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Abstract

Intuitevly, a graph H is light in a class G of graphs when H is a subgraph of
some member of G and for every G ∈ G if G contains H as a subgraph, there
is also an occurence H ′ of H in G such that the degrees of vertices of H ′ in G are
bounded by some constant. Characterizing light graphs in various subclasses of plane
graphs attracted many researchers in recent years. We focus on the class P(3, 5) of
3-connected plane graphs with faces of length at least 5. The class was previously
studied by S. Jendrol’ and P. J. Owens [6] who showed that every k-cycle, k > 5 and
k 6= 14, is not light in P(3, 5). They also proved that every block of any light graph
in P(3, 5) has at most 18 vertices.

In this paper we show that every block of a light graph in P(3, 5) is a bridge,
a cycle C5 or a cycle C14. Very recently, T. Madaras [9] showed that K1,3 is light
in P(3, 5). This is an immediate corollary from more general result stating that in
every planar graph with faces of length ≥ 5 and vertices of degree ≥ 3 there exists a
vertex of degree at most 3 with neighbors a, b, c such that deg(a) = deg(b) = 3 and
deg(c) ≤ 4. We give a new, much shorter proof of the latter result.

1 Introduction

One of the most well known facts concerning planar graphs states that every planar graph
contains a vertex of degree at most 5. In 1955 Kotzig [7] showed that every 3-connected
planar graph contains an edge for which the sum of degrees of its end-vertices is at most
13. Erdős conjectured that this property is valid also for planar graphs with vertices of
degrees at least 3 and it turned out to be true due to Borodin [1]. We can put these results
in a more general context. Consider the following definition.
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Definition. Let G be a class of graphs and let H be a graph isomorphic to a subgraph of
at least one member of G. We say that H is light in class G if there exists a contant c such
that every graph G ∈ G which has a subgraph isomorphic to H also contains a subgraph
H ′ isomorphic to H and such that, for every vertex v ∈ V (H ′) we have degG(v) ≤ c. The
smallest constant c for which this condition holds is denoted by ϕ(H,G).

Thus, we can say that a vertex is light in the class of all planar graphs and an edge is
light in the class of 3-connected planar graphs. Star K1,n shows that an edge is not light
in planar graphs. Moreover, appart from a single vertex, there is no more connected light
graphs in the class of all planar graphs. Surprisingly the situation is totally different in the
class of 3-connected planar graphs. Fabrici and Jendrol’ [3] showed that every path is light
and any other graph is not light in this class . It is an interesting problem to characterize
light graphs in other classes.

Among most natural subclasses of 3-connected planar graphs are classes P(δ, ρ) of 3-
connected planar graphs with minimum degree δ and minimum face size ρ. The classes
are nonempty only for (δ, ρ) ∈ {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}. Except for paths, there is
no more light graphs neither in class P(3, 4) [4] nor in class P(4, 3) [2]. The main open
problem in this area is to characterize light graphs in P(3, 5) and P(5, 3). There are some
partial results. Jendrol’ and Madaras [5] proved that star K1,r is light in P(5, 3) if and
only if r ∈ {3, 4}. For P(5, 3) there is a classical result of Lebesgue [8] stating that C5

is light in this class. More precisely, he showed that every graph in P(5, 3) contains a
face of length 5 with four vertices of degree 3 and one vertex of degree ≤ 5. Jendrol’ and
Owens [6] showed that every k-cycle, k > 5 and k 6= 14, is not light in P(3, 5). They
also proved that every block of any light graph in P(3, 5) has at most 18 vertices. We
continue their work by showing that every block of a light graph in P(3, 5) is a bridge,
cycle C5 or cycle C14. Nevertheless, it is still not known whether C14 is light in P(3, 5).
We also prove that K1,3 is light in P(3, 5) and ϕ(K1,3,P(3, 5)) = 4. This is a corollary
from a more general result stating that in every planar graph with faces of lengths ≥ 5
and vertices of degrees ≥ 3 there exists a vertex of degree at most 3 with neighbors a, b, c
such that deg(a) = deg(b) = 3 and deg(c) ≤ 4. The latter result was proved independently
by T. Madaras [9]. In this paper we give a new, much shorter proof. Let us note that the
theorem is best possible in the sense that there is an example of a graph in P(3, 5) with
every vertex of degree 3 adjacent to certain vertex of degree 4. Moreover it follows from
the paper [6] that for every r ≥ 4 the star K1,r is not light in our class.

2 On Blocks of Light Graphs in P(3, 5)

In this section we prove the following theorem.

Theorem 1. Let H be a connected light graph in P(3, 5). Every block in H is either a
bridge, a cycle of length 5 or a cycle of length 14.

The proof follows from lemmas below. We start from describing an operation of con-
necting a graph to a triangle. Let G be a plane graph with selected face f and let ABC
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be a triangle. We start from putting G inside ABC. Then we add a new vertex X in the
interior of f and add edges from X to all vertices of degree 2 in face f . Finally each of k
vertices of degree 2 in the outer face of G is connected by an edge to one of vertices A, B
or C in such a way that each of triangle vertices is connected to at least b k

3
c vertices of

degree 2 and the resulting graph G′ stays plane. We call G′ as G connected to a triangle.

. . .. . .

Figure 1: Infinite class of graphs {An}. Each graph An is compound of n copies of bold
graph joined together to form a cycle (see A15 in Fig. 2).

Example. Figure 1 shows an infinite class of graphs {An}. Each graph An has two faces
of length 3n. One of them is the external face. We select the other face of length 3n.
Figure 2 shows a graph A15 from Fig. 1 connected the triangle.

X

A B

C

A15

Figure 2: Connecting the graph A15 described in Fig. 1 to triangle ABC. Degrees of
vertices A, B, C, X can be arbitrarily large when we take A3k for k large enough.

Lemma 1. Let H be a light subgraph in P(3, 5). Every block of H is an outerplanar graph
with every face of length 5 + 3k for certain k = 0, 1, 2, . . .

Proof. Let us choose an arbitrary M > 3 · ϕ(H,P(3, 5)). Denote by T the graph AM

(see Fig. 1) connected to a triangle. Let H ′ be an arbitrary triangulation of H. After
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replacing each triangular face of H ′ by T we obtain a new graph G. Clearly G ∈ P(3, 5).
Subsequently H is a subgraph of the graph AM . Moreover, H 6= AM since H is also a
subgraph of Ak for any k > M . That ends the proof.

Jendrol’ and Owens showed that every block of a light graph in P(3, 5) has at most 18
vertices. Now we show a little stronger result using similar methods:

Lemma 2. Every block of a light subgraph in P(3, 5) has at most 16 vertices.

. . .. . .

Figure 3: Infinite class of graphs {Bn}. Each graph Bn is compound of n copies of bold
graph joined together to form a cycle.

Proof. Consider a family of graphs {Bn} described in Fig. 3. We proceed similarly as in
the proof of Lemma 1 but instead of graph AM from Fig. 1 we use BM from Fig. 3. As a
result we get that every light graph in P(3, 5) is a subgraph of BM . Subsequently, every
block of a light graph is a subgraph of the bold graph from Fig. 3 without the vertex of
degree one.

Lemma 3. Light subgraphs in P(3, 5) do not contain C8.

. . .. . .

Figure 4: Infinite class of graphs {Dn}. Each graph Dn is compound of n copies of bold
graph joined together to form a cycle.

Proof. Consider graphs Dn from Fig. 4. By replacing AM by DM in the proof of Lemma 1
we get that arbitrary light graph in P(3, 5) is a subgraph of DM . It suffices to observe that
for any M > 2 graph DM does not contain a cycle of length 8.

Lemma 4. Let H be a light subgraph in P(3, 5). H does not contain C11.

Proof. The proof is actually the same as the proof of lemma 3, but instead graph DM from
Fig. 4 we use EM from Fig. 5. For any M > 3 graph EM does not contain a cycle of length
11.

It is easy to observe that Theorem 1 follows immediately from Lemmas 1, 2, 3 and 4.
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. . .. . .

Figure 5: Infinite class of graphs {En}. Each graph En is compound of n copies of bold
graph joined together to form a cycle.

3 Vertices of Low Degree with Neighbors of Low De-

gree

It is well known that every planar graph contains a vertex of degree at most 5. The
following theorem shows that for planar graphs satisfying certain conditions much stronger
invariant holds. The result was proved independently by T. Madaras [9]. Below we give
much shorter proof.

Theorem 2. Let G be a planar graph with every vertex of degree at least 3 and every face
of length at least 5. Then G contains a vertex of degree at most 3 with neighbors a, b, c
such that degG(a) = degG(b) = 3 and degG(c) ≤ 4.

Proof. We use the well-known discharging technique. We put a charge of degG(v) − 4 on
every vertex v of G. Moreover, each face q of G obtains a charge of |q| − 4. Let n, m, f
denote the number of vertices, edges and faces of graph G, respectively and let V, F be the
set of vertices and faces of G respectively. Using Euler’s formula we can easily calculate
the total charge on G:

∑

v∈V

(degG(v) − 4) +
∑

q∈F

(|q| − 4) = 2m − 4n + 2m − 4f = −8

Now we move the charge from faces to vertices in such a way that each face q sends
|q|−4
|q|

units of charge to every edge incident with q. If such an edge is incident with only

one face it receives double charge. As |q| ≥ 5, |q|−4
|q|

≥ 1
5
. Then each edge divides its

charge between its ends. Let φ(v) denote the amount of charge put so far on a vertex v.

Subsequently, every vertex v has got φ(v) ≥ deg(v) − 4 + deg(v)
5

units of charge. We see
that φ(v) ≥ − 2

5
when v has degree 3 and φ(v) ≥ 4

5
when v has degree at least 4. Finally,

every vertex v with charge φ(v) > 0 sends φ(v)
deg(v)

units of charge to each of its neighbors.

Since φ(v)
deg(v)

= (6
5

deg(v)− 4)/ deg(v) = 6
5
− 4

deg(v)
we see that every vertex of degree 4 sends

at least 1
5

units of charge and every vertex of degree at least 5 sends at least 2
5

units of
charge to each of its neighbors.

Let us assume that the desired vertex does not exist in G. Let u be an arbitrary vertex
of degree 3 in G. Either u has two neighbors of degree at least 4 or u has a neighbor of
degree at least 5. In the first case, u has got at least − 2

5
+ 2 · 1

5
= 0 units of charge. In

the other case u stores at least − 2
5

+ 2
5

= 0 units of charge. Thus, every vertex in G stores
now nonnegative amount of charge – a contradiction.
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Corollary 1. K1,3 is light in P(3, 5).

Let us note that T. Madaras [9] shows an example of a grap in P(3, 5) with every vertex
of degree 3 adjacent with a vertex of degree 4. It follows that ϕ(K1,3,P(3, 5)) = 4 and that
the above theorem is best possible, i.e. the constants 3, 4 cannot be improved. It is also
worthwhile to point out that S. Jendrol’ and P. J. Owens [6] showed that there is no light
graph in P(3, 5) containg a vertex of degree ≥ 4. In particular, for any r ≥ 4 the star K1,r

is not light in P(3, 5).
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[4] J. Harant, S. Jendrol’, and S. Tkáč. On 3-connected plane graph without triangular
faces. Journal of Combinatorial Theory, Series B, (77):150–161, 1999.

[5] S. Jendrol’ and T. Madaras. On light subgraphs in plane graphs of minimum degree
five. Discuss. Math. Graph Theory, (16):207–217, 1996.

[6] S. Jendrol’ and P. J. Owens. On light graphs in 3-connected plane graphs without
triangular or quadrangular faces. Graphs and Combinatorics, (17):659–680, 2001.

[7] A. Kotzig. Contribution to the theory of eulerian polyhedra. Math. Čas. SAV (Math.
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