A 14*k*-kernel for Planar Feedback Vertex Set via Region Decomposition

Marthe Bonamy¹ and Łukasz Kowalik² (speaker)

¹ LIRMM, Montpellier (France) ² University of Warsaw (Poland)

9th International Symposium on Parameterized and Exact Computation (IPEC 2014), Wrocław, Poland 10th September 2014

Kernelization (of graph problems)

Let (G, k) be an instance of a decision problem (k is a parameter).

- (G, k) is a YES-instance iff (G', k') is a YES-instance.
- $k' \leq k$,
- $|V(G')| \leq f(k)$.

Some examples of kernels

General graphs:

- VERTEX COVER 2k,
- FEEDBACK VERTEX SET $O(k^2)$,
- ODD CYCLE TRANSVERSAL $k^{O(1)}$,

• ...

...

Planar graphs:

- Dominating Set $335k \rightarrow 67k$,
- INDUCED MATCHING $40k \rightarrow 28k$,
- Connected Vertex Cover $14k \rightarrow \frac{11}{3}k$,
- Connected Dominating Set 3968187 $k \rightarrow 130k$,

Feedback Vertex Set: hit every cycle

Feedback Vertex Set: hit every cycle

 $S \subseteq V$ is a feedback vertex set (\bigcirc) in graph G = (V, E) when every cycle in G contains at least one vertex from S.

Feedback Vertex Set: hit every cycle

 $S \subseteq V$ is a feedback vertex set (\bigcirc) in graph G = (V, E) when every cycle in G contains at least one vertex from S.

PLANAR FEEDBACK VERTEX SET

INSTANCE: planar graph $G, k \in \mathbb{N}$ PARAMETER: $k \in \mathbb{N}$ QUESTION: Does G contain a feedback vertex set of size k?

Previous results:

- Bodlaender and Penninkx IWPEC 2008: 112k-kernel
- Abu-Khzam and Khuzam IPEC 2012: 97k-kernel

Previous results:

- Bodlaender and Penninkx IWPEC 2008: 112k-kernel
- Abu-Khzam and Khuzam IPEC 2012: 97k-kernel

Parallel result(s):

• Xiao AAIM 2014: 29k-kernel

Previous results:

- Bodlaender and Penninkx IWPEC 2008: 112k-kernel
- Abu-Khzam and Khuzam IPEC 2012: 97k-kernel

Parallel result(s):

• Xiao AAIM 2014: 29k-kernel

Our result:

- A 14*k*-kernel
- Region decomposition technique applied (tight analysis)

Let S be a feedback vertex set of size k in planar graph G.

Can we bound |V(G)|?

Let S be a feedback vertex set of size k in planar graph G.

Can we bound |V(G)|? No:

Let S be a feedback vertex set of size k in planar graph G.

Can we bound |V(G)|? No:

Reduction rule:

Let S be a feedback vertex set of size k in reduced planar graph G. Can we bound |V(G)|?

Let S be a feedback vertex set of size k in reduced planar graph G. Can we bound |V(G)|? No:

Let S be a feedback vertex set of size k in reduced planar graph G. Can we bound |V(G)|? No:

New reduction rules:

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound |V(G)|?

- - E > - E >

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound |V(G)|? No:

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound |V(G)|? No:

New reduction rule:

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound |V(G)|?

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound |V(G)|? No:

Let S be a feedback vertex set of size k in reduced planar graph G.

```
Can we bound |V(G)|?
No:
```


New reduction rule:

Let S be a feedback vertex set of size k in reduced planar graph G. Can we bound |V(G)|?

< 3 > < 3 >

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound |V(G)|? No:

Let S be a feedback vertex set of size k in reduced planar graph G.

Can we bound |V(G)|? No:

New reduction rule:

We have some more rules, but they only help to improve the constant further, let's skip them here.

• (\bigcirc) S : a solution (fvs).

(●) S : a solution (fvs).
 (● ●) F = V \ S: an induced forest.

- (\bigcirc) *S* : a solution (fvs).
- () $F = V \setminus S$: an induced forest.
- (•) L: leaves in F.
- (\bigcirc) *I*: inner vertices in *F*.

- (\bigcirc) S : a solution (fvs).
- () $F = V \setminus S$: an induced forest.
- (•) L: leaves in F.
- (•) I: inner vertices in F.
- (2) $I_2 \subseteq I$: 2 neighbors in F.
- (3) $I_{3^+} \subseteq I$: 3+ neighbors in F.
- (2) $L_2 \subseteq L$: 2 neighbors in S.
- (3) $L_{3^+} \subseteq L$: 3+ neighbors in S.

• (
$$\bigcirc$$
) S : a solution (fvs).

• (• •)
$$F = V \setminus S$$
: an induced forest.

• (•) L: leaves in F.

- (\bigcirc) *I*: inner vertices in *F*.
- (2) $I_2 \subseteq I$: 2 neighbors in F.

• (3)
$$I_{3^+} \subseteq I$$
: 3+ neighbors in F .

- (2) $L_2 \subseteq L$: 2 neighbors in S.
- (3) $L_{3^+} \subseteq L$: 3+ neighbors in S.

Goal:

show $|L_2| + |L_{3^+}| + |I_2| + |I_{3^+}| = O(k)$.

Analysis: Region Decomposition

Fix a solution S of size k.

Goal: Show that n = O(k).

Region Decomposition Technique (Alber, Fellows, Niedermeier 2002)

Decompose plane into O(k) regions, each contains O(1) vertices.

Bonamy, Kowalik ()

Our regions: faces of multigraph $H_S = (S, E_S)$

For every path uxv such that $u, v \in S$ and $x \in L_2$ put an edge uv in E_S .

Our regions: faces of multigraph $H_S = (S, E_S)$

For every path uxv such that $u, v \in S$ and $x \in L_2$ put an edge uv in E_S .

Our regions: faces of multigraph $H_S = (S, E_S)$

For every path uxv such that $u, v \in S$ and $x \in L_2$ put an edge uv in E_S .

Because \bullet is excluded, H_S has no triple (or larger multiplicity) edges.

Then,

$$|L_2| \le 2E_S \le 2(3|S|-6) < 6k.$$

Bounding $|I_2|$

Observation [Abu-Khzam, Khuzam]

Induced paths of I_2 vertices with at least three neighbors in S behave similarly as vertices in L_3 .

Observation [Abu-Khzam, Khuzam]

Induced paths of I_2 vertices with at least three neighbors in S behave similarly as vertices in L_3 .

Dealing with I_2 :

• Identify set C_3 of chains of I_2 vertices with 3+ neighbors in S:

• There are few remaining I_2 vertices: $4(|L_2| + |L_3| + |I_3|)$.

Bounding $|L_3|$, $|I_3|$ and $|C_3|$.

- Let f be a face of the region graph H_S .
- Let L_3^f , I_3^f and C_3^f denote elements of relevant sets inside f.
- d(f) denotes the length of f.

Lemma (perhaps key lemma)

$$|L_3^f| + |I_3^f| + |C_3^f| \le d(f) - 2$$

Some handwaving:

Bounding $|L_3|$, $|I_3|$ and $|C_3|$.

- Let f be a face of the region graph H_S .
- Let L_3^f , I_3^f and C_3^f denote elements of relevant sets inside f.
- d(f) denotes the length of f.

Lemma (perhaps key lemma)

$$|L_3^f| + |I_3^f| + |C_3^f| \le d(f) - 2$$

Then:

$$\begin{split} |L_3| + |I_3| + |I_2| &\leq |L_3| + |I_3| + |V(C_3)| + 4(|L_2| + |L_3| + |I_3|) \\ &\leq 5(|L_3| + |I_3| + |C_3|) + 4|L_2| \leq 5(|L_3| + |I_3| + |C_3|) + 24k \\ &= 5\sum_{f \in F_S} (|L_3^f| + |I_3^f| + |C_3^f|) + 24k \\ &= 5\sum_{f \in F_S} (d(f) - 2) + 24k \\ &= 5(2|E_S| - 2|F_S|) + 24k = 5 \cdot 2(|S| - 2) + 24k < 34k. \end{split}$$

The final bound

- From the bounds we have seen one can get, $|S| + |L_2| + |L_3| + |I_3| + |I_2| \le 41k.$
- For 14k we used a few (minor) analysis tricks plus a few more kernelization rules.
- We have a tight example:

where $___$ is a chain of four I_2 vertices.

- 14k kernel
- (journal version: 13k kernel)
- Region decomposition technique applied
- Unlike in the Alber et al. paper, our regions are not of O(1) size.
- Analysis is tight.

WANTED

A single-digit kernel for $\operatorname{PLANAR}\,\operatorname{FVS}$

WANTED

A single-digit kernel for $\operatorname{PLANAR}\,\operatorname{FVS}$

Reward:

and

a bottle of French wine

a bottle of Polish vodka

Bonamy, Kowalik ()

A 14k-kernel for Planar FVS

IPEC'14 19 / 20

Thank you!

The presentation contains some figures of Felix Reidl from a book

Cygan, Fomin, Marx, Kowalik, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh Parameterized Algorithms

(to appear in early 2015)

