Nonblocker in H-minor free graphs: kernelization meets discharging

Łukasz Kowalik
Institute of Informatics, University of Warsaw

Ljubljana, 12.09.2012

Kernelization (of graph problems)

Let (G, k) be an instance of a decision problem (k is a parameter).

- (G, k) is a YES-instance iff $\left(G^{\prime}, k^{\prime}\right)$ is a YES-instance.
- $k^{\prime} \leq k$,
- $\left|V\left(G^{\prime}\right)\right| \leq f(k)$.

Some examples of kernels

General graphs:

- Vertex Cover 2k,
- Feedback Vertex Set $O\left(k^{2}\right)$,
- Odd Cycle Transversal $k^{O(1)}$,
- ...

Planar graphs:

- Dominating Set 335k $\rightarrow 67 k$,
- Feedback Vertex Set 112k $\rightarrow 97 k$,
- Induced Matching $40 k \rightarrow 28 k$,
- Connected Vertex Cover $14 k \rightarrow \frac{11}{3} k$,
- ...

Dominating Set

Dominating Set

C is a dominating set (O) in graph $G=(V, E)$ when every vertex $v \in V$ has at least one neighbor in C.

Dominating Set

C is a dominating set (O) in graph $G=(V, E)$ when every vertex $v \in V$ has at least one neighbor in C.

Dominating Set

Instance: $G=(V, E), k \in \mathbb{N}$ Parameter: $k \in \mathbb{N}$
Question: Does G contain a dominating set of size k ?

Dominating Set

C is a dominating set (O) in graph $G=(V, E)$ when every vertex $v \in V$ has at least one neighbor in C.

Dominating Set

Instance: $G=(V, E), k \in \mathbb{N}$ Parameter: $k \in \mathbb{N}$ Question: Does G contain a dominating set of size k ?

NONBLOCKER

Instance: $G=(V, E), k \in \mathbb{N}$
 Parameter: $k \in \mathbb{N}$
Question: Does G contain a dominating set of size $n-k$?

Parametric Duality

Dominating Set

> Instance: $G=(V, E), k \in \mathbb{N}$
> Question: Does G contain a dominating set of size k ?

NONBLOCKER

Instance: Graph $G=(V, E), k \in \mathbb{N}$
Question: Does G contain a dominating set of size $n-k$?

- We can treat Nonblocker as Dominating Set with $|V|-k$ as a parameter.
- Then we say that Nonblocker is a parametric dual of Dominating Set.
- Other pairs of parametric duals: Vertex Cover and Independent Set, Max Leaf and Connected Dominating Set, ...
- Note: a small kernel for one problem does not give a small kernel for another.

Previous results on NonBlocker

General graphs (NONBLOCKER)

- $\left(\frac{5}{3} k+3\right)$-kernel for general graphs,
- but the kernelization procedure does not preserve planarity.

Planar graphs (PLANAR NonBLOCKER)

A (trivial) $2 k$-kernel for planar graphs:

- while there is an isolated vertex, remove it and decrease k by one.
- if $k \leq|V| / 2$, i.e. $|V|-k \geq|V| / 2$, answer YES: pick a spanning forest, 2-color it, choose the larger color class.
- Otherwise $k>|V| / 2$, so $|V|<2 k$ and G is a kernel.

Our results

Main Result

There is a $\frac{7}{4} k$-kernel for Planar Nonblocker.

Our results

Main Result

There is a $\frac{7}{4} k$-kernel for Planar Nonblocker.

Theorem (Chen et al. 2007)

If a problem admits a kernel of size at most αk, then the dual problem has no kernel of size at most $\left(\frac{\alpha}{\alpha-1}-\epsilon\right) k$, for any $\epsilon>0$, unless $P=N P$.

Our results

Main Result

There is a $\frac{7}{4} k$-kernel for Planar Nonblocker.

Theorem (Chen et al. 2007)

If a problem admits a kernel of size at most αk, then the dual problem has no kernel of size at most $\left(\frac{\alpha}{\alpha-1}-\epsilon\right) k$, for any $\epsilon>0$, unless $P=N P$.

Corollary

Planar Dominating Set has no kernel of size at most $\left(\frac{7}{3}-\epsilon\right) k$, unless $\mathrm{P}=\mathrm{NP}$.

Our results

Main Result

There is a $\frac{7}{4} k$-kernel for Planar Nonblocker.

Theorem (Chen et al. 2007)

If a problem admits a kernel of size at most αk, then the dual problem has no kernel of size at most $\left(\frac{\alpha}{\alpha-1}-\epsilon\right) k$, for any $\epsilon>0$, unless $P=N P$.

Corollary

Planar Dominating Set has no kernel of size at most $\left(\frac{7}{3}-\epsilon\right) k$, unless $\mathrm{P}=\mathrm{NP}$.

Note

In the above results planar graphs can be replaced by any H -minor-free graph family (without changing the constants).

Our (planarity preserving) rules

Kernel bound

Graph after applying our rules

- No isolated vertices,
- Every pair of degree 1 vertices is at distance at least 5,
- Every pair of degree 2 vertices is at distance at least 2 .

Key Theorem

Every graph as above has a dominating set of size at least $3 / 7|V|$.

Final Rule

Let $\left(G^{\prime}, k^{\prime}\right)$ be the instance after applying our rules.
If $k^{\prime} \leq 4 / 7\left|V\left(G^{\prime}\right)\right|$ answer YES.
(Otherwise, $\left|V\left(G^{\prime}\right)\right| \leq 7 / 4 k^{\prime} \leq 7 / 4 k$, so we've got a $7 / 4$-kernel.)

Key theorem: a familiar scheme

Key theorem

In a graph without any of reducible configurations:

there is a dominating set of size $\geq \frac{3}{7} n$.

Proof of Four Color Theorem

Let G be an internally 6 -connected triangulation.
Assign a charge: $c h(v)=\operatorname{deg}(v)-6$. By Euler Formula, $\sum_{v} c h(v)<0$. If G does not contain any of (... 633 reducible configurations ...) then we can redistribute the charge so that for every $v \in V$ we have $\operatorname{ch}(v) \geq 0$ (a contradiction).

Dominating set and discharging

$$
\begin{array}{llll}
P_{1}: \frac{3}{8}<\frac{3}{7} & P_{2}: 0 & P_{3}: \frac{6}{11}>\frac{3}{7} & P_{4}: \frac{1}{3}<\frac{3}{7} \\
P_{5}: \frac{2}{5}<\frac{3}{7} & P_{6}: 0 & P_{7}: \frac{1}{5}<\frac{3}{7} & P_{8}: \frac{1}{2}>\frac{3}{7}
\end{array}
$$

Dominating set and discharging

Idea

- Obs: some paths are overloaded, some are underloaded.
- Introduce rules which move charge between paths, so that for each path P_{i},

$$
\left|P_{i} \cap D\right|+\operatorname{ch}\left(P_{i}\right) \leq \frac{3}{7}
$$

- Since $\sum_{i} \operatorname{ch}\left(P_{i}\right)=0$ we have:

$$
|D|=\sum_{i}\left(\left|P_{i} \cap D\right|+\operatorname{ch}\left(P_{i}\right)\right) \leq \frac{3}{7}|V| .
$$

$$
\begin{array}{llll}
P_{1}: \frac{3}{8}<\frac{3}{7} & P_{2}: 0 & P_{3}: \frac{6}{11}>\frac{3}{7} & P_{4}: \frac{1}{3}<\frac{3}{7} \\
P_{5}: \frac{2}{5}<\frac{3}{7} & P_{6}: 0 & P_{7}: \frac{1}{5}<\frac{3}{7} & P_{8}: \frac{1}{2}>\frac{3}{7}
\end{array}
$$

Dominating set and discharging

$\begin{array}{llll}P_{1}: \frac{3-\frac{3}{7}+\frac{6}{7}}{\frac{8}{7}}=\frac{9}{28}<\frac{3}{7} & P_{2}: \frac{3}{7} & P_{3}: \frac{6-2 \times \frac{3}{7}+\frac{1}{7}-\frac{6}{7}}{\frac{11}{1}}=\frac{31}{77}<\frac{3}{7} & P_{4}: \frac{1}{3}<\frac{3}{7} \\ P_{5}: \frac{2-\frac{3}{7}+\frac{3}{7}}{5}=\frac{2}{5}<\frac{3}{7} & P_{6}: \frac{3}{7} & P_{7}: \frac{1+2 \times \frac{3}{7}-\frac{3}{7}}{5}=\frac{10}{35}<\frac{3}{7} & P_{8}: \frac{1-\frac{1}{7}}{2}=\frac{3}{7}\end{array}$

Dominating set and discharging

Note

- The most technical part of the proof: showing that for every i, $\left|P_{i} \cap D\right|+\operatorname{ch}\left(P_{i}\right) \leq \frac{3}{7}$.
- To prove this we use (among other arguments) the nonexistence of the reducible configurations
- E.g., P_{3} would be overloaded if more paths like P_{8} were attached to it (each sends $\frac{1}{7}$).
$\begin{array}{llll}P_{1}: \frac{3-\frac{3}{7}+\frac{6}{7}}{\frac{8}{7}}=\frac{9}{28}<\frac{3}{7} & P_{2}: \frac{3}{7} & P_{3}: \frac{6-2 \times \frac{3}{7}+\frac{1}{7}-\frac{6}{7}}{1+\frac{31}{71}}<\frac{31}{77}<\frac{3}{7} & P_{4}: \frac{1}{3}<\frac{3}{7} \\ P_{5}: \frac{2-\frac{3}{7}+\frac{3}{7}}{5}=\frac{2}{5}<\frac{3}{7} & P_{6}: \frac{3}{7} & P_{7}: \frac{1+2 \times \frac{3}{7}-\frac{3}{7}}{5}=\frac{10}{35}<\frac{3}{7} & P_{8}: \frac{1-\frac{1}{7}}{2}=\frac{3}{7}\end{array}$

Conclusions

- Observation: as an effect of many kernelization algorithms we get a set of reducible configurations.
- Approach: bound a global parameter (size of the dominating set) by analyzing local structures.
- It may happen that the parameter is locally bad.
- Using the reducible configurations we can show that locally bad structures are surrounded by locally good structures.
- A convenient way of proving that globally we get a good bound: discharging.

Further work

- Improve kernels for other problems using the discharging approach.
- In particular: improve the $\frac{5}{3} k$-kernel for Nonblocker in general graphs.
- Can we use planarity to improve the bound from this work?

The end

Thank you for your attention!

