Foundations of mathematics – week 5 November 6, 2009

Exercises

1. Which of the implications holds for arbitrary sets A, B?

$$A \subseteq B \leftrightarrow P(A) \subseteq P(B)$$

- 2. Is it true that if $A \subseteq B$ then $\bigcup A \subseteq \bigcup B$?
- 3. Is it true that if $\bigcup A \subseteq \bigcup B$ then $A \subseteq B$?
- 4. Show that for arbitrary set families \mathcal{A}, \mathcal{B} we have $\bigcup (\mathcal{A} \cup \mathcal{B}) = \bigcup \mathcal{A} \cup \mathcal{B}$.
- 5. Is it true that for arbitrary set \mathcal{A}, \mathcal{B} the following equality holds $\bigcap \mathcal{A} \cup \bigcap \mathcal{B} = \bigcap (\mathcal{A} \cup \mathcal{B})$?
- 6. Show that $\bigcup P(A) = A$ for an arbitrary A.
- 7. When $A \times B = B \times A$?
- 8. Is it true that $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$?
- 9. Is it true that for each A and for each relation $R \subseteq A \times A$

$$R^{-1}; R \subseteq I_A?$$

Homework

1. Let $A \subseteq P(\mathbb{R})$ be a set family such that

$$\forall B \in A \forall C \subseteq \mathbb{R} (C \subseteq B \to C \in A).$$

Show that $\bigcup A = \{z \in \mathbb{R} \mid \{z\} \in A\}.$

- 2. Which of the following equities
 - (a) $\bigcap A \cap \bigcap B = \bigcap (A \cup B);$
 - (b) $\bigcap A \cap \bigcap B = \bigcap (A \cap B);$
 - (c) $\bigcup A \cap \bigcup B = \bigcup (A \cap B)$?

hold for arbitrary nonempty set families A, B such that $A \cap B \neq \emptyset$?