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Some NP-hard problems are really hard

We will focus on the following, natural problems:

Set Cover

Bandwidth

Vertex Coloring

Maximum Independent Set
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Coping with NP-hardness

1 (poly-time) approximation.

2 Fixed-parameter tractability

3 Moderately exponential-time exact algorithms

4 Moderately exponential-time approximation algorithms
(our approach)
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Coping with NP-hardness

1 (poly-time) approximation.

Set Cover: no (1− ε) log n-approximation, unless
NP ⊆ DTIME(nlog log n).
Bandwidth: no O(1)-approximation, unless NP = P
Vertex Coloring: no n1−ε-approximation, unless NP = ZPP
Maximum Independent Set: no n1−ε-approximation, unless
NP = ZPP

2 Fixed-parameter tractability

3 Moderately exponential-time exact algorithms

4 Moderately exponential-time approximation algorithms
(our approach)
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Coping with NP-hardness

1 (poly-time) approximation.
2 Fixed-parameter tractability

Set Cover: W [2]-complete.
Bandwidth: W [t]-hard, for any t > 0.
k-coloring: NP-complete for any k ≥ 3.
Maximum Independent Set: W [1]-complete

3 Moderately exponential-time exact algorithms

4 Moderately exponential-time approximation algorithms
(our approach)
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Coping with NP-hardness

1 (poly-time) approximation.

2 Fixed-parameter tractability
3 Moderately exponential-time exact algorithms

Set Cover: O∗(2m), O∗(4n), O∗(20.299(n+m)).
Bandwidth: O∗(5n)-time and O∗(2n)-space; O∗(10n) poly-space,.
k-coloring: O∗(2n)-time and space.
Maximum Independent Set: O(20.276n)-time, exp-space;
O(20.288n)-time, poly-space.

4 Moderately exponential-time approximation algorithms
(our approach)
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Approach One

Approach One:
Reducing the Instance Size
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Unweighted Set Cover

Let us recall the Unweighted Set Cover problem:

Instance

Collection of sets S = {S1, . . . ,Sm}

The union
⋃

S is called the universe and denoted by U.

Problem

Find the smallest possible subcollection C ⊆ S so that
⋃

C = U.
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Unweighted Set Cover, reducing the number of sets

Approximation algorithm:

1 Join the sets of S into pairs:
S ′i = S2i−1 ∪ S2i , for i = 1, . . . ,m/2 (assume m even),
Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
O(2m/2). Let C′ be the solution.

3 Transform C′ into a cover of S: C = {S2i−1 ∪ S2i | S ′i ∈ C′}.
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1 Join the sets of S into pairs:
S ′i = S2i−1 ∪ S2i , for i = 1, . . . ,m/2 (assume m even),
Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
O(2m/2). Let C′ be the solution.

3 Transform C′ into a cover of S: C = {S2i−1 ∪ S2i | S ′i ∈ C′}.

Proposition

This is a 2-approximation

Proof.

Let OPT be the size of the optimal cover for S. In S′ there is a cover of
size ≤ OPT Hence |C′| ≤ OPT and |C| ≤ 2OPT.
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Unweighted Set Cover, reducing the number of sets

Approximation algorithm:

1 Join the sets of S into pairs:
S ′i = S2i−1 ∪ S2i , for i = 1, . . . ,m/2 (assume m even),
Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
O(2m/2). Let C′ be the solution.

3 Transform C′ into a cover of S: C = {S2i−1 ∪ S2i | S ′i ∈ C′}.

Question

Does it work for the weighted case?
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Unweighted Set Cover, reducing the number of sets

Approximation algorithm:

1 Join the sets of S into pairs:
S ′i = S2i−1 ∪ S2i , for i = 1, . . . ,m/2 (assume m even),
Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
O(2m/2). Let C′ be the solution.

3 Transform C′ into a cover of S: C = {S2i−1 ∪ S2i | S ′i ∈ C′}.

Question

Does it work for the weighted case?

Answer

Not quite: light sets from OPT may join with heavy sets. Sorting sets ???
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Weighted Set Cover, reducing the number of sets

The sets from optimal solution are marked green.

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤

?
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Weighted Set Cover, reducing the number of sets

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤
?

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤
?

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤
?

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤
?

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤
?
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Weighted Set Cover, summary

Assume we have an exact T (n)-time algorithm for Set Cover.

For any r ∈ N we have r -approximation in m · T (n/r) time
(We have just seen it for r = 2),

For any r ∈ Q we have (ln r + 1)-approximation in m · T (n/r) time
(We have seen it yesterday for unweighted version, for weighted
version again it requires additional trick),
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Example 2: Set Cover, reducing the universe

Recall the standard greedy O(log n)-approximation algorithm:

Greedy

1: C← ∅.
2: while C does not cover U do
3: Find T ∈ S so as to minimize w(T )

|T\
S

C|
4: C← C ∪ {T}.

5: for each e ∈ T \
⋃

C do

6: price(e)← w(T )
|T\

S
C|

Lemma (from the standard analysis of greedy algorithm)

Let e1, . . . , en be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k ∈ 1, . . . , n,
price(ek) ≤ w(OPT)/(n − k + 1)
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Example 2: Set Cover, reducing the universe

Lemma (from the standard analysis of greedy algorithm)

Let e1, . . . , en be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k ∈ 1, . . . , n,
price(ek) ≤ w(OPT)/(n − k + 1)

Observation

In the early phase of Greedy elements are covered cheaply.

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Dagstuhl 2008 11 / 28



Example 2: Set Cover, reducing the universe

Lemma (from the standard analysis of greedy algorithm)

Let e1, . . . , en be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k ∈ 1, . . . , n,
price(ek) ≤ w(OPT)/(n − k + 1)

Observation

In the early phase of Greedy elements are covered cheaply.

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Dagstuhl 2008 11 / 28



Example 2: Set Cover, reducing the universe

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

(Lucky) analysis

Assume we are lucky and t = n/2 (not bigger).

1 We pay (Hn −Hn/2)OPT ≈ (ln n− ln(n/2))OPT = ln 2 ·OPT for the
first phase,

2 we pay ≤ OPT for the second phase.

Together we get (1 + ln 2)OPT.
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Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

Analysis

1 We pay ≤ (Hn − Hn/2)OPT ≈ ln 2 ·OPT for the elements covered in
phase 1, excluding the last set (that covers en/2),

2 We pay ≤ OPT for the set that covers en/2,

3 we pay ≤ OPT for the second phase.

Together we get (2 + ln 2)OPT.
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Example 2: Set Cover, reducing the universe

Exponential-Time (ln 2 + 2)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

Analysis

1 We pay ≤ (Hn − Hn/2)OPT ≈ ln 2 ·OPT for the elements covered in
phase 1, excluding the last set (that covers en/2),

2 We pay ≤ OPT for the set that covers en/2,

3 we pay ≤ OPT for the second phase.

Together we get (2 + ln 2)OPT.
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Example 2: Set Cover, reducing the universe

Exponential-Time (ln r + 2)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run Greedy until there are ≤ n/r elements not covered,

2 Cover the remaining elements by the exact algorithm, in time T (n/r).

Remark 1

By stopping the Greedy algorithm when there are ≤ n/r uncovered
elements, we get (ln r + 2)-approximation in T (n/r) time.

Remark 2

We show an improved algorithm with (ln r + 1)-approximation in
m × T (n/r) time.
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Our results via instance reduction

Let T ∗(n) denote the time of the relevant exact algorithm, up to a
polynomial factor.

1 (Weighted) Set Cover:

r -approximation in T ∗(m/r) time,
(1 + ln r)-approximation in T ∗(n/r) time.

2 Bandwidth:

9-approximation in T ∗(n/2) time.

3 Maximum Independent Set:

r -approximation in T ∗(n/r)-time.

4 Vertex Coloring:

Björklund & Husfeldt:
(1 + ln r)-approximation in max{T ∗(n/r),O∗(20.288n)}-time.
(1 + 0.247r ln r)-approximation in T ∗(n/r)-time
(best for r ∈ [4.05, 58)).
r -approximation in T ∗(n/r)-time
(best for r ≥ 58).
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Reducing the instance: Summary

If faster exact algorithm appears, immediately we have faster
approximation.

Approximation via instance reduction extends the applicability of
(exact) exponential-time algorithms:

Don’t have enough time for running your algorithm for n = 200?
Get approximate solution.
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Reducing the instance: Open Problems

For coloring, in exponential time you can reduce the instance r
times and get (ln r + 1)-approximation (Björklund and Husfeldt).
Can you do it for Independent Set?

Can reduction of the instance size be applied to Bandwidth?
(Yes, but we have 9-approximation for reducing the graph by a half.)
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Approach Two

Approach Two:
Cutting the Search Tree
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The Bandwidth problem

Input: Graph G = (V ,E ), integer b.
Problem: Find an ordering of vertices

π : V → {1, . . . , n},

such that “edges have length at most b”, i.e.

for every uv ∈ E , |π(u)− π(v)| ≤ b.
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Our results: Bandwidth

3/2-approximation in O∗(5n) time (poly-space),

2-approximation in O∗(3n) time (poly-space),

Main result: (4r − 1)-approximation in O∗(2n/r ) time (poly-space).
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Warm-up: 2-approximation in O∗(3n) time

(Inspired the exact O(10n)-time algorithm by Feige and Kilian.)

1 Divide {1, . . . , n} into dn/be intervals of length b:
Ij = {jb + 1, jb + 2, . . . , (j + 1)b} ∩ {1, . . . , n}.

2 Find an assignment of vertices to intervals such that

each interval Ij is assigned |Ij | vertices,
adjacent vertices are assigned to the same interval or to neighboring
intervals.
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Warm-up: 2-approximation in O∗(3n) time

1: procedure GenerateAssignments(A)
2: if for all j , |A−1(j)| = |Ij | then
3: return A
4: else
5: v ← a vertex with a neighbor w already assigned.
6: if A(w) > 0 then
7: GenerateAssignments(A ∪ {(v ,A(w)− 1)}
8: GenerateAssignments(A ∪ {(v ,A(w))})
9: if A(w) < dn/be − 1 then

10: GenerateAssignments(A ∪ {(v ,A(w) + 1)}

11: procedure Main
12: for j ← 0 to dn/be − 1 do
13: GenerateAssignments ({(r , j)})
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Warm-up: 2-approximation in O∗(3n) time

1 Divide {1, . . . , n} into dn/be intervals of length b:
Ij = {jb + 1, jb + 2, . . . , (j + 1)b} ∩ {1, . . . , n}.

2 Find an assignment of vertices to intervals such that

Each interval Ij is assigned |Ij | vertices,
Adjacent vertices are assigned to the same interval or to neighboring
intervals.

3 Order the vertices in each interval arbitrarily.
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3-approximation in O∗(2n) time

Definition

Let A be an assignment of vertices to intervals. If one can order the
vertices in each interval to get an ordering π, we say π is consistent with A.

Algorithm

1 Divide {1, . . . , n} into dn/be intervals of length 2b:
Ij = {jb + 1, jb + 2, . . . , (j + 2)b} ∩ {1, . . . , n}.
(Note that intervals overlap.)

2 Generate a set of O(n · 2n) assignments of vertices to intervals so that
if the bandwith is b, then at least one of the assignments is consistent
with an ordering of bandwidth b.

3 ... (to be continued) ...
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3-approximation in O∗(2n) time

1: procedure GenerateAssignments(A)
2: if all vertices are assigned then
3: “Test(A)”
4: else
5: v ← a vertex with a neighbor w already assigned.
6: if A(w) > 0 then
7: GenerateAssignments(A ∪ {(v ,A(w)− 1)}
8: if A(w) < dn/be − 1 then
9: GenerateAssignments(A ∪ {(v ,A(w) + 1)}

10: procedure Main
11: for j ← 0 to dn/be − 1 do
12: GenerateAssignments ({(r , j)})
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3-approximation in O∗(2n) time

Lemma (,,Testing A”)

Let A be an assignment of vertices to the intervals of size 2b.
Then there is a polynomial time algorithm such that if there is an ordering
π∗ of bandwidth b consistent with A, the algorithm finds an ordering π of
bandwidth 3b consistent with A.

Proof.
1 For every edge uv , if max A(u) = min A(v)− 1, then:

if |A(u)| = 2b, replace A(u) by its right half,
if |A(v)| = 2b, replace A(v) by its left half.
(Note that π∗ is still consistent with A.)

2 (now, for every edge uv , |max A(u)−min A(v)| ≤ 3b)

3 Perform the standard greedy scheduling algorithm to find any
ordering π consistent with A.
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3-approximation in O∗(2n) time

Algorithm

1 Divide {1, . . . , n} into dn/be intervals of length 2b:
Ij = {jb + 1, jb + 2, . . . , (j + 2)b} ∩ {1, . . . , n}.
(Note that intervals overlap.)

2 Generate a set of O(n · 2n) assignments of vertices to intervals so that
if the bandwith is b, then at least one of the assignments is consistent
with an ordering of bandwidth b.

3 Apply the lemma to each of the assignments.

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Dagstuhl 2008 26 / 28



Approximation scheme

Theorem

For any r ∈ N, there is a (4r − 1)-approximation algorithm in O∗(2n/r )
time.

(Details skipped here)
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The end

Thank you for your attention!
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