci-
sions (usestrategie$. For each playef, the outcomeu;, of the game is a function
of his/her strategyr;, but also of strategies of other players= [oy,...,0x]. The
players are assumed to kelfishandrational, i.e. concerned only with maximizing
their own outcomes. Furthermore, in strategic games (densd in this paper) players
chose their strategies at the same time.

Nash Equilibrium (NE)s a profile of players’ strategies such that no player has
an incentive to unilaterally change his/her strategy. Gitlee NE strategies of other
players, each player optimizes his/her outcome by playiNg atrategy. It is expected
that a game will end in a NE. However, a NE does not necessaslits in the global
optimum (usually defined as the optimal sum of players’ omes).Price of Anarchy
(PoA)measures the inefficiency of a NE by computing the ratio betwtbe worst NE
and the global maximum.

Game theory has been previously applied to the problem afdsding. [6] con-
sidered selfish jobs competing for common infrastructurg ahalyses a problem of
electing one of selfish resources to execute a job.

Equitable optimization [8] incorporates the notion of dtaftive fairness to multi-
criteria optimization. In multi-criteria optimization, solution is considered optimal,
if no outcome can be improved without worsening other oute¢Rareto optimality).
Equitable optimization puts a further restriction. A tréarsof any small amount from
an outcome to any other relatively worse-off outcome rasulta more equitable so-
lution. We say that the latter solutioequitably dominateshe former (e.g. solution
[3,2,1] equitably dominate§l, 2, 0]). An equitably optimal solution is a solution that
is not equitably dominated by any other solution. The notibaquitable optimality is
broader thannin max fairness: in equitable optimizatidd, 2, 0] is as fair ag3, 2, 2],
yet min max chooses the latter solution. An outcomeetpuitably-optimailff it is not
equitably dominated by any other outcome.

3 The Generic, Multi-Organizational Computational Grid Mo del

In our model, agrid is an agreement between selfish, independent organizations
share their resources. Thus, the central notion of our misdélat of anorganization

an entity that groups a resource donated to the grid and ie=ak willing to employ
the whole system.



3.1 The Core of the Model

An organization (denoted a3;) is an administrative entity such as a laboratory or
a faculty. Each organization contributes its resource gteshas)M},) to the grid. By
contributing, an organization expects that its users vélldraccess to other resources
in a fair manner© denotes the set of all organizatiols= {01, ...,Ox}. Organi-
zations aréndependentrom each other. Thus, an organization is concerned onlly wit
the performance of the jobs produced by its members. Ouonatf an organization
differs from Virtual Organization, because we assume thabr@anization must own,
and grant access to, a resource.

As there are no external users, each job (denoteff pis local to some organiza-
tion. J; isith job produced (and owned) by organizati@p. pi, denotes job’s computa-
tion time. ForMy, jobs J;. produced by the resource’s organizatiop are calledocal
jobs Remaining jobs7_; assigned for execution ol are calledoreign jobs

We assume that there are no external means of recompenseéssing resources.
An organization cannot explicitly “pay” other organizatimeither in some kind of
money, nor in barter trade.

3.2 Additional Characteristics of the Model

In order to derive results, we make additional assumptioosymonly present in the
theory of scheduling [9]. We assume that the exact gjzef every job submitted to
the system is known. Preemption is not allowed. A job thatlheen started must be
completed. We do not consider communication times. We alsarae that the system
is perfectly reliable.

In order to assess the performance of the system, we measwermpletion time of
jobs [9].C% denotes the completion (finish) time of jdP. To measure the performance
experienced by organizatiof, we compute two aggregated measures. Jina of
completion timess the sumC;, = -, Ci of completion times of jobs7;, owned by
Ox. The makespar(maximum completion time) is the time when the last job(f
finishesCax(Or) = max; C,i. On the system level, thglobal sum of completion
timesX'C is defined as the sum of completion times of all the jobs in fistesn X' C' =
> >, Cf. Theglobal makespafi,,.x is the time when last job in the system finishes
Cmax = max;  CL.

If ajob J} cannot be started before certain date (called release-pieis usual to
measure the flow timé} defined as the time jolf, spends in the system} = Cj —r.
The aggregated measures are defined similarly.

3.3 Approaches for Optimization

We introduce a centralized, grid-level scheduler whichpmses a schedule to each
resource. However, the power of the centralized schednbtira@nsequently, the kind of
solutions it can impose on individual processors, deperdsily on the level of control
the individual organizations have over their resourceswiestudy the problem from
three perspectives, leading to three different approafthiesgptimization: multi-criteria
optimization, game theory and constrained multi-criteqdimization.



Firstly, in the most restricted case, we assume that an @@t@on is neither able
to impose any schedule on its local resource, nor to quit thie §he goal of the grid
scheduler is to share the pool of available resources fairipng organizations. Con-
sequently, the problem transforms irgquitable multi-criteria optimizationf perfor-
mance measures of organizations.

Secondly, each organization may have complete control iheschedule of the
local resource. Each organization is tempted to locally ifiydbe solution proposed by
the grid scheduler, if the organization’s gain is increaggghsequently, such a problem
must be analyzed with game-theoreti@approach. In the resulting game, the set of
players is equal to the set of organizati@gisStrategyos;, of playerOy, is a schedule
of jobs on player’s local resourc¥y. Finally, payoff functionu,, for playerOy, is the
performance of player’s local joh;.

Thirdly, we assume that each organization independentiidds whether to join
or to leave the grid. Once inside, the organization grantspiete control over its re-
sources to the grid scheduler. Yet, an organization wildethe system, if perceived
performance is lower than the performance the organizatoid achieve being outside
(calledself-reliant performance This problem isequitable constrained multi-criteria
optimizationof performance measures of respective organizations,thitltonstraints
of the self-reliant performance.

The three approaches defined above are far from being ex®tsthe problem
of grid scheduling. However, we claim that they are suffitiewaried to cover a num-
ber of grid application scenarios. The multi-criteria opization approach is suitable
for classic systems where a number of resources must bedsbatereen organiza-
tions. An example scenario is a supercomputer bought byta atgency, that is later
shared between a number of public laboratories and unfiessiThe game theoretic
perspective concerns systems with almost no central dpmtnehich independent par-
ties try to maximize their own gain, with no motivation to opize the performance of
the whole system. We expect that highly distributed, pequeer systems will behave
in that manner. Finally, the constrained multi-criteriatiopzation concerns systems
where individual goals are noticed, but not necessarifjsbdy maximized. Some level
of trust and social control can be maintained. This persgentodels a number of grids
where there are a few participating organizations and thigcgzation is somehow lim-
ited (like in e.g. academic grids).

4 Resource Management in Dedicated Grids

In this section, we consider the grid as a tool for accesgiegialized resources. Each
job Ji , in the system must be computed on specific resoigenot necessarily the
one belonging to owned;, of the job. The scheduling proposed by classic approaches
is to execute jobs on each processor in order of their inargasomputation times,
regardless of owners of jobs (denotedSRT). However, this solution may be unfair
for organizations with very popular equipment.

The following additional assumptions are made. The modeffidine. There are
no release dates. Each resource has only one processefptiegdobs are sequential.



Each organizatiow; computes thesum of completion timeS), of locally produced
jobs .. = U Tk,

As resources are uniprocessors, a schedule for res@diycga permutation of jobs
J.i = U Jx,- However, we may restrict our attention to schedules thdg¢iojobs of
each organization in non-decreasing processing time g¢edéled Shortest Processing
Time, SPY. In a SPT schedule, for each organization if pj, ; < py, ;, Ji., is executed

beforeJ,{}l. Any non-SPT schedule is Pareto-dominated by a SPT schétiel@roof
is by exchange argument on jobs in non-SPT order).

4.1 Optimization Approach

The scheduling problem remains hard, even if it is restid¢tetwo organizations and
one resource’1||(XCA, XCP) [10]. There can be exponential number of Pareto-
efficient schedules. The decision version of the problemAs®bmplete.

Equitable Walk (EW) [11] is a heuristics which produces a benof grid schedules
by iterative modifications of the initi8 PT schedule in order to improve the outcome
of the disfavored organizations. The algorithm modifiesstieedules bgwitchingthe
order of two jobs executed one after another on the same nesoAlthough there
is no guarantee about the optimality of the produced restilisng experiments [11]
EW delivered results close to optimal, running a few ordémnagnitude faster than a
reference exact algorithm

4.2 Game-Theoretic Approach

Assertive organizatiod,,, which is able to impose a schedule {@r;, would use a
greedyMy Jobs First(MJF) strategy, which schedules all the local jghs; before any
foreign job. Given any strategies of the rest of organizegjo0MJF strategy will reduce
the total finish timeC. By MJF we denote the profile of strategies in which every
organization uses MJF. We define the paygffo) for each playeD,, as thegain over
MJF for that playeru (o) = Cx(MJF) — Cy (o).

Proposition 1. MJF is the only Nash equilibrium of the one round, non-coopegeati

grid scheduling game.

Proof. Assume that, for a particular instange= {.J;;}, the grid scheduler is able to
produce schedule* = [07, . .., 0}, which results in non-negative payaif (c*) > 0
for all players and a positive payoff for at least one plagemsequently, there must be
at least one playapy,, for whom the proposed strategy, is different than MJF. Thus,

in Mj’'s schedule, there is at least one foreign jh scheduled before a local Jolik

If Oy decides to switch the order of execution of those two jobsallipb J7 , will be
finished faster and, thus, player’s payaeff will increase. At the same time payaff
will decrease. It follows that the strategy maximiziag is MJF, given that the others
play any profile of strategies ;. Additionally, if all the other players play MJF, the
only strategy which guarantees non-negatiydor Oy, is to play MJF as well.

In [11] we have shown an example instance, in wWidd F strategies resulted in a
O(n) increase of makespan of every organization. Thus, the pfieearchy is at least
linear with the number of jobs, and, consequently, the pgheayrid pays for the lack of
control is considerable.



4.3 Constrained Optimization Approach

In dedicated gridsself-reliant performanceorresponds t&VIJF strategies. Therefore,
we can equitably optimize the gaifig;] defined in the previous section with a con-
straintu, > 0 for each organizatio®;. To produce such solutions, we use Adjusted
EW (AEW) [11] algorithm, that maximizesg;,, instead of minimizing”,. AEW starts
with aSPT schedule. Howeve§PT may not be feasible, and, generally, AEW may
be unable to produce a feasible result. Nevertheless,glatinexperiments [11], AEW
always returned at least one feasible schedule, if suckegisloreover, the constraint
did not caused large loss of performance.

5 Load Balancing of Divisible Load

In this section, we consider the grid as a tool to computesitilé load jobs. Divisible
load [12] models jobs that can be divided into a large numbé&agments, that can be
computed independently in parallel. In our model, jobs magbmputed in parallel on
many resources with the consent of the owners of the nori4esaurces.

We assume that the system must guarantee the latest finistotiavery submitted
job, which is announced to the user in the moment of job sutiorisWe claim that such
guarantee gives better quality of service than best-efioetution commonly used in
distributed divisible load computing (e.g. in BOINC [13]).

We consider amn-linemodel with release dates. Jobs are unknown before they are
released. Jobs are processed in FIFO o@gmeasures the flow timé}, of locally-
produced jobs. As long as there are no local jobs, computifgreign job is free.
However, if a new local job is produced, such a foreign joblscking the needed
resources and thus delaying the newly-produced local jolbe that once foreign load
is accepted, in order to guarantee its finish time, it canednterrupted. Consequently,
the performance of the owner of the resource is degradedhEdheoretical analysis,
we also assume that the jobs are produced by a Poisson préd#sshis assumption,
we analyze the expected result (and not the worst-casepgrthposed algorithms and
strategies.

5.1 Optimization Approach

In classic, centralized systems, a straightforward apgréaato use the averaging load
balancing algorithm (ALB). ALB sends parts of loads from deaded to underloaded
resources so that all resources finish at the same time. AlpBrags such parts at the
end of the schedule of an underloaded resource. With onaizajéoon and no commu-

nication costs, this strategy is optimal. It follows thatpiur model, the expected result
of ALB remains optimal.

1 As in the worst case the on-line adversary produces a neat jols every time some foreign
load is accepted, the gain of the sender’s completion tinegisl to the loss of the receiver's
completion time. Consequently, no algorithm that sendd ke achieve better results than
the local computation.



Proposition 2. ALB is an equitably-optimal strategy for two-organizatbgrid when,

on each resource, the load is composed of only one job.
Proof. We will start with computing the delay(r, Ly, #x) in the start time of the

“next” local job caused by the foreign loagl(r, L, @) is a function of the next job’s
unknown release time, the length of the known local load; and the length of the
incoming foreign loadpb, (assuming that foreign load comes at time 0). If r < Ly
(the job is released before the local load is complete), L, 1) = P (the job is
delayed by the size of the foreign load)rIf> Ly + &, g(r, Lk, Pr) = 0 (the job is
not delayed). Finally, i, < r < Ly + @k, g(r, Lk, Pr) = L. + P, — 7.

Assuming that local jobg/;, are produced by a Poisson process with known mean
time between arrivals\y, we can compute the expected value of the delay as:

EG(Ly, ) = Oy + T(e—ké - 1). Note thatEG (Ly, &y) < &y for all
positive values o, andL;. ALB, assuming two resources, one job on each resource,
pi > pi, sends half of the difference in loads to the less loadedureso The gain
in the completion timeC; of the sendeb, = 1(p} — p}) is thus higher than the
loss EG(p}, ®-) of the receiver. The resulting load distribution optimitless both the

worst utility (C7) and the sum of utilities.

5.2 Game-Theoretic Approach

Even if ALB is optimal, a selfish organization holding fullrwol over its resource will

never accept incoming foreign load, as it may delay futumlgobs. The expected
delay EG (L, ®y) is positive for all positive values @b, and ;. Consequently, the
only non-dominated action for the less-loaded resourcetitoreceive anything, which
leads to significant loss of performance of the grid peradaga whole.

5.3 Constrained Optimization Approach

As EG is positive, a receiver looses when cooperating. Thusnibtpossible to apply
the constrained optimization to the original problem. Hearewe can modify the rules
of the game, so that participating in the load-balancingmtigm becomes profitable
even for less loaded organizations. Note that, througbvetig mechanisms, we cannot
guaranteethat each organization will gain from LB. We onilgcrease the probability
that, on average, organizations gain.

Firstly, if the system forces the organizations to commitheir decisions for a
longer periodof time, the probability of being the receiver is similar k@t of being the
sender (assuming that the resources are similarly loattedur experiments [14], this
mechanism was sufficient to make ALB the dominating strategyrids composed of
similarly loaded resources.

Secondly, if the load of resources differ, we introduce twectmanism in the load
balancing algorithmiterativenessand bounds to distribute the gains from coopera-
tion fairly among the participants. In iterative LB, firstliye least-loaded resources are
balanced, then the resources are iteratively added in tiher @f their local load. In
bounded LB, each organizatian, declares its participation levé}. The algorithm
ensures that, if a resource receives some load, its localeqwél not be extended be-
yond the declared participation level. To motivate orgations to declaré, > 0, an



overloaded resource cannot send more load thalp .ite experiments [14], bounded,
iterative LB in grids with one overloaded resource manageuinprove F; of under-
loaded resources, and thus to make load balancing the dongjrsarategy.

6 Parallel Job Scheduling

Here, we extend to multiple organizations the classic motietheduling parallel, rigid
jobs on a multiprocessor resource in order to minimize thkespan. Each organization
Oy owns resourc@/;, with m processors and minimizes the maximum completion time
(makespanyy,.x(Oy) of the locally-produced jobs. A joli} must be executed afj,
processors of exactly one resource. The modeffidine. There are no release dates.
Consequently, we may assume that a foreign job executedadiftecal jobs does not
cause any cost.

6.1 Optimization Approach

Multi-organizational scheduling is an extension of scHiegusequential jobs on two
processors, which is NP-hard [15]. For parallel jobs scheion one resource, list
scheduling (LS) algorithm is & — -L)-approximation ofC;;,,, [16]. LS works in two
phases. In the first phase, jobs are ordered into a list. Isghend phase, the schedule
is constructed by assigning jobs to processors in a greedyera

Two lower bounds on the global makespan can be defined. Le¢nustel adl” =
> pigi the totalsurfaceof the jobs, and agmax = maxp, the length of the longest
job. Firstly, all the jobs must fit into available process®e C;,,. > W = N_M;
Secondly, the longest job must be executed;$Q, > pmax-

We have assumed that a job cannot be executed in parallelmreseurces. Con-
sequently, we cannot treAt resources as one resource havivigh processors.

Proposition 3. LS is a3-approximation of”*

max*

Proof. The proof is by contradiction. Let us assume that the lastfijoishes after
3C% .- Itis thus started afte?C? ... Atthe moment the last job is started, all the other
resources are busy (otherwise, the job would have beermrdtadrlier). Let us denote
asLB = max(W, pmaz). Consequently, on each resourte we haveCy,.x (M) >

2C* > 2LB. On each resourckf}, we have [16] (ad B > ppmaz): uk( )+ ug(t +

max

LB) >mfor0 <t < W After mtegratmg this inequality, we gej’O ug(t)dt +
IV u(t + LB)dt > m [V 1dt, ie. [V up(®)dt + [EEV ut)dt > mW. After
adding mequalltles for every resourcé/;, we get: ZlSkSN(fow ug(t)dt

+fLB+W (t)dt) > NmW > W . Left-hand side of the inequality is the surface
of the jobs computed on all resources in peri¢@ldV] and [LB, LB + W]. Those
periods do not overlap. The surface computed is thus grédsarthe surface of all the
tasks available, which leads to a contradiction.
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Fig. 1. Globally-optimal solution (b) extendS'...(O1) in comparison with the local solution
(a). The best solution not extendiiy 's makespan is (c).

6.2 Game-Theoretic Approach

Let us assume that each organization can control the saheduthe local resource,
but not the allocation of jobs to resources, which is giverstrategy similar to MJF
(Section 4.2) is as follows. An organization firstly schesuits local jobs. Then, foreign
jobs are scheduled so that they do not delay any local joheedt the end of the
schedule, or in gaps.

Proposition 4. MIJF is a Nash equilibrium of the scheduling game.
Proof. (Sketch) Similarly to Proposition 1, given any profile ofedtrgies of other play-
ers, MJF minimizes thé€',,.x(Ox).

Proposition 5. The Price of Anarchy is at Iea%t
Proof. Consider an instance in FigureMJF solution, depicted in (c), haS,.x = 3,
whereas the global optimum hé%,., = 2.

6.3 Constrained Optimization Approach

We can use load-balancing techniques similar to those predén the previous section
to optimize the system-wide makespan, at the same time neewimg makespans of
individual organizations. Multi-Organizational Load Baking Algorithm
(MOLBA) [17] starts with scheduling jobg}, on local resourcé/; with LS in Highest-
First order (i.e. non-increasing number of required preoes). Resulting’y,ax (O )
form the constraint for the rest of the algorithm. Then, fagamizations with
Ciax(Or) > 3W 4 puax, all the jobs are mixed and rescheduled in HF order by LS al-
gorithm on all resources (however, LS is adjusted so thaesaurces of organizations
that only receive jobs, no local job is delayed). In [17], weyed that this algorithm is

a 4-approximation o€, at the same time not increasing ably,x (Ox ).

7 Conclusions

The paper presented a new model of computational grid thahasises its organiza-
tional heterogeneity. The notion of organization, thatates resources, but also con-
sumes other resources, allows us to avoid using exterrmatkfof recompense that must
be present in the classic, provider-consumer schemesughra series of applications
we have demonstrated that the model is useful for theoteticysis of various grids:
working off-line or on-line, processing divisible load,cgeential or parallel jobs. The
perspectives of analysis ranged from systems that are alikeglassic supercomput-
ers (optimization), through partly distributed ones (deaiged optimization), to sys-
tems that are highly distributed (game-theory). Such atspecallowed us to compare



the performance and thus to measure the cost of the decreas&dl. We have shown
that in highly distributed systems the loss of performarfab®grid is significant (with
an exception of the last model, that required a strong a#-dssumption). However, we
were able to guarantee good results for all organizatiépsyriial control was granted
to a centralized grid scheduler. We conclude that grids egha fully distributed to
achieve acceptable performance. A strong control of comityuamust be present.

In our future work we plan to, firstly, further investigateetischeduling of rigid,
parallel jobs, and secondly, to apply the multi-organizadil model in other contexts,
such as data-intensive computation. In parallel, we plampdement some of presented
ideas in real-world grid resource managers.
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