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(Regular) Edge-Coloring

Assign colors to edges so that incident edges get distinct colors.

What is known? (∆ = maxv∈V (G) deg(v))

∆ colors needed (trivial)

For simple graphs, ∆ + 1 colors suffice (Vizing)

For simple graphs, deciding “∆/(∆ + 1)” is NP-hard even for ∆ = 3.
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Maximum k-Edge-Colorable Subgraph (k-ECS)

Problem: Given graph G find a k-edge-colorable subgraph H ⊆ G so as
to maximize |E (H)|.
OPT will denote the optimal H or the optimal |E (H)|.

k = 1: a maximum matching. Here: OPT = 5.

k = 2: paths and even cycles. Here: OPT = 9.

k = 3: no special structure. Here: OPT = 13.
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Maximum k-ECS: Complexity

Poly-time for k = 1,

NP-hard for k ≥ 2 [Holyer 1981, Feige, Ofek, Wieder 2002]

In this talk we are interested in polynomial-time approximation
algorithms.

α-approximation

Algorithm A is a α-approximation algorithm for the Maximum k-ECS
Problem when for any input graph G it always returns a k-edge-colorable
subgraph of G with ≥ α ·OPT edges, where OPT = sk(G ).
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Maximum k-ECS: Hardness of Approximation

The problem is APX-hard for k ≥ 2 [Feige et al. 2002]
i.e. no (1 + ε)-approximation for some ε > 0 unless P = NP.
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A simple approach [Feige et al. 2002]

A k-matching in G is a subgraph F ⊆ G such that for any v ∈ V (F ) we
have degF (v) ≤ k.

1 Find a maximum k-matching F in G (note that |F | ≥ OPT),

2 find an edge-coloring of F with small number of colors,

3 return the union U of k largest color classes.

Result: approximation ratio of |U|/OPT ≥ |U|/|F |.
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The simple approach for simple graphs [Feige et al. 2002]

A k-matching in G is a subgraph F ⊆ G such that for any v ∈ V (F ) we
have degF (v) ≤ k.

1 Find a maximum k-matching F in G (note that |F | ≥ OPT),

2 find a (k + 1)-coloring of F using Vizing’s Theorem,

3 return the union U of k largest color classes (note |U| ≥ k
k+1 |F |).

Result: approximation ratio of |U|/|F | ≥ ( k
k+1 |F |)/F = k

k+1 .
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Maximum k-ECS: Previous results

for simple graphs:

5
6 -approximation for 2-ECS [Kosowski 2009],
6
7 -approximation for 3-ECS [Rizzi 2009],
k

k+1 -approximation for k-ECS [Feige et al + Vizing]

Note that limk→∞
k

k+1 = 1.

for multigraphs:

10
13 -approximation for 2-ECS [Feige et al. 2002],
2
3 -approximation for k-ECS [Feige et al. + Shannon],

k
k+µ -approximation for k-ECS [Feige et al. + Vizing],

ξ(k)-approximation for k-ECS [Feige et al. + Sanders & Steurer ’08],

where ξ(k) = k/

⌈
k + 2 +

√
k + 1 +

√
9
2 (k + 2 +

√
k + 1)

⌉
Note that limk→∞ ξ(k) = 1.
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Maximum k-ECS: Our results

for simple graphs:

13
15 -approximation for 3-ECS,
9

11 -approximation for 4-ECS.

for multigraphs:

7
9 -approximation for 3-ECS.

 Lukasz Kowalik (Warsaw) Maximum edge-colorable subgraph Bergen, 23.06.2010 9 / 24



Improving the simple approach

Two ways of improving:

1 Improve the lower bound for OPT (find something better than
|F | ≥ OPT), or

2 Improve the coloring phase.
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Improving the simple approach

Two ways of improving:

1 Improve the lower bound for OPT (find something better than
|F | ≥ OPT), or

2 Improve the coloring phase. ←− Let’s start from this
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Can we beat Vizing? (Even case)

Observation

For every even k > 0 in G = Kk+1 every k-ECS H has size ≤ k
k+1 |E (G )|.

Proof:

Every color has ≤ k/2 edges,

So all colors have |E (H)| ≤ k2/2 edges,

|E (G )| =
(k+1

2

)
= (k + 1)k/2,

hence |E (H)|/|E (G )| ≤ k
k+1 .
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Can we beat Vizing? (Even case) No!

Observation

For every even k > 0 in G = Kk+1 every k-ECS H has size ≤ k
k+1 |E (G )|.

Proof:

Every color has ≤ k/2 edges,

So all colors have |E (H)| ≤ k2/2 edges,
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)
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Can we beat Vizing? (Odd case)

K̃p := Kp with one edge subdivided.

Observation

For every odd k > 0 in G = K̃k+1 every k-ECS H has size ≤ |E (G )| − 1.

Proof:

Every color has ≤ k+1
2 edges,

So all colors have |E (H)| ≤ k k+1
2 = |E (G )| − 1 edges.
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Can we beat Vizing? (Odd case) Maybe...

K̃p := Kp with one edge subdivided.

Observation

For every odd k > 0 in G = K̃k+1 every k-ECS H has size ≤ |E (G )| − 1.

Proof:

Every color has ≤ k+1
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Can we beat Vizing? (k = 3 case: Yes, we can!)

Theorem [Rizzi 2009]

Every simple graph G of max degree 3 has a 3-ECS with ≥ 6
7 |E (G )| edges.

Tight by K̃4:

Corollary [Rizzi 2009]

There is a 6
7 -approximation for the max 3-ECS problem in simple graphs.
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Can we beat Vizing? (k = 3 case, subclasses: even more!)

Theorem [Albertson and Haas 1996]

Every simple 3-regular graph G has a 3-ECS with ≥ 13
15 |E (G )| edges.

Theorem [Rizzi 2009]

Every simple triangle-free graph G of max degree 3 has a 3-ECS with
≥ 13

15 |E (G )| edges.

Both tight by the Petersen graph:
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Question and Answer

Question

Is there any other bottleneck than K̃4 for general graps of maximum
degree 3?

Our Answer
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Question and Answer

Question

Is there any other bottleneck than K̃4 for general graps of maximum
degree 3?

Our Answer

No!
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Question and Answer

Question

Is there any other bottleneck than K̃4 for general graps of maximum
degree 3?

Our Answer

Every multigraph G of max degree 3 has a 3-ECS with ≥ 13
15 |E (G )| edges,

unless G = K̃4.
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Some more answers: cubic multigraphs

Theorem (Vizing)

Every multigraph G of max degree 3 has a 3-ECS with ≥ 3
4 |E (G )| edgess.

Tight by the following graph, call it G3:

Our result

Every multigraph G of max degree 3 has a 3-ECS with ≥ 7
9 |E (G )| edges,

unless G = G3.
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One more answer

Our result

Every simple graph G of max degree 4 has a 3-ECS with ≥ 5
6 |E (G )| edges,

unless G = K̃5.
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Annoying bottlenecks

k = 2 k = 3 k = 3 k = 4
simple graphs simple graphs multigraphs simple graphs

ratio 2
3 ratio 6

7 ratio 3
4 ratio 4

5
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Improving the lower bound for k = 2

For the k = 2 case the bottleneck in the 2
3 -approximation is a triangle.

Theorem [Hartvigssen]

For a simple graph G one can find a maximum triangle-free 2-matching
in G in polynomial time.

(immediate) Corollary [Feige et al.]

A 4
5 -approximation for simple graphs.

Now the bottleneck is... a pentagon.

Can we repeat the trick?

It is not known whether finding a maximum k-matching without odd
cycles of length ≤ 5 is in P.

For some ` > 0, finding a maximum k-matching without odd cycles of
length ≤ ` is NP-hard.
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Improving the lower bound for k = 2 [Kosowski 2009]

Observation

Consider a pentagon C and a fixed optimal solution OPT.

If OPT has no edge xy with x ∈ V (C ), y 6∈ V (C ) then
|E (OPT [V (C )]|) ≤ 4 — i.e. C is very good for us: locally we get
approximation ratio 1.

Otherwise, there is an edge in G connecting C and another connected
component in F . We can use these edges to form super-components,
which have larger 2-edge-colorable sugraphs than 4

5 of their edges.

Theorem [Kosowski]

This leads to a 5
6 -approximation for 2-ECS in simple graphs
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The approach of Kosowski generalized

Theorem

Let G be a family of graphs.

Let F be the family of k-matchings of graphs in G.

Let B ⊂ F be a family ,,bottleneck graphs”.

Assume there is a polynomial-time algorithm A which for every graph
F ∈ F colors ≥ α|E (F )| edges.

Assume that whenever F 6∈ B then A colors ≥ (α + ε)|E (F )| edges.

Then, (if B has some nice properties), we can get approximation ratio
better than α for the family G.

Corollary

13
15 -approximation for 3-ECS in simple graphs (B = {K̃4}),
7
9 -approximation for 3-ECS in multigraphs (B = {G4}).
9

11 -approximation for 4-ECS in simple graphs (B = {K5}).
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7
9 -approximation for 3-ECS in multigraphs (B = {G4}).
9

11 -approximation for 4-ECS in simple graphs (B = {K5}).
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We conjecture...

Conjecture 1

For any simple graph G and odd number k, there is an ε > 0 such that
s(G)
|E(G)| ≥

k
k+1 + ε.

Conjecture 2

For any simple graph G and even number k , there is an ε > 0 such that
s(G)
|E(G)| ≥

k
k+1 + ε, unless G = Kk+1.

Verified for k = 3, 4 (this work).
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The end

Thank you for your attention!
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