Foundations of mathematics - week 6

November 13, 2009

Exercises

1. Is it true that for an arbitrary A and for an arbitrary relation R

$$
I_{A} \subseteq R^{-1} ; R ?
$$

2. Give an example of a 5 -element relation on the set of natural numbers such that R is
(a) symmetric;
(b) reflexive;
(c) transitive.
3. Is the relation $\{\langle 0,3\rangle,\langle 1,3\rangle,\langle 1,5\rangle,\langle 4,5\rangle,\langle 4,2\rangle\}$ transitive?
4. Is it possible:
(a) $R^{-1} \subsetneq R$;
(b) $R^{-1}=A^{2}-R$?
5. Prove that the relation R is transitive if and only if $R ; R \subseteq R$.
6. How many total functions, partial functions, injective functions and surjective functions are there in:
(a) $\emptyset \rightarrow \emptyset$;
(b) $\{\cdot\} \rightarrow \emptyset$;
(c) $\emptyset \rightarrow\{\cdot\}$;
(d) $\{\cdot\} \rightarrow\{\cdot\}$;
(e) $\{\cdot, \square\} \rightarrow\{\cdot\}$;
(f) $\{\cdot\} \rightarrow\{\cdot, \square\}$?
7. Prove that if $f: A \xrightarrow{1-1} B$ and $f: B \xrightarrow{1-1} C$ then $g \circ f: A \rightarrow C$ is injective.
8. Let $f: A \rightarrow B$. Prove that f is injective if and only if for any C for any pair of functions $g, h: C \rightarrow A$ the following condition holds

$$
f \circ g=f \circ h \rightarrow g=h .
$$

Homework

1. Let \mathcal{R} be a nonempty family of transitive relations in the set A such that for any $r, s \in \mathcal{R}$, $r \subseteq s$ or $s \subseteq r$. Prove that $\bigcup \mathcal{R}$ is a transitive relation.
2. Let $f: A \rightarrow B$. Prove that f is onto B if and only if for any set C for any $g, h: B \rightarrow C$ the following condition holds

$$
g \circ f=h \circ f \rightarrow g=h .
$$

