Approximating the maximum 3- and 4-edge-colorable subgraph

${ }^{1}$ Département d'Informatique, Université Libre de Bruxelles
${ }^{2}$ Institute of Informatics, University of Warsaw
Bergen, 23.06.2010

(Regular) Edge-Coloring

Assign colors to edges so that incident edges get distinct colors.

What is known? $\left(\Delta=\max _{v \in V(G)} \operatorname{deg}(v)\right)$

- Δ colors needed (trivial)
- For simple graphs, $\Delta+1$ colors suffice (Vizing)
- For simple graphs, deciding " $\Delta /(\Delta+1)$ " is NP-hard even for $\Delta=3$.

Maximum k-Edge-Colorable Subgraph (k-ECS)

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize $|E(H)|$.
OPT will denote the optimal H or the optimal $|E(H)|$.

Maximum k-Edge-Colorable Subgraph (k-ECS)

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize $|E(H)|$.
OPT will denote the optimal H or the optimal $|E(H)|$.

Maximum k-Edge-Colorable Subgraph (k-ECS)

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize $|E(H)|$.
OPT will denote the optimal H or the optimal $|E(H)|$.

- $k=1$: a maximum matching. Here: $O P T=5$.

Maximum k-Edge-Colorable Subgraph (k-ECS)

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize $|E(H)|$.
OPT will denote the optimal H or the optimal $|E(H)|$.

- $k=1$: a maximum matching. Here: $O P T=5$.
- $k=2$: paths and even cycles. Here: $O P T=9$.

Maximum k-Edge-Colorable Subgraph (k-ECS)

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize $|E(H)|$.
OPT will denote the optimal H or the optimal $|E(H)|$.

- $k=1$: a maximum matching. Here: $O P T=5$.
- $k=2$: paths and even cycles. Here: $O P T=9$.

Maximum k-Edge-Colorable Subgraph (k-ECS)

Problem: Given graph G find a k-edge-colorable subgraph $H \subseteq G$ so as to maximize $|E(H)|$.
OPT will denote the optimal H or the optimal $|E(H)|$.

- $k=1$: a maximum matching. Here: $O P T=5$.
- $k=2$: paths and even cycles. Here: $O P T=9$.
- $k=3$: no special structure. Here: $O P T=13$.

Maximum k-ECS: Complexity

- Poly-time for $k=1$,
- NP-hard for $k \geq 2$ [Holyer 1981, Feige, Ofek, Wieder 2002]

In this talk we are interested in polynomial-time approximation algorithms.

α-approximation

Algorithm A is a α-approximation algorithm for the Maximum k-ECS Problem when for any input graph G it always returns a k-edge-colorable subgraph of G with $\geq \alpha \cdot$ OPT edges, where OPT $=s_{k}(G)$.

Maximum k-ECS: Hardness of Approximation

The problem is APX-hard for $k \geq 2$ [Feige et al. 2002] i.e. no $(1+\varepsilon)$-approximation for some $\varepsilon>0$ unless $\mathrm{P}=\mathrm{NP}$.

A simple approach [Feige et al. 2002]

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.

A simple approach [Feige et al. 2002]

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.

A simple approach [Feige et al. 2002]

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),

A simple approach [Feige et al. 2002]

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),
(2) find an edge-coloring of F with small number of colors,

A simple approach [Feige et al. 2002]

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),
(2) find an edge-coloring of F with small number of colors,
(3) return the union U of k largest color classes.

A simple approach [Feige et al. 2002]

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),
(2) find an edge-coloring of F with small number of colors,
(3) return the union U of k largest color classes.

Result: approximation ratio of $|U| / \mathrm{OPT} \geq|U| /|F|$.

The simple approach for

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),

The simple approach for

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),
(2) find a $(k+1)$-coloring of F using Vizing's Theorem,

The simple approach for

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),
(2) find a $(k+1)$-coloring of F using Vizing's Theorem,
(3) return the union U of k largest color classes (note $|U| \geq \frac{k}{k+1}|F|$).

The simple approach for

A k-matching in G is a subgraph $F \subseteq G$ such that for any $v \in V(F)$ we have $\operatorname{deg}_{F}(v) \leq k$.
(1) Find a maximum k-matching F in G (note that $|F| \geq \mathrm{OPT}$),
(2) find a $(k+1)$-coloring of F using Vizing's Theorem,
(3) return the union U of k largest color classes (note $|U| \geq \frac{k}{k+1}|F|$). Result: approximation ratio of $|U| /|F| \geq\left(\frac{k}{k+1}|F|\right) / F=\frac{k}{k+1}$.

Maximum k-ECS: Previous results

for simple graphs:

- $\frac{5}{6}$-approximation for 2-ECS [Kosowski 2009],
- $\frac{6}{7}$-approximation for 3-ECS [Rizzi 2009],
- $\frac{k}{k+1}$-approximation for k-ECS [Feige et al + Vizing] Note that $\lim _{k \rightarrow \infty} \frac{k}{k+1}=1$.

for multigraphs:

- $\frac{10}{13}$-approximation for 2-ECS [Feige et al. 2002],
- $\frac{2}{3}$-approximation for k-ECS [Feige et al. + Shannon],
- $\frac{k}{k+\mu}$-approximation for k-ECS [Feige et al. + Vizing],
- $\xi(k)$-approximation for k-ECS [Feige et al. + Sanders \& Steurer '08], where $\xi(k)=k /\left\lceil k+2+\sqrt{k+1}+\sqrt{\frac{9}{2}(k+2+\sqrt{k+1})}\right\rceil$
Note that $\lim _{k \rightarrow \infty} \xi(k)=1$.

Maximum k-ECS: Our results

for simple graphs:

- $\frac{13}{15}$-approximation for 3-ECS,
- $\frac{9}{11}$-approximation for 4-ECS.

for multigraphs:

- $\frac{7}{9}$-approximation for 3 -ECS.

Improving the simple approach

Two ways of improving:
(1) Improve the lower bound for OPT (find something better than $|F| \geq \mathrm{OPT}$), or
(2) Improve the coloring phase.

Improving the simple approach

Two ways of improving:
(1) Improve the lower bound for OPT (find something better than $|F| \geq \mathrm{OPT}$), or
(2) Improve the coloring phase. \longleftarrow Let's start from this

Can we beat Vizing? (Even case)

Observation

For every even $k>0$ in $G=K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1}|E(G)|$.

Can we beat Vizing? (Even case)

Observation

For every even $k>0$ in $G=K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1}|E(G)|$.

Proof:

- Every color has $\leq k / 2$ edges,

Can we beat Vizing? (Even case)

Observation

For every even $k>0$ in $G=K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1}|E(G)|$.

Proof:

- Every color has $\leq k / 2$ edges,
- So all colors have $|E(H)| \leq k^{2} / 2$ edges,

Can we beat Vizing? (Even case)

Observation

For every even $k>0$ in $G=K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1}|E(G)|$.

Proof:

- Every color has $\leq k / 2$ edges,
- So all colors have $|E(H)| \leq k^{2} / 2$ edges,
- $|E(G)|=\binom{k+1}{2}=(k+1) k / 2$,

Can we beat Vizing? (Even case)

Observation

For every even $k>0$ in $G=K_{k+1}$ every k-ECS H has size $\leq \frac{k}{k+1}|E(G)|$.

Proof:

- Every color has $\leq k / 2$ edges,
- So all colors have $|E(H)| \leq k^{2} / 2$ edges,
- $|E(G)|=\binom{k+1}{2}=(k+1) k / 2$,
- hence $|E(H)| /|E(G)| \leq \frac{k}{k+1}$.

Can we beat Vizing? (Odd case)

$\widetilde{K}_{p}:=K_{p}$ with one edge subdivided.

Observation

For every odd $k>0$ in $G=\widetilde{K}_{k+1}$ every k-ECS H has size $\leq|E(G)|-1$.

Can we beat Vizing? (Odd case)

$\widetilde{K}_{p}:=K_{p}$ with one edge subdivided.

Observation

For every odd $k>0$ in $G=\widetilde{K}_{k+1}$ every k-ECS H has size $\leq|E(G)|-1$.

Proof:

- Every color has $\leq \frac{k+1}{2}$ edges,

Can we beat Vizing? (Odd case)

$\widetilde{K}_{p}:=K_{p}$ with one edge subdivided.

Observation

For every odd $k>0$ in $G=\widetilde{K}_{k+1}$ every k-ECS H has size $\leq|E(G)|-1$.

Proof:

- Every color has $\leq \frac{k+1}{2}$ edges,
- So all colors have $|E(H)| \leq k \frac{k+1}{2}=|E(G)|-1$ edges.

Can we beat Vizing? ($k=3$ case: Yes, we can!)

Theorem [Rizzi 2009]

Every simple graph G of max degree 3 has a 3 -ECS with $\geq \frac{6}{7}|E(G)|$ edges.
Tight by \widetilde{K}_{4} :

Corollary [Rizzi 2009]

There is a $\frac{6}{7}$-approximation for the max 3 -ECS problem in simple graphs.

Can we beat Vizing? ($k=3$ case, subclasses: even more!)

Theorem [Albertson and Haas 1996]

Every simple 3-regular graph G has a 3 -ECS with $\geq \frac{13}{15}|E(G)|$ edges.

Theorem [Rizzi 2009]

Every simple triangle-free graph G of max degree 3 has a $3-E C S$ with $\geq \frac{13}{15}|E(G)|$ edges.

Both tight by the Petersen graph:

Question and Answer

Question

Is there any other bottleneck than \widetilde{K}_{4} for general graps of maximum degree 3?

Question and Answer

Question

Is there any other bottleneck than \widetilde{K}_{4} for general graps of maximum degree 3 ?

Our Answer

No!

Question and Answer

Question

Is there any other bottleneck than \widetilde{K}_{4} for general graps of maximum degree 3?

Our Answer

Every multigraph G of max degree 3 has a 3 -ECS with $\geq \frac{13}{15}|E(G)|$ edges, unless $G=\widetilde{K}_{4}$.

Some more answers: cubic multigraphs

Theorem (Vizing)

Every multigraph G of max degree 3 has a 3 - ECS with $\geq \frac{3}{4}|E(G)|$ edgess.
Tight by the following graph, call it G_{3} :

Some more answers: cubic multigraphs

Theorem (Vizing)

Every multigraph G of max degree 3 has a 3 -ECS with $\geq \frac{3}{4}|E(G)|$ edgess.
Tight by the following graph, call it G_{3} :

Our result

Every multigraph G of max degree 3 has a 3 -ECS with $\geq \frac{7}{9}|E(G)|$ edges, unless $G=G_{3}$.

One more answer

Our result

Every simple graph G of max degree 4 has a 3 -ECS with $\geq \frac{5}{6}|E(G)|$ edges, unless $G=\widetilde{K}_{5}$.

Annoying bottlenecks

$k=2$
simple graphs ratio $\frac{2}{3}$

$k=3$
simple graphs ratio $\frac{6}{7}$

$k=3$
multigraphs ratio $\frac{3}{4}$

$k=4$
simple graphs ratio $\frac{4}{5}$

Improving the lower bound for $k=2$

For the $k=2$ case the bottleneck in the $\frac{2}{3}$-approximation is a triangle.

Improving the lower bound for $k=2$

For the $k=2$ case the bottleneck in the $\frac{2}{3}$-approximation is a triangle.

Theorem [Hartvigssen]

For a simple graph G one can find a maximum triangle-free 2-matching in G in polynomial time.

(immediate) Corollary [Feige et al.]

A $\frac{4}{5}$-approximation for simple graphs.
Now the bottleneck is...

Improving the lower bound for $k=2$

For the $k=2$ case the bottleneck in the $\frac{2}{3}$-approximation is a triangle.

Theorem [Hartvigssen]

For a simple graph G one can find a maximum triangle-free 2-matching in G in polynomial time.

(immediate) Corollary [Feige et al.]

A $\frac{4}{5}$-approximation for simple graphs.
Now the bottleneck is... a pentagon.

Improving the lower bound for $k=2$

For the $k=2$ case the bottleneck in the $\frac{2}{3}$-approximation is a triangle.

Theorem [Hartvigssen]

For a simple graph G one can find a maximum triangle-free 2-matching in G in polynomial time.

(immediate) Corollary [Feige et al.]

A $\frac{4}{5}$-approximation for simple graphs.
Now the bottleneck is... a pentagon.

Can we repeat the trick?

- It is not known whether finding a maximum k-matching without odd cycles of length ≤ 5 is in P .
- For some $\ell>0$, finding a maximum k-matching without odd cycles of length $\leq \ell$ is NP-hard.

Annoying bottlenecks

Improving the lower bound for $k=2$ [Kosowski 2009]

Observation

Consider a pentagon C and a fixed optimal solution OPT.

- If OPT has no edge $x y$ with $x \in V(C), y \notin V(C)$ then $\mid E(O P T[V(C)] \mid) \leq 4$ - i.e. C is very good for us: locally we get approximation ratio 1 .

Improving the lower bound for $k=2$ [Kosowski 2009]

Observation

Consider a pentagon C and a fixed optimal solution OPT.

- If OPT has no edge $x y$ with $x \in V(C), y \notin V(C)$ then $\mid E(O P T[V(C)] \mid) \leq 4$ - i.e. C is very good for us: locally we get approximation ratio 1 .
- Otherwise, there is an edge in G connecting C and another connected component in F. We can use these edges to form super-components, which have larger 2-edge-colorable sugraphs than $\frac{4}{5}$ of their edges.

Theorem [Kosowski]

This leads to a $\frac{5}{6}$-approximation for 2-ECS in simple graphs

The approach of Kosowski generalized

Theorem

- Let \mathcal{G} be a family of graphs.

The approach of Kosowski generalized

Theorem

- Let \mathcal{G} be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G}.

The approach of Kosowski generalized

Theorem

- Let \mathcal{G} be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G}.
- Let $\mathcal{B} \subset \mathcal{F}$ be a family ,,bottleneck graphs".

The approach of Kosowski generalized

Theorem

- Let \mathcal{G} be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G}.
- Let $\mathcal{B} \subset \mathcal{F}$ be a family ,,bottleneck graphs".
- Assume there is a polynomial-time algorithm A which for every graph $F \in \mathcal{F}$ colors $\geq \alpha|E(F)|$ edges.

The approach of Kosowski generalized

Theorem

- Let \mathcal{G} be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G}.
- Let $\mathcal{B} \subset \mathcal{F}$ be a family ,,bottleneck graphs".
- Assume there is a polynomial-time algorithm A which for every graph $F \in \mathcal{F}$ colors $\geq \alpha|E(F)|$ edges.
- Assume that whenever $F \notin \mathcal{B}$ then A colors $\geq(\alpha+\epsilon)|E(F)|$ edges.

The approach of Kosowski generalized

Theorem

- Let \mathcal{G} be a family of graphs.
- Let \mathcal{F} be the family of k-matchings of graphs in \mathcal{G}.
- Let $\mathcal{B} \subset \mathcal{F}$ be a family ,,bottleneck graphs".
- Assume there is a polynomial-time algorithm A which for every graph $F \in \mathcal{F}$ colors $\geq \alpha|E(F)|$ edges.
- Assume that whenever $F \notin \mathcal{B}$ then A colors $\geq(\alpha+\epsilon)|E(F)|$ edges.
- Then, (if \mathcal{B} has some nice properties), we can get approximation ratio better than α for the family \mathcal{G}.

Corollary

- $\frac{13}{15}$-approximation for 3 -ECS in simple graphs $\left(\mathcal{B}=\left\{\widetilde{K}_{4}\right\}\right)$,
- $\frac{7}{9}$-approximation for 3 -ECS in multigraphs $\left(\mathcal{B}=\left\{G_{4}\right\}\right)$.
- $\frac{9}{11}$-approximation for 4-ECS in simple graphs $\left(\mathcal{B}=\left\{K_{5}\right\}\right)$.

We conjecture...

Conjecture 1

For any simple graph G and odd number k, there is an $\epsilon>0$ such that $\frac{s(G)}{|E(G)|} \geq \frac{k}{k+1}+\epsilon$.

Conjecture 2

For any simple graph G and even number k, there is an $\epsilon>0$ such that $\frac{s(G)}{|E(G)|} \geq \frac{k}{k+1}+\epsilon$, unless $G=K_{k+1}$.

Verified for $k=3,4$ (this work).

The end

Thank you for your attention!

