A 9k kernel for nonseparating independent set in planar graphs

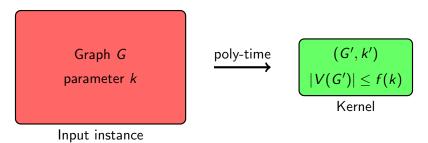
Łukasz Kowalik (speaker) and Marcin Mucha

Institute of Informatics, University of Warsaw

Jerusalem, 27.06.2012

Kernelization (of graph problems)

Let (G, k) be an instance of a decision problem (k is a parameter).



- (G, k) is a YES-instance iff (G', k') is a YES-instance.
- $k' \leq k$,
- $|V(G')| \leq f(k)$.

Some examples of kernels

General graphs:

- VERTEX COVER 2k,
- FEEDBACK VERTEX SET $O(k^2)$,
- Odd Cycle Transversal $k^{O(1)}$,

• ...

• ...

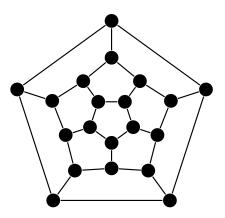
Planar graphs:

- Dominating Set 67k,
- FEEDBACK VERTEX SET 112k,
- INDUCED MATCHING 28k,
- CONNECTED VERTEX COVER $\frac{11}{3}k$,

3 / 18

Vertex Cover and Independent Set

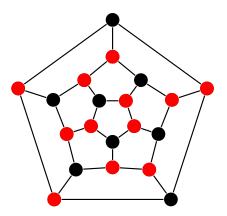
Let G = (V, E) be a graph.



Vertex Cover and Independent Set

Let G = (V, E) be a graph.

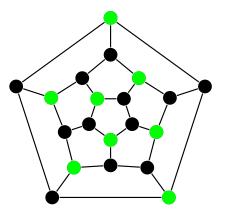
 C is a vertex cover (●) when every edge has at least one endpoint in C.



Vertex Cover and Independent Set

Let G = (V, E) be a graph.

- C is a vertex cover (●) when every edge has at least one endpoint in C.
- *S* is an independent set (•) when every edge has **at most one endpoint** in *S*.

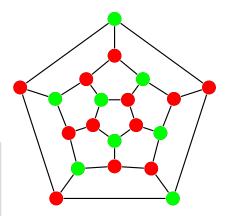


Let G = (V, E) be a graph.

- *C* is a vertex cover (•) when every edge has at least one endpoint in *C*.
- *S* is an independent set (•) when every edge has **at most one endpoint** in *S*.

Observation

- C is a vertex cover iff $V \setminus C$ is an independent set.
- G has a vertex cover of size k iff G has independent set of size |V| - k.



Parametric Duality

Corollary

G has independent set of size k iff G has a vertex cover of size |V| - k.

VERTEX COVER

INSTANCE: Graph G = (V, E), $k \in \mathbb{N}$ QUESTION: Does G contain a vertex cover of size k?

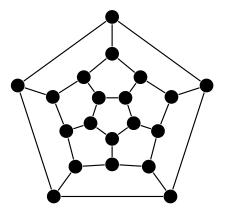
INDEPENDENT SET

INSTANCE: Graph G = (V, E), $k \in \mathbb{N}$

QUESTION: Does G contain an independent set of size k?

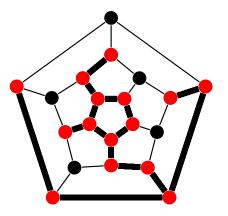
- We can treat INDEPENDENT SET as VERTEX COVER with |V| k as a parameter.
- Then, VERTEX COVER is a parametric dual of INDEPENDENT SET.
- But a small kernel for one problem does not give a small kernel for another.

Let G = (V, E) be a connected graph.



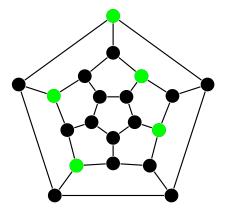
Let G = (V, E) be a connected graph.

 C is a connected vertex cover
 (•) when C is a vertex cover and C induces a connected subgraph of G.



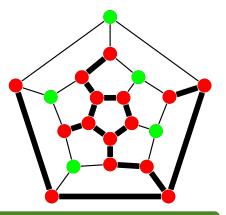
Let G = (V, E) be a connected graph.

- C is a connected vertex cover
 (•) when C is a vertex cover and C induces a connected subgraph of G.
- S is a nonseparating independent set (●) when S is an independent set and G S is connected.



Let G = (V, E) be a connected graph.

- C is a connected vertex cover
 (•) when C is a vertex cover and C induces a connected subgraph of G.
- S is a nonseparating independent set (●) when S is an independent set and G S is connected.



Observation

- C is a connected vertex cover iff $V \setminus C$ is a nonseparating independent set.
- G has a connected vertex cover of size k iff G has a nonseparating independent set of size |V| k.

Łukasz Kowalik (Warsaw)

A kernel for nonseparating independent set.

6 / 18

CONNECTED VERTEX COVER (CVC)

INSTANCE: Graph G = (V, E), $k \in \mathbb{N}$ QUESTION: Does G contain a vertex cover of size k?

NONSEPARATING INDEPENDENT SET (NSIS)

INSTANCE: Graph G = (V, E), $k \in \mathbb{N}$ QUESTION: Does G contain an independent set of size k?

CONNECTED VERTEX COVER is a parametric dual of NONSEPARATING INDEPENDENT SET.

Known complexity results for CONNECTED VERTEX COVER (CVC) and NONSEPARATING INDEPENDENT SET (NSIS)

Both problems

- NP-complete even for planar graphs,
- in P for graphs of maximum degree 3 (Ueno 1988).

CVC: kernelization

- CVC has no kernel of polynomial size (Dom et al 2009),
- PLANAR CVC has a $\frac{11}{3}k$ -kernel (Kowalik et al 2011).

NSIS: kernelization

- NSIS is W[1]-hard, so no kernel at all (folklore),
- PLANAR NSIS: O(k)-sized kernel (Fomin et al. 2010)

8 / 18

Main Result

There is a 9k-kernel for PLANAR NONSEPARATING INDEPENDENT SET.

A Bonus Result (skipped in this presentation)

There is a 5*k*-kernel for PLANAR MAX LEAF.

Theorem (Chen et al. 2007)

If a problem admits a kernel of size at most αk , then the dual problem has no kernel of size at most $(\frac{\alpha}{\alpha-1} - \epsilon)k$, for any $\epsilon > 0$, unless P=NP.

Two corollaries

- PLANAR CVC has no kernel of size at most $(\frac{9}{8} \epsilon)k$, unless P=NP,
- PLANAR CONNECTED DOMINATING SET has no kernel of size at most (⁵/₄ − ε)k, unless P=NP,

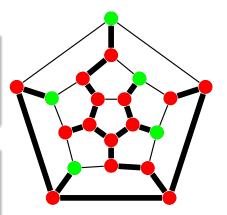
For a tree T let L(T) denote the set of leaves of T.

MAXIMUM INDEPENDENT LEAF

INSTANCE: Graph $G = (V, E), k \in \mathbb{N}$ QUESTION: Is there a spanning tree T such that L(T) contains a subset of size k that is independent in G?

Observation

Connected graph G has a nonseparating independent set of size k iff G has a spanning tree T such that L(T) contains a subset S of size k that is independent in G.



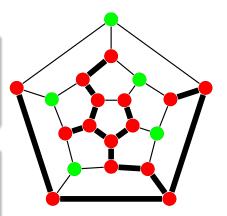
For a tree T let L(T) denote the set of leaves of T.

MAXIMUM INDEPENDENT LEAF

INSTANCE: Graph $G = (V, E), k \in \mathbb{N}$ QUESTION: Is there a spanning tree T such that L(T) contains a subset of size k that is independent in G?

Observation

Connected graph G has a nonseparating independent set of size k iff G has a spanning tree T such that L(T) contains a subset S of size k that is independent in G.



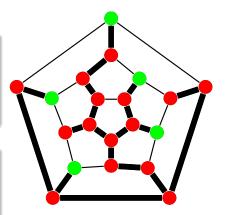
For a tree T let L(T) denote the set of leaves of T.

MAXIMUM INDEPENDENT LEAF

INSTANCE: Graph $G = (V, E), k \in \mathbb{N}$ QUESTION: Is there a spanning tree T such that L(T) contains a subset of size k that is independent in G?

Observation

Connected graph G has a nonseparating independent set of size k iff G has a spanning tree T such that L(T) contains a subset S of size k that is independent in G.



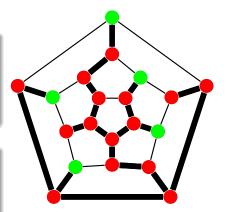
For a tree T let L(T) denote the set of leaves of T.

MAXIMUM INDEPENDENT LEAF

INSTANCE: Graph $G = (V, E), k \in \mathbb{N}$ QUESTION: Is there a spanning tree T such that L(T) contains a subset of size k that is independent in G?

Observation

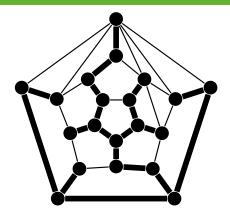
Connected graph G has a nonseparating independent set of size k iff G has a spanning tree T such that L(T) contains a subset S of size k that is independent in G.



In what follows...

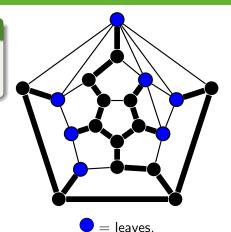
we focus on MAXIMUM INDEPENDENT LEAF!

11 / 18



Theorem (Kleitman, West 1991)

Every *n*-vertex graph of minimum degree 3 has a spanning tree of $\ge n/4$ leaves.

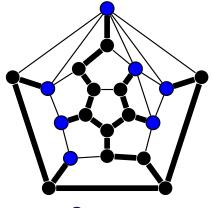


Theorem (Kleitman, West 1991)

Every *n*-vertex graph of minimum degree 3 has a spanning tree of $\ge n/4$ leaves.

Observation

If G is planar and T is a spanning tree of G then G[L(T)] is outerplanar.



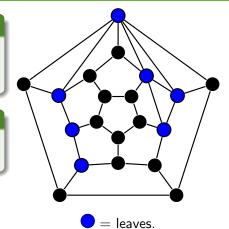
 $\mathbf{O} = \mathsf{leaves}.$

Theorem (Kleitman, West 1991)

Every *n*-vertex graph of minimum degree 3 has a spanning tree of $\ge n/4$ leaves.

Observation

If G is planar and T is a spanning tree of G then G[L(T)] is outerplanar.

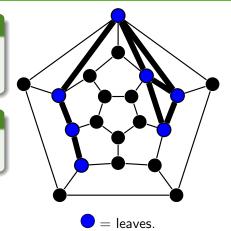


Theorem (Kleitman, West 1991)

Every *n*-vertex graph of minimum degree 3 has a spanning tree of $\ge n/4$ leaves.

Observation

If G is planar and T is a spanning tree of G then G[L(T)] is outerplanar.



Theorem (Kleitman, West 1991)

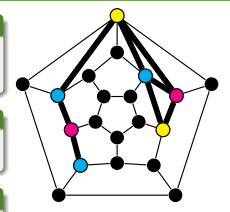
Every *n*-vertex graph of minimum degree 3 has a spanning tree of $\ge n/4$ leaves.

Observation

If G is planar and T is a spanning tree of G then G[L(T)] is outerplanar.

Theorem (folklore)

Every outerplanar graph is 3-colorable.



Theorem (Kleitman, West 1991)

Every *n*-vertex graph of minimum degree 3 has a spanning tree of $\ge n/4$ leaves.

Observation

If G is planar and T is a spanning tree of G then G[L(T)] is outerplanar.

Theorem (folklore)

Every outerplanar graph is 3-colorable.

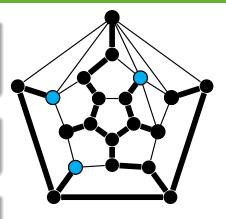
Corollary

Every *n*-vertex planar graph G of minimum degree 3 has a spanning tree with a subset of leaves of size at least n/12 which is independent in G.

Łukasz Kowalik (Warsaw)

A kernel for nonseparating independent set.

12 / 18



Corollary

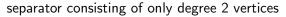
Every *n*-vertex planar graph G of minimum degree 3 has a spanning tree with a subset of leaves of size at least n/12 which is independent in G.

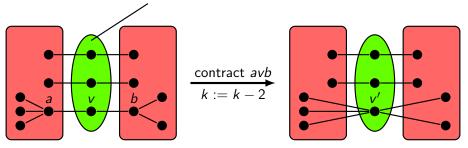
Kernelization algorithm

- If $k \leq n/12$ answer YES,
- 2 Otherwise (i.e. n < 12k) return (G, k).

Generalization of the theorem of Kleitman and West

Let G be a connected *n*-vertex graph that does not contain a separator consisting of only degree 2 vertices. Then G has a spanning tree with at least n/4 leaves.





Kernelization algorithm

- Apply the separator rule as long as possible,
- **2** If $k \le n/12$ answer YES,
- Otherwise (i.e. n < 12k) return (G, k).

Theorem 1

Let G be a connected *n*-vertex graph that does not contain a separator consisting of only degree 2 vertices. Then G has a spanning tree T such that if C is a collection of vertex-disjoint cycles in G[L(T)], then

$$|L(T)|\geq \frac{n+3|\mathfrak{C}|}{4}.$$

Theorem 2

Every ℓ -vertex outerplanar graph contains

- an independent set I, and
- \bullet a collection of vertex-disjoint cycles $\ensuremath{\mathfrak{C}}$

such that $9|I| \ge 4\ell - 3|\mathcal{C}|$.

- Get a smaller kernel for PLANAR NSIS. 8k?
- Are there linear kernels for the parametric duals of the following problems:
 - (Planar) Connected Feedback Vertex Set,
 - (Planar) Connected Odd Cycle Transversal,
 - (PLANAR) STEINER TREE?