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Abstract. A straightforward and efficient way to discover clusteriegdencies
in data using a recently proposed Maximum Variance Clusggealgorithm is
proposed. The approach shares the benefits of the plaiechgalgorithm with
regard to other approaches for clustering. Experimentgyusoth synthetic and
real data have been performed in order to evaluate the eliffess between the
proposed methodology and the plain use of the Maximum Veeaigorithm.
According to the results obtained, the proposal consttateefficient and accu-
rate alternative.

1 Introduction

Clusteringcan be defined as the task of partitioning a given data segiwtops based
on similarity. Intuitively, members of each group should be more simieagdch other
than to the members of other groups. It is possible to viestehing as assigning labels
to (unlabeled) data. Clustering is very important in a nundd&lomains as document
or text categorization, perceptual grouping, image segatien and other applications
in which is not possible or very difficult to assign approfeikabels to each object.

There is a variety of clustering algorithms and families {@h one handhierarchi-
calapproaches produce a hierarchy of possible clusters astggh On the other hand,
partitional approaches usually deliver only one solution based on ainatiterion. In
terms of the criterion used and the kind of representati@u uslustering algorithms
can be divided intsquare error algorithmsgraph theoreti¢c mixture resolvingmode
seekingandnearest neighborsAdditionally, the same search space can be scanned in
a number of ways (deterministic, stochastic, using geradgorithms, simulated an-
nealing, neural networks etc.). Finally, the algorithms ba classified alsard/crispor
fuzzyaccording to the way the membership of objects to clustetsadt with [4].

More formally, letX = {x1,x2,...,Xn} be a set ofN = |X| data points in ap-
dimensional space. Clustering consists of finding the sdtisfer<C = {C;,C;,...,Cu }
which minimizes a given criterion with givex and, usually but not necessarily, given
M.

One of the simplest and most used methods to measure théycqpfadlustering is
the square-error criterion:
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where
H(Y)= Zdist(x, H(Y))

is the cluster errordist is a distance measure function, e.g. Euclidean distanat) an
uy) = IVlI S xey X is the cluster mean.

The straight minimization of equation 1 produces a triviaistering where each
data member is in its own cluster. Consequently, some ainttrshould be used in
order to obtain meaningful results as in the (well-knowrjecaf thek-means algo-
rithm [5] in which the number of clusters, is fixed as a constraint. There are a number
of algorithms [4,2] that share this feature with #heneans and all of them suffer from
a common drawback: the difficulty of determining in advartee number of clusters.
Most of the algorithms require trying different number ofisters and take a further
stage to validate or assess which is the best result. Thehfacthe criterion used at
each step cannot be used for validation makes the probldicudti{3,6].

2 Maximum Variance Cluster Algorithm

A straightforward clustering algorithm using a constrdiased on variances of each
cluster has been recently proposed [7]. This approach hasrder of advantages.
First, knowing cluster variances can be easier than therimaber of clusters in some
applications. Secondly, the same criterion can be usedhéocluster validation. Addi-
tionally, as the number of clusters is modified, the algonigeems to deal with outliers
in a more natural way.

The so-called Maximum Variance Cluster (MVC) algorithm fépjuires that the
variance of the union of any two clusters be greater thanendimit, 02,,,c

VGi,Cj,i # j 1 Var(G UCy) > 0fay 2)
whereVar(Y) = % Clusters produced with such a constraint generally (bubhao-
essarily) have variances bel@#,,,.

The way in which such a result is searched for consists ofchagiic optimization
procedure in which the square error criterion in (1) is migigd (thus minimizing dis-
tances from the cluster centroids to cluster points) whillelimg the constraint on the
cluster variance in (2). At each step, the algorithm movestpdetween neighboring
clusters. In order to do this in an efficient way, the conceptaner andouterborders
of a cluster are introduced.

For a given point, the gth order inner borderGy, is a set ofq furthest points
belonging to the same cluster. Tkié order outer bordeF, is a set ok nearest points
belonging to other clusters. Tiyth order inner border ankth order outer border of a
clusterC, can then be defined as the union of inner (outer) borders pbaits inC;,
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respectively. Borders defined in a such a way grow when alugpeow and the algo-
rithm never ends up with empty borders.

The MVC algorithm starts with a cluster per data point andhttepeats iterations in
which the inner and outer borders of each cluster are theidaies to be moved from
and to other clusters. To speed up the algorithm, only ransldisets of sizeis < |l4]
andb, < |Bg| are considered instead of the whole inner and outer bondessectively.
In particular, one of the three following operators is apglto each cluster (taken in
random order) at each iteration:

— isolation if the variance of the current cluster is higher than thelpfimed maxi-
mum, 02,.,, the cluster is divided by isolating (in a new cluster) thetast point
(with regard to the cluster mean) among théaken from the inner border.

— union if the variance constraint is satisfied, the algorithm &seétthe cluster can
unite with one of the neighboring clusters which are founddnking at theb,
points taken from the outer border. Cluster union is perfdronly if the joint
variance is lower thao?,,,.

— perturbation if none of the previous operators can be applied, the glgariden-
tifies the best candidate among thetaken from the outer border to be added to
the cluster in terms of the gain this produces in the critedio The candidate is
added to the cluster if the gain is positive. Otherwise,daliera small probability
P4 (occasional defect) of adding the candidate regardlesseadain produced.

The algorithm in this form does not necessarily convergealichited number of
iterationsEnax Needs to be established in order to get a convenient resitdtr By ax
iterations, isolation is no longer allowed and the prohbgbdf a random perturbation
is set to 0. The clustering is considered as a final result vihere is no change in the
cluster arrangement for a certain number of iterations.

3 Cluster Tendency Assessing using Maximum Variance

The cluster tendency helps finding the appropriate valugbefnaximum variance
parametein?,., in (2). To explore all the possible values fof,,,, one possibility is
to construct curves [7] showing the mean square error asaifumnof the maximum
variance Plateausin this curve can be defined as the regions where the square err
does not change while the maximum variance increasesstﬂaegthof the plateau

ranging fromo to o3 is defined as the ratio between both varlané’és,A plateau is

considered asignificantif its strength is roughly above 2. This heurlst|c comes from
the fact that the average distance to the new mean when twtecduare joined has to
increase about 2 times in the worst case if one starts withréabclusters [7]. The
significant plateaus in the mean square error curve havesmonding plateaus (with
the same variance values) if the number of clustdrss plotted as a function af?,,,.



The mostimportant drawback of directly using MVC to disaasignificant plateaus
is the computational burden. One has to select the startimg and step size in order
to be able to compute the curve in termsagf,,. Moreover, the accurate detection of
plateaus may depend on the above extra parameters of thétlaigoAt the end, the
MVC algorithm needs to be run hundreds or even thousand tima&sler to obtain the
corresponding results.

4 Incrementally Assessing the Cluster Tendency

One of the properties of MVC is that it converges very quicklgually after less than
10 iterations the algorithm is able to find a solution veryseldo the finally obtained
one. This happens because the algorithm works mainlyriiting clusters. For every
value ofaZ,,,, it starts by joining one-point clusters into groups of ab®elements.

Then it continues uniting such groups until the variancest@int is no longer satisfied.
Isolation is performed occasionally and perturbation ilgumncerns a very limited

number of points.

This behavior suggests a new strategy to discover signifflateaus without hav-
ing to run MVC for each possible value of, .

Let us suppose that we havetablesolution (i.e. a cluster-data points assignment)
obtained by running the MVC with a value% which corresponds to the beginning
of a plateau. The goal consists of directly finding the vaigewhich corresponds to
the end of the same plateau. Let us suppose that we know the w@land we run
the MVC algorithm with it, starting with the previous clustssignment. As a conse-
quence, we would not obtain any new isolation (if there wasiawould have occurred
with the previous valueri and the initial solution would have been unstable). Pertur-
bation would not occur neither, because it depends only @ettor criterion. The only
operator which could make profit from that increase is uniaictvdirectly depends on
Ornaxe

Consequently, we can assume that the minimum vafuerhich leads to changes
in the cluster assignment is the minimum value required ito §my 2 clusters in the
assignment correspondingdxﬁ.

To directly obtaino3 oncec,i is given, any two neighboring clusters (in terms of
their outer borders) are tentatively merged and the cooredipg joint variances are
computed. The smallest joint variance is takerods Three different cases are then
possible:

1. If the MVC algorithm with variance3 converges to a solution with exactly one
cluster less, we can conclude that the previous assumpti@rescorrect. The value
03 is the starting point of a new plateau and its correspondingt@r assignment
can be used without having to fully run MVC starting with dietgns.

2. If the MVC algorithm with variance3 converges to a solution with more than one
cluster less, this implies that the true end of the plateamialler tharo3. In such
a case, our proposal runs again the MVC algorithm wﬁrbut using the cluster
assignment obtained fag. With very high probability, the algorithm will increase
the number of clusters but with an assignment different ftbenone originally
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obtained withaZ. This newly obtained stable solution can be used as explaine
above to compute the end of the sought plateau. It may hapa¢his produces
an infinite loop if the original assignment is arrived at agdihe proposed solution

in this easily detectable case is to mark the whole zone asistahie plateau and
proceed frono3.

3. Itis strictly possible but very unlikely that the MVC algitim with varianceo3
converges to a solution with the same (or even bigger) numbeusters. In this
case, we proceed with the algorithm from this starting pbintthe whole zone
has to be marked as unstable (in this case, eveadhalue cannot belong to any
significant plateau).

The above introduced procedure which starts from a smallevédr o3 and pro-
ceeds by obtaining the corresponding ends of plateausbaileferred to in this work
as Incremental Maximum Variance Clustering (IMVC) algionit. This procedure, ob-
tains a list of variance value$p?} where some of them are marked as unstable. The
algorithm always runs the original MVC algorithm withf starting from the cluster
assignment obtained af ;. The corresponding computational burden is then certainly
bounded by the cost of one run of the MVC algorithm times thalper of plateaus.

5 Experiments and Results

Basically the same experiments reported in [7] using syittlaed real data have been
repeated using MVC and the methodology of cluster valiggpimposed in this work.
The parameter setting for the basic algorithm is also theesBim= 0.001,Enax= 100,

k =3 andq = 1. The number of points randomly selected from the inner artdro
borders are fixed as the square root of the correspondingbsizes. The number of
no change iterations needed to consider a cluster assigrasestable for the MVC
algorithm is set to 10.
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Fig. 1. Scatter plot of the three synthetic data sets used in thaiexpets.

In particular, 3 artificial data sets (shown in Figure 1) dstirsg of spherically
shaped bivariate Gaussian clusters have been considéredRT5 data set consists of
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15 clusters of 40 points each positioned in two rings (7 each)ind a central cluster.
Two possible clustering results are possible: one with heldsters, and the other with
the 8 central clusters united in one big cluster. The O3 dataansists of 3 clusters of
30 points plus three outliers. A good solution for O3 cormssidtfinding the three true
clusters and isolate the outliers. The D31 data set cori&% randomly placed (non
overlapping) clusters. As there are 100 points in eachelustis can be considered as
a large-scale clustering problem with regard to the prevames.
Also the well-known Iris data set has been considered [1if bnsists of three di-
mensional data corresponding to three different classieis éibwers. The goal consists
of identifying these three classes in an unsupervised way.
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Fig. 2. Number of clustersM, and criterion valueJe, as a function of the maximum variance,
02,4 Using the MVC algorithm and the incremental procedure IMVC

The cluster tendency plots corresponding to the plain MvV@ tre incremental
version are shown in Figure 2. In all cases the solid and dblhes show the results



obtained (number of clusters and squared error, respsgtbaerunning the MVC using

a fixed step size for the maximum variance parameigg,. The algorithm has been
run 10 times for each value @f?,,, and the corresponding average value is plotted.
Significant plateaus are identified by looking for approxiahaconstant regions in this
plots which are usually surrounded by oscillations.

The circles and diamonds show the exact values?gf used (once) by the IMVC
algorithm. Horizontal wide grey lines represent the cqroesling induced plateaus
identified by the algorithm.

In the case of the R15 data set in Figure 2a, there is a sigmifidateau discovered
by both approache$.23...22.47)) with strength 360 which corresponds to 15 clus-
ters. The next plateau discovered by IMVC is locate{Pét14...18562] (8 clusters)
with strength 193. In this case the plateau identified by MVC is slightly derabut
still is the second most important. In general, the plotsicadi by the IMVC algorithm
closely follow the ones obtained directly with MVC fof, values below 150.

In the Figure 2b corresponding to the O3 data set, there igrifisant plateau
(strength D1) at[21.12...82.61] with 6 clusters discovered by both approaches. How-
ever, the plateau induced by IMVC @0.58...11377] corresponds to a region of big
instabilities (switching among solutions with 5, 4 and 3stérs) and consequently is
not taken into account (This plateau is the only one markeshagble in the presented
figures). The only zone in which the plots induced by IMVC affedent from the MVC
plots is the above mentioned plateau. It is worth noting biestides this difference the
IMVC algorithm does not identifies any significant plateatiia unstable zones.

The plots corresponding to D31 data set in Figure 2c¢ has tts¢ sigmificant plateau
(strength 187) identified by both approaches [8t0033...0.0063 with 31 clusters.
Apart from this, the MVC plots show a very unstable behaviwd ¢he plots induced
by the IMVC differ significantly from them. Frono?,,, = 0.02, the IMVC produces
one more cluster in average than the MVC which roughly cpoeds to the standard
deviation (in 10 runs) measured for the MVC curve in theséoreg The IMVC results
can be seen as an upper approximation (in terms of numbeustecs) of the results
obtained by MVC.

The Iris data set in Figure 2d gives rise to two most signifigdateaus found by
both approaches 40.80...1.40] and[1.40...4.54] with strengths I74 and 325, re-
spectively. In this case, the whole plots obtained by bofir@gches are very similar.

6 Concluding Remarks and Further Work

A straightforward and efficient way to discover appropriaédues of the maximum
variance parameter for the recently proposed MVC algoritlasbeen presented. One
of the major benefits of this algorithm is the possibility ging it for exploratory data
analysis and cluster validation. The algorithm presentatstitutes an efficient and
accurate alternative to the plain and exhaustive use of Y€ ks proposed in [7].

We have found evidence about the ability of our proposal ickdyifind the right
clustering results. Only when the original algorithm extsilsevere instabilities (which
means there is no real clustering result there) the appetiamgiven by the proposed
approach is not tight.



In our opinion, more experimentation is needed to propesgeas the benefits of

the original MVC algorithm with regard to other clusteringpeoaches (which has been
partially done in [7]) and also to fully test our approach tecdver cluster tendencies
in real data corresponding to challenging and nontriviabtdring problems. Never-

theless, the preliminary results obtained in this work gimeugh evidence to see the
proposed methodology as very promising both because the gsalts obtained and

the relatively small computational burden.
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