
Introduction

Tight Lower Bounds for List Edge Coloring

 Lukasz Kowalik, Arkadiusz Soca la

SWAT, Malmö, 20.06.2018

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Edge Coloring

Assign colors to edges so that incident edges get distinct colors.

Edge Coloring (decision version)

Input: Graph G = (V ,E), integer k
Question: Does G admit edge coloring in k colors?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Edge Coloring

Assign colors to edges so that incident edges get distinct colors.

Edge Coloring (decision version)

Input: Graph G = (V ,E), integer k
Question: Does G admit edge coloring in k colors?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Time complexity of Edge Coloring

Denote n = |V (G)|, m = |E (G)|.
I NP-complete (Holyer 1981)

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

Can we do better than 2m = 2O(n2)?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Time complexity of Edge Coloring

Denote n = |V (G)|, m = |E (G)|.
I NP-complete (Holyer 1981)

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

Can we do better than 2m = 2O(n2)?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Time complexity of Edge Coloring

Denote n = |V (G)|, m = |E (G)|.
I NP-complete (Holyer 1981)

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

Can we do better than 2m = 2O(n2)?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Time complexity of Edge Coloring

Denote n = |V (G)|, m = |E (G)|.
I NP-complete (Holyer 1981)

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

Can we do better than 2m = 2O(n2)?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Lower bounds for Edge Coloring?

Exponential Time Hypothesis (ETH)

There is a constant c > 0 such that 3-SAT cannot be solved in
time O∗(2cn).

Theorem (Folklore)

Edge Coloring does not admit an algorithm running in time
2o(n), unless ETH is false.

I The algorithm in time 2mnO(1) is essentially optimal for
sparse graphs.

I What about dense graphs?

I Algorithm runs in 2O(n2).

I Huge gap!

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Lower bounds for Edge Coloring?

Exponential Time Hypothesis (ETH)

There is a constant c > 0 such that 3-SAT cannot be solved in
time O∗(2cn).

Theorem (Folklore)

Edge Coloring does not admit an algorithm running in time
2o(n), unless ETH is false.

I The algorithm in time 2mnO(1) is essentially optimal for
sparse graphs.

I What about dense graphs?

I Algorithm runs in 2O(n2).

I Huge gap!

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Lower bounds for Edge Coloring?

Exponential Time Hypothesis (ETH)

There is a constant c > 0 such that 3-SAT cannot be solved in
time O∗(2cn).

Theorem (Folklore)

Edge Coloring does not admit an algorithm running in time
2o(n), unless ETH is false.

I The algorithm in time 2mnO(1) is essentially optimal for
sparse graphs.

I What about dense graphs?

I Algorithm runs in 2O(n2).

I Huge gap!

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Lower bounds for Edge Coloring?

Exponential Time Hypothesis (ETH)

There is a constant c > 0 such that 3-SAT cannot be solved in
time O∗(2cn).

Theorem (Folklore)

Edge Coloring does not admit an algorithm running in time
2o(n), unless ETH is false.

I The algorithm in time 2mnO(1) is essentially optimal for
sparse graphs.

I What about dense graphs?

I Algorithm runs in 2O(n2).

I Huge gap!

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Lower bounds for Edge Coloring?

Exponential Time Hypothesis (ETH)

There is a constant c > 0 such that 3-SAT cannot be solved in
time O∗(2cn).

Theorem (Folklore)

Edge Coloring does not admit an algorithm running in time
2o(n), unless ETH is false.

I The algorithm in time 2mnO(1) is essentially optimal for
sparse graphs.

I What about dense graphs?

I Algorithm runs in 2O(n2).

I Huge gap!

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Lower bounds for Edge Coloring?

Exponential Time Hypothesis (ETH)

There is a constant c > 0 such that 3-SAT cannot be solved in
time O∗(2cn).

Theorem (Folklore)

Edge Coloring does not admit an algorithm running in time
2o(n), unless ETH is false.

I The algorithm in time 2mnO(1) is essentially optimal for
sparse graphs.

I What about dense graphs?

I Algorithm runs in 2O(n2).

I Huge gap!

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Open problem

Is there an algorithm for Edge Coloring running in time

2o(n
2) ?

(Assuming ETH or other well-justified assumption.)

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

List Edge Coloring

List Edge Coloring (decision version)

Input: Graph G = (V ,E), function L : E → 2N

Question: Does G admit an edge coloring c such that c(e) ∈ L(e)
for every edge e ∈ E?

For e ∈ E , we call L(e) a list of e.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

List Edge Coloring

List Edge Coloring (decision version)

Input: Graph G = (V ,E), function L : E → 2N

Question: Does G admit an edge coloring c such that c(e) ∈ L(e)
for every edge e ∈ E?

For e ∈ E , we call L(e) a list of e.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

More general problem, same algorithms

Algorithms for Edge Coloring can be easily adapted to solve
List Edge Coloring

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

(assuming
∑

e∈E |L(e)| = nO(1)).

Even more general, both work for multigraphs.

Can we do better? 2o(n
2) running time?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

More general problem, same algorithms

Algorithms for Edge Coloring can be easily adapted to solve
List Edge Coloring

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

(assuming
∑

e∈E |L(e)| = nO(1)).

Even more general, both work for multigraphs.

Can we do better? 2o(n
2) running time?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

More general problem, same algorithms

Algorithms for Edge Coloring can be easily adapted to solve
List Edge Coloring

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

(assuming
∑

e∈E |L(e)| = nO(1)).

Even more general, both work for multigraphs.

Can we do better? 2o(n
2) running time?

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Our results

Theorem 1
If there is an algorithm for List Edge Coloring for simple
graphs that runs in time 2o(n

2), then Exponential Time Hypothesis
fails.

Note
Holds even if lists are of length a most 6.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Our results

Theorem 1
If there is an algorithm for List Edge Coloring for simple
graphs that runs in time 2o(n

2), then Exponential Time Hypothesis
fails.

Note
Holds even if lists are of length a most 6.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

A consequence for Edge Coloring

A simple way of verifying if a new idea for a faster
algorithm for Edge Coloring works:

if it applies to the list version as well,
there is no hope for it.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

A consequence for Edge Coloring

A simple way of verifying if a new idea for a faster
algorithm for Edge Coloring works:

if it applies to the list version as well,
there is no hope for it.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Proof for multigraphs

Theorem 2
If there is a function f : N→ N such that List Edge Coloring
can be solved for multigraphs in time f (n) ·mO(1) for any input
graph on n vertices and m edges, then P = NP.

Proof plan

I (3, 4)-SAT is 3-SAT restricted to formulas with every
variable appearing in at most 4 clauses.

I (3, 4)-SAT is NP-complete [Tovey 1984].

I Let ϕ be an instance of (3, 4)-SAT.

I Reduce ϕ in polynomial time to an instance (G , L) of List
Edge Coloring such that |V (G)| = O(1).

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

literals as colors

Main idea

I Colors form the set {xi ,¬xi | i = 1, . . . , n}
I In every coloring c , for every i = 1, . . . , n,

c−1({xi ,¬xi}) forms a path Pi with alternating colors.

I For multigraphs, V = {v0, . . . , v20} and Pi = v0, v1, . . . , v20.

v0 v1 v2 v3 v19 v20

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

· · ·

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

I Colors on edges v0v1 (also v2v3, v4v5, . . .) define a boolean
assignment: x1 = T , x2 = T , x3 = F , x4 = T , x5 = F .

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

literals as colors

Main idea

I Colors form the set {xi ,¬xi | i = 1, . . . , n}
I In every coloring c , for every i = 1, . . . , n,

c−1({xi ,¬xi}) forms a path Pi with alternating colors.

I For multigraphs, V = {v0, . . . , v20} and Pi = v0, v1, . . . , v20.

v0 v1 v2 v3 v19 v20

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

· · ·

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

I Colors on edges v0v1 (also v2v3, v4v5, . . .) define a boolean
assignment: x1 = T , x2 = T , x3 = F , x4 = T , x5 = F .

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Representing clauses

I Add clause x1 ∨ x2 ∨ ¬x3
I Add clause ¬x2 ∨ ¬x4 ∨ ¬x5

v0 v1 v2 v3

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

· · ·

Observation
Two clauses must be disjoint to use edges with the same endpoints

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Representing clauses

I Add clause x1 ∨ x2 ∨ ¬x3

I Add clause ¬x2 ∨ ¬x4 ∨ ¬x5

v0 v1 v2 v3

x1, x2,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

· · ·

Observation
Two clauses must be disjoint to use edges with the same endpoints

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Representing clauses

I Add clause x1 ∨ x2 ∨ ¬x3
I Add clause ¬x2 ∨ ¬x4 ∨ ¬x5

v0 v1 v2 v3

x1, x2,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

¬x2,¬x4,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x1,¬x1

x3,¬x3

· · ·

Observation
Two clauses must be disjoint to use edges with the same endpoints

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Representing clauses

I Add clause x1 ∨ x2 ∨ ¬x3
I Add clause ¬x2 ∨ ¬x4 ∨ ¬x5

v0 v1 v2 v3

x1, x2,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

¬x2,¬x4,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x1,¬x1

x3,¬x3

· · ·

Observation
Two clauses must be disjoint to use edges with the same endpoints

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Representing clauses

I Add clause x1 ∨ x2 ∨ ¬x3
I Add clause ¬x2 ∨ ¬x4 ∨ ¬x5

v0 v1 v2 v3

x1, x2,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

¬x2,¬x4,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x1,¬x1

x3,¬x3

· · ·

Observation
Two clauses must be disjoint to use edges with the same endpoints

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Proof idea for simple graphs

I By Sparsification Lemma and the reduction to (3, 4)-SAT it
suffices to solve (3, 4)-SAT in 2o(n) time to refute ETH.

I Instead of O(1) vertices, use O(1) layers of Θ(
√
n) vertices.

I Then indeed solving the output instance in time
2o(|V |

2) = 2o(n) refutes ETH.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Proof idea for simple graphs

I By Sparsification Lemma and the reduction to (3, 4)-SAT it
suffices to solve (3, 4)-SAT in 2o(n) time to refute ETH.

I Instead of O(1) vertices, use O(1) layers of Θ(
√
n) vertices.

I Then indeed solving the output instance in time
2o(|V |

2) = 2o(n) refutes ETH.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Proof idea for simple graphs

I By Sparsification Lemma and the reduction to (3, 4)-SAT it
suffices to solve (3, 4)-SAT in 2o(n) time to refute ETH.

I Instead of O(1) vertices, use O(1) layers of Θ(
√
n) vertices.

I Then indeed solving the output instance in time
2o(|V |

2) = 2o(n) refutes ETH.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Avoiding parallel edges: a new clause gadget

Previous clause gadget (for xi ∨ ¬xj , xk):

v0 v1

xi ,¬xj , xk

xi ,¬xi , xj ,¬xj , xk ,¬xk

xi ,¬xi , xj ,¬xj , xk ,¬xk

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Avoiding parallel edges: a new clause gadget

New clause gadget (for xi ∨ ¬xj , xk):

xi ,¬xi

xj ,¬xj

xk ,¬xk

x
i ,¬x

i , a
i

xj ,¬xj , aj

xk
,¬x

k
, ak

x i,
¬x i

xj ,¬xj

x
k ,¬x

k

x
i ,¬x

i , b
i

xj ,¬xj , bj

xk
,¬x

k
, bk

x i,
¬x i

xj ,¬xj

x
k ,¬x

k

x
i , c

C , d
C

¬xj , cC , dC

xk
, cC

, dC

xi ,¬xi , xj ,¬xj , xk ,¬xk

xi ,¬xi , xj ,¬xj , xk ,¬xk
xi ,¬xi , ai

xi,¬xi
, bi

xj ,¬xj , aj

xj ,¬xj , bj

xj ,¬xj , ak

xj ,¬xj , bk

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Conclusion

I The complexity of List Edge Coloring is well understood.

I The complexity of Edge Coloring is not.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Conclusion

I The complexity of List Edge Coloring is well understood.

I The complexity of Edge Coloring is not.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

Introduction

Conclusion

I The complexity of List Edge Coloring is well understood.

I The complexity of Edge Coloring is not.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring

	Introduction

