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Edge-Coloring

Assign colors to edges so that incident edges get distinct
colors.

What is known? (∆ = maxv degree(v))

∆ colors needed (trivial)

∆ + 1 colors suffice (Vizing)

Deciding “∆/(∆ + 1)” is NP-complete even when ∆ = 3.

We will focus on the ∆ = 3 case (subcubic graphs).

Łukasz Kowalik, WG’06, Improved Edge Coloring with Three Colors – p. 2



Edge-Coloring

Assign colors to edges so that incident edges get distinct
colors.

What is known? (∆ = maxv degree(v))

∆ colors needed (trivial)

∆ + 1 colors suffice (Vizing)

Deciding “∆/(∆ + 1)” is NP-complete even when ∆ = 3.

We will focus on the ∆ = 3 case (subcubic graphs).

Łukasz Kowalik, WG’06, Improved Edge Coloring with Three Colors – p. 2



3-Edge-Coloring: Results

Let G be the input graph, n = |V (G)|.

Naive backtracking: O(2|E(G)|) = O(23/2n) = O(2.83n).

Approach: vertex-coloring the line graph L(G).
3-coloring algorithm by Beigel & Eppstein [JAlg’05]
gives time:
O(1.3289|V (L(G))|) = O(1.3289|E(G)|) = O(1.532n).

(for ≥ 4 colors the above approach is the best known.)

Beigel & Eppstein [JAlg’05]: nontrivial preprocessing +
reduction to (3, 2)-CSP.
Time: O(1.415n) = O(2n/2).

This work: O(1.344n) = O(20.427n)

Łukasz Kowalik, WG’06, Improved Edge Coloring with Three Colors – p. 3



3-Edge-Coloring: Results

Let G be the input graph, n = |V (G)|.

Naive backtracking: O(2|E(G)|) = O(23/2n) = O(2.83n).

Approach: vertex-coloring the line graph L(G).
3-coloring algorithm by Beigel & Eppstein [JAlg’05]
gives time:
O(1.3289|V (L(G))|) = O(1.3289|E(G)|) = O(1.532n).

(for ≥ 4 colors the above approach is the best known.)

Beigel & Eppstein [JAlg’05]: nontrivial preprocessing +
reduction to (3, 2)-CSP.
Time: O(1.415n) = O(2n/2).

This work: O(1.344n) = O(20.427n)

Łukasz Kowalik, WG’06, Improved Edge Coloring with Three Colors – p. 3



Basic Idea

(Counterpart of Lawler’s ’76 algorithm for 3-vertex-coloring)

A matching M in graph G is fitting when G−M is
2-edge-colorable.

G is 3-edge-colorable iff G contains a fitting matching.

G is 3-edge-colorable iff G contains a (inclusion-wise)
maximal matching which is fitting.

2-edge-colorability is in P.

Algorithm 1: generate all maximal matchings, for each verify
whether it is fitting.
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Basic Idea Refined

Observation: Fitting matching matches every 3-vertex.

A matching which matches every 3-vertex will be called
semi-perfect .

Algorithm 2: generate all maximal semi-perfect matchings,
for each verify whether it is fitting.

Observation: Good for cubic graphs.

Conclusion: Reduce 3-edge-coloring for subcubic graphs to
3-edge-coloring in graphs “close to cubic”...

= semi-cubic: vertices of degree 2 and 3, distance between
2-vertices at least 3
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Reducing to a semi-cubic graph

Let G be the input graph.

Assume G contains a 1-vertex v. Then G is
3-edge-colorable iff G− v is 3-edge-colorable.

Assume G contains an edge uv, deg(u) = deg(v) = 2.
Then G is 3-edge-colorable iff G− uv is 3-edge-clrble.
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Reducing to a semi-cubic graph, contd.

Assume G contains a path xuzvy, deg(u) = deg(v) = 2.

G is 3-edge-colorable iff G1 or G2 is 3-edge-colorable.

How expensive is it? T (n) = T (n− 2) + T (n− 3) + poly(n),
so T (n) = O(1.325n)
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Reducing to a semi-cubic graph, contd.

We get a recursion tree:

Each instance Ij is a semi-cubic graph.

In each Ij we want to check all semi-perfect matchings.
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Checking all semi-perfect matchings

The recursion tree rooted at generates all semi-perfect
matchings that extend Mi using edges from Gi (e.g. Nq ⊂ E(G1)).
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Base Case
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Forced and Unforced Vertices

Let I be the initial semi-cubic graph in which we generate
semi-perfect matchings.

a vertex of degree 3 will be called forced .

other vertices (of degree 2) are unforced .
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Trivial Case 1
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Trivial Case 2
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Trivial Case 3
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Branching
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Checking all semi-perfect matchings

procedure FITTINGMATCH(I,G,M )

1: if V (G) = ∅ then
2: if M is fitting in I then return TRUE else return FALSE

3: else if exists a forced vertex v ∈ V (G) such that degG(v) = 0 then
4: return FALSE
5: else if exists a non-forced vertex v ∈ V (G) such that degG(v) = 0 then
6: return FITTINGMATCH(I , G− {v}, M )

7: else if exists a forced vertex v ∈ V (G) such that degG(v) = 1 then
8: u← the neighbor of v in G

9: return FITTINGMATCH(I , G− {u, v}, M ∪ {uv})

10: else
11: uv ← any edge in G with both ends forced.
12: return FITTINGMATCH(I , G− {u, v}, M ∪ {uv}) or FITTINGMATCH(I ,

G− uv, M )
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Two sample cases of branching
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One more trick (details skipped)
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The full picture

Instances in the leaves are triples (G0, G,M) such that G is
a collection of 4-paths from case B.
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Conclusion

To sum up:

Time complexity is O(1.344n),

Space complexity is O(n),

the algorithm is simple to implement,

main ingredients:
“cheap” reduction to instances of special structure,
solving special cases polynomially,
“measure and conquer” technique for analysis.
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