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Abstract. We present a novel, generic model of the grid that emphasisesthe
roles of individual organizations that form the system. Themodel allows us to
study the global behaviour of the system without introducing external forms
of recompense. Using game-theory and equitable multicriteria optimization, we
study three diverse types of computational grids: an off-line system with dedi-
cated uniprocessors, an on-line system with divisible loadand an off-line system
with parallel jobs. Results show that, unless strong assumptions are made, the
complete decentralization leads to a significant loss of performance.
Keywords: game theory, fairness, scheduling, grid, multi-objective optimization

1 Introduction

Grids are systems that allow users to access resources belonging to different adminis-
trative entities [1]. Such an administrative decentralization imposes new requirements
on resource management systems, which must not only optimize the efficiency of the
whole system, but also ensure that all the parties are treated fairly. Otherwise, resulting
conflicts may break the grid agreements.

The goal of this paper is to present the generic multi-organizational model of the
computational grid. The model allows us to study the problemof fair scheduling without
the need to introduce any external forms of recompense, suchas money. The analysis
of the global behaviour of the system is thus fairly straightforward and does not require
many out-of-model assumptions (such as e.g. supply-demandcurves). At the same time,
the model is general enough to be applied in a variety of systems. We use equitable
optimization to study grids with strong central control andgame-theory, when central
control is weak.

The problem of grid scheduling was addressed in a number of papers. Grid economy
approaches [2] introduce free market economy. [3] uses multicriteria optimization in
context of divisible load scheduling. In [4], each job is scheduled independently by
a broker. The global behaviour of the system cannot be, however, easily studied with
those approaches.
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This paper is organized as follows. In Section 2 we briefly present game theory
and equitable optimization, tools used in analysis of our models. Section 3 presents
the generic multi-organizational grid model and three approaches used for theoretical
analysis. The following sections present example applications of the model: Section 4
in grids composed of dedicated uniprocessors; Section 5 in divisible load scheduling;
Section 6 in parallel job scheduling.

2 Tools: Game-Theory and Equitable Optimization

Game theory [5] studies situations in which independent parties (players) make deci-
sions (usestrategies). For each playerPk, the outcomeuk of the game is a function
of his/her strategyσk, but also of strategies of other playersσ = [σ1, . . . , σN ]. The
players are assumed to beselfishand rational, i.e. concerned only with maximizing
their own outcomes. Furthermore, in strategic games (considered in this paper) players
chose their strategies at the same time.

Nash Equilibrium (NE)is a profile of players’ strategies such that no player has
an incentive to unilaterally change his/her strategy. Given the NE strategies of other
players, each player optimizes his/her outcome by playing aNE strategy. It is expected
that a game will end in a NE. However, a NE does not necessarilyresults in the global
optimum (usually defined as the optimal sum of players’ outcomes).Price of Anarchy
(PoA)measures the inefficiency of a NE by computing the ratio between the worst NE
and the global maximum.

Game theory has been previously applied to the problem of scheduling. [6] con-
sidered selfish jobs competing for common infrastructure. [7] analyses a problem of
electing one of selfish resources to execute a job.

Equitable optimization [8] incorporates the notion of distributive fairness to multi-
criteria optimization. In multi-criteria optimization, asolution is considered optimal,
if no outcome can be improved without worsening other outcome (Pareto optimality).
Equitable optimization puts a further restriction. A transfer of any small amount from
an outcome to any other relatively worse-off outcome results in a more equitable so-
lution. We say that the latter solutionequitably dominatesthe former (e.g. solution
[3, 2, 1] equitably dominates[4, 2, 0]). An equitably optimal solution is a solution that
is not equitably dominated by any other solution. The notionof equitable optimality is
broader thanmin max fairness: in equitable optimization[4, 2, 0] is as fair as[3, 2, 2],
yet min max chooses the latter solution. An outcome isequitably-optimaliff it is not
equitably dominated by any other outcome.

3 The Generic, Multi-Organizational Computational Grid Mo del

In our model, agrid is an agreement between selfish, independent organizationsto
share their resources. Thus, the central notion of our modelis that of anorganization,
an entity that groups a resource donated to the grid and localusers willing to employ
the whole system.



3.1 The Core of the Model

An organization (denoted asOk) is an administrative entity such as a laboratory or
a faculty. Each organization contributes its resource (denoted asMk) to the grid. By
contributing, an organization expects that its users will have access to other resources
in a fair manner.O denotes the set of all organizationsO = {O1, . . . , ON}. Organi-
zations areindependentfrom each other. Thus, an organization is concerned only with
the performance of the jobs produced by its members. Our notion of an organization
differs from Virtual Organization, because we assume that an organization must own,
and grant access to, a resource.

As there are no external users, each job (denoted asJ i
k) is local to some organiza-

tion.J i
k is ith job produced (and owned) by organizationOk. pi

k denotes job’s computa-
tion time. ForMk, jobsJk produced by the resource’s organizationOk are calledlocal
jobs. Remaining jobsJ−k assigned for execution onMk are calledforeign jobs.

We assume that there are no external means of recompense for accessing resources.
An organization cannot explicitly “pay” other organization neither in some kind of
money, nor in barter trade.

3.2 Additional Characteristics of the Model

In order to derive results, we make additional assumptions,commonly present in the
theory of scheduling [9]. We assume that the exact sizepi

k of every job submitted to
the system is known. Preemption is not allowed. A job that hasbeen started must be
completed. We do not consider communication times. We also assume that the system
is perfectly reliable.

In order to assess the performance of the system, we measure the completion time of
jobs [9].Ci

k denotes the completion (finish) time of jobJ i
k. To measure the performance

experienced by organizationOk, we compute two aggregated measures. Thesum of
completion timesis the sumCk =

∑

i Ci
k of completion times of jobsJk owned by

Ok. The makespan(maximum completion time) is the time when the last job ofOk

finishesCmax(Ok) = maxi Ci
k. On the system level, theglobal sum of completion

timesΣC is defined as the sum of completion times of all the jobs in the systemΣC =
∑

k

∑

i Ci
k. Theglobal makespanCmax is the time when last job in the system finishes

Cmax = maxi,k Ci
k.

If a job J i
k cannot be started before certain date (called release dateri

k), it is usual to
measure the flow timeF i

k defined as the time jobJ i
k spends in the system,F i

k = Ci
k−ri

k.
The aggregated measures are defined similarly.

3.3 Approaches for Optimization

We introduce a centralized, grid-level scheduler which proposes a schedule to each
resource. However, the power of the centralized scheduler and, consequently, the kind of
solutions it can impose on individual processors, depends heavily on the level of control
the individual organizations have over their resources. Wewill study the problem from
three perspectives, leading to three different approachesfor optimization: multi-criteria
optimization, game theory and constrained multi-criteriaoptimization.



Firstly, in the most restricted case, we assume that an organization is neither able
to impose any schedule on its local resource, nor to quit the grid. The goal of the grid
scheduler is to share the pool of available resources fairlyamong organizations. Con-
sequently, the problem transforms intoequitable multi-criteria optimizationof perfor-
mance measures of organizations.

Secondly, each organization may have complete control overthe schedule of the
local resource. Each organization is tempted to locally modify the solution proposed by
the grid scheduler, if the organization’s gain is increased. Consequently, such a problem
must be analyzed with agame-theoreticapproach. In the resulting game, the set of
players is equal to the set of organizationsO. Strategyσk of playerOk is a schedule
of jobs on player’s local resourceMk. Finally, payoff functionuk for playerOk is the
performance of player’s local jobsJk.

Thirdly, we assume that each organization independently decides whether to join
or to leave the grid. Once inside, the organization grants complete control over its re-
sources to the grid scheduler. Yet, an organization will leave the system, if perceived
performance is lower than the performance the organizationcould achieve being outside
(calledself-reliant performance). This problem isequitable constrained multi-criteria
optimizationof performance measures of respective organizations, withthe constraints
of the self-reliant performance.

The three approaches defined above are far from being exhaustive to the problem
of grid scheduling. However, we claim that they are sufficiently varied to cover a num-
ber of grid application scenarios. The multi-criteria optimization approach is suitable
for classic systems where a number of resources must be shared between organiza-
tions. An example scenario is a supercomputer bought by a state agency, that is later
shared between a number of public laboratories and universities. The game theoretic
perspective concerns systems with almost no central control, in which independent par-
ties try to maximize their own gain, with no motivation to optimize the performance of
the whole system. We expect that highly distributed, peer-to-peer systems will behave
in that manner. Finally, the constrained multi-criteria optimization concerns systems
where individual goals are noticed, but not necessarily selfishly maximized. Some level
of trust and social control can be maintained. This perspective models a number of grids
where there are a few participating organizations and the participation is somehow lim-
ited (like in e.g. academic grids).

4 Resource Management in Dedicated Grids

In this section, we consider the grid as a tool for accessing specialized resources. Each
job J i

k,l in the system must be computed on specific resourceMl, not necessarily the
one belonging to ownerOk of the job. The scheduling proposed by classic approaches
is to execute jobs on each processor in order of their increasing computation times,
regardless of owners of jobs (denoted asSPT). However, this solution may be unfair
for organizations with very popular equipment.

The following additional assumptions are made. The model isoff-line. There are
no release dates. Each resource has only one processor, therefore jobs are sequential.



Each organizationOk computes thesum of completion timesCk of locally produced
jobsJk,· =

⋃

Jk,l.
As resources are uniprocessors, a schedule for resourceMl is a permutation of jobs

J·,l =
⋃

Jk,l. However, we may restrict our attention to schedules that order jobs of
each organization in non-decreasing processing time order(calledShortest Processing
Time, SPT). In a SPT schedule, for each organizationOk, if pi

k,l < p
j
k,l, J

i
k,l is executed

beforeJ
j
k,l. Any non-SPT schedule is Pareto-dominated by a SPT schedule(the proof

is by exchange argument on jobs in non-SPT order).

4.1 Optimization Approach

The scheduling problem remains hard, even if it is restricted to two organizations and
one resourceP1||(ΣCA

i , ΣCB
i ) [10]. There can be exponential number of Pareto-

efficient schedules. The decision version of the problem is NP-Complete.
Equitable Walk (EW) [11] is a heuristics which produces a number of grid schedules

by iterative modifications of the initialSPT schedule in order to improve the outcome
of the disfavored organizations. The algorithm modifies theschedules byswitchingthe
order of two jobs executed one after another on the same resource. Although there
is no guarantee about the optimality of the produced results, during experiments [11]
EW delivered results close to optimal, running a few orders of magnitude faster than a
reference exact algorithm

4.2 Game-Theoretic Approach

Assertive organizationOk, which is able to impose a schedule forJ·,k, would use a
greedyMy Jobs First(MJF) strategy, which schedules all the local jobsJk,k before any
foreign job. Given any strategies of the rest of organizations, MJF strategy will reduce
the total finish timeCk. By MJF we denote the profile of strategies in which every
organization uses MJF. We define the payoffuk(σ) for each playerOk as thegain over
MJF for that player,uk(σ) = Ck(MJF) − Ck(σ).

Proposition 1. MJF is the only Nash equilibrium of the one round, non-cooperative
grid scheduling game.
Proof. Assume that, for a particular instanceJ = {Jk,l}, the grid scheduler is able to
produce scheduleσ∗ = [σ∗

1 , . . . , σ∗
n], which results in non-negative payoffuk(σ∗) ≥ 0

for all players and a positive payoff for at least one player.Consequently, there must be
at least one playerOk, for whom the proposed strategyσ∗

k is different than MJF. Thus,
in Mk’s schedule, there is at least one foreign jobJ i

l,k scheduled before a local jobJj
k,k.

If Ok decides to switch the order of execution of those two jobs, local jobJ
j
k,k will be

finished faster and, thus, player’s payoffuk will increase. At the same time payofful

will decrease. It follows that the strategy maximizinguk is MJF, given that the others
play any profile of strategiesσ−k. Additionally, if all the other players play MJF, the
only strategy which guarantees non-negativeuk for Ok is to play MJF as well.

In [11] we have shown an example instance, in whichMJF strategies resulted in a
O(n) increase of makespan of every organization. Thus, the priceof anarchy is at least
linear with the number of jobs, and, consequently, the pricethe grid pays for the lack of
control is considerable.



4.3 Constrained Optimization Approach

In dedicated grids,self-reliant performancecorresponds toMJF strategies. Therefore,
we can equitably optimize the gains[uk] defined in the previous section with a con-
straintuk ≥ 0 for each organizationOk. To produce such solutions, we use Adjusted
EW (AEW) [11] algorithm, that maximizesuk, instead of minimizingCk. AEW starts
with aSPT schedule. However,SPT may not be feasible, and, generally, AEW may
be unable to produce a feasible result. Nevertheless, during our experiments [11], AEW
always returned at least one feasible schedule, if such existed. Moreover, the constraint
did not caused large loss of performance.

5 Load Balancing of Divisible Load

In this section, we consider the grid as a tool to compute divisible load jobs. Divisible
load [12] models jobs that can be divided into a large number of fragments, that can be
computed independently in parallel. In our model, jobs may be computed in parallel on
many resources with the consent of the owners of the non-local resources.

We assume that the system must guarantee the latest finish time of every submitted
job, which is announced to the user in the moment of job submission. We claim that such
guarantee gives better quality of service than best-effortexecution commonly used in
distributed divisible load computing (e.g. in BOINC [13]).

We consider anon-linemodel with release dates. Jobs are unknown before they are
released. Jobs are processed in FIFO order.Ok measures the flow timeFk of locally-
produced jobs. As long as there are no local jobs, computing aforeign job is free.
However, if a new local job is produced, such a foreign job is blocking the needed
resources and thus delaying the newly-produced local job. Note that once foreign load
is accepted, in order to guarantee its finish time, it cannot be interrupted. Consequently,
the performance of the owner of the resource is degraded. Forthe theoretical analysis,
we also assume that the jobs are produced by a Poisson process. With this assumption,
we analyze the expected result (and not the worst-case) of the proposed algorithms and
strategies.

5.1 Optimization Approach

In classic, centralized systems, a straightforward approach is to use the averaging load
balancing algorithm (ALB). ALB sends parts of loads from overloaded to underloaded
resources so that all resources finish at the same time. ALB appends such parts at the
end of the schedule of an underloaded resource. With one organization and no commu-
nication costs, this strategy is optimal. It follows that, in our model, the expected result
of ALB remains optimal1.

1 As in the worst case the on-line adversary produces a next local job every time some foreign
load is accepted, the gain of the sender’s completion time isequal to the loss of the receiver’s
completion time. Consequently, no algorithm that sends load can achieve better results than
the local computation.



Proposition 2. ALB is an equitably-optimal strategy for two-organizational grid when,
on each resource, the load is composed of only one job.
Proof. We will start with computing the delayg(r, Lk, Φk) in the start time of the
“next” local job caused by the foreign load.g(r, Lk, Φk) is a function of the next job’s
unknown release timer, the length of the known local loadLk and the length of the
incoming foreign loadΦk (assuming that foreign load comes at timet = 0). If r ≤ Lk

(the job is released before the local load is completed),g(r, Lk, Φk) = Φk (the job is
delayed by the size of the foreign load). Ifr > Lk + Φk, g(r, Lk, Φk) = 0 (the job is
not delayed). Finally, ifLk < r ≤ Lk + Φk, g(r, Lk, Φk) = Lk + Φk − r.

Assuming that local jobsJk are produced by a Poisson process with known mean
time between arrivalsλk, we can compute the expected value of the delay as:

EG(Lk, Φk) = Φk + e−λ
k

L
k

λk

(

e−λkΦk − 1
)

. Note thatEG (Lk, Φk) < Φk for all

positive values ofΦk andLk. ALB, assuming two resources, one job on each resource,
p1
1 > p1

2, sends half of the difference in loads to the less loaded resource. The gain
in the completion timeC1 of the senderΦ2 = 1

2
(p1

1 − p1
2) is thus higher than the

lossEG(p1
2, Φ2) of the receiver. The resulting load distribution optimizesthus both the

worst utility (C1) and the sum of utilities.

5.2 Game-Theoretic Approach

Even if ALB is optimal, a selfish organization holding full control over its resource will
never accept incoming foreign load, as it may delay future local jobs. The expected
delayEG (Lk, Φk) is positive for all positive values ofΦk andLk. Consequently, the
only non-dominated action for the less-loaded resource is not to receive anything, which
leads to significant loss of performance of the grid perceived as a whole.

5.3 Constrained Optimization Approach

As EG is positive, a receiver looses when cooperating. Thus, it isnot possible to apply
the constrained optimization to the original problem. However, we can modify the rules
of the game, so that participating in the load-balancing algorithm becomes profitable
even for less loaded organizations. Note that, through following mechanisms, we cannot
guaranteethat each organization will gain from LB. We onlyincrease the probability
that, on average, organizations gain.

Firstly, if the system forces the organizations to commit totheir decisions for a
longer periodof time, the probability of being the receiver is similar to that of being the
sender (assuming that the resources are similarly loaded).In our experiments [14], this
mechanism was sufficient to make ALB the dominating strategyin grids composed of
similarly loaded resources.

Secondly, if the load of resources differ, we introduce two mechanism in the load
balancing algorithm,iterativenessand bounds, to distribute the gains from coopera-
tion fairly among the participants. In iterative LB, firstlythe least-loaded resources are
balanced, then the resources are iteratively added in the order of their local load. In
bounded LB, each organizationOk declares its participation levellk. The algorithm
ensures that, if a resource receives some load, its local queue will not be extended be-
yond the declared participation level. To motivate organizations to declarelk > 0, an



overloaded resource cannot send more load than itslk. In experiments [14], bounded,
iterative LB in grids with one overloaded resource managed to improveFi of under-
loaded resources, and thus to make load balancing the dominating strategy.

6 Parallel Job Scheduling

Here, we extend to multiple organizations the classic modelof scheduling parallel, rigid
jobs on a multiprocessor resource in order to minimize the makespan. Each organization
Ok owns resourceMk with m processors and minimizes the maximum completion time
(makespan)Cmax(Ok) of the locally-produced jobs. A jobJ i

k must be executed onqi
k

processors of exactly one resource. The model isoff-line. There are no release dates.
Consequently, we may assume that a foreign job executed after all local jobs does not
cause any cost.

6.1 Optimization Approach

Multi-organizational scheduling is an extension of scheduling sequential jobs on two
processors, which is NP-hard [15]. For parallel jobs scheduled on one resource, list
scheduling (LS) algorithm is a(2 − 1

m
)-approximation ofC∗

max[16]. LS works in two
phases. In the first phase, jobs are ordered into a list. In thesecond phase, the schedule
is constructed by assigning jobs to processors in a greedy manner.

Two lower bounds on the global makespan can be defined. Let us denote asW =
∑

pi
kqi

k the totalsurfaceof the jobs, and aspmax = max pi
k the length of the longest

job. Firstly, all the jobs must fit into available processors, so C∗
max ≥ W̄ = W

Nm
.

Secondly, the longest job must be executed, soC∗
max ≥ pmax.

We have assumed that a job cannot be executed in parallel on two resources. Con-
sequently, we cannot treatN resources as one resource havingNm processors.

Proposition 3. LS is a3-approximation ofC∗
max.

Proof. The proof is by contradiction. Let us assume that the last jobfinishes after
3C∗

max. It is thus started after2C∗
max. At the moment the last job is started, all the other

resources are busy (otherwise, the job would have been started earlier). Let us denote
asLB = max(W̄ , pmax). Consequently, on each resourceMk we haveCmax(Mk) ≥
2C∗

max ≥ 2LB. On each resourceMk, we have [16] (asLB ≥ pmax): uk(t) + uk(t +

LB) ≥ m for 0 ≤ t ≤ W̄ . After integrating this inequality, we get:
∫ W̄

0
uk(t)dt +

∫ W̄

0
uk(t + LB)dt ≥ m

∫ W̄

0
1dt, i.e.

∫ W̄

0
uk(t)dt +

∫ LB+W̄

LB
uk(t)dt ≥ mW̄ . After

adding inequalities for every resourceMk, we get:
∑

1≤k≤N (
∫ W̄

0
uk(t)dt

+
∫ LB+W̄

LB
uk(t)dt) ≥ NmW̄ ≥ W . Left-hand side of the inequality is the surface

of the jobs computed on all resources in periods[0, W̄ ] and [LB, LB + W̄ ]. Those
periods do not overlap. The surface computed is thus greaterthan the surface of all the
tasks available, which leads to a contradiction.



a b c
Fig. 1. Globally-optimal solution (b) extendsCmax(O1) in comparison with the local solution
(a). The best solution not extendingO1’s makespan is (c).

6.2 Game-Theoretic Approach

Let us assume that each organization can control the schedule on the local resource,
but not the allocation of jobs to resources, which is given. Astrategy similar to MJF
(Section 4.2) is as follows. An organization firstly schedules its local jobs. Then, foreign
jobs are scheduled so that they do not delay any local job: either at the end of the
schedule, or in gaps.

Proposition 4. MJF is a Nash equilibrium of the scheduling game.
Proof. (Sketch) Similarly to Proposition 1, given any profile of strategies of other play-
ers, MJF minimizes theCmax(Ok).

Proposition 5. The Price of Anarchy is at least3
2
.

Proof. Consider an instance in Figure 1.MJF solution, depicted in (c), hasCmax = 3,
whereas the global optimum hasCmax = 2.

6.3 Constrained Optimization Approach

We can use load-balancing techniques similar to those presented in the previous section
to optimize the system-wide makespan, at the same time not worsening makespans of
individual organizations. Multi-Organizational Load Balancing Algorithm
(MOLBA) [17] starts with scheduling jobsJk on local resourceMk with LS in Highest-
First order (i.e. non-increasing number of required processors). ResultingCmax(Ok)
form the constraint for the rest of the algorithm. Then, for organizations with
Cmax(Ok) ≥ 3W̄ +pmax, all the jobs are mixed and rescheduled in HF order by LS al-
gorithm on all resources (however, LS is adjusted so that on resources of organizations
that only receive jobs, no local job is delayed). In [17], we proved that this algorithm is
a 4-approximation ofCmax, at the same time not increasing anyCmax(Ok).

7 Conclusions

The paper presented a new model of computational grid that emphasises its organiza-
tional heterogeneity. The notion of organization, that donates resources, but also con-
sumes other resources, allows us to avoid using external forms of recompense that must
be present in the classic, provider-consumer schemes. Through a series of applications
we have demonstrated that the model is useful for theoretical analysis of various grids:
working off-line or on-line, processing divisible load, sequential or parallel jobs. The
perspectives of analysis ranged from systems that are almost like classic supercomput-
ers (optimization), through partly distributed ones (constrained optimization), to sys-
tems that are highly distributed (game-theory). Such a spectrum allowed us to compare



the performance and thus to measure the cost of the decreasedcontrol. We have shown
that in highly distributed systems the loss of performance of the grid is significant (with
an exception of the last model, that required a strong off-line assumption). However, we
were able to guarantee good results for all organizations, if partial control was granted
to a centralized grid scheduler. We conclude that grids cannot be fully distributed to
achieve acceptable performance. A strong control of community must be present.

In our future work we plan to, firstly, further investigate the scheduling of rigid,
parallel jobs, and secondly, to apply the multi-organizational model in other contexts,
such as data-intensive computation. In parallel, we plan toimplement some of presented
ideas in real-world grid resource managers.
Acknowledgements: The author would like to thank Fanny Pascual, Denis Trystram,
and Adam Wierzbicki.
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