Foundations of mathematics – week 8 November 27, 2009

Exercises

- 1. Does there exist an equivalence relation in \mathbb{N} which has
 - (a) two equivalence classes, each with 37 elements;
 - (b) two equivalence classes with 17 elements, five equivalence classes with 33 elements and one infinite equivalence class;
 - (c) infinitely many equivalence classes, each with an infinite number of elements;
 - (d) one empty equivalence class and one infinite equivalence class?
- 2. Let $\mathbb{Z}[x]$ denote the set of polynomials in x with integer coefficients. Let r be a relation in $\mathbb{Z}[x]$ such that $\langle f, g \rangle \in r$ if and only if all coefficients in the difference f g are even.
 - (a) Show that r is an equivalence relation.
 - (b) Find equivalence class of the zero polynomial.
 - (c) Find three different equivalence classes.
 - (d) Is the set $\mathbb{Z}[x]_{/r}$ finite?
 - (e) Is the set $\{W(x) \in \mathbb{Z}[x] \mid W(0) = 2\}$ an equivalence class of the relation?
- 3. Let $r \subseteq \mathbb{N} \times \mathbb{N}$ be an equivalence relation in \mathbb{N} and let $f : \mathbb{N} \times \mathbb{N} \to P(\mathbb{N})$ be such that $f(\langle x, y \rangle) = [x]_r \cap [y]_r$.
 - (a) Is f injective?
 - (b) Is f onto $P(\mathbb{N})$?
 - (c) Find $f^{-1}(\{[3]_r\})$.
 - (d) Find $f(\mathbb{N} \times \mathbb{N} r)$.

Homework

- 1. Let s be a relation in $\mathbb{Z}^{\mathbb{N}}$ such that $\langle f, g \rangle \in s$ if and only if the difference f g converges to 0.
 - (a) Show that r is an equivalence relation.
 - (b) Find three different equivalence classes.
- 2. Let $r \subseteq \mathbb{N} \times \mathbb{N}$ be an equivalence relation in \mathbb{N} and let $f : \mathbb{N} \times \mathbb{N} \to P(\mathbb{N})$ be such that $f(\langle x, y \rangle) = [x]_r \cup [y]_r$.
 - (a) Is f injective?
 - (b) Is f onto $P(\mathbb{N})$?
 - (c) Find $f^{-1}(\{[3]_r\})$.
 - (d) Find f(r).
- 3. Let \mathcal{R} be a nonempty family of equivalence relations. Prove that $\bigcap \mathcal{R}$ is an equivalence relation.