
Introduction

Tight Lower Bounds for List Edge Coloring

 Lukasz Kowalik, Arkadiusz Soca la
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Introduction

Edge Coloring

Assign colors to edges so that incident edges get distinct colors.

Edge Coloring (decision version)

Input: Graph G = (V ,E ), integer k
Question: Does G admit edge coloring in k colors?
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Introduction

Time complexity of Edge Coloring

Denote n = |V (G )|, m = |E (G )|.
I NP-complete (Holyer 1981)

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

Can we do better than 2m = 2O(n2)?
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Introduction

Lower bounds for Edge Coloring?

Exponential Time Hypothesis (ETH)

There is a constant c > 0 such that 3-SAT cannot be solved in
time O∗(2cn).

Theorem (Folklore)

Edge Coloring does not admit an algorithm running in time
2o(n), unless ETH is false.

I The algorithm in time 2mnO(1) is essentially optimal for
sparse graphs.

I What about dense graphs?

I Algorithm runs in 2O(n2).

I Huge gap!
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Open problem

Is there an algorithm for Edge Coloring running in time

2o(n
2) ?

(Assuming ETH or other well-justified assumption.)
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List Edge Coloring

List Edge Coloring (decision version)

Input: Graph G = (V ,E ), function L : E → 2N

Question: Does G admit an edge coloring c such that c(e) ∈ L(e)
for every edge e ∈ E?

For e ∈ E , we call L(e) a list of e.
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More general problem, same algorithms

Algorithms for Edge Coloring can be easily adapted to solve
List Edge Coloring

I 2mnO(1) time exp space (Björklund, Husfeldt, Koivisto 2006)

I 2mnO(1) randomized time poly space (Björklund et al 2010)

(assuming
∑

e∈E |L(e)| = nO(1)).

Even more general, both work for multigraphs.

Can we do better? 2o(n
2) running time?
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Our results

Theorem 1
If there is an algorithm for List Edge Coloring for simple
graphs that runs in time 2o(n

2), then Exponential Time Hypothesis
fails.

Note
Holds even if lists are of length a most 6.
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Introduction

A consequence for Edge Coloring

A simple way of verifying if a new idea for a faster
algorithm for Edge Coloring works:

if it applies to the list version as well,
there is no hope for it.
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Proof for multigraphs

Theorem 2
If there is a function f : N→ N such that List Edge Coloring
can be solved for multigraphs in time f (n) ·mO(1) for any input
graph on n vertices and m edges, then P = NP.

Proof plan

I (3, 4)-SAT is 3-SAT restricted to formulas with every
variable appearing in at most 4 clauses.

I (3, 4)-SAT is NP-complete [Tovey 1984].

I Let ϕ be an instance of (3, 4)-SAT.

I Reduce ϕ in polynomial time to an instance (G , L) of List
Edge Coloring such that |V (G )| = O(1).
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literals as colors

Main idea

I Colors form the set {xi ,¬xi | i = 1, . . . , n}
I In every coloring c , for every i = 1, . . . , n,

c−1({xi ,¬xi}) forms a path Pi with alternating colors.

I For multigraphs, V = {v0, . . . , v20} and Pi = v0, v1, . . . , v20.

v0 v1 v2 v3 v19 v20

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

· · ·

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

I Colors on edges v0v1 (also v2v3, v4v5, . . .) define a boolean
assignment: x1 = T , x2 = T , x3 = F , x4 = T , x5 = F .
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Introduction

Representing clauses

I Add clause x1 ∨ x2 ∨ ¬x3
I Add clause ¬x2 ∨ ¬x4 ∨ ¬x5

v0 v1 v2 v3

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

· · ·

Observation
Two clauses must be disjoint to use edges with the same endpoints
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Partitioning clauses into disjoint groups

I Recall that in ϕ every variable appears in at most 4 clauses.

I Build a graph Gϕ = (Clauses,Eϕ)

I Intersecting clauses adjacent in Gϕ.

I Maximum degree in Gϕ is at most 3 · (4− 1) = 9

I Color greedily vertices in Gϕ in 10 colors C0, . . . ,C9.

I For every i clauses in Ci disjoint.

I Every clause in Ci corresponds to three edges x2ix2i+1
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Proof idea for simple graphs

I By Sparsification Lemma and the reduction to (3, 4)-SAT it
suffices to solve (3, 4)-SAT in 2o(n) time to refute ETH.

I Instead of O(1) vertices, use O(1) layers of Θ(
√
n) vertices.

I Then indeed solving the output instance in time
2o(|V |

2) = 2o(n) refutes ETH.
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Avoiding parallel edges: a new clause gadget

Previous clause gadget (for xi ∨ ¬xj , xk):

v0 v1

xi ,¬xj , xk

xi ,¬xi , xj ,¬xj , xk ,¬xk

xi ,¬xi , xj ,¬xj , xk ,¬xk
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Avoiding parallel edges: a new clause gadget

New clause gadget (for xi ∨ ¬xj , xk):

xi ,¬xi

xj ,¬xj

xk ,¬xk

x
i ,¬x

i , a
i

xj ,¬xj , aj

xk
,¬x

k
, ak

x i,
¬x i

xj ,¬xj

x
k ,¬x

k

x
i ,¬x

i , b
i

xj ,¬xj , bj

xk
,¬x

k
, bk

x i,
¬x i

xj ,¬xj

x
k ,¬x

k

x
i , c

C , d
C

¬xj , cC , dC

xk
, cC

, dC

xi ,¬xi , xj ,¬xj , xk ,¬xk

xi ,¬xi , xj ,¬xj , xk ,¬xk
xi ,¬xi , ai

xi,¬xi
, bi

xj ,¬xj , aj

xj ,¬xj , bj

xj ,¬xj , ak

xj ,¬xj , bk
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Conclusion

I The complexity of List Edge Coloring is well understood.

I The complexity of Edge Coloring is not.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring



Introduction

Conclusion

I The complexity of List Edge Coloring is well understood.

I The complexity of Edge Coloring is not.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring



Introduction

Conclusion

I The complexity of List Edge Coloring is well understood.

I The complexity of Edge Coloring is not.

Kowalik, Soca la Tight Lower Bounds for List Edge Coloring


	Introduction

