Foundations of mathematics - week 12

January 8, 2010

Exercises

1. Find the cardinality of the Cantor set.
2. Equivalence relation R in the set $\mathbb{N}^{\mathbb{N}}$ is defined in the following way

$$
R=\{\langle f, g\rangle \mid \forall n f(2 n)=g(2 n)\}
$$

Find the cardinality of the set of all equivalence classes of the relation R and the cardinality of each equivalence class.
3. Find the minimal, maximal, least and greatest elements in the set $\{2,3,4,5,6,8,9,12,24\}$ ordered by divisibility. Are there any three-element chains or antichains in the set?
4. Find the minimal, maximal, least and greatest elements in the set

$$
\{\{1,2,3,4,6\},\{3\},\{1,2,3,4,5\},\{2,3,5\},\{1,2,3,4\},\{1,2\}\}
$$

ordered by inclusion.
5. Give an example of a partially ordered set which has two maximal elements, one minimal element and no least element.
6. Give an example of a partially ordered set which has two maximal elements, one minimal element, no least element and a four-element antichain which is bounded from above but does not have an upper bound .
7. Does the set $\left\{01^{n} \mid n \in \mathbb{N}\right\}$ have an upper (lower) bound in the set $\{0,1\}^{*}$ ordered lexicographically?
8. Does the set $\left\{0^{n} 1 \mid n \in \mathbb{N}\right\}$ have an upper (lower) bound in the set $\{0,1\}^{*}$ ordered lexicographically?
9. How many equivalence relations in \mathbb{N} which are also partially ordered sets are there?

Homework

1. Let \leqslant be a partial order in A. The relation $<$ is the called a strict order induced by \leqslant. Show the strict orders induced by partial orders are exactly the relations which are transitive and irreflexive.
2. Does the set of all words ovet the alphabet $\{0,1\}$ which have an equal number of zeros and ones have an upper (lower) bound in the set $\{0,1\}^{*}$ ordered lexicographically?
