Foundations of mathematics – week 6 November 13, 2009

Exercises

1. Is it true that for an arbitrary A and for an arbitrary relation R

 $I_A \subseteq R^{-1}; R?$

- 2. Give an example of a 5-element relation on the set of natural numbers such that R is
 - (a) symmetric;
 - (b) reflexive;
 - (c) transitive.
- 3. Is the relation $\{\langle 0, 3 \rangle, \langle 1, 3 \rangle, \langle 1, 5 \rangle, \langle 4, 5 \rangle, \langle 4, 2 \rangle\}$ transitive?
- 4. Is it possible:
 - (a) $R^{-1} \subsetneq R;$
 - (b) $R^{-1} = A^2 R?$
- 5. Prove that the relation R is transitive if and only if $R; R \subseteq R$.
- 6. How many total functions, partial functions, injective functions and surjective functions are there in:
 - (a) $\emptyset \to \emptyset$;
 - (b) $\{\cdot\} \to \emptyset;$
 - (c) $\emptyset \to \{\cdot\};$
 - (d) $\{\cdot\} \rightarrow \{\cdot\};$
 - (e) $\{\cdot, \Box\} \rightarrow \{\cdot\};$
 - (f) $\{\cdot\} \rightarrow \{\cdot, \Box\}$?
- 7. Prove that if $f: A \xrightarrow{1-1} B$ and $f: B \xrightarrow{1-1} C$ then $g \circ f: A \to C$ is injective.
- 8. Let $f : A \to B$. Prove that f is injective if and only if for any C for any pair of functions $g, h : C \to A$ the following condition holds

$$f \circ g = f \circ h \to g = h.$$

Homework

- 1. Let \mathcal{R} be a nonempty family of transitive relations in the set A such that for any $r, s \in \mathcal{R}$, $r \subseteq s$ or $s \subseteq r$. Prove that $\bigcup \mathcal{R}$ is a transitive relation.
- 2. Let $f: A \to B$. Prove that f is onto B if and only if for any set C for any $g, h: B \to C$ the following condition holds

$$g \circ f = h \circ f \to g = h.$$