Foundations of mathematics – week 11 December 18, 2009

Exercises

- 1. What is the cardinality of the set of all functions from \mathbb{N} to \mathbb{N} ?
- 2. What is the cardinality of the set of all non-increasing functions from \mathbb{N} to \mathbb{N} ?
- 3. What is the cardinality of the set of all non-decreasing functions from \mathbb{N} to \mathbb{N} ?
- 4. Find the cardinality of the set of all continuous functions from \mathbb{R} to \mathbb{R} .
- 5. Find the cardinality of the set of all equivalence relations in \mathbb{N} .
- 6. Which of the following sets are equinumerous:

$$\mathbb{Z}, \mathbb{R}^{\mathbb{N}}, \mathbb{Q}^{\mathbb{N}}, \mathbb{R} \times \mathbb{R}, \{0, 1\}^*, \{0, 1\}^{\mathbb{N}}, P(\mathbb{Q}), P(\mathbb{R})?$$

Homework

- 1. Find the cardinality of the set of the sequences of rational number which converge to zero.
- 2. Find the cardinality of the set of all equivalence relations in \mathbb{N} which have finitely many equivalence classes.
- 3. Which of the following sets are equinumerous:

$$\mathbb{Q}\times\mathbb{Z}, \mathbb{R}\times\mathbb{Q}, \mathbb{R}-\mathbb{Q}, 2^{\mathbb{N}}, 2^{\mathbb{R}}, P(\mathbb{R}\times\mathbb{Z}), \bigcup_{m\in\mathbb{N}}\mathbb{N}^m?$$

4. (*) Find the cardinality of the Cantor set.