Improved Edge Coloring with Three Colors

Łukasz Kowalik

Max Planck Institut für Informatik, Saarbrücken
Instytut Informatyki, Warsaw University

Edge-Coloring

Assign colors to edges so that incident edges get distinct colors.

What is known? $\left(\Delta=\max _{v} \operatorname{degree}(v)\right)$

- Δ colors needed (trivial)
- $\Delta+1$ colors suffice (Vizing)
- Deciding " $\Delta /(\Delta+1)$ " is NP-complete even when $\Delta=3$.

Edge-Coloring

Assign colors to edges so that incident edges get distinct colors.

What is known? $\left(\Delta=\max _{v} \operatorname{degree}(v)\right)$

- Δ colors needed (trivial)
- $\Delta+1$ colors suffice (Vizing)
- Deciding " $\Delta /(\Delta+1)$ " is NP-complete even when $\Delta=3$.

We will focus on the $\Delta=3$ case (subcubic graphs).

3-Edge-Coloring: Results

Let G be the input graph, $n=|V(G)|$.

- Naive backtracking: $O\left(2^{|E(G)|}\right)=O\left(2^{3 / 2 n}\right)=O\left(2.83^{n}\right)$.
- Approach: vertex-coloring the line graph $L(G)$. 3-coloring algorithm by Beigel \& Eppstein [JAlg'05] gives time:
$O\left(1.3289^{|V(L(G))|}\right)=O\left(1.3289^{|E(G)|}\right)=O\left(1.532^{n}\right)$.
- (for ≥ 4 colors the above approach is the best known.)
- Beigel \& Eppstein [JAlg'05]: nontrivial preprocessing + reduction to $(3,2)$-CSP.
Time: $O\left(1.415^{n}\right)=O\left(2^{n / 2}\right)$.

3-Edge-Coloring: Results

Let G be the input graph, $n=|V(G)|$.

- Naive backtracking: $O\left(2^{|E(G)|}\right)=O\left(2^{3 / 2 n}\right)=O\left(2.83^{n}\right)$.
- Approach: vertex-coloring the line graph $L(G)$. 3-coloring algorithm by Beigel \& Eppstein [JAlg'05] gives time:
$O\left(1.3289^{|V(L(G))|}\right)=O\left(1.3289^{|E(G)|}\right)=O\left(1.532^{n}\right)$.
- (for ≥ 4 colors the above approach is the best known.)
- Beigel \& Eppstein [JAlg'05]: nontrivial preprocessing + reduction to (3, 2)-CSP.
Time: $O\left(1.415^{n}\right)=O\left(2^{n / 2}\right)$.
- This work: $O\left(1.344^{n}\right)=O\left(2^{0.427 n}\right)$

Basic Idea

(Counterpart of Lawler's '76 algorithm for 3-vertex-coloring)
A matching M in graph G is fitting when $G-M$ is 2-edge-colorable.

- G is 3-edge-colorable iff G contains a fitting matching.
- G is 3-edge-colorable iff G contains a (inclusion-wise) maximal matching which is fitting.
- 2-edge-colorability is in P.

Algorithm 1: generate all maximal matchings, for each verify whether it is fitting.

Basic Idea Refined

Observation: Fitting matching matches every 3-vertex.
A matching which matches every 3 -vertex will be called semi-perfect.

Algorithm 2: generate all maximal semi-perfect matchings, for each verify whether it is fitting.

Basic Idea Refined

Observation: Fitting matching matches every 3-vertex.
A matching which matches every 3 -vertex will be called semi-perfect.

Algorithm 2: generate all maximal semi-perfect matchings, for each verify whether it is fitting.

Observation: Good for cubic graphs.
Conclusion: Reduce 3-edge-coloring for subcubic graphs to 3-edge-coloring in graphs "close to cubic"...

Basic Idea Refined

Observation: Fitting matching matches every 3-vertex.
A matching which matches every 3 -vertex will be called semi-perfect.

Algorithm 2: generate all maximal semi-perfect matchings, for each verify whether it is fitting.

Observation: Good for cubic graphs.
Conclusion: Reduce 3-edge-coloring for subcubic graphs to 3 -edge-coloring in graphs "close to cubic"...
= semi-cubic: vertices of degree 2 and 3, distance between 2-vertices at least 3

Reducing to a semi-cubic graph

Let G be the input graph.

- Assume G contains a 1 -vertex v. Then G is 3-edge-colorable iff $G-v$ is 3-edge-colorable.
- Assume G contains an edge $u v, \operatorname{deg}(u)=\operatorname{deg}(v)=2$. Then G is 3-edge-colorable iff $G-u v$ is 3 -edge-clrble.

Reducing to a semi-cubic graph, contd.

- Assume G contains a path xuzvy, $\operatorname{deg}(u)=\operatorname{deg}(v)=2$.

G is 3-edge-colorable iff G_{1} or G_{2} is 3-edge-colorable. How expensive is it? $T(n)=T(n-2)+T(n-3)+\operatorname{poly}(n)$, so $T(n)=O\left(1.325^{n}\right)$

Reducing to a semi-cubic graph, contd.

We get a recursion tree:

Each instance I_{j} is a semi-cubic graph.

Reducing to a semi-cubic graph, contd.

We get a recursion tree:

Each instance I_{j} is a semi-cubic graph. In each I_{j} we want to check all semi-perfect matchings.

Checking all semi-perfect matchings

The recursion tree rooted at $[\mathbf{G} \mid \mathbf{M}]$ generates all semi-perfect matchings that extend M_{i} using edges from G_{i} (e.g. $N_{q} \subset E\left(G_{1}\right)$).

Base Case

G M G is empty

Check if \mathbf{M} is fitting in I_{k}
 $\mathbf{I}_{\mathbf{k}}$: the initial semi-cubic graph

Forced and Unforced Vertices

Let I be the initial semi-cubic graph in which we generate semi-perfect matchings.

- a vertex of degree 3 will be called forced.
- other vertices (of degree 2) are unforced.

Trivial Case 1

\section*{| \mathbf{G} | \mathbf{M} contains a forced |
| :--- | :--- | vertex \mathbf{x} of degree 1}

Trivial Case 2

G|M G contains a forced vertex \mathbf{x} of degree $\mathbf{0}$

FALSE

Trivial Case 3

G|M

G contains an unforced vertex \mathbf{x} of degree $\mathbf{0}$

G-\{x\}|M

Branching

G \mathbf{M} G contains an edge uv with \mathbf{u} and \mathbf{v} forced

$\mathrm{G}-\{u, v\} \mid M+u v$

$\square-\square$

Checking all semi-perfect matchings

procedure FittingMatch (I, G, M)
1: if $V(G)=\emptyset$ then
2: if M is fitting in I then return True else return False
3: else if exists a forced vertex $v \in V(G)$ such that $\operatorname{deg}_{G}(v)=0$ then
4: return FALSE
5: else if exists a non-forced vertex $v \in V(G)$ such that $\operatorname{deg}_{G}(v)=0$ then
6: return FittingMatch $(I, G-\{v\}, M)$
7: else if exists a forced vertex $v \in V(G)$ such that $\operatorname{deg}_{G}(v)=1$ then
8: $\quad u \leftarrow$ the neighbor of v in G
9: return $\operatorname{FittingMatch}(I, G-\{u, v\}, M \cup\{u v\})$
10: else
11: $\quad u v \leftarrow$ any edge in G with both ends forced.
12: return FittingMatch $(I, G-\{u, v\}, M \cup\{u v\})$ or FittingMatch $(I$, $G-u v, M)$

Two sample cases of branching

case A:

(U)

case B:
(1)-F-F-C

One more trick (details skipped)

G|M
Each connected component of \mathbf{G} is a path from case B

> Check in poly time if \mathbf{M} extends to a fitting matching in $\mathbf{I}_{\mathbf{k}}$ (for each case B component find the right choice if it exists)

I_{k} : the initial semi-cubic graph

The full picture

in polynomial time check if there is the right choice for each case B component

Instances in the leaves are triples $\left(G_{0}, G, M\right)$ such that G is a collection of 4-paths from case B.

Conclusion

To sum up:

- Time complexity is $O\left(1.344^{n}\right)$,
- Space complexity is $O(n)$,
- the algorithm is simple to implement,
- main ingredients:
- "cheap" reduction to instances of special structure,
- solving special cases polynomially,
- "measure and conquer" technique for analysis.

