
Incrementally Assessing Cluster Tendencies with a
Maximum Variance Cluster Algorithm

Krzysztof Rza̧dca1 and Francesc J. Ferri2;�
1 Institute of Computer Science. Warsaw University of Technology, Poland

krzadca@elka.pw.edu.pl
2 Dept. Informàtica. Universitat de València. 46100 Burjassot, Spain

ferri@uv.es (� Contacting author)

Abstract. A straightforward and efficient way to discover clustering tendencies
in data using a recently proposed Maximum Variance Clustering algorithm is
proposed. The approach shares the benefits of the plain clustering algorithm with
regard to other approaches for clustering. Experiments using both synthetic and
real data have been performed in order to evaluate the differences between the
proposed methodology and the plain use of the Maximum Variance algorithm.
According to the results obtained, the proposal constitutes an efficient and accu-
rate alternative.

1 Introduction

Clusteringcan be defined as the task of partitioning a given data set intogroups based
on similarity. Intuitively, members of each group should be more similar to each other
than to the members of other groups. It is possible to view clustering as assigning labels
to (unlabeled) data. Clustering is very important in a number of domains as document
or text categorization, perceptual grouping, image segmentation and other applications
in which is not possible or very difficult to assign appropriate labels to each object.

There is a variety of clustering algorithms and families [4]. On one hand,hierarchi-
calapproaches produce a hierarchy of possible clusters at eachstage. On the other hand,
partitional approaches usually deliver only one solution based on a certain criterion. In
terms of the criterion used and the kind of representation used, clustering algorithms
can be divided intosquare error algorithms, graph theoretic, mixture resolving, mode
seekingandnearest neighbors. Additionally, the same search space can be scanned in
a number of ways (deterministic, stochastic, using geneticalgorithms, simulated an-
nealing, neural networks etc.). Finally, the algorithms can be classified ashard/crispor
fuzzyaccording to the way the membership of objects to clusters isdealt with [4].

More formally, let X = fx1;x2; : : : ;xNg be a set ofN = jXj data points in ap-
dimensional space. Clustering consists of finding the set ofclustersC= fC1;C2; : : : ;CMg
which minimizes a given criterion with givenX and, usually but not necessarily, given
M.

One of the simplest and most used methods to measure the quality of clustering is
the square-error criterion:
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Je = ∑M
i=1H(Ci)

N
(1)

where

H(Y) = ∑
x2Y

dist(x;µ(Y))
is the cluster error (dist is a distance measure function, e.g. Euclidean distance) and
µ(Y) = 1jYj ∑x2Y x is the cluster mean.

The straight minimization of equation 1 produces a trivial clustering where each
data member is in its own cluster. Consequently, some constraints should be used in
order to obtain meaningful results as in the (well-known) case of thek-means algo-
rithm [5] in which the number of clusters,M, is fixed as a constraint. There are a number
of algorithms [4,2] that share this feature with thek-means and all of them suffer from
a common drawback: the difficulty of determining in advance the number of clusters.
Most of the algorithms require trying different number of clusters and take a further
stage to validate or assess which is the best result. The factthat the criterion used at
each step cannot be used for validation makes the problem difficult [3,6].

2 Maximum Variance Cluster Algorithm

A straightforward clustering algorithm using a constraintbased on variances of each
cluster has been recently proposed [7]. This approach has a number of advantages.
First, knowing cluster variances can be easier than the finalnumber of clusters in some
applications. Secondly, the same criterion can be used for the cluster validation. Addi-
tionally, as the number of clusters is modified, the algorithm seems to deal with outliers
in a more natural way.

The so-called Maximum Variance Cluster (MVC) algorithm [7]requires that the
variance of the union of any two clusters be greater than a given limit, σ2

max:8Ci;Cj ; i 6= j : Var(Ci [Cj)� σ2
max (2)

whereVar(Y) = H(Y)jYj . Clusters produced with such a constraint generally (but not nec-

essarily) have variances belowσ2
max.

The way in which such a result is searched for consists of a stochastic optimization
procedure in which the square error criterion in (1) is minimized (thus minimizing dis-
tances from the cluster centroids to cluster points) while holding the constraint on the
cluster variance in (2). At each step, the algorithm moves points between neighboring
clusters. In order to do this in an efficient way, the conceptsof inner andouterborders
of a cluster are introduced.

For a given pointx, the qth order inner border,Gx, is a set ofq furthest points
belonging to the same cluster. Thekth order outer border,Fx, is a set ofk nearest points
belonging to other clusters. Theqth order inner border andkth order outer border of a
clusterCa can then be defined as the union of inner (outer) borders of allpoints inCa,



Ia = [
x2Ca

Gx and Ba = [
x2Ca

Fx

respectively. Borders defined in a such a way grow when clusters grow and the algo-
rithm never ends up with empty borders.

The MVC algorithm starts with a cluster per data point and then repeats iterations in
which the inner and outer borders of each cluster are the candidates to be moved from
and to other clusters. To speed up the algorithm, only randomsubsets of sizesia < jIaj
andba < jBaj are considered instead of the whole inner and outer borders,respectively.
In particular, one of the three following operators is applied to each cluster (taken in
random order) at each iteration:

– isolation: if the variance of the current cluster is higher than the predefined maxi-
mum,σ2

max, the cluster is divided by isolating (in a new cluster) the furthest point
(with regard to the cluster mean) among theia taken from the inner border.

– union: if the variance constraint is satisfied, the algorithm checks if the cluster can
unite with one of the neighboring clusters which are found bylooking at theba

points taken from the outer border. Cluster union is performed only if the joint
variance is lower thanσ2

max.
– perturbation: if none of the previous operators can be applied, the algorithm iden-

tifies the best candidate among theba taken from the outer border to be added to
the cluster in terms of the gain this produces in the criterion Je. The candidate is
added to the cluster if the gain is positive. Otherwise, there is a small probability
Pd (occasional defect) of adding the candidate regardless of the gain produced.

The algorithm in this form does not necessarily converge anda limited number of
iterationsEmax needs to be established in order to get a convenient result. After Emax

iterations, isolation is no longer allowed and the probability of a random perturbation
is set to 0. The clustering is considered as a final result whenthere is no change in the
cluster arrangement for a certain number of iterations.

3 Cluster Tendency Assessing using Maximum Variance

The cluster tendency helps finding the appropriate values ofthe maximum variance
parameterσ2

max in (2). To explore all the possible values forσ2
max, one possibility is

to construct curves [7] showing the mean square error as a function of the maximum
variance.Plateausin this curve can be defined as the regions where the square error
does not change while the maximum variance increases. Thestrengthof the plateau

ranging fromσ2
A to σ2

B is defined as the ratio between both variances,σ2
B

σ2
A
. A plateau is

considered assignificantif its strength is roughly above 2. This heuristic comes from
the fact that the average distance to the new mean when two clusters are joined has to
increase about 2 times in the worst case if one starts with tworeal clusters [7]. The
significant plateaus in the mean square error curve have corresponding plateaus (with
the same variance values) if the number of clusters,M, is plotted as a function ofσ2

max.



The most important drawback of directly using MVC to discover significant plateaus
is the computational burden. One has to select the starting point and step size in order
to be able to compute the curve in terms ofσ2

max. Moreover, the accurate detection of
plateaus may depend on the above extra parameters of the algorithm. At the end, the
MVC algorithm needs to be run hundreds or even thousand timesin order to obtain the
corresponding results.

4 Incrementally Assessing the Cluster Tendency

One of the properties of MVC is that it converges very quickly. Usually after less than
10 iterations the algorithm is able to find a solution very close to the finally obtained
one. This happens because the algorithm works mainly byuniting clusters. For every
value ofσ2

max, it starts by joining one-point clusters into groups of about 3 elements.
Then it continues uniting such groups until the variance constraint is no longer satisfied.
Isolation is performed occasionally and perturbation usually concerns a very limited
number of points.

This behavior suggests a new strategy to discover significant plateaus without hav-
ing to run MVC for each possible value ofσ2

max.
Let us suppose that we have astablesolution (i.e. a cluster-data points assignment)

obtained by running the MVC with a valueσ2
A which corresponds to the beginning

of a plateau. The goal consists of directly finding the valueσ2
B which corresponds to

the end of the same plateau. Let us suppose that we know the value σ2
B and we run

the MVC algorithm with it, starting with the previous cluster assignment. As a conse-
quence, we would not obtain any new isolation (if there was any, it would have occurred
with the previous valueσ2

A and the initial solution would have been unstable). Pertur-
bation would not occur neither, because it depends only on the error criterion. The only
operator which could make profit from that increase is union which directly depends on
σ2

max.
Consequently, we can assume that the minimum valueσ2

B which leads to changes
in the cluster assignment is the minimum value required to join any 2 clusters in the
assignment corresponding toσ2

A.
To directly obtainσ2

B onceσ2
A is given, any two neighboring clusters (in terms of

their outer borders) are tentatively merged and the corresponding joint variances are
computed. The smallest joint variance is taken asσ2

B. Three different cases are then
possible:

1. If the MVC algorithm with varianceσ2
B converges to a solution with exactly one

cluster less, we can conclude that the previous assumptionswere correct. The value
σ2

B is the starting point of a new plateau and its corresponding cluster assignment
can be used without having to fully run MVC starting with singletons.

2. If the MVC algorithm with varianceσ2
B converges to a solution with more than one

cluster less, this implies that the true end of the plateau issmaller thanσ2
B. In such

a case, our proposal runs again the MVC algorithm withσ2
A but using the cluster

assignment obtained forσ2
B. With very high probability, the algorithm will increase

the number of clusters but with an assignment different fromthe one originally



obtained withσ2
A. This newly obtained stable solution can be used as explained

above to compute the end of the sought plateau. It may happen that this produces
an infinite loop if the original assignment is arrived at again. The proposed solution
in this easily detectable case is to mark the whole zone as an unstable plateau and
proceed fromσ2

B.
3. It is strictly possible but very unlikely that the MVC algorithm with varianceσ2

B
converges to a solution with the same (or even bigger) numberof clusters. In this
case, we proceed with the algorithm from this starting pointbut the whole zone
has to be marked as unstable (in this case, even theσ2

B value cannot belong to any
significant plateau).

The above introduced procedure which starts from a small value for σ2
A and pro-

ceeds by obtaining the corresponding ends of plateaus, willbe referred to in this work
as Incremental Maximum Variance Clustering (IMVC) algorithm. This procedure, ob-
tains a list of variance values,fσ2

i g where some of them are marked as unstable. The
algorithm always runs the original MVC algorithm withσ2

i starting from the cluster
assignment obtained atσ2

i�1. The corresponding computational burden is then certainly
bounded by the cost of one run of the MVC algorithm times the number of plateaus.

5 Experiments and Results

Basically the same experiments reported in [7] using synthetic and real data have been
repeated using MVC and the methodology of cluster validation proposed in this work.
The parameter setting for the basic algorithm is also the same:Pd = 0:001,Emax= 100,
k = 3 andq = 1. The number of points randomly selected from the inner and outer
borders are fixed as the square root of the corresponding border sizes. The number of
no change iterations needed to consider a cluster assignment as stable for the MVC
algorithm is set to 10.
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Fig. 1.Scatter plot of the three synthetic data sets used in the experiments.

In particular, 3 artificial data sets (shown in Figure 1) consisting of spherically
shaped bivariate Gaussian clusters have been considered. The R15 data set consists of



15 clusters of 40 points each positioned in two rings (7 each)around a central cluster.
Two possible clustering results are possible: one with the 15 clusters, and the other with
the 8 central clusters united in one big cluster. The O3 data set consists of 3 clusters of
30 points plus three outliers. A good solution for O3 consists of finding the three true
clusters and isolate the outliers. The D31 data set consistsof 31 randomly placed (non
overlapping) clusters. As there are 100 points in each cluster, this can be considered as
a large-scale clustering problem with regard to the previous ones.

Also the well-known Iris data set has been considered [1]. This consists of three di-
mensional data corresponding to three different classes ofiris flowers. The goal consists
of identifying these three classes in an unsupervised way.
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Fig. 2. Number of clusters,M, and criterion value,Je, as a function of the maximum variance,
σ2

max, using the MVC algorithm and the incremental procedure IMVC.

The cluster tendency plots corresponding to the plain MVC and the incremental
version are shown in Figure 2. In all cases the solid and dashed lines show the results



obtained (number of clusters and squared error, respectively) by running the MVC using
a fixed step size for the maximum variance parameter,σ2

max. The algorithm has been
run 10 times for each value ofσ2

max and the corresponding average value is plotted.
Significant plateaus are identified by looking for approximately constant regions in this
plots which are usually surrounded by oscillations.

The circles and diamonds show the exact values ofσ2
max used (once) by the IMVC

algorithm. Horizontal wide grey lines represent the corresponding induced plateaus
identified by the algorithm.

In the case of the R15 data set in Figure 2a, there is a significant plateau discovered
by both approaches ([6:23: : :22:47℄) with strength 3:60 which corresponds to 15 clus-
ters. The next plateau discovered by IMVC is located at[96:14: : :185:62℄ (8 clusters)
with strength 1:93. In this case the plateau identified by MVC is slightly smaller but
still is the second most important. In general, the plots induced by the IMVC algorithm
closely follow the ones obtained directly with MVC forσ2

max values below 150.
In the Figure 2b corresponding to the O3 data set, there is a significant plateau

(strength 3:91) at[21:12: : :82:61℄ with 6 clusters discovered by both approaches. How-
ever, the plateau induced by IMVC at[90:58: : :113:77℄ corresponds to a region of big
instabilities (switching among solutions with 5, 4 and 3 clusters) and consequently is
not taken into account (This plateau is the only one marked asunstable in the presented
figures). The only zone in which the plots induced by IMVC are different from the MVC
plots is the above mentioned plateau. It is worth noting thatbesides this difference the
IMVC algorithm does not identifies any significant plateau inthe unstable zones.

The plots corresponding to D31 data set in Figure 2c has the most significant plateau
(strength 1:87) identified by both approaches at[0:0033: : :0:0063℄ with 31 clusters.
Apart from this, the MVC plots show a very unstable behavior and the plots induced
by the IMVC differ significantly from them. Fromσ2

max= 0:02, the IMVC produces
one more cluster in average than the MVC which roughly corresponds to the standard
deviation (in 10 runs) measured for the MVC curve in these regions. The IMVC results
can be seen as an upper approximation (in terms of number of clusters) of the results
obtained by MVC.

The Iris data set in Figure 2d gives rise to two most significant plateaus found by
both approaches at[0:80: : :1:40℄ and [1:40: : :4:54℄ with strengths 1:74 and 3:25, re-
spectively. In this case, the whole plots obtained by both approaches are very similar.

6 Concluding Remarks and Further Work

A straightforward and efficient way to discover appropriatevalues of the maximum
variance parameter for the recently proposed MVC algorithmhas been presented. One
of the major benefits of this algorithm is the possibility of using it for exploratory data
analysis and cluster validation. The algorithm presented constitutes an efficient and
accurate alternative to the plain and exhaustive use of the MVC as proposed in [7].

We have found evidence about the ability of our proposal to quickly find the right
clustering results. Only when the original algorithm exhibits severe instabilities (which
means there is no real clustering result there) the approximation given by the proposed
approach is not tight.



In our opinion, more experimentation is needed to properly assess the benefits of
the original MVC algorithm with regard to other clustering approaches (which has been
partially done in [7]) and also to fully test our approach to discover cluster tendencies
in real data corresponding to challenging and nontrivial clustering problems. Never-
theless, the preliminary results obtained in this work giveenough evidence to see the
proposed methodology as very promising both because the good results obtained and
the relatively small computational burden.
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