Foundations of mathematics – week 14 January 22, 2010

Exercises

1. Consider the sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $\mathbb{Q} - \{0\}$, \mathbb{R} , $\mathbb{R} - \{0\}$,

$$A = \{3 - \frac{1}{2n} \mid n \in \mathbb{N} - \{0\}\},\$$

$$B = \{\pi - \frac{2}{n} \mid n \in \mathbb{N} - \{0\}\} \cup \{4\}$$

$$C = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N} - \{0\}\} \cup \{2 - \frac{1}{n} \mid n \in \mathbb{N} - \{0\}\}$$

ordered by the relation \leq . Which of them are well-founded?

- 2. Is the set $\langle \mathbb{N}^*, \leq_{lex} \rangle$ well-founded? And the set $\langle \mathbb{N}^2, \leq_{lex} \rangle$?
- 3. Consider partial ordering of the set $\{0,1\}^{\mathbb{N}}$

$$f \leq g$$
 iff. $\forall x(f(x) \leq g(x)).$

- (a) Is the ordering linear?
- (b) Is it well-founded?
- (c) Does there exist an infinite chain?
- (d) Does there exist an infinite antichain?
- (e) Is the set a complete lattice?