Foundations of mathematics – week 9 December 4, 2009

Exercises

1. Is it always true that

$$\bigcup_{i \in I} (A_i \cap B_i) = \bigcup_{i \in I} \bigcup_{j \in I} (A_i \cap B_j)?$$

- 2. Let $A_{n,m} = \{x \in \mathbb{R} \mid \frac{n-1}{m+1} \leq x < n+m\}$. Find $\bigcup_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} A_{n,m}$ and $\bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} A_{n,m}$.
- 3. Which of the following equities hold for arbitrary set $A_{t,s}$ where $t \in T, s \in S$
 - (a) $\bigcup_{t \in T} \prod_{s \in S} A_{t,s} = \prod_{s \in S} \bigcup_{t \in T} A_{t,s}$?
- 4. The function $F: P(\mathbb{N})^{\mathbb{N}} \to P(\mathbb{N})$ is such that

$$F(x) = \bigcup \{ x(i) \mid i \in \mathbb{N} \}.$$

- (a) Is F injective?
- (b) Is F onto $P(\mathbb{N})$?
- (c) Does there exist a set $A \subseteq \mathbb{N}$ such that $F^{-1}(\{A\})$ is a singleton?
- (d) Does there exist a set $A \subseteq \mathbb{N}$ such that $F^{-1}(\{A\})$ is a four element set?