Nonblocker in *H*-minor free graphs: kernelization meets discharging

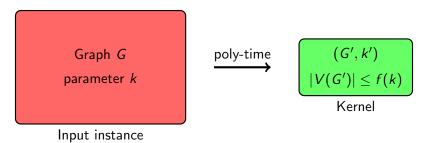
Łukasz Kowalik

Institute of Informatics, University of Warsaw

Ljubljana, 12.09.2012

Kernelization (of graph problems)

Let (G, k) be an instance of a decision problem (k is a parameter).



- (G, k) is a YES-instance iff (G', k') is a YES-instance.
- $k' \leq k$,
- $|V(G')| \leq f(k)$.

General graphs:

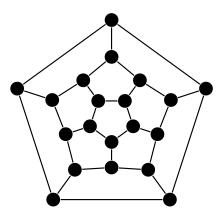
- VERTEX COVER 2k,
- FEEDBACK VERTEX SET $O(k^2)$,
- Odd Cycle Transversal $k^{O(1)}$,

• ...

• ...

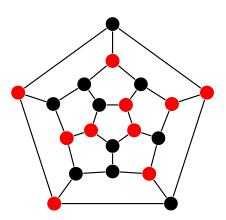
Planar graphs:

- Dominating Set $335k \rightarrow 67k$,
- Feedback Vertex Set $112k \rightarrow 97k$,
- INDUCED MATCHING $40k \rightarrow 28k$,
- Connected Vertex Cover $14k \rightarrow \frac{11}{3}k$,



Dominating Set

C is a dominating set (\bigcirc) in graph G = (V, E) when every vertex $v \in V$ has at least one neighbor in *C*.

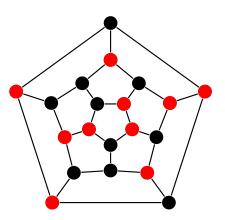


Dominating Set

C is a dominating set (\bigcirc) in graph G = (V, E) when every vertex $v \in V$ has at least one neighbor in *C*.

Dominating Set

INSTANCE: $G = (V, E), k \in \mathbb{N}$ PARAMETER: $k \in \mathbb{N}$ QUESTION: Does G contain a dominating set of size k?



Dominating Set

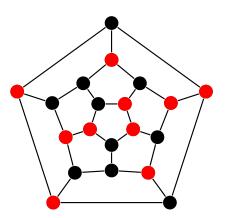
C is a dominating set (\bigcirc) in graph G = (V, E) when every vertex $v \in V$ has at least one neighbor in *C*.

Dominating Set

INSTANCE: $G = (V, E), k \in \mathbb{N}$ PARAMETER: $k \in \mathbb{N}$ QUESTION: Does G contain a dominating set of size k?

NONBLOCKER

INSTANCE: $G = (V, E), k \in \mathbb{N}$ PARAMETER: $k \in \mathbb{N}$ QUESTION: Does *G* contain a dominating set of size n - k?



Parametric Duality

Dominating Set

INSTANCE: $G = (V, E), k \in \mathbb{N}$ QUESTION: Does G contain a dominating set of size k?

NONBLOCKER

INSTANCE: Graph G = (V, E), $k \in \mathbb{N}$

QUESTION: Does G contain a dominating set of size n - k?

- We can treat NONBLOCKER as DOMINATING SET with |V| k as a parameter.
- Then we say that NONBLOCKER is a **parametric dual** of DOMINATING SET.
- Other pairs of parametric duals: VERTEX COVER and INDEPENDENT SET, MAX LEAF and CONNECTED DOMINATING SET, ...
- Note: a small kernel for one problem does not give a small kernel for another.

General graphs (NONBLOCKER)

- $(\frac{5}{3}k+3)$ -kernel for general graphs,
- but the kernelization procedure does not preserve planarity.

Planar graphs (PLANAR NONBLOCKER)

A (trivial) 2k-kernel for planar graphs:

- while there is an isolated vertex, remove it and decrease k by one.
- if k ≤ |V|/2, i.e. |V| − k ≥ |V|/2, answer YES: pick a spanning forest, 2-color it, choose the larger color class.
- Otherwise k > |V|/2, so |V| < 2k and G is a kernel.

Our results

Main Result

There is a $\frac{7}{4}k$ -kernel for PLANAR NONBLOCKER.

Main Result

There is a $\frac{7}{4}k$ -kernel for PLANAR NONBLOCKER.

Theorem (Chen et al. 2007)

If a problem admits a kernel of size at most αk , then the dual problem has no kernel of size at most $(\frac{\alpha}{\alpha-1} - \epsilon)k$, for any $\epsilon > 0$, unless P=NP.

Main Result

There is a $\frac{7}{4}k$ -kernel for PLANAR NONBLOCKER.

Theorem (Chen et al. 2007)

If a problem admits a kernel of size at most αk , then the dual problem has no kernel of size at most $(\frac{\alpha}{\alpha-1} - \epsilon)k$, for any $\epsilon > 0$, unless P=NP.

Corollary

PLANAR DOMINATING SET has no kernel of size at most $(\frac{7}{3} - \epsilon)k$, unless P=NP.

7 / 14

Main Result

There is a $\frac{7}{4}k$ -kernel for PLANAR NONBLOCKER.

Theorem (Chen et al. 2007)

If a problem admits a kernel of size at most αk , then the dual problem has no kernel of size at most $(\frac{\alpha}{\alpha-1} - \epsilon)k$, for any $\epsilon > 0$, unless P=NP.

Corollary

PLANAR DOMINATING SET has no kernel of size at most $(\frac{7}{3} - \epsilon)k$, unless P=NP.

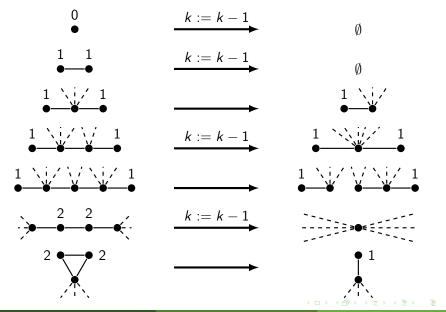
Note

In the above results planar graphs can be replaced by any H-minor-free graph family (without changing the constants).

Łukasz Kowalik (Warsaw)

Nonblocker in H-minor free graphs...

Our (planarity preserving) rules



Nonblocker in H-minor free graphs...

Ljubljana, 12.09.2012

Graph after applying our rules

- No isolated vertices,
- Every pair of degree 1 vertices is at distance at least 5,
- Every pair of degree 2 vertices is at distance at least 2.

Key Theorem

Every graph as above has a dominating set of size at least 3/7|V|.

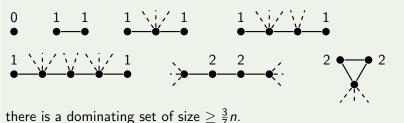
Final Rule

Let (G', k') be the instance after applying our rules. If $k' \leq 4/7 |V(G')|$ answer YES. (Otherwise, $|V(G')| \leq 7/4k' \leq 7/4k$, so we've got a 7/4-kernel.)

Key theorem: a familiar scheme

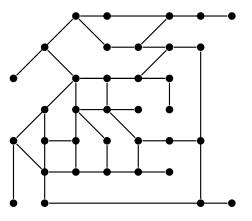
Key theorem

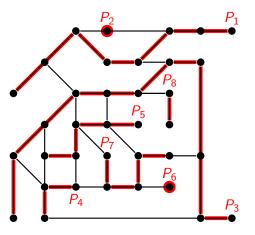
In a graph without any of reducible configurations:

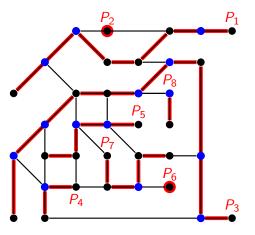


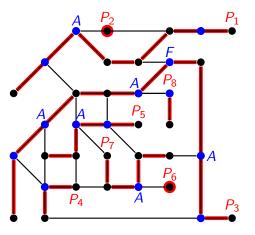
Proof of Four Color Theorem

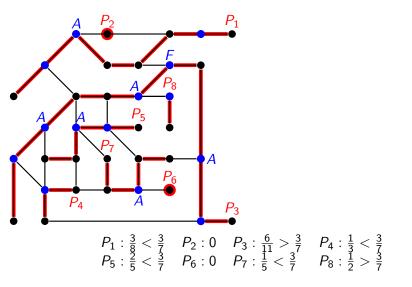
Let G be an internally 6-connected triangulation. Assign a charge: ch(v) = deg(v) - 6. By Euler Formula, $\sum_{v} ch(v) < 0$. If G does not contain any of (... 633 reducible configurations ...) then we can redistribute the charge so that for every $v \in V$ we have $ch(v) \ge 0$ (a contradiction).

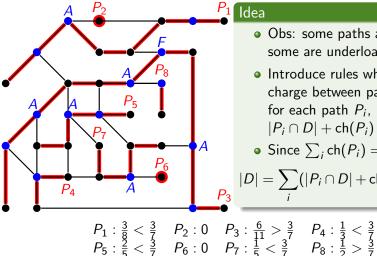








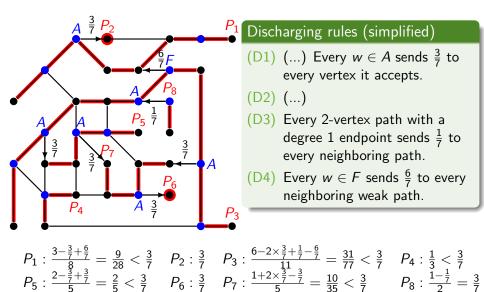


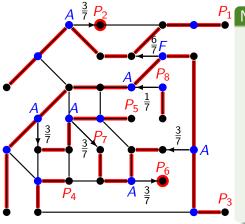


- Obs: some paths are overloaded, some are underloaded.
- Introduce rules which move charge between paths, so that for each path P_i , $|P_i \cap D| + \operatorname{ch}(P_i) \leq \frac{3}{7}$

• Since
$$\sum_i ch(P_i) = 0$$
 we have:

$$|D| = \sum_i (|P_i \cap D| + \operatorname{ch}(P_i)) \leq \frac{3}{7} |V|.$$





Note

- The most technical part of the proof: showing that for every *i*, $|P_i \cap D| + \operatorname{ch}(P_i) \leq \frac{3}{7}$.
- To prove this we use (among other arguments) the nonexistence of the reducible configurations
- E.g., P₃ would be overloaded if more paths like P₈ were attached to it (each sends ¹/₇).

 $P_{1}:\frac{3-\frac{3}{7}+\frac{6}{7}}{8}=\frac{9}{28}<\frac{3}{7} \quad P_{2}:\frac{3}{7} \quad P_{3}:\frac{6-2\times\frac{3}{7}+\frac{1}{7}-\frac{6}{7}}{11}=\frac{31}{77}<\frac{3}{7} \quad P_{4}:\frac{1}{3}<\frac{3}{7}$ $P_{5}:\frac{2-\frac{3}{7}+\frac{3}{7}}{5}=\frac{2}{5}<\frac{3}{7} \quad P_{6}:\frac{3}{7} \quad P_{7}:\frac{1+2\times\frac{3}{7}-\frac{3}{7}}{5}=\frac{10}{35}<\frac{3}{7} \quad P_{8}:\frac{1-\frac{1}{7}}{2}=\frac{3}{7}$

- Observation: as an effect of many kernelization algorithms we get a set of reducible configurations.
- Approach: bound a global parameter (size of the dominating set) by analyzing **local** structures.
- It may happen that the parameter is locally bad.
- Using the reducible configurations we can show that locally bad structures are surrounded by locally good structures.
- A convenient way of proving that globally we get a good bound: **discharging**.

- Improve kernels for other problems using the discharging approach.
- In particular: improve the $\frac{5}{3}k$ -kernel for NONBLOCKER in general graphs.
- Can we use planarity to improve the bound from this work?

Thank you for your attention!