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In a decentralized storage system, agents replicate each other’s data in order to increase availability. Com-
pared to organizationally-centralized solutions, such as cloud storage, a decentralized storage system re-
quires less trust in the provider and may result in smaller monetary costs. Our system is based on recipro-
cal storage contracts which allow the agents to adopt to changes in their replication partners’ availability
(by dropping inefficient contracts and forming new contracts with other partners). The data availability
provided by the system is a function of the participating agents’ availability. However, a straightforward
system in which agents’ matching is decentralized uses the given agent availability inefficiently. As agents
are autonomous, the highly-available agents form cliques replicating data between each other, which makes
the system too hostile for the weakly-available newcomers. In contrast, a centralized, equitable matching is
not incentive-compatible: it does not reward users for keeping their software running.

We solve this dilemma by a mixed solution: an “adoption” mechanism in which highly-available agents
donate some replication space, which in turn is used to help the worst-off agents. We show that the adoption
motivates agents to increase their availability (is incentive-compatible); but also that it is sufficient for
acceptable data availability for weakly-available agents.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems
General Terms: Algorithms, Reliability, Theory
Additional Key Words and Phrases: game theory, mechanism design, distributed storage

1. INTRODUCTION

A decentralized system for data storage and replication is an important building block
of many organizationally-decentralized applications, such as backup (in which the data
should be durable despite of failures, e.g. symform.com, spacemonkey.com or [BitTor-
rentSync 2013]), or social networks [Buchegger et al. 2009] (in which, when a user is
off-line, the system ensures that the user’s friends can still access the data). In such
systems, users store other users’ data on their PCs or other devices, such as network
attached storage (NAS), home routers, plug computers (such as the Raspberry Pie)
or even infrastructure rented from cloud providers. Storing data consumes resources,
such as disk space and bandwidth [Feldman et al. 2003]. In return, a user expects that
her data will also be stored remotely, increasing availability and resilience. A generic
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storage system cannot use relations between users that are present in some applica-
tions (e.g., “friends” in a social network [Sharma et al. 2011]). Thus, users are modelled
as autonomous agents [Babaioff et al. 2007; Bhagwan et al. 2003], and they seek to
maximize their perceived profits (e.g., availability of their data) and to minimize their
contribution (e.g., the amount of other users’ data they store). The crucial decision an
agent must make is to choose other agents that will replicate her data and whose data
she will replicate, as we assume a reciprocity-based scheme. Such a reciprocal contract
allows the agents to swiftly adopt to changes in their replicator’s availability: if the
other party stops serving the data, an agent will drop (or let expire) the contract and
choose another replicator.

Depending on the organization of the system, the choice of replicators is either done
through the agency of a centralized matching system, (like in spacemonkey.com or
symform.com) or using a decentralized algorithm in which agents form replication
agreements autonomously [Douceur and Wattenhofer 2001a; Bernard and Le Fessant
2009].

In this paper, we study the problem of maximization of data availability in a de-
centralized data replication system. We use a stochastic model of agent availability.
We study two scenarios of matching, i.e., organizing replication agreements between
agents: centralized and enforced; or decentralized and autonomous.

In order to derive worst-case bounds, we assume that agent availability is stochas-
tic and constant in time. An agent’s availability is the probability of the agent being
available (correlated with the agent’s expected lifetime [Bernard and Le Fessant 2009;
Bhagwan et al. 2004]). The goal is to maximize data availability given the constraints
on the storage size. In our earlier work [Rzadca et al. 2010], we also investigated an
alternative model, in which availability was deterministic (on-line/off-line), but varied
in time. The alternative model offered higher data availability when agents had var-
ied availability patterns (corresponding to a world-spanning system); thus the model
presented in this paper shows a worst-case for a more general model.

We analyze the problem when matching is done either centrally or in a decentral-
ized manner. A centralized system collects information about the agents’ availabilities
and then derives replication groups so that the expected availability (or resource us-
age) is optimized in a manner equitable to all the participants. A system with central
matching models existing commercial projects (symform.com, spacemonkey.com, or the
early versions of wuala.com), in which agents do not control with whom they replicate
their data. The matching algorithm can be run on a few nodes controlled by the sys-
tem owner (for instance, a tracker). In a decentralized system, each agent seeks to
find replication partners maximizing its own data availability. A decentralized system
models users running free (open-source) software (and thus able to modify it); as the
software aims to store and manipulate vast amounts of sensitive data, it is important
to keep it open so that it can be validated and patched by the community.

The paper has the following contributions: (i) In centralized matching systems
we prove that achieving equitable allocation is NP-complete. (ii) We propose heuristics
for centralized matching to achieve equitable availability. According to our experimen-
tal evaluation, for all classes of agents this heuristic achieves data availability two to
three orders of magnitude higher than random allocation.

(iii)) In systems with decentralized matching, we prove the existence of a unique
subgame perfect equilibrium, in which agents replicate data with other agents that
have similar availability (thus, the most available agents replicate data only among
themselves). Such an equilibrium may seem inefficient for the system goal, as we show
an instance in which it is arbitrarily far from the equitable solution, i.e., the price of
anarchy [Koutsoupias and Papadimitriou 1999] is arbitrarily high. Yet the equilibrium
is fair in the sense that the highly available agents have their data replicated better
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than erratic, unstable agents. (iv) We propose a distributed heuristic that according
to our experimental evaluation converges fast (in the order of tens to hundreds of
seconds) to the subgame perfect solution. The short convergence time means that the
system adapts fast to the changes in agents’ availability.

(v) We propose a set of rules for a game-theoretic mechanism that reduces the price
of anarchy and, at the same time, provides incentives to agents to be highly-available.
(vi) We present a heuristic that computes allocations adhering to the rules for the
mechanism. According to the experimental evaluation, the heuristic increases the data
availability of the worst-off agents by two to three orders of magnitude.

The paper has the following organization. Section 2 reviews the related work. Sec-
tion 3 introduces the mathematical model. The centralized matching (NP-hardness,
fairness, heuristics) is analyzed in Section 4. The decentralized matching (the Nash
equilibrium, the price of anarchy) is analyzed in Section 5. Section 6 proposes a frame-
work for a game-theoretic mechanism that increase the data availability of the weakly-
available agents. A distributed algorithm for matching agents is presented in Sec-
tion 7. Section 8 presents results of simulation of the algorithms. In simulations, we
also consider a cloud-assisted system, in which a fraction of users contributes highly-
available resources rented from cloud providers. Section 9 discusses relaxations of
some of our assumptions. Finally, Section 10 summarizes the paper.

2. RELATED WORK

Our paper analyzes the problem of replica placement in a decentralized storage sys-
tem. In order to optimize the data availability, we explicitly choose the nodes on which
the data is to be replicated (unlike, e.g., DHTs [Rowstron and Druschel 2001]).

Many papers assess loss of efficiency of the system caused by selfishness of indi-
vidual participants, starting from the analysis of selfish routing in [Koutsoupias and
Papadimitriou 1999]. [Babaioff et al. 2007] studies incentives for system-optimal be-
havior in p2p systems. [Fabrikant et al. 2003] considers a game of network creation
in which selfish nodes optimize the cost of creating new links that minimize distances
to other nodes. [Moscibroda et al. 2006] considers a similar model in a p2p system.
In contrast, in decentralized storage systems, the “transaction” (i.e., storing data of
another agent) is persistent rather than temporary; unlike in the classic Prisoner’s
Dilemma, an agent’s utility from “cheating” is small, as the cheated party can easily
detect cheating and quickly adjust its strategy. Interaction is repeated — similarly to
BitTorrent [Rahman et al. 2011] — thus, the typical problems of enforcing agreements
can be easily solved using reciprocity and a basic reputation system; which is why in
the game theoretic analysis (Section 5), we focus on the process of forming, rather than
enforcing, replication agreements.

The most common approach to decentralized storage is to place enough replicas ran-
domly in the system. [Bhagwan et al. 2002] analyzes how many replicas are required to
achieve a desired level of availability. Pastiche [Cox et al. 2002] and Total Recall [Bhag-
wan et al. 2004] use random placement. P2P file systems using DHT for storage and
routing also place replicas randomly (i.e., not taking into account nodes’ properties);
such systems include [Muthitacharoen et al. 2002; Busca et al. 2005; Amann et al.
2008; Zhang et al. 2007; Chang et al. 2008]. Chun et al. [Chun et al. 2006] studies
by simulation durability and availability in a large scale storage system, focusing on
maintenance in presence of permanent failures. Bhagwan et al. [Bhagwan et al. 2002]
and Rodrigues and Liskov [Rodrigues and Liskov 2005] show basic analytical models
and simulation results for data availability under replication and erasure coding.

Another common approach is to use caching to store replicas of popular files. For
instance, FreeNet [Clarke et al. 2001] relies on proximity-based caching; when a data
item is no longer used, it can be removed from a cache. In Pangea [Saito et al. 2002],
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a replica is created whenever a data item is accessed. Other works on proximity-based
caching include [Iyer et al. 2002; Shi and Mao 2006; M. Hefeeda and Mokhtarian 2008;
Linga et al. 2003]. These approaches have limited applicability in a general storage
system in which there probably would be a long-tail of files that are generally unpop-
ular, yet important to some small communities.

Approaches that explicitly optimize the placement of replicas include [Douceur and
Wattenhofer 2001a; 2001b; Bernard and Le Fessant 2009; Michiardi and Toka 2009;
Toka and Michiardi 2011]. [Bernard and Le Fessant 2009] studies by simulation an
algorithm similar to the Pragmatic Queries algorithm (Section 7), with a slightly more
complex acceptance (score(i, j)) function. Similarly to our theoretic and simulation re-
sults, the experiments in [Bernard and Le Fessant 2009] show that highly available
agents achieve better performance than the agents with lower availability.

[Michiardi and Toka 2009] and [Toka and Michiardi 2011] analyzed a problem sim-
ilar to the decentralized allocation in our model. [Michiardi and Toka 2009] observes
that the “system stabilizes when peers are grouped into clusters, pooling users that
have similar profiles”, however the proof is left for future work. In our paper, Proposi-
tion 5.2 provides a proof for the analogous behavior in our model; moreover, we com-
pute the price of anarchy (Proposition 5.5). Additionally, we prove that the centralized
optimization of availability is NP-hard (Propositions 4.2-4.5), which is hypothesized,
but deferred for future work in [Toka and Michiardi 2011].

We consider estimates of availabilities that do not depend on time. An alternative
is to have many estimates for future time periods (see also Section 9). In this model,
[Blond et al. 2012] analyzes the problems of presence matching and uptime matching.
A related model, grouping nodes with known join and leave times to cover the whole
availability period, is analyzed in [Li et al. 2011]. According to our earlier work [Rzadca
et al. 2010], such alternative models result in higher data availability (when agents
have varied availability patters); thus the results presented in this paper may be re-
garded as a worst-case (a realistic worst-case when the deployment is not global).

Fair optimization of availability (Section 4) is similar to the problem considered
in [Douceur and Wattenhofer 2001a; 2001b], where replicas of individual files are
spread over a pool of hosts with given availabilities. These approaches were devel-
oped for Farsite [Bolosky et al. 2007], an organizationally-centralized filesystem; thus
there is an implicit assumption of a single owner of the system. These methods do not
consider the autonomy of the participating agents.

[Giroire et al. 2009] assumes that the replica placement policy is partly determined
by locality constraints. The “Buddy” policy is similar to our clique-based allocation;
however our cliques are optimized, and not partly fixed. By simulation, the authors
conclude that locality-aware policies are less efficient than the global, randomized al-
location; in contrast, our Equitable heuristic is more efficient than the random alloca-
tion.

[Raz et al. 2008] models a system with storage clients and storage servers and
proposes an agent-based algorithm to match clients’ requirements to servers’ offers.
Clients pay for servers’ services. In our system, there are no “servers”: each agent both
offers storage space for others and stores its data on others’ devices. We are therefore
able to construct a system without monetary payments, which could have negative
consequences for users [Vohs et al. 2006]. The optimization protocol proposed in [Raz
et al. 2008] has some similarities to the distributed algorithm we propose in Section 7
in that a client and a server make autonomous decisions to optimize their performance.
However, [Raz et al. 2008] uses random matching, while we use T-Man [Jelasity and
Babaoglu 2006] as a distributed global optimization sub-protocol.
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Table I. Summary of notation used in the paper

pi,t | agent
u; | an estimate of agent’s (true) unavailability
u | a vector of agents’ unavailabilities, u[i] = u;
u’ | agent’s declared unavailability
ui(7) | unavailability of agent j’s data on agent ¢
data unavailability function
d; | data unavailability of an agent ¢
s | agent’s suplus units of storage (used to replicate other agents’ data)

G; | replication group
d(Gj), dg; | data unavailability of a replication group G

o | groupsize(c =s+1)

n | the total number of agents

1,7) | replication proposal by agent ¢ to agent j in round !

r1(4,0,7) | withdrawal of a replication proposal in round !
r | the number of replication slots used by the mechanism
k | the number of times a weakly-available peer is adopted
7 | threshold separating weakly and highly-available peers

Our aim is to build a generic storage; a specialized system could use real-life rela-
tions between users (a friend-to-friend, F2F, system, [Sharma et al. 2011; Tinedo et al.
2012]).

We propose (Section 6) a truthful mechanism that considers only a single parameter
of the system: the agents’ availability. An alternative scheme is to consider also stor-
age space. With asymmetric agreements [Pamies-Juarez et al. 2011], weakly-available
agents contribute more disk space to their highly-available replication partners to com-
pensate for their availability.

The payoff function in the replication game (Definition 5.1), in which an agent’s pay-
off depends on its availability (type) and availabilities of its replication partners, fulfills
the definition of a hedonic game [Dreze and Greenberg 1980]. However, a (general) he-
donic game has a complex structure of payoffs: the agent’s preferences are defined over
all coalitions she might belong to. In a more restricted model, utilities are symmetric
and additively-separated [Bogomolnaia and Jackson 2002]. Our replication game has
an even more restricted structure of payoffs: each agent’s contribution to the coali-
tion’s payoff is the same — equal to the agent’s unavailability. Using this restriction,
we prove results stronger than those for the generic hedonic game: in particular, the
price of anarchy (Proposition 5.4) and a truthful mechanism to reduce it (Section 6).

3. SYSTEM MODEL AND ASSUMPTIONS

This section proposes a mathematical model of a decentralized storage system. The
goal of the model is to focus on the consequences of the autonomy of agents, thus we
simplify other issues present in the system; in Section 9 we discuss relaxations of these
assumptions. The notation is summarized in Table I.

The system is composed of n autonomous agents (peers, players). The i-th agent is
denoted by p;, or alternatively by i if it is not ambiguous.

In the majority of the paper, to make the mathematical analysis tractable, we as-
sume that agents are homogeneous in terms of storage needs and available storage
resources to share. Thus, all the agents provide a surplus storage space of s units to
the system and need to store one unit of data. Note that in addition to storing s units
of other agents’ data, each agent stores a copy of its data; thus the total storage size of
each agent is s + 1. Our results can be generalized to systems with non-homogeneous
agents: we extend the analytical results in Section 9.1; and study the impact of various
storage sizes experimentally in Section 8.5.
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To make mathematical analysis tractable, we assume that agents replicate data
by storing complete copies, in contrast to erasure codes. Erasure codes might offer
additional gain in data availability.

Agent ’s availability a; is the probability of being online. Agent i’s unavailability
representing the probability that agent i is not available is given by u; = 1 — a;. Later
on, we use unavailabilities rather than availabilities as it simplifies all the mathemat-
ical expressions.

The availability estimates can be measured by a trusted centralized component, or
by agents themselves [Le Fessant et al. 2008]. Thus, we assume that the availabilities
are publicly known and cannot be tampered with by agents.

Our key contribution is a series of algorithms organizing agents into replication
groups. These algorithms, given the estimates of agents’ unavailabilities (u;), produce
replication groups to optimize various performance measures. For the sake of tractabil-
ity of the analysis, we study a snapshot of the system and thus we assume that these
estimates do not change: an algorithm, given the best guess on future agents’ perfor-
mance (u;), organizes replication. Adopting the algorithms (or the solution) to changing
availabilities is out of the scope of this paper (although we empirically study perfor-
mance under changing availabilities in Section 8.6 and give some further ideas in Sec-
tion 9). Additionally, our matching algorithms converge fast (in order of tens of seconds
to minutes); this is shorter than the detection of any significant availability change.

We also assume that the estimate of the availability is not a function of time; an al-
ternative model is to consider that estimate depends on the (wall-clock) time, modeling
e.g. daily usage patterns of a device [Rzadca et al. 2010].

In order to simplify the notation of proofs, we assume that agents are numbered
according to increasing unavailabilities, u; < u;+1. We also assume that n is divisible
by s+ 1 (otherwise, at most s “virtual” agents with a; = 0 can be added to the system—
these agents represent the replication slots that will be “wasted” in a system).

We model a storage system based on Internet connections, thus we assume that the
agents are connected by a complete graph: any agent can contact and replicate data
at any other agent. We also assume that the bandwidth is not a bottleneck — see
Section 9 for a discussion on how the bandwidth might be modelled.

Assume that i’s data is replicated by agents {p;1,p;2, - .., pir}, where p;; = i. i’s data
is thus unavailable with probability d; equal to the probability of the event that all the
replicators are offline (a transient failure), d; = [[;_;, ,; u; (assuming that the agents’
transient failures are independent [Babaioff et al. 2007; Bhagwan et al. 2003]).

In several of our models, we assume that agents form replication groups (cliques)
{G;}. Each member p, € G, of the group replicates data of all other members
pj # pi:p; € G;. We define group unavailability d(G;) = Hiecj u;. Note that,
Vp; € G;:d; = d(G;). We denote group size as 0; = |G;|. We do not use groups in
the availability-encouraging mechanisms in Section 6. Such groups have several ad-
vantages compared with the pair-based allocation. First, groups are formed in the sub-
game perfect solution of the decentralized versions of the problem (see Proposition 5.2
that considers the problem without assuming replication groups and proves that such
groups will be formed). Second, with groups, it is easier to optimize some of the sys-
tem’s parameters not directly considered in this paper, like data dissemination during
updates, when a group can form a spanning tree. Third, as groups are based on reci-
procity, it is easier for agents to directly control their replicas and react to free-riding.

As agents are assumed to be rational and to derive utility from availability of their
data, each agent wants its data to be replicated as well as possible. Thus, ¢ minimizes
its d; by choosing, or forming, a group with d(G;) as small as possible. Depending on
the constraints of the system, this goal can be expressed in two ways:
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(1) given the surplus storage of s units, find s agents {pi2, ..., p;(s+1)} such that d(G;) =
d({i} U{pi2; ..., Pi(s+1)}) is minimized (this goal represents the optimization of data
availability given a budget on the storage space);

(2) given the maximal tolerable unavailability ¢, minimize the size of the replicating
group min o; = |G| (this goal represents the optimization of the storage space, given
a budget on the availability).

Both types of goals can be expressed also from the system’s perspective. The system
should guarantee that agents are treated fairly by optimizing unavailabilities of all the
groups {u(G;)}. In this paper, instead of a multi-objective approach, we will aggregate
the groups’ goals using two aggregating functions: (i) Y d(G;) (expressing the average-
case behavior); (ii) maxd(G;) (expressing the worst-off group). Section 4.2 provides
motivation for aggregating over groups, rather than individual agents.

4. CENTRALIZED MODEL: COMPLEXITY, BOUNDS AND HEURISTICS

This section analyzes the model with stochastic agent availabilities from the perspec-
tive of a centralized system that organizes the replication agreements. First, we prove
that equitable optimization of the availability is NP-hard. Then, we propose aggrega-
tion functions used to characterize fairness of the system; and propose lower bounds
which we later use for the price of anarchy estimation. Finally, we show a simple,
greedy heuristic that organizes agents into cliques.

4.1. Complexity of Centralized Matching

The task of the fair matching system is to divide agents into replicating groups such
that: (i) the probability of data being online is as high as possible; (ii) the size of each
group is bounded. In this section, we first define a simple version of this replication
problem and prove that it is NP-complete. Then, using this result, we prove that both
system-level problems are NP-hard (namely, optimizing availability given constraints
on the storage, and optimizing group size given minimal availability).

We define a simplified version of the replication problem as follows.

Definition 4.1. Aninstance of the decision version of a Simple Stochastic Fair Repli-
cation Problem (SSFRP) is given by the set of the agents’ unavailabilities {u;} and a
bound B. We ask whether there is a partition G1, G5 of agents’ population such that
both groups are non-empty and d(G;) + d(G2) < B.

This problem is “simple”, because we consider only two groups, we do not consider
limits on the size of each group and we use a simple sum as an aggregation of groups’
unavailabilities.

PROPOSITION 4.2. The decision version of the Simple Stochastic Fair Replication
Problem is NP-complete.

PROOF. /(Sketch, full proof in the appendix) Reduction from Partition with u; = 27%,
B=2.2752_ 1

As the most unrestricted version of the replication problem is NP-complete, other
problems are similarly NP-complete. Maximizing availability with constrained re-
sources (Optimum Availability with Constrained Storage, OACS) translates into a
problem of forming groups with a limited number of members. SSFRP can be thus
solved by OACS with unlimited groups.

COROLLARY 4.3. The problem of optimizing availability given the maximum num-
ber of agents in each group (OACS) is NP-complete.
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Restricted size problems are, generally, harder than non-restricted ones. For instance,
creating groups with exactly 3 members corresponds to the strongly NP-complete 3-
partition problem [Ausiello et al. 1999].

Finally, we consider the problem of minimizing the used storage space, given a con-
straint on the minimal availability of a group (Optimum Storage with Constrained
Availability, OSCA). OSCA is solved by forming the maximum number of groups such
that each group provides at least the required availability level R.

Definition 4.4. The Decision version of OSCA is defined as follows. Given the
agents’ unavailabilities {u;}, we ask whether it is possible to construct a partition
of agents’ population consisting of at least N disjoint groups {G1,...,Gn}, so that in
each group G; Hiegj u; < R.

PROPOSITION 4.5. OSCA is NP-complete.

PrOOF. (Sketch, full proof in the Appendix) Reduction from DUAL BIN PACK-
ING [Assmann et al. 1984] with u; = 2% and R=2"5. O

4.2. Characterization of a Fair Allocation

In multi-agent optimization, each agent has an associated outcome function f;. In or-
der to optimize performance of all agents, but to avoid multi-objective optimization
methods, these functions are aggregated (commonly as ) f; or max f;) which trans-
forms the problem to a single-goal optimization (min }_ f;, minmax f;). The solution
obviously depends on the aggregation function: for instance, max f; focuses on the
worst-off agent, at the expense of others; > f; ignores what was the base on which
an improvement in one of f; was made.

In the subsequent analysis, in order to make our results more general, we will use
two “fair” aggregations: ). d; (the average replication level of an agent) and maxd;
(the worst replication level). To further simplify the formulation of some proofs, we
will aggregate over groups, rather than over individual agents. maxd; = max¢ d(G).
Similarly, ch d(G;) can be used instead of ), d;: a corollary from Proposition 4.6 is

that Zl di = O’ZGj d(Gj)

As the problem of deriving a fair allocation is NP-hard, in this section we show some
properties of the optimal fair allocation. These properties will help to derive the price
of anarchy in Section 5.

The following two propositions state that it is sufficient to analyze allocations in
which all the replication cliques are complete (have the maximum number of agents).

PROPOSITION 4.6. Any grouping with replication groups having fewer than o =
s + 1 agents can be transformed to a grouping with all groups having exactly o agents
and a smaller or equal value of ), d(i).

PROOF. We analyze groups having less than ¢ members. The total number of agents
across all such groups is divisible by o. Repeat the following until all groups have
exactly o members. Take the group G with maximal d(G) among these groups and
assign its members to other non-full groups (non-full groups have space to accept these
agents, otherwise the number of agents in these groups would not be divisible by o).
Observe that, overall, ) . d(i) has not been increased, as former members of G are
assigned to groups G’ having d(G’) < d(G); and after the re-assignment, d(G’) is also
not increased (and decreases if the reassigned agent has u; < 1). O

PROPOSITION 4.7. Any fair solution optimizing min max G; can be transformed to
a solution with all groups having exactly o agents (without increasing the value of the
goal function).
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PROOF. The proof is similar to the proof of Proposition 4.6. O
The following proposition shows a lower bound for the min max aggregation.

PROPOSITION 4.8. A lower bound for min max d(G;) is uZ, where ug is the geometric
average of {u;}, ug = ¥/[] wi.

PROOF. The proof is by contradiction. Assume minmax d(G;) < uZ. In such a solu-
tion, V¢, d(G;) < ug, thus

Z log d(G;) < Nlogug,.
k=1,...,N

As N = 2 and logug = = 3" logu;, we get
Z log d(G;) < Z log ;. (1)

k=1,...,.N i=1,...,n

However, as each agent belongs to exactly one group, in any solution:

which contradicts (1). O

The following proposition shows a lower bound for the other considered aggregation,

min ) .
PROPOSITION 4.9. A lower bound for min)_ d(G;)is 2 ( minge (1, n} ul-)a

PROOF. In each group G;:

d(G,) = H u; > (min ui)a > ( min ui>g.

i€Gj ie{1,...,
ieG, 1€Gj ief n}

Thus,

.....

and the proposition follows. O

4.3. A Greedy Heuristic for the Fair Allocation Problem

The following greedy heuristic optimizes the assignment of agents to cliques in OAFS
(Section 4.1), assuming global knowledge and coordination of agents. The idea of the
algorithm is similar to the First Fit Decreasing approximation algorithm for minimum
bin packing [Ausiello et al. 1999].

Firstly, the agents are sorted by increasing unavailabilities u(i). Then, Z most avail-
able agents are assigned to separate cliques. Finally, for each of the remaining agents
(in the sorted order), the agent is assigned to a non-complete clique G; that currently
has the highest unavailability G; = argmaxg;.|qj <o [ Lic gy i-

We experimentally compare this algorithm to the random allocation in Section 8.2.
The assignment resulting from the above heuristic may be further optimized by a
global search meta-heuristic, such as Simulated Annealing (SA). However, in our ini-
tial experiments, SA did not significantly improve results returned by the heuristic,
probably because of the large number of cliques to consider.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:10 K. Rzadca et al.

5. GAME THEORETIC ANALYSIS OF THE DECENTRALIZED MATCHING

In decentralized matching, we assume that each agent is selfishly interested in max-
imizing the availability of its data. In this section, we predict replication agreements
that will be formed in such systems. We model the resulting game as an extensive
game in which agents change their replication agreements. We show that in the unique
subgame-perfect equilibrium agents will form replication agreements with agents of
similar availability. The drop in the system’s efficiency (both for ZG].EQ d(G;) and

maxg;eg d(G;)) in this equilibrium is unbounded.

5.1. Replication System as a Game

As data replication is a long-lasting agreement, two distinct phases can be logically
distinguished. In the first, organizational phase, each agent forms zero, one or more
agreements with other agents in which she commits to storing their data. The data is
transmitted only when this phase ends. In the second, production phase, the agent can
either honor the previous agreements, or break some of them by explicitly dropping
other agents’ data or by lowering its availability (see Section 9 for a discussion on how
these phases map to a dynamic system).

The game in the production phase of the system is similar to the repeated Prisoner’s
Dilemma [Osborne 2004]: an agent prefers not to honor the previous commitments, as
storing data consumes agent’s resources. However, the goal of the replication system
is to make data available over a longer time period, thus the game can be modeled by
the infinitely repeated Prisoner’s Dilemma with a discount factor ¢ close to 1. Thus,
breaking the agreements is only profitable in a very short term: when j detects that
1 stopped replicating j’s data, ;7 will not only break all its agreements with 4, but also
notify other agents of a “cheater” (directly, or with the help of a reputation system),
which, in turn, can effectively exclude i from the replication system.

5.2. Definition of the Game

We formally define the game in the organizational phase as an extensive (multi-round)
game with simultaneous moves [Osborne 2004]. Intuitively, in each round of the game,
zero, one or more agents propose to replicate other agents’ data and/or withdraw pre-
vious proposals. The game ends when no agent changes its set of replicating agents.

Definition 5.1. The Stochastic Replication Game (SRG) is defined as an extensive
game with infinite horizon and simultaneous moves, in which:

— the set of players is equal to the set of agents;

— the set of terminal histories contains list of sets ({r;(¢,0 vV 1,4)}), i.e., sets of repli-
cation proposals (denoted by (7, 1, j)) or withdraws of previous proposals (r;(3, 0, j),
possible only when 3’: (i, 1, j)), made by agents (i) to other agents (j) in round I;
in each round, for each agent, the number of active replication proposals does not
exceed the agent’s storage capacity s; all terminal histories end with an empty set
0;

— the player function P(h) = {p;}, i.e., after each history % all players can make
proposals;

— each player minimizes the expected unavailability of its data computed as a prod-
uct of unavailabilities of players who propose replicating the player’s data (and who
do not withdraw their proposals in subsequent rounds). We denote by R; the repli-
cation set of j (after a terminal history), i.e., R; = {i: (31 : r;1(j, 1,9)) A (P2 >
li:112(4,0,4))}. The pay-off is d(i) = w; [];. icr, Ui-

The game is defined as an extensive game to model the fact that during the organi-
zational phase agents will react to other agents’ decisions and adapt their replication

ACM Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.



Game-Theoretic Mechanisms to Increase Data Availability in Decentralized Storage Systems  1:11

sets accordingly. Similarly, the game is not repeated, as the game models the organi-
zational phase in which the payoff is computed for the production phase rather than
for the short-term state after each round. For this theoretical analysis we do not limit
the number of rounds in the game.

5.3. The Nash Equilibrium and the Price of Anarchy

We study the outcome of the game assuming that agents’ strategies are tit-for-tat
based, i.e., if agent i proposes to replicate j’s data in round ! (r;(,1,5)) and agent
j does not propose to replicate i’s data in the subsequent round at the latest (A’ <
I+ 1:7(5,1,7)), agent i will withdraw its proposal in the next round r; (7,0, 7). This
assumption on strategies helps agents to coordinate their actions. At the same time,
such strategies are flexible and allow agents to react to actions of other agents.

The following proposition shows the subgame perfect [Osborne 2004] equilibrium
of the game. Every subgame perfect equilibrium is a Nash equilibrium. In extensive
games, the notion of the Nash equilibrium is considered artificial, as it is based on
so-called empty threats [Osborne 2004, p. 164]. In contrast, the subgame perfect equi-
librium requires that each player’s strategy must be optimal for every history after
which the player moves. In order to illustrate the difference, assume that s = 1 (each
agent can replicate data of only one other agent), and u; < us < ug < ug. If p3 and p;
commit to mutual replication, and p, has a tit-for-tat strategy and replicates p;, in the
Nash equilibrium p; must replicate p, data—after p; proposes to replicate p,, p» would
not withdraw ps, even though it is optimal to do so.

PROPOSITION 5.2. In a subgame perfect equilibrium of the Stochastic Replication
Game, assuming that agents use tit-for-tat strategies, agents form 7 replication cliques
of size 0. The cliques group agents with similar availability. If agents are numbered
according to non-increasing availabilities (u; < u;y1), the j-th clique is formed by agents
{1+0(j—1),24+0( —1),...,0+0(j —1)}. The equilibrium is unique if and only if the
agents’ availabilities differ, i.e., Vi: u; < ;1.

PROOF. The game ends when no agent changed its proposal in the next to the last
round (denoted by /). As the outcome is subgame perfect, given the other agents’ ac-
tions, for each agent it was optimal not to change any of its proposals in round I. The
proof is by contradiction.

By induction, we show that agents replicate in cliques. For the first clique, assume
that agent i (1 < i < o) replicates data of at least one agent ;' > o. Thus, by tit-for-
tat, at least one agent j from {1,...,0} does not replicate i’s data (instead replicating
data of ;” > o). Thus, 7 could increase its availability by stopping replication of j’
(r(4,0,5')) and proposing r;(i,1,7): as u; < w;~ it is optimal for j to stop replicating
7" (ri41(4,0,4")) and start replicating ¢ (r;11(j,1,4)) (otherwise, by tit-for-tat, i would
withdraw its proposal for j). This contradicts the assumption that it is optimal for ¢
not to change its proposals in round /.

By similar reasoning, if |R;| < s (i-th storage is not fully utilized), or if |R;| < s,
r(4,1,7) results in 7,41 (4, 1,4), thus both 7 and j gain in availability.

For the i-th clique, observe that, by the induction assumption, all the agents
{1,...,(0)(i—1)} replicate data between themselves, thus none of them replicates with
agents {1+ (0)(¢ — 1),...,n}. Consequently, the same reasoning as for the first clique
applies, as agents belonging to i-th clique can either replicate between themselves, or
with agents with lower availability. O

The grouping corresponding to the subgame perfect equilibrium is easy to achieve
in a system with centralized information in O(nlogn) time. It is sufficient to sort the
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agents according to non-increasing availabilities and then form replication cliques as
in Proposition 5.2.

The price of anarchy quantifies the degradation of performance in the subgame per-
fect equilibrium compared to an equitable solution. In our system, the price of anarchy
is defined as maxq; d(G;)subgame/A(Gj)equitabic. In order to compute the price of anar-
chy, we prove upper bounds for both fairness models (the following two propositions),
and then show an instance in which the bounds are tight in the limit.

PROPOSITION 5.3. In maxd(G;) aggregation, the price of anarchy is at most
(=52)

PROOF. Value of maxd(G;) in the subgame perfect solution is determined by the
group composed of the most unavailable agents that, in turn, is at most (maxu;)?. In
an equitable solution, max d(G;) > uZ (Proposition 4.8). O

PROPOSITION 5.4. In ) d(G;) aggregation, the price of anarchy is at most

PROOF. In any grouping (including subgame-perfect solution),

Zd<Gj) = Z H Ui

iEG_j
o [ea
< Z (maxui) < N( max uz) .
1€G; i€{l,...,n}

The optimal grouping has (Proposition 4.9) > d(G;) > N(minie{l,...,n} u7)g O

The following proposition shows an instance in which the bounds are tight in the
limit, and thus the subgame perfect equilibrium can be arbitrarily far from the equi-
table solution.

PROPOSITION 5.5. In the Stochastic Replication Game, the price of anarchy is un-
bounded.

PROOF. Consider an instance with o = s+ 1 highly available agents (with u; = u, —
0) and ¢ - s unavailable agents (u; = u; — 1).

A equitable solution minimizing both }_, d(G;) and max; d(G;) constructs o cliques;
in each clique there is exactly one highly available agent and s less available agents
(indeed, any assignment in which there are more than one highly available agent in the
same clique has worse overall availability). Thus, >, d(G;) = oupuj; and max; d(G;) =
UpU; .

IIll the subgame perfect solution, highly available agents form a clique, thus leaving
the less available agents to form cliques between each other. Thus, 3, d(G;) = uf +suf;
and maxs; d(G]) = IL?.

The price of anarchy for min ) d(G;) is thus equal to:

ug + suf uj sug
- 5 = s + — — oo,
OURU; ou; oup unp—0
Similarly, for min max d(G;), the price of anarchy is equal to T r—; co. O

We discuss the consequences of such a high price of anarchy in the experimental
evaluation (Section 8.2).
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6. AVAILABILITY-ENCOURAGING ADOPTION MECHANISM

The high price of anarchy makes the completely decentralized system almost unusable
for the weakly-available agents. On the other hand, a fair, centralized solution (Sec-
tion 4) does not offer incentives for agents to be highly available. In this section, we
propose an alternative to these two solutions: an algorithm that uses some replication
slots of the highly-available agents to help the others; but also rewards more available
agents with better data availability.

6.1. Characterization of a truthful mechanism

An availability-encouraging mechanism uses some of the replication slots to make the
availability distribution more fair. Agents use the remaining slots to form replication
agreements as in the Stochastic Replication Game (SRG, Definition 5.1). The follow-
ing game focuses on the role of the mechanism, at the same time approximating the
subgame-perfect equilibrium of the SRG by approximating replicator’s availability by
the agent’s declared availability.

Definition 6.1. The mechanism, given the declared unavailability level v, of each
player (0 < u; < u} < 1), assigns for each player ¢ a set of replicators S;; and for each
replicator j € S;, sets the exposed unavailability level w; (i) (u;(i) > u}). The pay-off of
i-th player is given by:

di(uj,u_g) = (up)” 15 TT u,(d). )

JES:

Both S, and u;(i) are functions of declared unavailabilities [u}]; we omit the vector
from the list of arguments in order to simplify the notation.

The notion of the exposed unavailability u;(i) > v} permits to artificially diminish
the availability of the i-th agent’s data stored at j: this will be crucial to design an
availability-encouraging mechanism. Such a limit can be easily implemented: e.g., j
can serve only a u;(i)/u; fraction of requests for i-th data.

The fundamental problem is how to design the mechanism so that the players are
motivated to declare their true availabilities, v = u;. The following definition formally
captures that idea.

Definition 6.2. A mechanism is availability-encouraging (or truthful) if and only if
for each agent i, given other agents’ unavailabilities u_;, the agent obtains higher or
equal data availability by declaring its true availability: d;(u;, u_;) < d;(u}, u_;).

Informally, an availability-encouraging mechanism “rewards” agents who increase
their availability by increasing their data availability A mechanism should be
availability-encouraging, because otherwise the agents do not have an incentive to
be highly available. As being available has some real costs (like electricity), in a sys-
tem with an availability-discouraging mechanism agents would choose low availability
levels u) > u;; thus the system would collapse.

COROLLARY 6.3. An algorithm that forms cliques according to the subgame-perfect
equilibrium (Proposition 5.2) is availability-encouraging.

6.2. A truthful mechanism with guaranteed reduction of the price of anarchy

In this section, we propose an algorithm that builds replication agreements between
agents that is truthful and has a guarantee on the reduction on the price of anarchy.
The algorithm is somewhat “wasteful”, in a sense that not all available replication
slots are used; yet its regularity allows us to analyze its worst-case behavior. In the
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subsequent section we present a heuristic that is more efficient in the average case;
yet, because of the complex agreements, it is impossible to analyze theoretically.

The mechanism is implemented by a centralized algorithm that assigns to r replica-
tion slots of each highly-available agent r distinct weakly-available agents (1 < r < o),
such that each weakly available agent is “adopted by” (assigned to) k distinct agents
(1 < k < o). For instance, if r = 1,k = 1, the upper-half of agents adopts the lower-half;
if r = 2,k = 1, the top 1/3 adopt the bottom 2/3. 7 = u,;/(4«) denotes the unavail-
ability of the last highly-available agent (e.g. for r = 1,k = 1, 7 is the median of {u;};
for r = 2,k = 1, 7 is the first tercile). To simplify the notation, we assume that nk is

divisible by r + k; otherwise, the last highly-available agent is [T“fk}, and its r replica-

tion slots are used to replicate agents {( [:fk} +1),..., ((T,Tfk] +7+1)} (which are thus
adopted k£ + 1 times).

The algorithm keeps a list Ly of weakly-available agents adopted less than & times
(the list is initialized by (nﬁ +1,...,n)). The list is ordered by increasing unavail-
abilities u. Highly-available agents are processed in order of increasing u: each highly-
available agent i adopts first r agents from Ly (denoted by j), thus S; = argminjer,,,, u;
and Sj = Sj U {7}

Next, if k < r, for each weakly-available agent, » — k dummy agents with uy =
1 are added to the replicas set S;. These r — k replications slots are wasted: as we
demonstrate later, we need this for the truthfulness of the mechanism; at the same
time, these slots do not play a role in the reduction of the price of anarchy. A heuristic
proposed in the next section uses these slots more effectively (but has no asymptotic
guarantee on the price of anarchy).

Finally, the exposed unavailabilities are set. Adopted agents ;j expose to their part-
ners the maximal unavailability u,. This bounds the incentive for highly-available
agents to manipulate the threshold. Alternatively, if both r and £ is fixed (as in Propo-
sition 6.4), an adopted agent j can expose to its parent its true unavailability u; () = u;.
As the highly-available agents are processed in order of increasing u, this is sufficient
to guarantee that the data unavailability increases with agent index.

In contrast, for the weakly-available agents, the mechanism must ensure that
the resulting data unavailability increases with agent index; thus u;(j) are set so
that d; > d;_,. Approximating d as in Definition 6.2, u;(j) are derived from d; =
max(dj—1,uj " Hies,- ;i (7).

The following proposition shows that the algorithm is truthful if » and & are chosen
independently of the distribution of unavailabilities u. For instance, the system might
announce r and k, and then gather the agents’ declarations of w.

PROPOSITION 6.4. Given r,k, the mechanism is truthful.

PROOF. We consider three cases: (i) a highly-available agent (u; < 7) declaring
T > u} > uy; (ii) a highly-available agent declaring u) > 7; (iii) a weakly-available agent
(uj > 1) declaring v} > u;.

In the first case, d;(u},u_;) = (u})°" Hj€S£ uj(i) > (ui)” " [Les, ui(i), as uj > u;
and a less-available agent can have less available partners assigned by the mecha-
nism: as highly-available agents are processed by decreasing u;, some agents from S;
might be not longer available and replaced by weaker agents in .57, thus [],, 51 U (i) >
[Les, u;(0).

In the second case, as u, > 7, and the exposed unavailabilities are set so that d; is
increasing, d; d; > d;.

In the third case, by declaring v/ > u;, the agent can lower its ranking if and only if
there exist an agent [ with u; <y < u; As d is set to be increasing, d;- >d;>d;. O
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The following proposition shows that the reduction of the price of anarchy is propor-
tional to the threshold 7.

PROPOSITION 6.5. The mechanism reduces the price of anarchy by at least
Tk/uffax(nk) ifr+k<o.

PROOF. The price of anarchy is determined by the data unavailability d(n) of the
least available agent n. Without the mechanism, the price of anarchy is bounded by
(%)% (in max d(G;) aggregation, Proposition 5.3) and by (%) (in }_ d(G,) aggrega-
tion, Proposition 5.4).

After the mechanism completes, all weakly-available agents have k partners as-
signed with unavailability of at most 7. Thus, before limiting the exposed unavail-

abilities (the last step of the algorithm), the weakly-available agents had the data
unavailability at most d; < u ;’ max(rk) -k The least-available highly-available agent
(with index p = nk/(r + k)) has its data availability of at least d, < 77 "u]. If r+k < o,

7oyl < rhup” max(rk) Thuys, after limiting the exposed unavailability, the least avail-

able agent n has still the data unavailability d,, <« ™>""rk g

We treat r as given, as it directly translates into burden for the highly-available
agents. In contrast, k£ should be optimized by the algorithm. Given vector of agents’
unavailabilities u (u[¢] = wu;), as the reduction in the price of anarchy is propor-
tional to 7% = (u(n;%;))*, the algorithm should choose an optimal k* ie., k* =
arg minj<g<e—r u(nr_’ﬁk)k

However, as k* depends on the declared unavailabilities u, some agents might be
interested to declare w] > u; in order to manipulate this choice. Smaller values of k
result in smaller thresholds 7, thus more agents are treated as weakly-available and
have assigned partners. In general, for the same declared unavailability u;, an agent i
prefers to be treated as weakly-available than as highly-available.

We denote by p* the agent that defines the threshold 7 for the optimal &* (assuming

that every agent declares its true unavailability), i.e., p =n—L- + > and by p’ the agent

that defines the threshold 7 for &' < k*, i.e., p’ = nr - Agents do not have incentive

to manipulate the threshold so that ¥’ > k*, as agents that become highly-available
7* < u; < 7' can be worse-off than before; and agents that are highly-available for both
thresholds (u; < 7*) do not gain from this change as the unavailability exposed by the
Weakly-available agents is u,,.

Assume that p’ < ¢ < p* (as other agents have no incentive to change the threshold).
If k' is chosen, the agent i is treated as weakly-available as 7/ < u;;its d, = (u})° ~*(7')k.
If &* is chosen, the agent i is treated as highly-available; its d; = (ul)" "ul . Thus, it
is possible that the agent improves its data availability by being treated as a Weakly-
available: for some k,r, 7/, u;, d; < d;.

Given a vector of other agents’ unavailabilities u_, how can an agent 7 influence the
mechanism so that &’ rather than k* is chosen? If i declares u; = u(p* + 1), the p*-th
agent in the original vector u (that determined the optimal threshold 7*) becomes the
(p* — 1)-th agent in the resulting distribution «’. Thus, the threshold is determined
by the (p* 4+ 1)-th agent in the original distribution . (declaring v > u(p* + 1) is not
efficient for ¢, as it does not further influence the threshold, and, once the threshold is
set, the agent is better-off declaring ) as low as possible by Proposition 6.4).

If declaring u, = u(p* + 1) is sufficient for the mechanism to switch from £* to &/,
how does it affect the reduction of the price of anarchy? As the mechanism switched

from k* to k' for u = (u},u_), u’;,/ < wuk.,,. By dividing this inequality by uk., we
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get ul, /ull < k., /ukl. Thus, the relative loss of the performance of the mechanism
u’;f / ng is at most equal to the relative difference of unavailabilities of two consecutive
agents (up-1/up- )" .

Of course, if &’ > 1, other agents might have an incentive to lower the threshold even

further. However, there might be at most k* such actions. We denote by p; the agent
defining threshold 7; (1 <[ < k*), the cumulative impact on the mechanism is at most

e P
[icicne (uprs1 /up)™ < (maxa<i<ps (Upi1/Upt)

As the distribution of agents’ unavailabilities v is measured, we may assume that
it is “dense” in a sense that the relative difference between two consecutive agents is
small. Consequently, even if a mechanism optimizing & is not strictly truthful, the pos-
sible manipulations are small; and its result does not significantly impact the price of
anarchy. Moreover, the game considered in this section is a worst-case approximation
of what happens in a real system. In the real system, the unavailability u; is measured,
and not declared by the agents. The impact of the measurement tool can be modelled
as a random noise added to the unavailability declared by an agent; thus, the impact
of slight, strategical increase of unavailability (as analyzed in this section), can be can-
celled by a random noise; and, in general, a significant increase of unavailability is not
profitable by Proposition 6.4.

6.3. A Heuristic Adoption Mechanism

The mechanism proposed in this section does not waste the replication slots compared
to the theoretical mechanism presented previously. However, because of the complex
graph of replication agreements, we will not derive a closed formula for the reduction
of the price of anarchy.

The mechanism is still truthful in the sense of Proposition 6.4, i.e., once the param-
eters are set, the algorithm guarantees that the data unavailability is increasing with
agents’ unavailabilities.

Also, similarly to the previous section, the algorithm takes as a parameter the max-
imum number of slots r it can use at each agent. Unlike the previous algorithm, how-
ever, it can use less than r slots.

The algorithm (see Algorithm 1) does a binary search for the optimal target unavail-
ability ¢*. For each tested value of ¢, the algorithm tries to organize the replication
agreements so that all the agents have data unavailability at most ¢, d(i) < t. If the
assignment fails, it means that the tested value was too low; if it succeeds, it tries a
lower t.

Given ¢, the algorithm sets r boundary thresholds 7, to 7, = t'/(°=%) (k € {1,...,7}).
Agents with 7,11 < u; < 7 contribute exactly £ slots to adopt weakly-available agents.

Then, weakly-available agents (u; > 7;) are processed in order of increasing avail-
abilities (from the least available to the most available). For each agent j, the algo-
rithm greedily assigns highly-available replication partners to achieve d; < ¢ in the
following loop. If there is a single highly-available agent ¢ sufficient to achieve d; < t,
then the worst-possible i is assigned and the loop breaks. Otherwise, the highest cur-
rently available i is assigned to j and the loop continues. If all highly-available agents
have all their adoption slots assigned, the subroutine exits with failure (¢ was too low).
After assigning replication partners for j, the algorithm tries to greedily swap j’s best
replication partner p,, = min{i € S;} with a weaker-available agent :. i is chosen so
that if p,, is replaced in the replication group by i, j’s data unavailability is still below
the threshold ¢, p’ = max {p : d;(S; — {pm} U {p}) < t}.

If the algorithm succeeds to assign replicators to all weakly-available agents, the
exposed unavailabilities u;(j) are bounded in order to keep d; increasing with ¢ (in the
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tmin = 05tmax = 1
while tmax — timin > € do
t= (tmax - tmin)/2
for k =1tor do
7lk] = 1/ (7=h)
for i = n downto 1 do
k=1;S,=0
while u; < 7[k] do
k++
ri = k—1
if r; = 0 then
p=1
for j = n downto p do > p denotes the most-available child
d= uj’, failed=false
while d > ¢ and not failed do
failed=true
for i = p — 1 downto 1 do
if j ¢ S;and |S;| <r;and d - u;/u; < ¢t then
S :=8;U{i}; S =S U{j}id:=d- u;/u;
failed=false; break

if d > t then
for:=1topdo
if j ¢ S; and |S;| < r; then
S;:=8;U{i};Si:=S; U{j};d:=d- u;/u;
failed=false; break
if failed then
break
pm =min{i € S;};d = d/upm
fori=p—1topn, do
ifj ¢ S;and |S;| <randd-u; <tthen
Sj =85 U{i} = {pm}; Si == S; U {j}
pm = Spm — {J}
if failed then t.x =t else t i (=t

Algorithm 1: A heuristic adoption mechanism.

same way as in Section 6.2; this last step is not shown in Algorithm 1). Similarly to
Proposition 6.4, by the definition of the truthful mechanism 6.2, this final step makes
the mechanism truthful.

7. A HEURISTICS FOR THE DECENTRALIZED MATCHING

The following algorithm creates an environment similar to the Stochastic Replication
Game (Definition 5.1). The main goal of the algorithm is to reduce the time needed to
reach the subgame-perfect equilibrium (Proposition 5.2) in the context of a real dis-
tributed system, that, through limited bandwidth and agents’ processing power, limits
the number of replication proposals that each agent can make. Among replication can-
didates (most of whom are unknown due to the distributed nature of the system), the
algorithm helps agents find and choose partners that not only maximize data avail-
ability, but also are not likely to withdraw replication agreements—thus, the partners
from the equilibrium. At the same time, all the decisions imposed by the algorithm are
rational (never decrease the agent’s data availability), thus the algorithm converges
to cliques defined in the subgame perfect equilibrium. Consequently, even if some of
the agents choose not to follow the algorithm (but still are rational), the steady state
will be the same—the equilibrium—but reached more slowly (or faster, if the aberrants
use, e.g., an oracle).

To illustrate this difference, consider an agent with a medium availability. To max-
imize its data availability, the agent should try to form a replication agreement with
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function score.(agent i, agent j, G;: i € G;, G;: j € Gj)
if |G;| < o then
if |G;| + |G| < o then
return |av; — avj|
else if |G| < o then
return 0.5 - |av; — av;|
else
return 0
else
H

— sl — mi
Ul = maxXyeg, Uy 3 Uy =Mingeg, Uy

H _ sl — mi
U“j = manlecj ’U,j/ 5 Uj = mlnjleGj Uj/

if uJH <ulor (|G| =0 and u7L > ufl) then

return 0
else
H ,H n(ul Ll
return max(u;", u;' ) — min(u;’, uy)

Algorithm 2: Agent i computes the score of agent j using Explicit Cliques.

an agent with high availability. However, such a highly available agent is likely to
already have (or have in the near future) highly available replication partners; thus
the replication request from the “mediocre” agent will be either rejected, or withdrawn
soon.

Each agent maintains a list of candidates for replicators. This list is refreshed by the
T-Man [Jelasity and Babaoglu 2006] gossiping protocol. Each agent i has two pools of
agents: a random pool rand(i)—at most s, agents forming a sample of the population;
and a metric pool metric(i) with s, agents that score well according to a local metric.
In an iteration of T-Man, each agent updates its random pool by gossiping with a
randomly-chosen agent from this pool. During this operation, to form the new random
pool, each agent chooses s, most recently added agents from both random pools. After
modifying the random pool, the metric pool is updated as the best s,, agents from the
current metric pool and the current random pool. Then, the agent communicates with
the best agent from its metric pool: the metric pools are exchanged, merged, scored
and then each agent chooses the best s, agents from the merged pools.

To form replication agreements, agents use heuristics to compare the current repli-
cators with the candidates. We first describe a framework, then several possible heuris-
tics to choose candidates.

In each turn, each agent i scores the agents in its metric pool that are not i’s current
replicators nor on its taboo list. If ¢ has less replicators than its maximum capacity,
it proceeds to querying the agent j* with the highest score. Otherwise, candidates are
compared with i’s worst current replicator | (I = arg max,,. replica(i,m) Um)- 4 queries the
first candidate j* (in order of non-decreasing score) better than [ (for which u; < w;). If
there is no such candidate, i does not switch replicas.

The queried candidate j* decides whether to accept the mutual replication: if it has
less replicators than its maximum capacity, ¢ is accepted. Otherwise, i is accepted only
if u; < uy, where !’ is j* worst replicator.

Finally, if j* accepts i, and i already has as many replicators as its maximum capac-
ity, ¢ drops its current worst replicator [.

In order not to repetitively query the same agents, each agent i maintains a taboo
list, consisting of former replicators that have been dropped or that dropped 7; and of
agents that did not accept replication with i.

We used three variants of the above algorithm that differ in the trade-off between
short-sighted selfishness and the speed of convergence (we compare these algorithms
in Section 8.7). In Optimistic Queries, candidate j’s score is equal to its availabil-
ity score,(i,j) = a;j. In Pragmatic Queries, candidate j’s score is equal to the abso-
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lute difference between its availability and the availability of the assessing agent i,
scorep(i,j) =1 —|a; — a;.

Finally, Explicit Cliques maintains cliques composed of one or more agents. Every
member of a clique replicates data of all other members. Thus, a representative i of a
clique G;, after choosing agent j* with the maximum score scorec (i, j), tries to merge
its clique with the clique G;: j* € G; of the chosen candidate. The two cliques exchange
members: the “better” clique groups o agents with the highest availability (or the two
cliques combined, if the combined clique has at most ¢ members); the “worse” clique
groups remaining members of both cliques.

The scoring function scorec (i, j) depends on the size of the cliques i € G; and j € G;
(see Algorithm 2).

If |G;| < o, G; is not complete and the algorithm should increase its size (as it
considerably reduces d(G;)). It is best to have G, such that the two cliques will be
merged into one, |G;|+|G;| < 0. Thus, scorec(i, j) = scorep(i, j) in this case; otherwise,
if |G| < o, scorec(i,j) = 0.5scorep(i, j); finally if |G;| = o, scorec(i,j) = 0 (as in this
case one of the cliques after merging will still be of size |G;]).

If |G;| = o, the goal is to find a clique G; that after merging will reduce the vari-
ance of availabilities of agents in both cliques. During merging of G; with G, the two
cliques will exchange members (and thus reduce the variance) if: (i) the intersection of
availability ranges is not empty, [u], u'] N [uf,ul] # 0; or (ii) |G;| < o and u}' > u}. In
these two cases, the score is equal to the range of unavailability that will be reduced;
otherwise scorec (i, j) = 0.

8. SIMULATION OF THE ALGORITHMS

In this section we assess the performance of the matching algorithms by simulation on
a realistic distribution of peers’ availabilities. We consider both centralized and decen-
tralized matching. Using centralized matching algorithms, we experimentally verify
that the high price of anarchy makes a storage system unusable for the newcomers
(and weakly-available agents). We also show that the adoption mechanism results in
acceptable data availability for the weakly-available agents. We repeat these experi-
ments on a population with a fraction of agents renting infrastructure from cloud stor-
age providers, verifying that the cloud has a significant, positive impact on the system.
We then study the decentralized matching algorithm, showing that the subgame per-
fect equilibrium can be efficiently computed by a decentralized algorithm even under
churn.

8.1. Simulation Settings

As we consider a snapshop of the system, the only input to our simulation is the distri-
bution of agents’ availabilities (except analyzing churn in Section 8.7). Excluding the
cloud-assisted configuration (Section 8.4), and the imprecise estimates (Section 8.6),
agents’ availabilities were generated in three steps. Firstly, following [Bernard and
Le Fessant 2009], 10% of the agents have availability 0.95, 25%—0.87, 30%—0.75 and
35%—0.33. Then, we added a Gaussian noise with standard deviation of 0.1 to each
availability. Finally, we capped the resulting value, so that 0.03 < a; < 0.97. Histogram
on Figure 1 shows the resulting distribution of agents.

We generated agents’ availabilities with a stochastic model, rather than used a trace,
for a few reasons. First, using a stochastic model enables us to repeat experiments and
thus analyze statistical significance, rather than anecdotic behavior. Second (rephras-
ing some of the arguments of [Bernard and Le Fessant 2009]), we are not aware of
any publicly-available trace of either a distributed storage software or that exhibits
behavior that is comparable to our scenario. A vast majority of traces describe p2p file
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sharing systems. File-sharing has a different use-case than distributed storage: in file
sharing, once an agent downloads a file, it has no further incentive to share it (per-
haps except BitTorrent private trackers, but, again, we are not aware of any publicly-
available trace from such a tracker). We envision that, as our system incentives agents
to be available, our software will be run whenever the agent’s machine is on-line. The
Microsoft desktop PCs trace [Bolosky et al. 2000] (which we used in Section 8.6) shows
machines availability, which makes it the most applicable to our setting; however, the
trace is from a single, corporate environment and, moreover, 15-years old (thus, it
misses or under-states, e.g., notebooks, mobile devices, or smart routers).

We repeated each experiment on 50 instances with agents’ availabilities generated
as described above; error bars on plots denote standard deviations. As the error bars
can make lines in the figures similar, legends describe lines in the same order as the
lines appear on the left side of figures.

We set the storage size s = 5 and the sizes of random and metric pools in T-Man
gossiping to 50.

We implemented decentralized algorithms in a custom discrete event simulator. We
simulate the organizational phase of the system; no data is transmitted until the solu-
tion stabilizes. In each round of the simulated matching, all the agents are processed
sequentially in random order. Each agent performs one iteration of T-Man gossiping,
and then one iteration of the decentralized matching algorithm.

8.2. Centralized Allocation: Subgame Perfect vs Equitable Solutions

We started with comparing random, subgame perfect and equitable allocation algo-
rithms according to the resulting data unavailability. The random allocation corre-
sponds to unoptimized replication, as, for instance, in a DHT, Pastiche [Cox et al. 2002],
or Total Recall [Bhagwan et al. 2004]; or optimized for a different criteria than avail-
ability [Giroire et al. 2009]. Equitable allocation is analogous to a global optimization
of file availability, as, for instance, in Farsite [Douceur and Wattenhofer 2001a; 2001b].
We ran these algorithms on instances of 10.000 agents each; then we computed aver-
ages over all the random instances and all agents having similar availabilities (with
resolution equal to two decimal places, e.g., the score for 0.95 is an average for all
agents with availability in range [0.95,0.96)). Figure 1 summarizes the obtained re-
sults.

The equitable algorithm produces cliques that result in similar data availability re-
gardless of the agent’s availability. In contrast, the subgame perfect equilibrium re-
sults in wide range of data availabilities: while the highly available agents have their
data available with expected failure probability of approximately 10~°, the weakest
available agents almost do not gain from replication, with data unavailability close
to 1.

Such diversification in the subgame perfect solution provides incentives for agents
to be highly available. A highly available agent is able to replicate its data with other
highly available agents, which exponentially increases the agent’s data availability.
However, the subgame perfect solution might be too “extreme” to the less-available
agents. Agents with availabilities less than approximately 0.5 have their data available
with probability less than 0.99 (approximately), which might be not sufficient for some
applications. This, in turn, can discourage such agents from joining the system, and
consequently, prohibit the system from growing to a critical mass.

On the other hand, an equitable solution does not reward highly available agents.
In absence of altruistic agents, the system would degenerate.

Also note that the equitable solution clearly Pareto-dominates the random assign-
ment, resulting in higher data availabilities for all classes of agents.
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8.3. Centralized Allocation: Increasing Availability by Adoption

We simulated the influence of the availability-encouraging adoption (Section 6) on the
data availability. We varied the number of adoption slots r € {1, 2,3} and, for each r and
each distribution of agents’ u;, performed the heuristic algorithm from Section 6.3. The
remaining slots were assigned by a subgame-perfect solution. The rest of the settings
for the experiment was the same as in the last experiment. Figure 2 shows the results.

The adoption mechanism is efficient in increasing the data availability d of the
weakest-available agents. Even with one slot donated by the highly-available agents
(r = 1), the data availability d of the 20 weakest-available agents is improved by, on
the average, two orders of magnitude (128.4 times, std.dev. 7.9). Agents with availabil-
ities smaller than 0.6 have greater data availability than in the selfish solution. All
weakly available agents have similar data availability, thus the mechanism does not
“reward” agents for increasing availability up to, approximately, 0.65. The mechanism
is not, however, discouraging agents to declare their true availability, as the curve
is non-increasing. If one wants to emphasize rewards, the mechanism can be easily
modified to decrease the data availability with decreasing availability: the target un-
availability ¢ should be decreased with agent index. The impact of the mechanism on
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highly-available agents is limited: their data availability is decreased by about two
orders of magnitude (corresponding to approximately one replication slot “wasted” by
the mechanism on these agents). This behavior is caused by the fact that the highest-
available agents are assigned the weakest-available partners.

Donating more replication slots results in even higher gains for the weakly-available
agents. For » = 2, the data availability is improved on the average 618 times (std.dewv.
39); for r = 3, by more than three orders of magnitude (1159 times, std.dev. 79).

The threshold 7 found by the algorithm decreases with increasing r. For r = 1,
71 =0357r=2, 71 =026 r =37 = 0.23 (std. dev. less than 0.005; 7 denotes the
unavailability of the weakest parent). For » = 1, approximately 40% of the population
is treated as weakly-available; this share grows up to 57% for r = 3.

8.4. Centralized Allocation: Cloud-Assisted System

As we envision that some of the users, rather than providing physical resources, will
run the software on resources rented from IaaS (Infrastructure as a Service) providers,
we wanted to verify their impact on the system. We set the proportion of these cloud
agents in different experiments to 1%, 2%, 5%, 10% and 20%. Each cloud agent rents
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Fig. 5. Agents’ expected data unavailability as a function of their availability and the storage size in the
subgame perfect assignment. Shades of gray denote data unavailability measured in nines: e.g., black cor-
responds to d; = 1012,

its infrastructure from a certain provider; agents using the same provider cannot form
a replication agreement (not to introduce correlated failures). [SA 2013] reports that
the top 5 cloud storage providers have market shares of, respectively 27%, 17%, 15%,
10% and 4% (and 55% of users do not use the cloud storage); we thus limit the number
of providers in our experiment to 4 (as the fifth provider is more than twice smaller
than the forth), and set their relative market shares accordingly (39%, 24%, 21%, 14%).
The availability of a cloud agent is set to 0.9999 (Amazon S3 SLA, [AmazonS3 2013]).
The results are shown in Figures 3 and 4.

The results demonstrate that the whole system gains by incorporating highly-
available cloud-assisted agents. As the market shares of cloud providers are not equal,
agents from the popular provider have not enough partners in other providers. Thus,
even in the subgame perfect equilibrium (Figure 3) a significant portion of cloud agents
replicate non-cloud agents. When the adoption mechanism is used (Figure 4), the cloud
agents enable others to achieve excellent data availability: with 10% of the cloud
agents, the resulting data unavailability of the worst-off agents is around 0.0002.

8.5. Centralized Allocation: Heterogeneous Storage

In the subgame perfect assignment, if there are many agents, agent’s expected data
unavailability corresponds roughly to its unavailability to the power of its storage size,
d; = ufiH. Thus, a weakly-available agent, if it cannot improve its availability, may
instead decide to increase its storage size—compensating the quality of its replicators
by their quantity.

We simulated a system having the same distribution of agents’ availabilities, but we
set each agent’s storage size s; to a value from uniform distribution over [2,11] (thus,
an agent has at least one replicator, and at most 10). When summarizing results, to
improve presentation, we capped d; to 10~!2 (as other effects, such as network failures,
would dominate agents’ unavailabilities). Figure 5 shows the resulting data unavail-
abilities.

The results show that agents can indeed use larger storage size to achieve better
data availability. For instance, agents with availability a; = 0.25 and storage size s; =
11 have similar data unavailability as agents with a; = 0.45 and s, = 6; or a; = 0.65
and s; = 3. This results suggest an alternative method to make the storage system
reasonable to newly connected agents.
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8.6. Centralized Allocation: Imprecise Estimates of Agents’ Availabilities

Our data availability model assumes that agents’ availabilities a; estimate agents’
future availability. In this series of experiments, we investigate how the results change
when availability estimates are imprecise, i.e., the observed availability differs from
the system-generated estimate.

In order not to propose a probabilistic model of agents’ behavior, in this series of
experiments we used two published traces: skype superpeers [Guha et al. 2006] and
Microsoft desktop PCs [Bolosky et al. 2000]. We chose these traces as, in our opinion,
the machines’ availability patterns might exhibit similar characteristics to a storage
system. However, as we argue in the introduction to the experimental section, the
users’ behavior described in these traces do not necessarily match a modern storage
system.

Both traces report machines’ online periods during about a month. We divided the
trace into 4 periods of one week. We used a straightforward estimator of future avail-
ability: for each machine i, we assumed that the estimated availability a! in week ¢ > 1
is equal to this machine’s average (true) availability a!* in weeks 1,..., (¢t — 1) (al* is
measured as the fraction of time the machine is online). We chose the average as es-
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timator for its simplicity. For a particular system or when traces are available, more
sophisticated statistical or machine learning methods can be used to construct a more
precise model of the agent’s availability. We used the estimator a! to construct the
replication groups; then we calculated the true average data unavailability in week ¢
using the actual machine availability in that week a}*. When converting traces, we set
0.9999 (Amazon SLA) as the maximal machine availability. Figures 6 and 7 summarize
the obtained results (note that the estimated data unavailabilities for all weeks are
similar, thus we plot just a single estimate).

For both traces, the true data unavailabilities follow the general distribution of the
expected data unavailabilities—weakly-available agents have significantly lower data
availability than highly-available agents. However, the variability of the data unavail-
ability is high (as standard deviation lines show). Additionally, the two traces differ in
how the estimates correspond to the actual values: in the Microsoft trace, low avail-
abilities are under-estimated and high availabilities over-estimated; whereas in the
Skype trace low availabilities are estimated more precisely and high availabilities are
estimated less precisely.

The results suggest that estimating availabilities is an important problem for a dis-
tributed storage system. First, the traces might be too short to get a true “average”
estimate. Indeed, when wuala.com allowed users to “trade” their storage space, the
user had to have at least a month’s history of stable connectivity. Second, our estimate
was just average availability: other estimates [Mickens and Noble 2006] might be more
precise (although this is out of the scope of this paper).

8.7. Decentralized Allocation: Speed of Convergence

In the next series of experiments, we measure how fast do the decentralized algorithms
presented in Section 7 converge to the subgame perfect cliques.

All algorithms use a taboo list not to repeatedly try a replication agreement with
the same replication partners. Optimistic Queries should not delete an agent from a
taboo list, because it is almost certain that the agent that refused a replication agree-
ment will not change its decision. However, Pragmatic Queries and Explicit Cliques
might gain from limiting the number of agents on the taboo list (to e.g. 2s, as the
optimal replication agreements are formed by s among 2s neighbors). In the initial
experiments, we checked that such a limit does not influence the convergence speed
of Explicit Cliques; and that Pragmatic Queries converges slower when the size of the
taboo list is limited. If a list is unlimited, there is a small risk that an optimal repli-
cation partner is added to the taboo list; but, according to our experiments, this risk is
outweighed by the gain an agent gets from reducing redundant queries.

Initial experiments revealed that the Optimistic Queries version of the algorithm is
inefficient. After the first few rounds when the underlying gossiping protocol efficiently
fills the metric pools of all agents with the same set of 50 highest available agents,
in the subsequent rounds the whole population queries the best agent, the second-
best agent, and so on. Thus, replication agreements are formed extremely slowly. We
observe that if agents’ availabilities are distinct, approximately R/o cliques are formed
after approximately R rounds.

Figure 8 compares the convergence speed of Pragmatic Queries to Explicit Cliques,
measured as the median average degradation vs. the subgame perfect solution (we
treated differences less than 1079 as zero). In this experiments, we excluded agents
with boundary availabilities (0.97 and 0.03) from the results.

Explicit Cliques converges much faster (in about 25 rounds), by quickly building
as many full cliques as possible, and then optimizing their contents. High standard
deviation observed in rounds 18-25 is an artifact of computing the median from only
few values.
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In contrast, Pragmatic Queries form two chains of agents (grouping highly avail-
able agents in one and weakly available agents in the other). The chains are formed
because each agent i replicates with s closest neighbors according to the absolute
value of the difference in availabilities: s/2 agents with availabilities higher than i
and s/2 agents with lower availabilities. Only the s/2 most-available agents, lacking
even higher available agents, form agreements with worse agents. In next rounds,
these worse agents gradually drop their chain neighbors in favor of higher available
agents; thus, the dropped neighbors no longer have higher available neighbors, and
the phenomenon propagates towards the next agents.

Figure 9 shows the speed of convergence of Explicit Cliques as a function of number
of agents. The algorithm reduces the median degradation to less than 5% in about
10 rounds; that result does not depend on the size of the population. Even for large
populations, it takes just around 20 to reduce the maximum degradation to less than
10%. In contrast, the number of rounds for the absolute convergence depends on the
size of the population: the mean number of rounds rises from 12.5 (for 1,000 agents) to
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52.6 (for 20,000 agents). For the largest population, the algorithm converged in at most
71 rounds.

We also simulated the impact of temporal failures when the algorithm is running.
To simulate the worst-case behavior, we assumed that once an agent leaves, it does not
return to the system; and there are no new agents joining. In order to model the prob-
abilistic process of leaves, we needed to characterize the duration of the distributed
algorithm. Each agent during one round of the algorithm contacts a single agent from
its random pool and a single agent from its metric pool; as the amount of changed in-
formation is negligible, we may bound the length of that phase by two maximal round
trip times (RTTs) in the network. We upper-bounded the duration of a round to 1 sec-
ond. The process of agents’ leaves depends directly on expected sessions’ durations. A
storage system would typically have long sessions; to simulate the worst-case behavior,
we assumed that the mean session length is just 1,000 seconds (roughly 17 minutes).
This leads to a probabilistic model in which in each round each agent has a probability
of 1/1000 of leaving the system.

We measured the number of rounds needed to reduce the median degradation to less
than 5%. Certainly, measuring the absolute convergence does not make sense, as if an
agent leaves, its replication partners with higher availability would have their data
availability degraded (as they need to choose worse replication partners). The results
are summarized by a dash-dotted line on Figure 9. Compared to a no-churn system, it
takes 2-3 rounds more for the system to converge. The algorithm is thus robust in the
presence of high churn.

9. DISCUSSION: HOW REALISTIC ARE OUR RESULTS

In this paper, we deliberately focus on a single issue, the replica placement, which
allows us to derive mathematical, as well as simulation results. We leave unaddressed
other problems like maintenance [Chun et al. 2006; Yang et al. 2011], redundancy
schemes [Rodrigues and Liskov 2005], or heterogeneity of agents’ storage needs and
capabilities.

We assume that the sole parameter describing an agent is its availability; in large-
scale networks an agent judging a replication partner may also take into account other
factors, such as the estimated bandwidth of the connection (see e.g. [Liu and Datta
2012]). Such estimates are subjective: an agent can be ranked high by agents who are
“close” in terms of network bandwidth; whereas other agents that need to pass through
e.g. a congested long-range link, would rank the agent low. In our future work, we plan
to address replication agreements with subjective rankings. However, our results hold
inside each network region; thus, an agent may pre-filter potential replication partners
based on the bandwidth and then apply our algorithm.

In the theoretical analysis, we consider that availabilities are probabilistic estimates
of the future behavior of a peer; these estimates do not depend on time. Our earlier
work [Rzadca et al. 2010] proposed and analyzed also another model, in which esti-
mates describe the availability depending on time of day or week-day (this approach
can model e.g. daily and weekly usage patterns of a computer). Our initial results
suggested that time-based analysis improves availability only when a system has a
truly global scope: downtimes of agents from one continent (e.g. Europe) can be com-
plemented by others (e.g. Asia). In our future work, we plan to extend this analysis
with a more formal approach.

Our model had constant population of agents (although we assessed the impact
of temporal failures on our distributed algorithm, see Section 8.7). However, it can
be easily extended to realistic systems with new agents joining and existing agents
permanently leaving the system. We proposed dynamic protocols for such a system
in [Skowron and Rzadca 2013] and validated them using a prototype implementation.
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Storage contracts should be signed for a pre-determined time period (e.g., one week).
In the background, to replace the expiring contracts and to handle changes in partners’
availabilities, agents should run the distributed matching algorithm (that will deter-
mine the “next” assignment). A contract would be replaced only if the gain in the avail-
ability balances the bandwidth needed to transfer the data. Such a system naturally
responds to agents permanently leaving the system, as their availability would grad-
ually diminish. Newcomers should enter the system with zero availability (otherwise,
a Sybil attack would be possible). The newcomers will be adopted by highly-available
agents: the newcomers will gradually replace agents that no longer need to be adopted;
also, some adoption slots can be reserved, so that a newcomer is immediately assigned
to a highly-available agent.

Some agents, instead of running our software on their computers, may choose to
run it on resources rented from IaaS (Infrastructure as a Service) providers (see also
experiments in Section 8.4). For such agents, our system can offer additional resilience
to providers’ permanent failures (resulting from, e.g., providers going bankrupt). At
the same time, we think that only a minority of users would rent resources (because
of monetary costs). Our system would enable this minority to interact with the large
user-base relying on free services, and thus leverage the network effect.

9.1. Extension: Storage heterogeneity

To make our model mathematically tractable, we assumed that all agents have the
same storage space, s. Under this assumption, in the subgame-perfect equilibrium
agents replicate data of agents with similar availability (Proposition 5.2). In a realistic
system, agents may dedicate to the system different amounts of storage—however, this
heterogeneity does not significantly alter the resulting equilibrium (f the storage size
is significantly smaller than the population size). We experimentally assessed hetero-
geneous storage in Section 8.5; here, we briefly present how to extend our analytical
results.

Assume that each agent has s; available replication slots (1 < s; < n). The subgame-
perfect equilibrium can be constructed by an algorithm that, first, orders agents by
their availabilities u;, then, for each agent i starting with the most available agent
uy, constructs s; replication agreements with highest-available agents that are not
yet “full” (have all their replication slots taken). The algorithm results in a subgame-
perfect equilibrium by a similar argument as in Proposition 5.2. The most available
agent p; has s; replication agreements with agents ps, ..., ps141 (if agent 1 replicated
data of some agent i > (s;+1) instead of j < (s;+1), it would be optimal both for agent
1 and an agent j to change their replication agreements to form an agreement between
1 and j). For any other agent i, not following the algorithm, i.e., picking agent k instead
of j, one of s; currently most available agents, would result in a non-optimal allocation
both for i and j and therefore, : and j would both have an incentive to deviate.

As a consequence, unlike as in the homogeneous storage model, agents will not form
replication cliques. However, under a realistic assumption that the number of replica-
tion slots each agent has is small compared to the size of the population, agents still
replicate with other agents having similar availability. Assuming that the population
of agents is large, an agent with unavailability u; will form s; replication agreements
with agents having similar unavailability. Thus, the resulting data unavailability is
still d; = ufiﬂ; which, similarly to the homogeneous model, makes the price of anar-
chy unbounded (Proposition 5.5 still holds).

The complexity of equitable optimization in the centralized model with heteroge-
neous storage size is still NP-hard (as the analyzed homogeneous model is a special
case of the heterogeneous model).
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The game-theoretic mechanism (Section 6.2) is still truthful in the heterogeneous
model as long as the number of slots used by the mechanism r is at least equal to
the minimal storage size: each agent has an incentive to increase the number of repli-
cation slots as it will result in additional replication contracts and thus increase its
data availability. This result suggests that the system must be able to enforce a mini-
mal storage size among the agents (similarly to enforcing that agents indeed donate »
slots).

10. CONCLUSIONS

We studied the problem of replica placement in a decentralized storage system in or-
der to optimize availability. We argued that replication should be based on cliques of
agents replicating each others’ data, rather than on a directory or bilateral assign-
ments. We analyzed an idealistic model of agent availability that focuses on uncer-
tainty of agent’s on-line status. We proved that it is NP-hard to optimize availability
for the socially-equitable scheme (in which the data availability of all agents is simi-
lar). We also analyzed a game theoretic version of the problem in which agents form
bilateral replication agreements. We demonstrated that the loss in the global efficiency
compared to the socially-optimal solution (the price of anarchy) is arbitrarily large.

In order to reduce the price of anarchy, we proposed a semi-centralized “adoption”
mechanism: highly-available agents donate some of their replication slots. The algo-
rithm uses these slots to replicate data of weakly-available agents. We formulated
rules that guarantee that this algorithm is a truthful mechanism: no agent would ob-
tain higher data availability by lowering its declared availability.

We proposed heuristics for centralized and decentralized matching that perform well
in simulation experiments. In particular, the “adoption” heuristics increases the data
availability of the weaker agents by two to three orders of magnitude, which should
satisfy basic storage services.

Our results have practical consequences for decentralized storage or replication sys-
tems. Most importantly, in such systems, if allowed to choose partners by themselves,
highly available agents will tend to replicate data among each other, and to exclude
agents with low availability. This could result in unacceptable performance for agents
with lower availabilities (in our experiments, less than about 30%). While this phe-
nomenon provides an incentive for agents to be highly available, it can be also discour-
aging for the newcomers to join, and thus—hard for the system to gain momentum and
large scale.

The system thus needs a method of availability redistribution — for instance, the
proposed adoption algorithm. However, such methods have a problem analogous to
any taxation and social security system. While we have proved that the mechanism is
truthful, we did it on a model assuming that all agents would participate. Obviously,
for highly-available agents, not donating slots for adoption (not paying taxes) dom-
inates any adoption (paying taxes, or any redistribution mechanism). In real-world
societies, this problem is solved by tax law enforcement; in decentralized storage, a
combination of a reputation system and default values of parameters in the software
must be sufficient (analogously to the Internet at large).

Currently, we are working on an implementation of a decentralized storage system
with reciprocal storage contracts (nebulostore.org). The principal design goal is to pro-
vide a storage layer for a distributed on-line social networking software, such as Peer-
SoN [Buchegger et al. 2009].
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A. PROOFS OMITTED IN THE MAIN TEXT

PROPOSITION A.1. The decision version of the Simple Stochastic Fair Replication
Problem is NP-complete.

PRrROOF. SSFRP is trivially in NP: given the grouping G; and G, it is sufficient to
compute the corresponding products, which is in O(n). The proof of hardness is by
reduction from PARTITION [Ausiello et al. 1999]. In PARTITION, given a set of posi-
tive integers {b;}, the goal is to decide whether it is possible to construct two disjoint
subsets Y} and Ys, such that 33, .y bi = >, cy, bi = 5, where S £ 3" b;.

We construct an instance of SSFRP from an instance of PARTITION as follows. The
i-th peer’s unavailability corresponds to i-th integer u; = 2~%. Bound B = 2 - 2~5/2,

Given a solution Y7, Ys to partition, the corresponding groupingi € G; < b; € Yy isa
solution to SSFRP. As 3°, . b; = 5, [[;c, 27" = 27°/% The same holds for G, thus
[Lice, 270 + [Licc, 27b =2.2792 < B.

Given a solution G, G5 to SSFRP, the corresponding subsets are a solution to PAR-
TITION. We denote as 271 = [[,.5,27% and 272 = [[, 5, 27%. Thus, 270 + 2712 <
2 .9275/2, We now show by contradiction that I; = Iy = S5/2. Assume l; > [5. As
27l 497l < 21-9/2 9=l < 91-5/2 (35 2=11 > (). Thus, I, > S/2 — 1 which leads to
Iy > S/2 (as I is an integer). From the assumption of the proof, I; > ls, thus I; > S/2,
thus [y + I > S, which leads to a contradiction, as by definition S = b, =11 + 1. O

PROPOSITION A.2. OSCA is NP-complete.

PROOF. The proof is by reduction from DUAL BIN PACKING [Assmann et al. 1984].
In DUAL BIN PACKING, the task is to partition items with sizes {b;} into at least N
disjoint sets (bins) Uy,...Uy, so that the sum of elements in each set is at least B

(Zbier b’L Z B)

The reduction maps i-th integer b; to i-th peer’s unavailability v; = 27%. The level B
is mapped to maximum unavailability of the group R = 27 5.
A solution {U;} of DUAL BIN PACKING is a valid solution of OSCA: G; = {i: b, € U;},

as ey, bi = B, thus [[;cq ui =2 Liev; % < 9-B < R,
Similarly, a solution {G} of OSCA is a valid solution of DUAL BIN PACKING (B; =
{bii 1 E Gj}), as HiGGj u; =27 22 bi€U;bi < 2_B, thus Zbier b, >B) O

B. ADDITIONAL EXPERIMENTS ON REAL TRACES

We performed additional experiments showing the performance of our algorithms on
Microsoft PCs and Skype superpeer traces. Figures 10 and 11 show the results.
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Fig. 10. Microsoft desktop PCs trace. Agents’ expected data unavailability as a function of their availability
in random, equitable, subgame perfect, and adoption assignment. Histogram shows the number of agents in
each availability bucket.
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Fig. 11. Skype superpeers trace. Agents’ expected data unavailability as a function of their availability in
random, equitable, subgame perfect, and adoption assignment. Histogram shows the number of agents in
each availability bucket.

The results confirm our results on stochastic traces: (i) in the subgame perfect equi-
librium, a difference of data availability between weakly and highly available agents
of a few orders of magnitude; (ii) the equitable allocation Pareto-dominates random
allocation; (iii) the adoption mechanism able to guarantee acceptable availability for
weakly-available peers.

These traces show two radically different distributions of availabilities: in the Skype
trace, 25% of peers has less than 1% availability (and 14% — less than 0.1%) ; in
contrast, in the Microsoft trace, 33% of machines are nearly always-on (availability
greater than 99%).

Consequently, the adoption mechanism needs just » = 1 replication slot in the Mi-
crosoft trace to guarantee data unavailability d; < 0.0001; whereas in the Skype trace,
r = 2 replication slots guarantee just d; ~ 0.1. The Skype results show that the adop-
tion mechanism should perhaps enforce some minimal average availability required to
join the system: in a month-long trace, 1% availability corresponds to just 7 hours of
total on-line time.
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