Approximating the maximum 3- and 4-edge-colorable subgraph

Marcin Kamiński¹ and Łukasz Kowalik (speaker)²

¹ Département d'Informatique, Université Libre de Bruxelles

² Institute of Informatics, University of Warsaw

Bergen, 23.06.2010

Assign colors to edges so that incident edges get distinct colors.

What is known? $(\Delta = \max_{v \in V(G)} \deg(v))$

- Δ colors needed (trivial)
- For simple graphs, $\Delta + 1$ colors suffice (Vizing)
- For simple graphs, deciding " $\Delta/(\Delta + 1)$ " is NP-hard even for $\Delta = 3$.

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize |E(H)|. OPT will denote the optimal H or the optimal |E(H)|.

Łukasz Kowalik (Warsaw)

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize |E(H)|.

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize |E(H)|.

OPT will denote the optimal H or the optimal |E(H)|.

• k = 1: a maximum matching. Here: OPT = 5.

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize |E(H)|.

- k = 1: a maximum matching. Here: OPT = 5.
- k = 2: paths and even cycles. Here: OPT = 9.

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize |E(H)|.

- k = 1: a maximum matching. Here: OPT = 5.
- k = 2: paths and even cycles. Here: OPT = 9.

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize |E(H)|.

- k = 1: a maximum matching. Here: OPT = 5.
- k = 2: paths and even cycles. Here: OPT = 9.
- k = 3: no special structure. Here: OPT = 13.

- Poly-time for k = 1,
- NP-hard for $k \ge 2$ [Holyer 1981, Feige, Ofek, Wieder 2002]

In this talk we are interested in polynomial-time **approximation algorithms**.

α -approximation

Algorithm A is a α -approximation algorithm for the Maximum k-ECS Problem when for any input graph G it always returns a k-edge-colorable subgraph of G with $\geq \alpha \cdot \text{OPT}$ edges, where $\text{OPT} = s_k(G)$. The problem is APX-hard for $k \ge 2$ [Feige et al. 2002] i.e. no $(1 + \varepsilon)$ -approximation for some $\varepsilon > 0$ unless P = NP.

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

• Find a maximum k-matching F in G (note that $|F| \ge OPT$),

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

- Find a maximum k-matching F in G (note that $|F| \ge OPT$),
- ② find an edge-coloring of F with small number of colors,

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

- Find a maximum k-matching F in G (note that $|F| \ge OPT$),
- 2 find an edge-coloring of F with small number of colors,
- \bigcirc return the union U of k largest color classes.

6 / 24

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

- Find a maximum k-matching F in G (note that $|F| \ge OPT$),
- 2 find an edge-coloring of F with small number of colors,
- In the union U of k largest color classes.

Result: approximation ratio of $|U|/OPT \ge |U|/|F|$.

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

• Find a maximum k-matching F in G (note that $|F| \ge OPT$),

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

- Find a maximum k-matching F in G (note that $|F| \ge OPT$),
- 2 find a (k + 1)-coloring of F using Vizing's Theorem,

7 / 24

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

- Find a maximum k-matching F in G (note that $|F| \ge OPT$),
- 2 find a (k+1)-coloring of F using Vizing's Theorem,
- **③** return the union U of k largest color classes (note $|U| \ge \frac{k}{k+1}|F|$).

7 / 24

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\deg_F(v) \leq k$.

- **()** Find a maximum k-matching F in G (note that $|F| \ge OPT$),
- 2 find a (k+1)-coloring of F using Vizing's Theorem,
- **③** return the union U of k largest color classes (note $|U| \ge \frac{k}{k+1}|F|$).

Result: approximation ratio of $|U|/|F| \ge (\frac{k}{k+1}|F|)/F = \frac{k}{k+1}$.

for simple graphs:

- $\frac{5}{6}$ -approximation for 2-ECS [Kosowski 2009],
- $\frac{6}{7}$ -approximation for 3-ECS [Rizzi 2009],
- $\frac{k}{k+1}$ -approximation for k-ECS [Feige et al + Vizing] Note that $\lim_{k\to\infty} \frac{k}{k+1} = 1$.

for multigraphs:

- $\frac{10}{13}$ -approximation for 2-ECS [Feige et al. 2002],
- $\frac{2}{3}$ -approximation for k-ECS [Feige et al. + Shannon],
- $\frac{k}{k+\mu}$ -approximation for k-ECS [Feige et al. + Vizing],
- $\xi(k)$ -approximation for k-ECS [Feige et al. + Sanders & Steurer '08], where $\xi(k) = k / \left[k + 2 + \sqrt{k+1} + \sqrt{\frac{9}{2}(k+2+\sqrt{k+1})} \right]$ Note that $\lim_{k\to\infty} \xi(k) = 1$.

for simple graphs:

- $\frac{13}{15}$ -approximation for 3-ECS,
- $\frac{9}{11}$ -approximation for 4-ECS.

for multigraphs:

• $\frac{7}{9}$ -approximation for 3-ECS.

Two ways of improving:

- Improve the lower bound for OPT (find something better than $|F| \ge OPT$), or
- Improve the coloring phase.

Two ways of improving:

- Improve the lower bound for OPT (find something better than $|F| \ge OPT$), or
- Improve the coloring phase. ← Let's start from this

Observation

For every even k > 0 in $G = K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1} |E(G)|$.

Observation

For every even k > 0 in $G = K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1} |E(G)|$.

Proof:

• Every color has $\leq k/2$ edges,

Observation

For every even k > 0 in $G = K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1} |E(G)|$.

Proof:

- Every color has $\leq k/2$ edges,
- So all colors have $|E(H)| \le k^2/2$ edges,

Observation

For every even k > 0 in $G = K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1} |E(G)|$.

Proof:

- Every color has $\leq k/2$ edges,
- So all colors have $|E(H)| \le k^2/2$ edges,
- $|E(G)| = \binom{k+1}{2} = (k+1)k/2$,

Observation

For every even k > 0 in $G = K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1} |E(G)|$.

Proof:

- Every color has $\leq k/2$ edges,
- So all colors have $|E(H)| \le k^2/2$ edges,
- $|E(G)| = \binom{k+1}{2} = (k+1)k/2$,
- hence $|E(H)|/|E(G)| \leq \frac{k}{k+1}$.

11 / 24

Can we beat Vizing? (Odd case)

 $\widetilde{K}_p := K_p$ with one edge subdivided.

Observation

For every odd k > 0 in $G = \widetilde{K}_{k+1}$ every k-ECS H has size $\leq |E(G)| - 1$.

12 / 24

Can we beat Vizing? (Odd case)

 $\widetilde{K}_p := K_p$ with one edge subdivided.

Observation

For every odd k > 0 in $G = \widetilde{K}_{k+1}$ every k-ECS H has size $\leq |E(G)| - 1$.

Proof:

• Every color has
$$\leq \frac{k+1}{2}$$
 edges,

Can we beat Vizing? (Odd case) Maybe...

 $\widetilde{K}_p := K_p$ with one edge subdivided.

Observation

For every odd k > 0 in $G = \widetilde{K}_{k+1}$ every k-ECS H has size $\leq |E(G)| - 1$.

Proof:

• Every color has
$$\leq \frac{k+1}{2}$$
 edges,

• So all colors have $|E(H)| \le k \frac{k+1}{2} = |E(G)| - 1$ edges.

Can we beat Vizing? (k = 3 case: Yes, we can!)

Theorem [Rizzi 2009]

Every simple graph G of max degree 3 has a 3-ECS with $\geq \frac{6}{7}|E(G)|$ edges.

Tight by \widetilde{K}_4 :

Corollary [Rizzi 2009]

There is a $\frac{6}{7}$ -approximation for the max 3-ECS problem in simple graphs.

13 / 24

Can we beat Vizing? (k = 3 case, subclasses: even more!)

Theorem [Albertson and Haas 1996]

Every simple **3-regular** graph G has a 3-ECS with $\geq \frac{13}{15}|E(G)|$ edges.

Theorem [Rizzi 2009]

Every simple **triangle-free** graph *G* of max degree 3 has a 3-ECS with $\geq \frac{13}{15}|E(G)|$ edges.

Both tight by the Petersen graph:

Question

Is there any other bottleneck than \widetilde{K}_4 for general graps of maximum degree 3?

Question

Is there any other bottleneck than \widetilde{K}_4 for general graps of maximum degree 3?

No!

Łukasz Kowalik (Warsaw)

Bergen, 23.06.2010 15 / 24

Question and Answer

Question

Is there any other bottleneck than $\widetilde{\mathcal{K}}_4$ for general graps of maximum degree 3?

Our Answer

Every multigraph G of max degree 3 has a 3-ECS with $\geq \frac{13}{15}|E(G)|$ edges, unless $G = \widetilde{K}_4$.

Theorem (Vizing)

Every multigraph G of max degree 3 has a 3-ECS with $\geq \frac{3}{4}|E(G)|$ edgess.

Tight by the following graph, call it G_3 :

Theorem (Vizing)

Every multigraph G of max degree 3 has a 3-ECS with $\geq \frac{3}{4}|E(G)|$ edgess.

Tight by the following graph, call it G_3 :

Our result

Every multigraph G of max degree 3 has a 3-ECS with $\geq \frac{7}{9}|E(G)|$ edges, unless $G = G_3$.

16 / 24

Our result

Every simple graph G of max degree 4 has a 3-ECS with $\geq \frac{5}{6}|E(G)|$ edges, unless $G = \widetilde{K}_5$.

Annoying bottlenecks

For the k = 2 case the bottleneck in the $\frac{2}{3}$ -approximation is **a triangle**.

For the k = 2 case the bottleneck in the $\frac{2}{3}$ -approximation is **a triangle**.

Theorem [Hartvigssen]

For a **simple** graph G one can find a maximum **triangle-free** 2-matching in G in polynomial time.

(immediate) Corollary [Feige et al.]

A $\frac{4}{5}$ -approximation for simple graphs.

Now the bottleneck is...

For the k = 2 case the bottleneck in the $\frac{2}{3}$ -approximation is **a triangle**.

Theorem [Hartvigssen]

For a **simple** graph G one can find a maximum **triangle-free** 2-matching in G in polynomial time.

(immediate) Corollary [Feige et al.]

A $\frac{4}{5}$ -approximation for simple graphs.

Now the bottleneck is... a pentagon.

For the k = 2 case the bottleneck in the $\frac{2}{3}$ -approximation is **a triangle**.

Theorem [Hartvigssen]

For a **simple** graph G one can find a maximum **triangle-free** 2-matching in G in polynomial time.

(immediate) Corollary [Feige et al.]

A $\frac{4}{5}$ -approximation for simple graphs.

Now the bottleneck is... a pentagon.

Can we repeat the trick?

- It is not known whether finding a maximum k-matching without odd cycles of length ≤ 5 is in P.
- For some ℓ > 0, finding a maximum k-matching without odd cycles of length ≤ ℓ is NP-hard.

Annoying bottlenecks

Observation

Consider a pentagon C and a fixed optimal solution OPT.

If OPT has no edge xy with x ∈ V(C), y ∉ V(C) then
 |E(OPT[V(C)]|) ≤ 4 — i.e. C is very good for us: locally we get
 approximation ratio 1.

Observation

Consider a pentagon C and a fixed optimal solution OPT.

- If OPT has no edge xy with $x \in V(C)$, $y \notin V(C)$ then $|E(OPT[V(C)]|) \le 4$ i.e. C is very good for us: locally we get approximation ratio 1.
- Otherwise, there is an edge in G connecting C and another connected component in F. We can use these edges to form super-components, which have larger 2-edge-colorable sugraphs than $\frac{4}{5}$ of their edges.

Theorem [Kosowski]

This leads to a $\frac{5}{6}$ -approximation for 2-ECS in simple graphs

Theorem

• Let G be a family of graphs.

- Let \mathcal{G} be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G} .

- Let G be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G} .
- \bullet Let ${\mathcal B}\subset {\mathfrak F}$ be a family ,,bottleneck graphs".

- Let G be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G} .
- Let $\mathfrak{B}\subset\mathfrak{F}$ be a family ,,bottleneck graphs".
- Assume there is a polynomial-time algorithm A which for every graph $F \in \mathcal{F}$ colors $\geq \alpha |E(F)|$ edges.

- Let $\mathcal G$ be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G} .
- Let ${\mathfrak B} \subset {\mathfrak F}$ be a family ,,bottleneck graphs".
- Assume there is a polynomial-time algorithm A which for every graph $F \in \mathcal{F}$ colors $\geq \alpha |E(F)|$ edges.
- Assume that whenever $F \notin \mathcal{B}$ then A colors $\geq (\alpha + \epsilon)|E(F)|$ edges.

Theorem

- Let G be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G} .
- Let $\mathfrak{B}\subset\mathfrak{F}$ be a family ,,bottleneck graphs".
- Assume there is a polynomial-time algorithm A which for every graph $F \in \mathcal{F}$ colors $\geq \alpha |E(F)|$ edges.
- Assume that whenever $F \notin \mathcal{B}$ then A colors $\geq (\alpha + \epsilon)|E(F)|$ edges.
- Then, (if ${\mathcal B}$ has some nice properties), we can get approximation ratio better than α for the family §.

Corollary

- $\frac{13}{15}$ -approximation for 3-ECS in simple graphs ($\mathcal{B} = \{\widetilde{K}_4\}$),
- $\frac{7}{9}$ -approximation for 3-ECS in multigraphs ($\mathcal{B} = \{G_4\}$).
- $\frac{9}{11}$ -approximation for 4-ECS in simple graphs ($\mathcal{B} = \{K_5\}$).

22 / 24

Conjecture 1

For any simple graph G and odd number k, there is an $\epsilon > 0$ such that $\frac{s(G)}{|E(G)|} \ge \frac{k}{k+1} + \epsilon$.

Conjecture 2

For any simple graph G and even number k, there is an $\epsilon > 0$ such that $\frac{s(G)}{|E(G)|} \ge \frac{k}{k+1} + \epsilon$, unless $G = K_{k+1}$.

Verified for k = 3, 4 (this work).

Thank you for your attention!

э