A 14k-kernel for Planar Feedback Vertex Set via Region Decomposition

Marthe Bonamy ${ }^{1}$ and Łukasz Kowalik ${ }^{2}$ (speaker)

> 1 LIRMM, Montpellier (France)
> ${ }^{2}$ University of Warsaw (Poland)

9th International Symposium on Parameterized and Exact Computation (IPEC 2014), Wrocław, Poland 10th September 2014

Kernelization (of graph problems)

Let (G, k) be an instance of a decision problem (k is a parameter).

- (G, k) is a YES-instance iff $\left(G^{\prime}, k^{\prime}\right)$ is a YES-instance.
- $k^{\prime} \leq k$,
- $\left|V\left(G^{\prime}\right)\right| \leq f(k)$.

Some examples of kernels

General graphs:

- Vertex Cover 2k,
- Feedback Vertex Set $O\left(k^{2}\right)$,
- Odd Cycle Transversal $k^{O(1)}$,

Planar graphs:

- Dominating Set 335k \rightarrow 67k,
- Induced Matching $40 k \rightarrow 28 k$,
- Connected Vertex Cover $14 k \rightarrow \frac{11}{3} k$,
- Connected Dominating Set 3968187k \rightarrow 130k,

Feedback Vertex Set: hit every cycle

Feedback Vertex Set: hit every cycle

$S \subseteq V$ is a feedback vertex set (O) in graph $G=(V, E)$ when every cycle in G contains at least one vertex from S.

Feedback Vertex Set: hit every cycle

$S \subseteq V$ is a feedback vertex set (O) in graph $G=(V, E)$ when every cycle in G contains at least one vertex from S.

Planar Feedback Vertex Set

Instance: planar graph $G, k \in \mathbb{N}$ Parameter: $k \in \mathbb{N}$
Question: Does G contain a feedback vertex set of size k ?

Kernels for Planar Feedback Vertex Set

Previous results:

- Bodlaender and Penninkx IWPEC 2008: 112k-kernel
- Abu-Khzam and Khuzam IPEC 2012: 97k-kernel

Kernels for Planar Feedback Vertex Set

Previous results:

- Bodlaender and Penninkx IWPEC 2008: 112k-kernel
- Abu-Khzam and Khuzam IPEC 2012: 97k-kernel

Parallel result(s):

- Xiao AAIM 2014: 29k-kernel

Kernels for Planar Feedback Vertex Set

Previous results:

- Bodlaender and Penninkx IWPEC 2008: 112k-kernel
- Abu-Khzam and Khuzam IPEC 2012: 97k-kernel

Parallel result(s):

- Xiao AAIM 2014: 29k-kernel

Our result:

- A 14k-kernel
- Region decomposition technique applied (tight analysis)

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in planar graph G.
Can we bound $|V(G)|$?

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in planar graph G.
Can we bound $|V(G)|$? No:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in planar graph G.
Can we bound $|V(G)|$? No:

Reduction rule:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G. Can we bound $|V(G)|$?

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$?
No:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$?
No:

New reduction rules:

8

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$?

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$?
No:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$?
No:

New reduction rule:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound $|V(G)|$?

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$? No:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$? No:

New reduction rule:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G. Can we bound $|V(G)|$?

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$? No:

Linear kernel? Let's do it!

Let S be a feedback vertex set of size k in reduced planar graph G.
Can we bound $|V(G)|$? No:

New reduction rule:

We have some more rules, but they only help to improve the constant further, let's skip them here.

Analysis: partition of the vertices

Analysis: partition of the vertices

- (O) S : a solution (fvs).

Analysis: partition of the vertices

-(O) S : a solution (fvs).
-($\bigcirc) F=V \backslash S$: an induced forest.

Analysis: partition of the vertices

-(O) S : a solution (fvs).
-() $F=V \backslash S$: an induced forest.

Analysis: partition of the vertices

-(O) S : a solution (fvs).
-() $F=V \backslash S$: an induced forest.

- (O) L : leaves in F.
- ($)$ I: inner vertices in F.

Analysis: partition of the vertices

-(O) S : a solution (fvs).
-() $F=V \backslash S$: an induced forest.

- (O) L : leaves in F.
- (O) I: inner vertices in F.
-(2) $I_{2} \subseteq I: 2$ neighbors in F.
- (3) $I_{3+} \subseteq I: 3+$ neighbors in F.
- (2) $L_{2} \subseteq L: 2$ neighbors in S.
- (3) $L_{3^{+}} \subseteq L: 3+$ neighbors in S.

Analysis: partition of the vertices

-(O) S : a solution (fvs).

- ($F=V \backslash S$: an induced forest.
- (O) L : leaves in F.
- ($) I$: inner vertices in F.
-(2) $I_{2} \subseteq I: 2$ neighbors in F.
- (3) $I_{3+} \subseteq I: 3+$ neighbors in F.
- (2) $L_{2} \subseteq L: 2$ neighbors in S.
- (3) $L_{3^{+}} \subseteq L: 3+$ neighbors in S.

Goal:

$$
\text { show }\left|L_{2}\right|+\left|L_{3^{+}}\right|+\left|I_{2}\right|+\left|I_{3^{+}}\right|=O(k)
$$

Analysis: Region Decomposition

Fix a solution S of size k.
Goal: Show that $n=O(k)$.
Region Decomposition Technique (Alber, Fellows, Niedermeier 2002)

Decompose plane into $O(k)$ regions, each contains $O(1)$ vertices.

Our regions: faces of multigraph $H_{S}=\left(S, E_{S}\right)$

For every path $u x v$ such that $u, v \in S$ and $x \in L_{2}$ put an edge $u v$ in E_{S}.

Our regions: faces of multigraph $H_{S}=\left(S, E_{S}\right)$

For every path $u x v$ such that $u, v \in S$ and $x \in L_{2}$ put an edge $u v$ in E_{S}.

Our regions: faces of multigraph $H_{S}=\left(S, E_{S}\right)$

For every path $u x v$ such that $u, v \in S$ and $x \in L_{2}$ put an edge $u v$ in E_{S}.

Because

is excluded, H_{S} has no triple (or larger multiplicity) edges.

Then,

$$
\left|L_{2}\right| \leq 2 E_{S} \leq 2(3|S|-6)<6 k
$$

Bounding $|/ 2|$

Observation [Abu-Khzam, Khuzam]

Induced paths of I_{2} vertices with at least three neighbors in S behave similarly as vertices in L_{3}.

Bounding $\left|L_{2}\right|$

Observation [Abu-Khzam, Khuzam]

Induced paths of I_{2} vertices with at least three neighbors in S behave similarly as vertices in L_{3}.

Dealing with I_{2} :

- Identify set C_{3} of chains of I_{2} vertices with $3+$ neighbors in S :

- Since C_{3} chains,
- There are few remaining I_{2} vertices: $4\left(\left|L_{2}\right|+\left|L_{3}\right|+\left|I_{3}\right|\right)$.

Bounding $\left|L_{3}\right|,\left|\left.\right|_{3}\right|$ and $\left|C_{3}\right|$.

- Let f be a face of the region graph H_{S}.
- Let L_{3}^{f}, I_{3}^{f} and C_{3}^{f} denote elements of relevant sets inside f.
- $d(f)$ denotes the length of f.

Lemma (perhaps key lemma)

$\left|L_{3}^{f}\right|+\left|l_{3}^{f}\right|+\left|C_{3}^{f}\right| \leq d(f)-2$
Some handwaving:

Bounding $\left|L_{3}\right|,\left|I_{3}\right|$ and $\left|C_{3}\right|$.

- Let f be a face of the region graph H_{S}.
- Let L_{3}^{f}, I_{3}^{f} and C_{3}^{f} denote elements of relevant sets inside f.
- $d(f)$ denotes the length of f.

Lemma (perhaps key lemma)

$\left|L_{3}^{f}\right|+\left|I_{3}^{f}\right|+\left|C_{3}^{f}\right| \leq d(f)-2$
Then:

$$
\begin{aligned}
\left|L_{3}\right|+\left|I_{3}\right|+\left|I_{2}\right| & \leq\left|L_{3}\right|+\left|I_{3}\right|+\left|V\left(C_{3}\right)\right|+4\left(\left|L_{2}\right|+\left|L_{3}\right|+\left|I_{3}\right|\right) \\
& \leq 5\left(\left|L_{3}\right|+\left|I_{3}\right|+\left|C_{3}\right|\right)+4\left|L_{2}\right| \leq 5\left(\left|L_{3}\right|+\left|I_{3}\right|+\left|C_{3}\right|\right)+24 k \\
& =5 \sum_{f \in F_{S}}\left(\left|L_{3}^{f}\right|+\left|I_{3}^{f}\right|+\left|C_{3}^{f}\right|\right)+24 k \\
& =5 \sum_{f \in F_{S}}(d(f)-2)+24 k \\
& =5\left(2\left|E_{S}\right|-2\left|F_{S}\right|\right)+24 k=5 \cdot 2(|S|-2)+24 k<34 k .
\end{aligned}
$$

The final bound

- From the bounds we have seen one can get,
$|S|+\left|L_{2}\right|+\left|L_{3}\right|+\left|I_{3}\right|+\left|I_{2}\right| \leq 41 k$.
- For $14 k$ we used a few (minor) analysis tricks plus a few more kernelization rules.
- We have a tight example:

where \ldots is a chain of four I_{2} vertices.

Conclusions

- $14 k$ kernel
- (journal version: $13 k$ kernel)
- Region decomposition technique applied
- Unlike in the Alber et al. paper, our regions are not of $O(1)$ size.
- Analysis is tight.

A prize to win!

WANTED

A single-digit kernel for Planar FVS

A prize to win!

WANTED

A single-digit kernel for Planar FVS
Reward:

a bottle of French wine

a bottle of Polish vodka

Commercial break

Thank you!

The presentation contains some figures of Felix Reidl from a book Cygan, Fomin, Marx, Kowalik, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh Parameterized Algorithms
(to appear in early 2015)

