Foundations of mathematics – week 7 November 20, 2009

Exercises

- 1. Give an example of a function $f: A \to B, X \subseteq A, Y \subseteq B$ such that
 - (a) $\vec{f}^{-1}(\vec{f}(X)) \neq X;$
 - (b) $\vec{f}(\vec{f}^{-1}(X)) \neq X;$
 - (c) $\vec{f}(C \cap D) \neq \vec{f}(C) \cap \vec{f}(D)$.
- 2. Let $f: P(\mathbb{N}) \times P(\mathbb{N}) \to P(\mathbb{N})$ be such that

$$f(\langle C, D \rangle) = C \cap D.$$

- (a) Is f injective?
- (b) Is f onto $P(\mathbb{N})$?
- (c) Find $\vec{f}(P(B) \times P(B))$ for $B \subseteq \mathbb{N}$.
- (d) Find $\vec{f}^{-1}(\{\mathbb{N}\})$.
- 3. Show that the function $\varphi: P(A)^B \to P(A \times B)$ such that

$$\varphi(f) = \{ \langle a, b \rangle \in A \times B \mid a \in f(b) \}$$

is injective and onto $P(A \times B)$.

- 4. Let $f \in T \to T$. Prove that $f \circ f = f$ if and only if $f|_{Rq(f)} = id_{Rq(f)}$.
- 5. Are the following equivalence relations:
 - (a) $r \subseteq \mathbb{R}^2$, $\langle x, y \rangle \in r \Leftrightarrow x^2 \neq y^2$;
 - (b) $r \subseteq \mathbb{R}^2$, $\langle x, y \rangle \in r \Leftrightarrow x^2 = y^2$;
 - (c) $r \subseteq \mathbb{Z}^2$, $\langle x, y \rangle \in r \Leftrightarrow x \leqslant y$;
 - (d) $r \subseteq P(\mathbb{N})^2$, $\langle x, y \rangle \in r \Leftrightarrow x \cap \mathbb{P} = y \cap \mathbb{P}$, (P) is the set of even numbers ?
- 6. Find equivalence class
 - (b) $[1]_r;$
 - (d) $[\{1\}]_r$.

Homework

- 1. Let $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be such that $\varphi(\langle n, k \rangle) = nk$. Check whether φ is injective and onto \mathbb{N} . Find $\vec{\varphi}(\mathbb{P} \times \mathbb{N} \setminus \mathbb{P}), \ \vec{\varphi}^{-1}(\{1\}), \ \vec{\varphi}^{-1}(\mathbb{N} \setminus \mathbb{P}), \ \vec{\varphi}^{-1}(\{2^n \mid n \in \mathbb{N} \setminus \{0\}\})$. Here, \mathbb{P} is the set of all even numbers.
- 2. Let $f : \mathbb{N}^{\mathbb{N}} \to P(\mathbb{N})$ be such that $f(\varphi) = \varphi(\mathbb{N})$. Is f injective and is it onto $P(\mathbb{N})$? Find $f^{-1}(B)$ where B is the set of one-element subsets of \mathbb{N} .
- 3. Let $f: A \to A$ be such that $f^n = f$ for some n > 1. Prove that f(Rg(f)) = Rg(f).