
Geographically Distributed Load Balancing with (Almost) Arbitrary Load Functions

Piotr Skowron
University of Warsaw

Poland
Email: p.skowron@mimuw.edu.pl

Krzysztof Rzadca
University of Warsaw

Poland
Email: krzadca@mimuw.edu.pl

Abstract—In geographically-distributed systems, communi-
cation latencies are non-negligible. The perceived processing
time of a request is thus composed of the time needed to
route the request to the server and the true processing time.
Once a request reaches a target server, the processing time
depends on the total load of that server; this dependency is
described by a load function. We consider a broad class of
load functions; we just require that they are convex and two
times differentiable. In particular our model can be applied to
heterogeneous systems in which every server has a different
load function. We present optimization centralized and a
decentralized algorithms for load balancing. We prove bounds
on the algorithms’ convergence. To the best of our knowledge
these bounds were not known even for the special cases studied
previously (queuing theory and batches of requests). Both
algorithms are any-time and self-stabilizing algorithms.

Keywords-load balancing, geographic distribution

I. INTRODUCTION

We are impatient. An “immediate” reaction must take less
than 100 ms [9]; a Google user is less willing to continue
searching if the result page is slowed by just 100-400 ms [8];
and a web page loading faster by just 250 ms attracts more
users than the competitor’s [38]. Few of us are thus willing
to accept the 100-200ms Europe-US round-trip time; even
fewer, 300-400ms Europe-Asia. Internet companies targeting
a global audience must thus serve it locally. Google builds
data centers all over the world; a company that doesn’t
have Google scale uses a generic content delivery network
(CDN) [19], [43], such as Akamai [39], [41], [48]; or spreads
its content on multiple Amazon’s Web Service regions.

A geographically-distributed system is an abstract model
of world-spanning networks. It is a network of intercon-
nected servers processing requests. The system considers
both communication (request routing) and computation (re-
quest handling). E.g., apart from the communication laten-
cies, a CDN handling complex content can no longer ignore
the load imposed by requests on servers. As another example
consider computational clouds, which are often distributed
across multiple physical locations, thus must consider the
network latency in addition to servers’ processing times.

Normally, each server handles only the requests issued by
local users. For instance, a CDN node responds to queries
incoming from the sub-network it is directly connected
to (e.g., DNS redirections in Akamai [31], [39], [48]).

However, load varies considerably. Typically, a service is
more popular during the day than during the night (the
daily usage cycle). Load also spikes during historic events,
ranging from football finals to natural disasters. If a local
server is overloaded, some requests might be handled faster
on a remote, non-overloaded server. The users will not
notice the redirection if the remote server is “close” (the
communication latency is small); but if the remote server is
on another continent, the round-trip time may dominate the
response time.

In this paper we address the problem of balancing servers’
load taking into account the communication latency. We
model the response time of a single server by a load
function, i.e., a function that for a given load on a server (the
number of requests handled by a server) returns the average
processing time of requests. In particular, we continue the
work of Liu et al. [35] and Tantawi and Towsley [50].
Liu et al. [35] showed the convergence of the algorithms
for the particular load function that describes requests’
handling time in the queuing model [22]. They considered
only the particular load function that describes requests’
handling time in the queuing model [22]. We use a broad
class of functions that are continuous, convex and twice-
differentiable (Section II-A), which allows us to model not
only queuing theory-based systems, but also a particular
application, where the servers’ response time is measured
empirically in a stress-test. Tantawi and Towsley [50] (who
originally proposed the model), on the other hand, showed
the algorithm for the case when the communication delay
between each pair of nodes is the same.

We assume that the servers are connected by links with
high bandwidth. Although some models (e.g., routing games
[40]) consider limited bandwidth, our aim is to model
servers connected by a dense network (such as the Inter-
net), in which there are multiple cost-comparable routing
paths between the servers. The communication time is thus
dominated by the latency: a request is sent over a long
distance with a finite speed. We assume that the latencies are
known, as monitoring pairwise latencies is a well-studied
problem [11], [49]; if the latencies change due to, e.g.,
network problems, our optimization algorithms can be run
again. On each link, the latency is constant, i.e., it does not
vary with the number of sent requests [46]. This assumption



is consistent with the previous works on geographically
distributed load balancing [4], [10], [23], [25], [35], [44],
[46].

Individual requests are small; rather than an hour-long
batch job, a request models, e.g., a single web page hit. Such
assumption is often used [5], [18], [20], [25], [35], [44], [46],
[50], [51]. In particular the continuous allocation of requests
to servers in our model is analogous to the divisible load
model with constant-cost communication (a special case of
the affine cost model [5]) and multiple sources (multiple
loads to be handled, [18], [51]).

The problem of load balancing in geographically dis-
tributed systems has been already addressed, however it re-
ceived limited attention. Liu et al. [35] show the convergence
of the algorithms for a particular load function from the
queuing theory. Cardellini et al. [10] analyze only simple
redirection policies, like round robin, or redirection to least
loaded server. Colajanni et al. [14] presents experimental
evaluation of a round-robin-based algorithm for a similar
problem. Minimizing the cost of energy due to the load
balancing in geographically distributed systems is a similar
problem considered in the literature [34], [36], [37]. A
different load function is used by Skowron and Rzadca [46]
to model the flow time of batch requests.

Some papers analyze the game-theoretical aspects of load
balancing in geographically distributed systems [2], [4],
[23], [25], [44]. These works use a similar model, but focus
on capturing the economic relation between the participating
entities.

The majority of the literature on distributed load balancing
ignores the communication costs [12], [16], [17], [24], [26],
[27], [30], [32], [33] (some literature considers that during
the communication delay the states of the servers may
change, but do not consider communication delay as a cost
that user perceive [17], [27]). Our distributed algorithm is
the extension of the diffusive load balancing [1], [3], [6];
it incorporates communication latencies into the classical
diffusive load balancing algorithms.

Additionally to the problem of effective load balanc-
ing we can optimize the choice of the locations for the
servers [15], [29], [45]. The generic formulation of the
placement problem, facility location problem [13] and k-
median problem [28] have been extensively studied in the
literature.

The contributions of this paper are the following.
(i) We construct a centralized load-balancing algorithm that
optimizes the response time up to a given (arbitrary small)
distance to the optimal solution (Section IV). The algorithm
is polynomial in the unary representation of total load of
the system and in the upper bounds of the derivatives of the
load function. (ii) We show a decentralized load-balancing
algorithm (Section V) in which pairs of servers balance their
loads. We prove that the algorithm is optimal (there is no

better algorithm that uses only a single pair of servers at each
step). We also bound the number of pair-wise exchanges
required for convergence. (iii) We do not use a particular
load function; instead, we only require the load function to
be continuous and twice-differentiable (Section II-A); thus
we are able to model empirical response times of a particular
application on a particular machine, but also to generalize
(Section II-B) Liu et al. [35]’s results on queuing model and
the results on flow time of batch requests [46].

Our algorithms are suitable for real applications. Both are
any-time algorithms which means that we can stop them at
any time and get a complete, yet suboptimal, solution. They
are self-stabilizing—if the parameters change, the algorithms
do not have to be restarted. The distributed algorithm is
particularly suitable for distributed systems. It performs only
pairwise optimizations (only two servers need to be available
to perform a single optimization phase), which means that
it is highly resilient to failures. It is also very simple and
does not require additional complex protocols.

II. PRELIMINARIES

In this section we first describe the mathematical model,
and next we argue that our model is highly applicable;
in particular it generalizes two problems considered in the
literature (see Section II-B).

A. Model

Servers, requests, relay fractions, current loads. The
system consists of a set of m servers (processors) connected
to the Internet. The i-th server has its local (own) load of
size ni consisting of small requests. The local load can be the
current number of requests, the average number of requests,
or the rate of incoming requests in the queuing model.

The server can relay a part of its load to the other servers.
We use a fractional model in which a relay fraction ρi j
denotes the fraction of the i-th server’s load that is sent
(relayed) to the j-th server (∀i, j ρi j ≥ 0 and ∀i ∑

j=m
j=1 ρi j = 1).

Consequently, ρii is the part of the i-th load that is kept on
the i-th server. We consider two models. In the single-hop
model the request can be sent over the network only once. In
the multiple-hop model the requests can be routed between
servers multiple times1. Let ri j denote the size of the load
that is sent from the server i to the server j. In the single-
hop model the requests transferred from i to j come only
from the local load of the server i, thus:

ri j = ρi jni. (1)

In the multiple-hop model the requests come both from the
local load of the server i and from the loads of other servers

1We point the analogy between the multiple-hop model and the Markov
chain with the servers corresponding to states and relay fractions ρi j
corresponding to the probabilities of changing states.



that relay their requests to i, thus ri j is a solution of:

ri j = ρi j

(
ni +∑

k 6=i
rki

)
. (2)

The (current) load of the server i is the size of the load
sent to i by all other servers, including i itself. Thus, li =
∑

m
j=1 r ji in the single-hop model, and li = rii in the multiple-

hop model.

Load functions. Let fi be a load function describing
the average request’s processing time on a server i as a
function of i’s load li (e.g.: if there are li = 10 requests
and fi(10) = 7, then on average it takes 7 time units to
process each request). We assume fi is known from a
model or experimental evaluation; but each server can have a
different characteristics fi (heterogeneous servers). The total
processing time of the requests on a server i is equal to
hi(li) = li fi(li) (e.g., it takes 70 time units to process all
requests). In most of our results we use fi instead of hi to
be consistent with [35].

Instead of using a certain load function, we derive all our
results for a broad class of load functions (see Section II-B
on how to map existing results to our model). Let lmax,i
be the load that can be effectively handled on a server i
(beyond lmax,i the server fails due to, e.g., trashing). Let
lmax = maxi lmax,i. Let ltot = ∑i ni be the total load in the
system. We assume that the total load can be effectively
handled, ∑i lmax,i ≥ ltot (otherwise, the system is clearly
overloaded). We assume that the values lmax,i are chosen so
that fi(lmax,i) are equal to each other (equal to the maximal
allowed processing time of the request).

We assume that the load function fi is bounded on the
interval [0, lmax,i] (If l > lmax,i then we follow the convention
that fi(l) = ∞). We assume fi is non-decreasing as when
the load increases, requests are not processed faster. We
also assume that fi is convex and twice-differentiable on
the interval [0; lmax,i] (continuous functions that are not
twice-differentiable can be well approximated by twice-
differentiable functions). We assume that the first derivatives
f ′i of all fi are upper bounded by U1 (U1 = maxi,l f ′i (l)),
and that the second derivatives f ′′i are upper bounded by U2
(U2 = maxi,l f ′′i (l)). These assumptions are technical—every
continuous function that is defined on the closed interval can
be upper-bounded by a constant (however the complexity of
our algorithms depends on these constants).

Communication delays. If the request is sent over the
network, the observed handling time is increased by the
communication latency on the link. We denote the commu-
nication latency between i-th and j-th server as ci j (with
cii = 0). We assume that the requests are small, and so the
communication delay of a single request does not depend
on the amount of exchanged load (the same assumption was
made in the previous works [5], [18], [20], [25], [35], [44],

[46], [51] and it is confirmed by the experiments conducted
on PlanetLab [46]). Thus, ci j is just a constant instead of a
function of the network load.

We assume efficient ε-load processing: for sufficiently
small load ε → 0 the processing time is lower than the
communication latency, so it is not profitable to send the
requests over the network. Thus, for any two servers i and
j we have:

hi(ε)< εci j +h j(ε). (3)

We use an equivalent formulation of the above assumption
(as hi(0) = h j(0) = 0):

hi(ε)−hi(0)
ε

< ci j +
h j(ε)−h j(0)

ε
. (4)

Since the above must hold for every sufficiently small ε→ 0,
we get:

h′i(0)< ci j +h′j(0)⇔ fi(0)< ci j + f j(0). (5)

Problem formulation: the total processing time. We
consider a system in which all requests have the same
importance. Thus, the optimization goal is to minimize
the total processing time of all requests ∑Ci, considering
both the communication latencies and the requests’ handling
times on all servers, i.e.,

∑Ci =
m

∑
i=1

li fi(li)+
m

∑
i=1

m

∑
j=1

ci jri j. (6)

We formalize our problem in the following definition:

Definition 1 (Load balancing). Given m servers with initial
loads {ni,0 ≤ i ≤ m}, load functions { fi} and communica-
tion delays {ci j : 0≤ i, j ≤ m} find ρ , a vector of fractions,
that minimizes the total processing time of the requests, ∑Ci.

We denote the optimal relay fractions by ρ∗ and the load
of the server i in the optimal solution as l∗i .

B. Motivation

Since the assumptions about the load functions are mod-
erate, our analysis is applicable to many systems. In order
to apply our solutions one only needs to find the load func-
tions fi. In particular, our model generalizes the following
previous models.

Queuing model. Our results generalize the results of
Liu et al. [35] for the queuing model. In the queuing
model, the initial load ni corresponds to the rate of local
requests at the i-th server. Every server i has a processing
rate µi. According to the queuing theory the dependency
between the load l (which is the effective rate of incoming
requests) and the service time of the requests is described
by fi(l) = 1

µi−l [22]. Its derivative, f ′i (l) =
1

(µi−l)2 is upper



bounded by U1 = maxi
1

(µi−lmax,i)2 , and its second derivative

f ′′i (l) =
2

(l−µi)3 is upper bounded by U2 = maxi
2

(lmax,i−µi)3 .

Batch model. Skowron and Rzadca [46] consider a model
inspired by batch processing in high-performance comput-
ing. The goal is to minimize the flow time of jobs in a
single batch. In this case the function fi linearly depends on
load fi(l) = l

2si
(where si is the speed of the i-th server). Its

derivative is constant, and thus upper bounded by 1
2si

. The
second derivative is equal to 0.

III. PROBLEM CHARACTERIZATION

In this section, we show various results that characterize
the solutions in both the single-hop and the multiple-hop
models. We will use these results in performance proofs in
the next sections.

The relation between the single-hop model and the
multiple-hop model is given by the proposition followed by
the following lemma.

Lemma 1. If communication delays satisfy the triangle
inequality (i.e., for every i, j, and k we have ci j < cik +ck j),
then in the optimal solution there is no server i that both
sends and a receives the load, i.e. there is no server i such
that ∃ j 6=i,k 6=i ((ρi j > 0)∧ (ρki > 0)).

Proof: Proofs omitted in main text are provided in the
full version of this paper [47].

Proposition 2. If communication delays satisfy the triangle
inequality then the single-hop model and the multiple-hop
model are equivalent.

We will also use the following simple observation.

Corollary 3. The total processing time in the multiple-hop
model is not higher than in the single-hop model.

In the next two statements we recall two results given
by Liu et al. [35] (these results were formulated for the
general load functions). First, there exists an optimal solution
in which only (2m− 1) relay fractions ρi j are positive.
This theorem makes our analysis more practical: the optimal
load balancing can be achieved with sparse routing tables.
However, we note that most of our results are also applicable
to the case when every server is allowed to relay its requests
only to a (small) subset of the servers; in such case we need
to set the communication delays between the disallowed
pairs of servers to infinity.

Theorem 4 (Liu et al. [35]). In a single-hop model there
exists an optimal solution in which at most (2m− 1) relay
fractions ρi j have no-zero values.

Second, all optimal solutions are equivalent:

Theorem 5 (Liu et al. [35]). Every server i has in all optimal
solutions the same load l∗i .

Finally, in the next series of lemmas we characterize the
optimal solution, by linear equations. We will use these
characterization in the analysis of the central algorithm.

Lemma 6. In the multiple hop model, the optimal solution
〈ρ∗i j〉 satisfies the following constraints:

∀i l∗i ≤ lmax,i (7)
∀i, j ρ

∗
i j ≥ 0 (8)

∀i

m

∑
j=1

ρ
∗
i j = 1. (9)

Proof: Inequality 7 ensures that the completion time
of the requests is finite. Inequalities 8 and 9 state that the
values of ρ∗i j are valid relay fractions.

Lemma 7. In the multiple hop model, the optimal solution
〈ρ∗i j〉 satisfies the following constraint:

∀i, j f j(l∗j )+ l∗j f ′j(l
∗
j )+ ci j ≥ fi(l∗i )+ l∗i f ′i (l

∗
i ) (10)

Lemma 8. In the multiple hop model, the optimal solution
〈ρ∗i j〉 satisfies the following constraint:

∀i, j if ρ
∗
i j > 0 then f j(l∗j )+ l∗j f ′j(l

∗
j )+ ci j ≤ fi(l∗i )+ l∗i f ′i (l

∗
i )

(11)

Lemma 9. If some solution 〈ρi j〉 satisfies Inequali-
ties 7, 8, 9, 10, and 11 then every server i under 〈ρi j〉 has
the same load as in the optimal solution 〈ρ∗i j〉.

IV. CENTRALIZED ALGORITHM

In this section we show a centralized algorithm for the
multiple-hop model. As a consequence of Proposition 2 the
results presented in this section also apply to the single-hop
model with the communication delays satisfying the triangle
inequality.

For the further analysis we introduce the notion of optimal
network flow.

Definition 2 (Optimal network flow). The vector of relay
fractions ρ = 〈ρi j〉 has an optimal network flow if and only
if there is no ρ ′ = 〈ρ ′i j〉 such that every server in ρ ′ has the
same load as in ρ and such that the total communication
delay of the requests ∑i, j ci jr′i j in ρ ′ is lower than the total
communication delay ∑i, j ci jri j in ρ .

The problem of finding the optimal network flow reduces
to finding a minimum cost flow in uncapacitated network.
Indeed, in the problem of finding a minimum cost flow in
uncapacitated network we are given a graph with the cost
of the arcs and demands (supplies) of the vertices. For each
vertex i, bi denotes the demand (if positive) or supply (if
negative) of i. We look for the flow that satisfies demands
and supplies and minimizes the total cost. To transform our
problem of finding the optimal network flow to the above
form it suffices to set bi = li−ni. Thus our problem can be
solved in time O(m3 logm) [42]. Other distributed algorithms



include the one of Goldberg et al. [21], and the asynchronous
auction-based algorithms [7], with e.g., the complexity of
O(m3 log(m) log(maxi, j ci j)).

The following theorem estimates how far is the current
solution from the optimal based on the degree to which
Inequality 10 is not satisfied. We use the theorem to prove
approximation ratio of the load balancing algorithm.

Theorem 10. Let ρ be the vector of relay fractions satisfying
Inequalities 7, 8, 9 and 11, and having an optimal network
flow. Let ∆i j quantify the extent to which Inequality 10 is
not satisfied:

∆i j = max(0, fi(li)+ li f ′i (li)− f j(l j)− l j f ′j(l j)− ci j).

Let ∆=maxi, j ∆i j. Let e be the absolute error—the difference
between ∑Ci for solution ρ and for ρ∗, e = ∑Ci(ρ)−
∑Ci(ρ

∗). For the multiple-hop model and for the single-hop
model satisfying the triangle inequality we get the following
estimation:

e≤ ltotm∆.

Proof: Let I be the problem instance. Let Ĩ be a
following instance: initial loads ni in Ĩ are the same as in
I; communication delays ci j are increased by ∆i j (c̃i j :=
ci j + ∆i j). Let ρ̃∗ be the optimal solutions for Ĩ in the
multiple-hop model.

By Lemma 9, loads of servers in ρ are the same as in ρ̃∗,
as ρ satisfies all inequalities for Ĩ. Let c∗ and c denote the
total communication delay of ρ̃∗ in Ĩ and ρ in I, respectively.
First, we show that c∗ ≥ c.

For the sake of contradiction, assume that c∗ < c. We
take the solution ρ̃∗ in Ĩ and modify Ĩ by decreasing each
latency c̃i j by ∆i j. We obtain instance I. During the process,
we decreased (or did not change) communication delay
over every link, and so we decreased (or did not change)
the total communication delay. Thus, in I, ρ̃∗ has smaller
communication delay than ρ . This contradicts the thesis
assumption that ρ had in I the optimal network flow.

As Ĩ has the same initial loads and not greater communi-
cation delay,

∑Ci(ρ, I)≤∑Ci(ρ̃∗, Ĩ).

Based on Proposition 2, the same result holds if ρ is
the solution in the single-hop model satisfying the triangle
inequality.

We use a similar analysis to bound the processing time. In
the multiple-hop model, if the network flow is optimal, then
every request can be relayed at most m times. Thus, any
solution transfers at most ltotm load. Thus, by increasing
latencies from I to Ĩ we increase the total communication
delay of a solution by at most ltotm∆. Taking the optimal
solution ρ∗, we get:

∑Ci(ρ
∗, Ĩ)≤ ltotm∆+∑Ci(ρ

∗, I).

As ∑Ci(ρ̃∗, Ĩ) ≤ ∑Ci(ρ
∗, Ĩ), by combining the two in-

equalities we get:

∑Ci(ρ, I)≤∑Ci(ρ̃∗, Ĩ)≤∑Ci(ρ
∗, Ĩ)≤ ltotm∆+∑Ci(ρ

∗, I).

The above estimations allow us to construct an approxi-
mation algorithm (Algorithm 1). The lines 15 to 19 initialize
the variables. In line 20 we build any finite solution (any
solution for which the load li on the i-th server does not
exceed lmax,i). Next in the while loop in line 23 we iteratively
improve the solution. In each iteration we find the pair (i, j)
with the maximal value of ∆i j. Next we balance the servers
i and j in line 8. Afterwards, it might be possible that
the current solution does not satisfy Inequality 11. In the
lines 9 to 13 we fix the solution so that Inequality 11 holds.

Algorithm 1: The approximation algorithm for multiple-
hop model.

Notation:
eee — the required absolute error of the algorithm.
ci jci jci j — the communication delay between i-th and j-th server.
lll[i] — the load of the i-th server in a current solution.
rrr[i, j] — the number of requests relayed between i-th and j-th server
in a current solution.
OptimizeNetworkFlow(ρ , 〈ci j〉) — builds an optimal network
flow using algorithm of Orlin [42].

1
2 Adjust(i, j):
3 ∆r←

argmin∆r
(
(li−∆r) fi(li−∆r)+(l j +∆r) f j(l j +∆r)+∆rci j

)
;

4 l[i]← l[i]−∆r;
5 l[ j]← l[ j]+∆r;
6 r[i, j]← r[i, j]+∆r;
7 Improve(i, j):
8 Adjust (i, j);
9 servers← sort servers topologically according to the order ≺:

i≺ j ⇐⇒ ρi j > 0;
10 for ` in servers do
11 for k← 1 to m do
12 if r[k, `]> 0 and

f`(l[`])+ l[`] f ′`(l[`])+ ck` > fk(l[k])+ l[k] f ′k(l[k]) then
13 Adjust (`,k);
14 Main(〈ci j〉, 〈ni〉, 〈si〉):
15 for i← 1 to m do
16 l[i]← ni;
17 for j← 1 to m do
18 r[i, j]← 0;
19 r[i, i]← ni;
20 BuildAnyFiniteSolution() ;
21 OptimizeNetworkFlow(r, 〈ci j〉);
22 (i, j)← argmax(i, j)∆i j;
23 while ∆i j >

e
ltotm

do
24 (i, j)← argmax(i, j)∆i j;
25 Improve(i, j);
26 OptimizeNetworkFlow(r, 〈ci j〉);

The following Theorem shows that Algorithm 1 achieves
an arbitrary small absolute error e.

Theorem 11. Let ed be the desired absolute error for
Algorithm 1, and let ei be the initial error. In the multiple-
hop model Algorithm 1 decreases the absolute error from ei



Algorithm 2: CALCBESTTRANSFER(i, j)
input: (i, j) – the identifiers of the two servers
Data: ∀k rki – initialized to the number of requests

owned by k and relayed to i (∀k rk j is defined
analogously)

Result: The new values of rki and rk j
1 foreach k do
2 rki← rki + rk j; rk j← 0;
3 li← ∑k rki ; l j← 0 ;
4 servers ← sort [k] so that ck j− cki < ck′ j− ck′i =⇒ k

is before k′;
5 foreach k ∈ servers do
6 ∆optrik j←

argmin∆r
(
hi(li−∆r)+h j(l j +∆r)−∆rcki +∆rck j

)
;

7 ∆rik j←min
(
∆optrik j,rki

)
;

8 if ∆rik j > 0 then
9 rki← rki−∆rik j; rk j← rk j +∆rik j ;

10 li← li−∆rik j; l j← l j +∆rik j ;
11 return for each k: rki and rk j

Algorithm 3: Min-Error (MinE) algorithm performed by
server id.

1 partner ← random(m);
2 relay (id, partner, calcBestTransfer(id,

partner));

to ed in time O( ltot
2m4ei(U1+lmaxU2)

e2
d

).

Using a bound from Theorem 10 corresponding to the
single-hop model we get the following analogous results.

Corollary 12. If the communication delays satisfy the
triangle inequality then Algorithm 1 for the single-hop
model decreases the absolute error from ei to ed in time
O( ltot

2m4ei(U1+lmaxU2)

e2
d

).

For the relative (to the total load) errors ei,r = ei
ltot

,
and ed,r =

ed
ltot

, Algorithm 1 decreases ei,r to ed,r in time

O(
ltot(U1+lmaxU2)ei,r

e2
d,r

m4). Thus, we get the shortest runtime

if ltot is large and ei,r is small. If the initial error ei,r
is large we can use a modified algorithm that performs
OptimizeNetworkFlow in every iteration of the last
“while” loop (line 23). Using a similar analysis as before
we get the following bound.

Theorem 13. The modified Algorithm 1 that per-
forms OptimizeNetworkFlow in every iteration of
the last “while” loop (line 23) decreases the relative
error ei,r by a multiplicative constant factor in time
O( ltotm5 logm(U1+lmaxU2)

ei,r
).

Algorithm 1 is any-time algorithm. We can stop it at any

time and get a so-far optimized solution. This algorithm is
also self-stabilizing.

The complexity of our algorithms requires some discus-
sion. The quality of the results seem to be weaken by
the fact that the complexity of decreasing relative error
depends on the size of unary representation of total load ltot.
However, this is more an artifact of the problem formulation
rather than of the quality of algorithms. This can be made
clear by the following observation. Consider what happens
if every request is divided into x > 1 new requests. On
one hand, ltot and lmax increase by the factor of x. On
the other hand, since the requests are smaller, each load
function changes as well: the new load function f new

i would
have the following form f new

i (`) = fi(
`
x ). Consequently,

Unew
1 = maxi,`( f new

i )′(`) = maxi,`
1
x f ′i (

`
x ) = U1

x . Similarly,
Unew

2 = U2
x2 . Thus, the complexity of decreasing relative error

by a constant factor would remain unchanged. This is what
we would, intuitively, expect: if there were no ltot in the
formulation of Theorem 13 (and other theorems in the next
section) we could obtain better complexity by changing load
granularity.

Summarizing, the total load is required in the formulas
on convergence time, because it is related to the bounds
on derivatives (U1, U2). If such total load would not be
included in our formulas, it would mean that the complexity
of the algorithm could be improved just by dividing requests
into smaller pieces (which can be always performed)—and
therefore increasing the number of requests in the system—
which would be unexpected.

V. DISTRIBUTED ALGORITHM

The centralized algorithm requires the information about
the whole network. The size of the input data is O(m2).
A centralized algorithm has thus the following drawbacks:
(i) collecting information about the whole network is time-
consuming; moreover, loads and latencies may frequently
change; (ii) the central algorithm is more vulnerable to
failures. Motivated by these limitations we introduce a
distributed algorithm for optimizing the query processing
time. This decentralized algorithm and its analysis is our
core contribution.

Our algorithm uses different ideas than the centralized
algorithm and the algorithms of Liu et al. [35] and of
Tantawi and Towsley [50]. In our algorithm, each server,
i, keeps for each server, k, information about the number
of requests that were relayed to i by k. The algorithm
iteratively improves the solution – the i-th server in each
step communicates with a random partner server – j (Algo-
rithm 3). The pair (i, j) locally optimizes the current solution
by adjusting, for each k, rki and rk j (Algorithm 2). In the first
loop of the Algorithm 2, one of the servers i, takes all the
requests that were previously assigned to i and to j. Next, all
the servers [k] are sorted according to the ascending order
of (ck j − cki). The lower the value of (ck j − cki), the less



communication delay we need to pay for running requests
of k on j rather than on i. Then, for each k, the loads are
balanced between servers i and j. Theorem 14 shows that
Algorithm 2 optimally balances the loads on the servers i
and j.

The idea of the algorithm is similar to the diffusive
load balancing [1], [3], [6]; however there are substantial
differences related to the fact that the machines are geo-
graphically distributed: (i) In each step no real requests are
transferred between the servers; this process can be viewed
as a simulation run to calculate the relay fractions ρi j. Once
the fractions are calculated the requests are transferred and
executed at the appropriate server. (ii) Each pair (i, j) of
servers exchanges not only its own requests but the requests
of all servers that relayed their requests either to i or to j.
Since different servers may have different communication
delays to i and j the local balancing requires more care
(Algorithms 2 and 3).

Algorithm 3 has the following properties: (i) The size
of the input data is O(m) for each server—communication
latencies from a server to all other servers (and not for
all pairs of servers). It is easy to measure these pair-wise
latencies (Section I). The algorithm is also applicable to
the case when we allow the server to relay its requests
only to the certain subset of servers (we set the latencies
to the servers outside of this subset to infinity). (ii) A
single optimization step requires only two servers to be
available (thus, it is very robust to failures). (iii) Any
algorithm that in a single step involves only two servers
cannot perform better (Theorem 14). (iv) The algorithm does
not require any requests to be unnecessarily delegated – once
the relay fractions are calculated the requests are sent over
the network. (v) In each step of the algorithm we are able to
estimate the distance between the current solution and the
optimal one (Theorem 18).

The following theorem shows the optimality of Algo-
rithm 2.

Theorem 14. After execution of Algorithm 2 for the pair of
servers i and j, ∑Ci cannot be further improved by sending
the load of any servers between i and j (by adjusting rki
and rk j for any k).

A. Convergence

The following analysis bounds the error of the distributed
algorithm as a function of the servers’ loads. When running
the algorithm, this result can be used to assess whether it is
still profitable to continue. As the corollary of our analysis
we will show the convergence of the distributed algorithm.

In proofs, we will use an error graph that quantifies the
difference of loads between the current and the optimal
solution.

Definition 3 (Error graph). Let ρ be the snapshot (the
current solution) at some moment of execution of the dis-

tributed algorithm. Let ρ∗ be the optimal solution (if there
are multiple optimal solutions with the same ∑Ci, ρ∗ is
the closest solution to ρ in the Manhattan metric). (P,∆ρ)
is a weighted, directed error graph with multiple edges.
The vertices in the error graph correspond to the servers;
∆ρ[i][ j][k] is a weight of the edge i→ j with a label k. The
weight indicates the number of requests owned by k that
should be executed on j instead of i in order to reach ρ∗

from ρ .

The error graphs are not unique. For instance, to move x
requests owned by k from i to j we can move them directly,
or through some other server `. In our analysis we will
assume that the total weight of the edges in the error graph
∑i, j,k ∆ρ[i][ j][k] is minimal, that is that there is no i, j,k, and
`, such that ∆ρ[i][`][k]> 0 and ∆ρ[`][ j][k]> 0.

Let succ(i) = { j : ∃k∆ρ[i][ j][k] > 0} denote the set of
(immediate) successors of server i in the error graph;
prec(i) = { j : ∃k∆ρ[ j][i][k] > 0} denotes the set of (imme-
diate) predecessors of i.

We will also use a notion of negative cycle: a sequence
of servers in the error graph that essentially redirect some
of their requests to one another.

Definition 4 (Negative cycle). In the error graph, a neg-
ative cycle is a sequence of servers i1, i2, . . . , in and labels
k1,k2, . . . ,kn such that:

1) i1 = in; (the sequence is a cycle)
2) ∀ j∈{1,...n−1} ∆ρ[i j][i j+1][k j]> 0; (for each pair there is

an edge in the error graph)

3) ∑
n−1
j=1 ck j i j+1 < ∑

n−1
j=1 ck j i j (the transfer in the circle i j

k j−→
i j+1 decreases communication delay).

A current solution that results in an error graph without
negative cycles has smaller processing time: after disman-
tling a negative cycle, loads on servers remain the same,
but the communication time is reduced. Thus, if the current
solution has an optimal network flow, then there are no
negative cycles in the error graph.

Analogously we define positive cycles. The only dif-
ference is that instead of the third inequality we require
∑

n−1
j=1 ck j i j+1 ≥ ∑

n−1
j=1 ck j i j . Thus, when an error graph has a

positive cycle, the current solution is better than if the cycle
would be dismantled.

We start by bounding the load imbalance when there are
no negative cycles. The proof of Lemma 15 is somehow
involved; for details, we refer the reader to the full version
of this paper [47].

Lemma 15. Let imprpq be the improvement of the total
processing time ∑Ci after balancing servers p and q by
Algorithm 2. Let li be the load of a server i in the current
state; and l∗i be the optimal load. If the error graph ∆ρ has
no negative cycles, then for every positive ε the following



estimation holds:

fi(li)− fi(l∗i )≤
6U1 +3lmaxU2

ε
max

pq
imprpq +mε .

As the result we get the following corollary.

Corollary 16. If the network flow in the current solution ρ

is optimal, then the absolute error e is bounded:

e≤ ltot
6U1 +3lmaxU2

ε
max

pq
imprpq +mltotε

Proof: The value fi(li) denotes the average processing
time of a request on the i-th server. For every server i the
average processing time of every request on i in ρ is by
at most 6U1+3lmaxU2

ε
maxpq imprpq +mε greater than in ρ∗.

Thus, since there are ltot requests in total, we get the thesis.

We can use Lemma 15 directly to estimate the error
during the optimization if we run a distributed negative
cycle removal algorithm (e.g. [7], [21]). However, this result
is even more powerful when applied together with the
lemmas below, as it will allow to bound the speed of
the convergence of the algorithm (even without additional
protocols optimizing the network flow). Now, we show how
to bound the impact of the negative cycles.

Lemma 17. For every ε > 0, removing the negative cycles
improves the total processing time ∑Ci of the solution by at
most:

εltot +2m∑
i j

impri j +
16U1 +8lmaxU2

ε
max

i j
impri jltot.

Finally we get the following estimation.

Theorem 18. Let impri j be the improvement of the total
processing time ∑Ci after balancing servers i and j through
Algorithm 2. Let e be the absolute error in ∑Ci (the
difference between ∑Ci in the current and the optimal state).
For every ε > 0, we have:

e≤ 2m∑
i j

impri j +max
i j

impri j
22U1 +11lmaxU2

ε
ltot

+(m+1)ltotε .

Proof: The error coming from the negative cycles is
bounded by Lemma 17 by:

εltot +2m∑
i j

impri j +
16U1 +8lmaxU2

ε
max

i j
impri jltot. (12)

The error coming from the processing times is, according to
Lemma 15 bounded by:

ltot
6U1 +3lmaxU2

ε
max

i j
impri j +mltotε

The sum of the above errors leads to the thesis.
And the following theorem.

Theorem 19. Let ei and ed be the initial and the desired
absolute errors. The distributed algorithm reaches the ed
in expected time complexity (the random element of the
algorithm is the process of selecting pair peers):

O
(

ltot
2(U1 + lmaxU2)eim3

e2
d

)
.

Proof: In the estimation from Theorem 18 we set
ε = ed

2(m+1)ltot
and relax the upper bound by replacing

maxi, j impri j with ∑i, j impri j:

e≤ (2m+2)∑
i, j

impri j

(
1+

22U1 +11lmaxU2

ed
ltot

2
)
+

ed

2

≈ 2m∑
i, j

impri j
22U1 +11lmaxU2

ed
ltot

2 +
ed

2
.

Thus, either:

2m∑
i j

impri j
22U1 +11lmaxU2

ed
ltot

2 ≤ ed

2
,

and the algorithm has already reached the error ed ; or in
every execution step we have:

∑
i, j

impri j ≥
e2

d

4m(22U1 +11lmaxU2)ltot
2 .

The expected improvement of the distributed algorithm
during every pairwise communication is 1

m2 ∑i, j impri j, and
thus it is lower bounded by:

e2
d

4m3(22U1 +11lmaxU2)ltot
2 .

Thus, after, in expectation, O( ltot
2(U1+lmaxU2)eim3

e2
d

) steps the
initial error drops to 0. This completes the proof.

For the relative errors ei,r =
ei
ltot

, and ed,r =
ed
ltot

, the com-

plexity of the algorithm is equal to O(
ltot(U1+lmaxU2)ei,rm3

e2
d,r

).

VI. CONCLUSIONS

In this paper we considered the problem of balancing
the load between geographically distributed servers. In this
problem the completion time of a request is the sum of the
communication latency needed to send the request to a server
and the servers’ processing time. The processing time on a
server is described by a load function and depends on the
total load on the server. Throughout the paper we considered
a broad class of load functions with the mild assumptions
that they are convex and two times differentiable.

We presented two algorithms—the centralized one and
the distributed one. Both algorithms are any-time and self-
stabilizing algorithms that continuously optimize the current
solution. We showed that both algorithms converge for
almost arbitrary load function. We also presented bounds
on the speed of their convergence that depend (apart from
the standard parameters) on bounds on the first and second



derivatives of the load functions. The centralized algorithm
decreases an initial relative error ei,r to a desired value
ed,r in time O(

ltot(U1+lmaxU2)ei,r
e2

d,r
m4). The distributed algorithm

decreases ei,r to ed,r in O(
ltot(U1+lmaxU2)ei,r

e2
d,r

m3) steps. Also, for

the large values of initial error ei,r the centralized algorithm
decreases the error by half in time O( ltot(U1+lmaxU2)

ei,r
m5 logm).

While the running time of our algorithms depends on the
total load ltot, in the two last paragraphs of Section IV we ex-
plain that this is not an indicator of the algorithms’ slowness.
Including ltot in the formulas is required to compensate the
bounds on derivatives (U1, U2), which depend on granularity
of the load.

The run-times of our algorithms depend non-linearly
on the number of servers, however we argue that these
algorithms are applicable in practice: (i) The “server” as
used in our model can correspond to e.g., a datacenter, rather
than a single node: the number of distinct servers is the
number of entities between which there is non-negligible
latency (latency resulting from geographic distance). Even
in large commercial systems, there are dozens, rather than
thousands of datacenters. (ii) Our algorithms can be used
as a reference for comparing other faster heuristics through
simulations. (iii) Our load balancing optimization can be
run in the background (in an on-line system, continuously);
the solution—the resulting load fractions—would drive the
actual load balancing decisions, which are instantaneous.

The distributed algorithm is based on the idea of gos-
siping. To perform a single optimization step, the algorithm
requires just two servers to be available. Thus, the algorithm
is robust to transient failures. It also does not require
additional protocols. In some sense it is also optimal: we
proved that the local optimization step performed by this
algorithm cannot be improved. Finally, at any time moment,
during the execution of the distributed algorithm, we are able
to assess the current error.

Experimental results were shown for a different algorithm
applied to the queuing model [35]; and for a version of our
distributed algorithm specialized to the batch model [46].
In our future work we plan to experimentally assess the
performance of our algorithms on real workloads and several
load functions, including the queuing model.
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