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Abstract

We proved that every planar triangle-free graph of order n has a subset of vertices
that induces a forest of size at least (71n + 72)/128. This improves the earlier work
of Salavatipour [10]. We also pose some questions regarding planar graphs of higher
girth.

1 Introduction

The maximum size of acyclic induced subgraphs is studied in several different ways. If
only connected subgraphs are considered, the problem is to find the order of maximum
induced tree of a graph G, denoted by t(G). The problem was initiated by Erdős, Saks,
and Sós in 1986 [5]. Some latest results are due to Matoušek and Šámal [8], and also due
to Fox, Loh, and Sudakov [6].

On the other hand, if the maximum acyclic induced subgraph is not necessarily con-
nected, the task is to find the maximum induced forest. There are two equivalent ap-
proaches to obtain the maximum forest of a graph. The former is determining the decy-
cling number ∇(G) of a graph G, which is the least number of vertices whose deletion
results in an induced forest. In [7] it was shown that determining this invariant is NP-
hard even for planar graphs. An interested reader can find more results on the decycling
number in a survey of Punnim [9].
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The latter approach is finding a maximum set S of vertices of graph G such that the
graph G[S] induced on S is a forest. The size of such a set S is denoted by a(G) and it
is referred to as a forest number. Note that a(G) + ∇(G) = |V (G)|. We call the ratio
between the forest number and the order of a graph a forest ratio and denote it by γ(G).
Large induced forests in graphs recently attracted attention in various graph classes. In
1979, Albertson and Berman [2] raised a conjecture regarding planar graphs and initiated
the study of this topic:

Conjecture 1 (Albertson & Berman) Every planar graph has an induced forest on
at least half of its vertices.

Notice that the conjecture implies that every planar graph of order n has an indepen-
dent set of size at least n

4
. This fact is known to be true only as a consequence of the

Four Color Theorem. In 1987, Akiyama and Watanabe [1] posed a similar conjecture on
bipartite planar graphs:

Conjecture 2 (Akiyama & Watanabe) Every bipartite planar graph has an induced
forest on at least 5

8
of its vertices.

Note that Conjectures 1 and 2, if true, are sharp by K4 and Q3. Motivated by
Conjecture 2, Alon [3] proved the following result for sparse bipartite graphs:

Theorem 1 There exists an absolute positive constant b such that for every bipartite
graph G of order n and average degree at most d holds the inequality

a(G) ≥ (
1

2
+ e−bd2

) n .

Additionally, Alon proved that the exponential dependence on d cannot be replaced
by a polynomial one. In [4], Alon, Mubayi, and Thomas proved a result for triangle-free
graphs:

Theorem 2 Let G be a subcubic triangle-free graph of order n. Then a(G) ≥ 5
8
n, and

the bound is sharp whenever n is divisible by 8.

Furthermore, Alon, Mubayi, and Thomas proved that for every triangle-free graph
G of order n and size m the forest number is at least n − m

4
. For planar triangle-free

graphs this bound implies that the forest number is at least n
2

+1 due to Euler’s formula.
Salavatipour [10] improved the bound for planar graphs and showed that every triangle-
free planar graph of order n has the forest number a(G) ≥ ⌈17n+24

32
⌉. Using his approach,

we improve this bound and prove the following theorem:

Theorem 3 Let G be a planar graph of order n and size m with girth g(G) ≥ 4. Then,
a(G) ≥ 119n−24m−24

128
.

From Theorem 3 and the fact that there is at most 2n − 4 edges in planar graphs of
order n and girth at least 4, the following corollary immediatelly follows.
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Corollary 4 Let G be a planar graph of order n and girth g(G) ≥ 4. Then, a(G) ≥
⌈71n+72

128
⌉.

As mentioned above, the investigation of triangle-free graphs was motivated by Con-
jecture 2. However, one could also ask what is the forest number of graphs with girth at
least 5. We pose the following problem:

Conjecture 3 For every planar graph of order n and girth at least 5, the forest number
a(G) is at least 7

10
n.

The conjecture, if true, is sharp by the dodecahedron, and it was inspired by the fact
that the dodecahedron has the minimal edge to vertex ratio among all connected graphs
of girth at least 5. By this fact, it is natural to ask:

Question 1 Is the dodecahedron the only connected graph of girth at least five with forest
ratio 7

10
?

Now, we pose two simple observations regarding vertices of degree 2.

Proposition 5 For every connected graph G distinct from a cycle, there exists a maxi-
mum induced forest which contains every vertex of degree 2 in G.

Proof. Let F be a maximum induced forest in a graph G with as many vertices of degree
2 as possible. Suppose v is a vertex of degree 2 which is not in F . Obviously, v is an
element of a cycle, since F is maximum. Let e1 and e2 be the edges incident with v. Let u1

be a vertex of degree at least 3 such that the shortest path p1 between v and u1 contains
e1 and u1 is the only vertex of degree at least 3 on p1. Note that such u1 is unique and
it always exists, since G is not a cycle. Similarly, we define u2 and the shortest path p2

which should contain e2. Notice that u1 = u2 is possible, but then v belongs to a cycle
where u1(= u2) is the only vertex of degree at least 3.

Now, if u1 6= u2, they are both contained in F , otherwise v could be added to F .
In case when u1 = u2, similarly u1 is in F . We now replace u1 by v in F and obtain a
contradiction to the choice of F . �

Before stating the next observation, we define graph G∗ obtained from the graph G
by contracting all 2-vertices. Notice that G∗ may have parallel edges and loops.

Proposition 6 For any graph G with n2 vertices of degree 2 the following equality holds:

a(G) = a(G∗) + n2 .

Proof. First, we prove that a(G) ≤ a(G∗)+n2. Let V2 be the set of all vertices of degree
2 in G, so |V2| = n2. By Proposition 5 there exists a maximum induced forest F in G that
contains all vertices from V2. Obviously, F −V2 is an induced (not necessarily maximum)
forest in G∗.

Now, we prove that a(G) ≥ a(G∗) + n2. Let F ∗ be the maximum induced forest in
G∗. Obviously, F ∗ is an induced forest in G. Next, observe that by adding vertices from
V2 we do not introduce any cycles, thus F ∗ ∪ V2 is also an induced forest in G. �
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The above observations imply that if the dodecahedron is the graph with the smallest
forest ratio, it follows that when considering graphs of higher girth, the graphs with the
smallest forest ratio are dodecahedra with some edges subdivided. In particular, we can
easily state such graphs for girth 6, 7, and 8. Let M be the minimum set of edges in
dodecahedron D, such that each face is incident with an edge in M . Note that |M | = 6.
We define Dk to be a graph obtained by subdividing each edge in M by k-vertices. It is
easy to see that Dk has girth 5 + k for k ∈ {1, 2, 3}, and γ(Dk) = 7+3k

10+3k
.

Figure 1: The dodecahedron with 14 square vertices that induce a forest, and the graph
D2.

Observe that the maximum induced forest in Dk contains all the vertices of degree 2
and the vertices which form the induced forest of the dodecahedron.

2 Proof of Theorem 3

In the proof, we mostly follow the notation from [10]. We call a vertex of degree k a
k-vertex, and a neighbor of degree k of vertex v a k-neighbor of v. For a given cycle C in
a plane embedding of graph G we define int(C) to be the graph induced by the vertices
lying strictly in the interior of C. Similarly, ext(C) is the graph induced by the vertices
lying strictly in the exterior of C. A separating cycle is a cycle C such that int(C) 6= ∅
and ext(C) 6= ∅.

We will prove Theorem 3 by contradiction, i.e. we will prove that the minimal counter-
example G does not exist. It is easy to see that G is connected. In what follows, we prove
several lemmas, which determine some structure of G. Note that by G we always mean a
plane embedding of G, moreover n, m, and f are the order, size and the number of faces
in G, respectively.

Lemma 7 Graph G does not contain a bridge, i.e. it is 2-edge-connected.
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Proof. Assume G contains a bridge uv. Let Gu and Gv be the connected components
that contain u and v, respectively, in G − uv. By the minimality of G, there is a set
of vertices Ru in Gu and Rv in Gv, respectively, that induces a forest of size at least
119|V (Gu)|−24|E(Gu)|−24

128
and 119|V (Gv)|−24|E(Gv)|−24

128
, respectively. Then Ru∪Rv induces a forest

in G of size at least 119n−24(m−1)−48
128

= ϕ, which is a contradiction. �

Lemma 8 The maximum degree of G is at most 4, i.e. ∆(G) ≤ 4.

Proof. Let v be a ≥5-vertex of G. By minimality of G, there is an induced forest of size
at least 119(n−1)−24(m−5)−24

128
in G − v, which is the required size ϕ for an induced forest of

G. �

Lemma 9 The minimum degree of G is at least 3, i.e., δ(G) ≥ 3.

Proof. Suppose that the lemma is false and that G has 2-vertices. First, we claim that no
2-vertex is adjacent to a 4-vertex. Let u be a 4-neighbor of a 2-vertex v. By minimality of
G, we have that G−{u, v} has an induced forest of size at least 119(n−2)−24(m−5)−24

128
≥ ϕ−1

induced by a set R′. Then R′ ∪ {v} induces a forest of size at least ϕ in G.
We now claim that no 2-vertex has both a 2-neighbor and a 3-neighbor. Let u be a

2-neighbor, and let w be a 3-neighbor of a 2-vertex v. Let R′ be a subset of vertices in
G − {u, v, w} that induces a forest of size 119(n−3)−24(m−5)−24

128
≥ ϕ − 2. Then R′ ∪ {u, v}

induces a forest of size at least ϕ in G.
By the above two claims, we obtain that G is either a cycle or it does not contain a

pair of adjacent 2-vertices. If G is a cycle, it has an induced tree of size n−1 ≥ ϕ. Hence,
we conclude that both neighbors of a 2-vertex in G are of degree 3.

Now, we claim that every 3-vertex in G has at most one 2-neighbor. Let us consider a
3-vertex w adjacent to 2-vertices u and v. Let R′ be a subset of vertices in G − {u, v, w}

that induces a forest of size at least 119(n−3)−24(m−5)−24
128

≥ ϕ − 2. By introducing vertices
u and v to R′, we obtain an induced forest of size at least ϕ in G, which establishes the
claim.

Let v be one of the 2-vertices of G. By the third observation above, it has two 3-
neighbors, say u and w. We will consider few possibilities regarding the number of their
common neighbors, and each time we will obtain a contradiction. This will establish the
lemma.

• u and w have one common neighbor, namely v. Let G′ = G + uw − v. Observe
that G′ has girth at least 4, since the only 2-path between u and w in G contains
v. By the minimality of G, there is a subset R′ that induces a forest of size at least
119(n−1)−24(m−1)−24

128
≥ ϕ − 1 in G′. So, R′ ∪ {v} induces a forest of size at least ϕ

in G. Notice that adding v to the forest does not introduce a cycle, since u and w
were adjacent in G′, i.e. if u, w ∈ R′ then an edge in the forest is subdivided, and if
at most one of u, w was in the forest, then v is a leaf or an isolated vertex.

• u and w have precisely two common neighbors. Let these two neighbors be v and z,
and let x be the third neighbor of u. By the last claim, we know that z and x have
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degree at least 3. Since x and z are non-adjacent by the girth assumption, there
are at most m− 9 edges in G − {u, v, w, x, z}. By the induction, it has a subset R′

of vertices that induces a forest of size at least 119(n−5)−24(m−9)−24
128

≥ ϕ − 3, and so,
R′ ∪ {u, v, w} induces a forest of size at least ϕ in G.

• u and w have three common neighbors. Let these three vertices be v, z, and x.
Notice again that z and x are not adjacent due to the girth assumption. If one of z
and x is a 4-vertex, similarly as above, we obtain an induced forest of size at least
119(n−5)−24(m−9)−24

128
≥ ϕ − 3 in G − {u, v, w, x, z}, and by adding vertices u, v, and

w to the forest, we obtain a forest of size at least ϕ in G. So, we can assume that z
and x are 3-vertices.

Now, let y be the neighbor of z distinct from u and w (note that x 6= y). If y is a
2-neighbor of x, then G is a graph on six vertices, and the vertices u, v, x, z induce a
forest of size 4 > ϕ = 119·6−24·8−24

128
= 498

128
. However, if y is a ≥3-vertex, not necessarily

adjacent to x, then there is a subset of vertices R′ in G−{u, v, w, x, y, z} that induces

a forest of size at least 119(n−6)−24(m−9)−24
128

≥ ϕ−4, and hence R′∪{u, v, x, z} induces
a forest of size ≥ ϕ in G. Finally, if y is a 2-vertex not adjacent to x, then there
are at most m− 9 edges in G′ = G−{u, v, w, x, y, z}, and G′ has a forest F ′ of size
ϕ − 4. So, by adding the vertices u, v, x, z to F ′ we infer an induced forest of size
at least ϕ in G. �

Lemma 10 Let v be a 3-vertex adjacent to a 4-vertex u. Then the other two neighbors
of v have a common neighbor distinct from v.

Proof. Let w and z be the other two neighbors of v. Suppose that v is the only neighbor
of w and z. Consider the graph G′ = G + wz − {u, v}. Note that G′ has girth at least 4.
By minimality of G, there is a subset of vertices R′ in G′ that induce a forest of size at
least 119(n−2)−24(m−5)−24

128
≥ ϕ− 1 in G′, thus R′ ∪ {v} induces a forest of size at least ϕ in

G. �

In the following two lemmas the indices are considered modulo 4.

Lemma 11 G does not contain a 4-cycle C = v0v1v2v3 which has at least two 4-vertices
and a 3-vertex vi such that

(a) vi+2 is a 3-vertex; or

(b) vi+2 is connected to both int(C) and ext(C).

Proof. By minimality of G, there is a set R′ of size at least 119(n−4)−24(m−10)−24
128

≥ ϕ − 2
which induces a forest F ′ in G − V (C). Note that vi has at most one neighbor in R′ and
vi+2 has either at most one neighbor in R′ (when deg(vi+2) = 3) or it is connected to two
distinct trees in F ′ (when deg(vi+2) = 4). It follows that R′ ∪ {vi, vi+2} induces a forest
of size at least ϕ in G. �

Lemma 12 There is no separating 4-cycle C = v0v1v2v3 which has
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(a) at least two 3-vertices; or

(b) precisely one 3-vertex vi and precisely one neighbor of vi+2 in int(C).

Proof. Let C = v0v1v2v3 be a separating 4-cycle. Note that (b) follows from Lemma 11.
We split the proof of (a) in several cases regarding the number of 3-vertices of C.

Case 1: C has at least three 3-vertices. Let v0, v1, and v2 be three such vertices.
Suppose first that vertices v0, v1, and v2 are all connected to one of ext(C) and int(C),

say int(C). Then by 2-edge-connectivity of G and the fact that C is a separating cycle,
we have that v3 is a 4-vertex connected to ext(C) with two edges. Let u0, u1, and u2

be the neighbors of v0, v1, and v2 from int(C), respectively. By Lemma 10 we infer that
u0u1, u2u1 ∈ E(G), and from that, by the girth assumption, u0u2 /∈ E(G). Notice that u0

and u2 may coincide. In that case, the graph G′ = G − V (C) − u0 has an induced forest

F of size at least 119(n−5)−24(m−10)−24
128

≥ ϕ − 3, so by adding v0, v1, v2 to F , we obtain an
induced forest of size at least ϕ in G. Hence, we may assume u0 6= u2.

If all three vertices u0, u1, u2 are of degree 3, then we add u0, u1, and v0 to an induced
forest F ′ in G − {v0, v1, u0, u1, u2} of size at least 119(n−5)−24(m−10)−24

128
≥ ϕ − 3. So the

induced forest in G is of size at least ϕ. On the other hand, if at least one of these three
neighbors is of degree 4, the induced forest in G is obtained from a forest in the graph
G−V (C)−{u0, u1, u2} of size at least 119(n−7)−24(m−14)−24

128
≥ ϕ−4 by introducing vertices

v0, v1, v2, and u1.
Suppose now that not all of v0, v1, and v2 are connected to ext(C) or to int(C).

Without loss of generality, two vertices from {v0, v1, v2} are connected to int(C) and the
third one is connected to ext(C). By symmetry, we can assume v0 is connected to int(C),
and just one of v1, v2 with ext(C). Let u be a neighbor of v0 in int(C). There is an

induced forest F ′ of size at least 119(n−5)−24(m−10)−24
128

≥ ϕ− 3 in the graph G− V (C)− u.
By adding v0, v1, and v2 to F ′, we obtain an induced forest F of size at least ϕ in G. Note
that F is acyclic, since the path v0v1v2 is connected to F ′ by at most two edges which are
not incident with the same tree in F ′.

Case 2: C has exactly two 3-vertices. Note that by Lemma 11 we can assume that the
two 3-vertices of C are consecutive, say v0 and v1. Let u0 be the neighbor of v0 distinct
from v1 and v3. By symmetry we can assume that u0 ∈ ext(C) for otherwise one can
change the plane embedding of G. By Lemma 10, the vertices v1 and u0 have another
common neighbor u1, beside the vertex v0.

Observe that by Lemma 11 and the fact that C is a separating cycle, at least one of
the vertices v2 and v3 has two neighbors in int(C). By symmetry, we can assume that
v2 has two neighbors in int(C). By Lemma 11, v3 has either both neighbors in int(C) or
both in ext(C). In the former case consider the graph G − {v0, v1, v3, u0}. It has at most

m− 10 edges, so it has an induced a forest F ′ of size at least 119(n−4)−24(m−10)−24
128

≥ ϕ− 2.
By adding the vertices v0 and v1 to F , we obtain an induced forest of size at least ϕ in G.
It is easy to see that no cycle is introduced, since int(C) and ext(C) are not connected.
It follows that v3 is connected to ext(C) with two edges.

Now we note that if v3 is adjacent with u1 then deg(u1) = 4 for otherwise u1v1v0v3 is
a separating 4-cycle with three 3-vertices and we can proceed as in Case 1. It follows that
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the set of vertices S = {u1, v1, v0, v3} is always incident with at least 10 edges. Hence in
the graph G′ = G − S there is a subset of vertices R′ which induces a forest of size at
least 119(n−4)−24(m−10)−24

128
≥ ϕ − 2. In graph G′ there is no path from v2 to u0 since in G

vertex v2 has two neighbors in int(C). It follows that R′ ∪ {v0, v1} induces a forest of size
at least ϕ in G, even if both v2 and u0 are in R′. �

Lemma 13 The graph G has no 4-face with four 3-vertices.

Proof. Let C = v0v1v2v3 be a 4-face in G incident only with 3-vertices. If v0 and v2 have
a common neighbor u in G − V (C), then we have a separating 4-cycle v0v1v2u with at
least three 3-vertices, which is a contradiction by Lemma 12. A similar argument applies
if v1 and v3 have a common neighbor. Thus, each vertex of C has a distinct neighbor in
G−V (C). Let u0, u1, u2, and u3 be the third neighbors of v0, v1, v2, and v3, respectively.
As we argued, u0, u1, u2, and u3 are pairwise distinct. Note also that by the planarity, at
most one of u0u2 and u1u3 is in G.

Suppose first that at least two consecutive edges, vivi+1 and vi+1vi+2, of C are incident
to ≥ 5-faces (indices are considered modulo 4). Note that in case, when ui and ui+2 are
adjacent, at least one of vi+2vi+3 and vi+3vi is incident to a ≥ 5-face (and ui+1, ui+3 are
non-adjacent as stated above), due to the girth assumption. Hence, there always exist
edges vjvj+1, vj+1vj+2 incident to ≥5-faces such that uj and uj+2 are non-adjacent. Say
v0v1 and v1v2 are such edges. Now, consider the graph G′ obtained from G by removing
vertices of C, and adding a new vertex x. As u0 and u2 are non-adjacent, let x be adjacent
to u0, u1, and u2, i.e. G′ = G∪{x, xu0, xu1, xu2}−V (C). The resulting graph G′ has girth
at least 4, since u0, u1, and u2 are pairwise non-adjacent by Lemma 12. By minimality of
G, there is a vertex set R′ that induces a forest of size at least 119(n−3)−24(m−5)−24

128
≥ ϕ− 2

in G′. If x /∈ R′, then R′ ∪ {v1, v3} induces a forest of size at least ϕ in G. On the other
hand, if x ∈ R′, we consider the vertex set R′ \ {x} ∪ {v0, v1, v2}, inducing a forest of size
at least ϕ in G.

Now, we may assume that C has at most two edges incident to ≥5-faces, and they are
non-consecutive on C. We will consider several cases regarding the number of 3-vertices
in U = {u0, u1, u2, u3}. Note that any two vertices of U incident with the same ≥5-face,
which is also incident with C, are non-adjacent due to Lemma 12.

Case 1: All the vertices in U are of degree 3 and C is incident with at least three 4-faces.
In case when C is incident with four 4-faces, G is the cube, so there is an induced forest
of size ϕ = 119·8−24·12−24

128
= 5.

Suppose now that C is incident to precisely three 4-faces, and let u0 and u1 be the
two vertices incident with the only ≥5-face. Since G is not a cube, there exists a vertex
x adjacent to u0 and distinct from v0, u1, u3. By the minimality, there is a subset of
vertices R′ in G − V (C) − {u0, u1, u2, u3, x} which induces a forest in G′ of size at least
119(n−9)−24(m−14)−24

128
≥ ϕ − 6. Consider the set R = R′ ∪ {u0, u1, u2, v0, v1, v3}. The tree

induced by {u0, u1, u2, v0, v1, v3} might be connected with R′ only by one edge that is
incident with u1. So, R induces a forest of size at least ϕ in G.

Case 2: U has one 4-vertex and C is incident with at least three 4-faces. First, note
that C cannot be incident with four 4-faces due to 2-edge-connectivity, so we may assume
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that C is incident to precisely one ≥ 5-face f . Then U must have a 3-vertex x which is
incident to two of the three 4-faces, and which has a 4-neighbor y in U . We may assume
x = u0. Observe that u2 is a 3-vertex. Also note that the two vertices of U incident to f
are not adjacent by Lemma 12. Now, by minimality of G there is a set of vertices R′ in
G−V (C)−{u0, u1, u2, u3} that induces a forest of size at least 119(n−8)−24(m−14)−24

128
≥ ϕ−5.

The set R′∪{u0, u2, v0, v1, v3} induces a forest of size at least ϕ in G. Obviously, no cycles
are introduced, since the vertices u0, v0, v1, v3 induce a tree which is not connected to R′

and u2 has at most one neighbor in R′.

Case 3: U has at most one 4-vertex and C is incident with precisely two 4-faces. Recall
that these two faces are not consecutive around C, so we may assume the 4-faces incident
with C are bounded by the cycles v0u0u1v1 and v2u2u3v3. Note that u0u2, u1u3 /∈ E(G)
due to 2-edge-connectivity of G. By symmetry, we may also assume that the possible
4-vertex in U is u1. Consider the graph G − V (C) − {u0, u1, u2, u3} and its vertex set R′

that induces the forest F ′ of size at least 119(n−8)−24(m−14)−24
128

≥ ϕ− 5. The set of vertices
R′ ∪ {u0, u2, v0, v1, v3} induces a forest of size at least ϕ in G.

Case 4: U has two 4-vertices. If C is incident to four 4-faces, then there is a separating
4-cycle u0u1u2u3, which is reducible by Lemma 12.

Suppose now C is incident with precisely one ≥5-face f . We consider two possibilities.
First, let both 4-vertices of U be incident to f . We may assume that these two vertices
are u0 and u1. Note that u0 and u1 are non-adjacent by Lemma 12. Again, there exists an
induced forest of size at least 119(n−8)−24(m−15)−24

128
≥ ϕ − 5 in G − V (C) − {u0, u1, u2, u3}.

It is easy to see that inserting the vertices u2, u3, v0, v1, and v3 into the forest does not
introduce any cycles, so we obtain a forest of size at least ϕ in G. Thus we can assume
that at least one 3-vertex from U is incident to f , say u0. There exists a vertex set R′ that
induces a forest of size at least 119(n−7)−24(m−14)−24

128
≥ ϕ − 4 in G − V (C) − {u1, u2, u3}.

By inserting vertices u2, v1, v2, and v3 to R′ we obtain an induced forest of size at least
ϕ in G.

Finally, suppose C is incident with two (non-consecutive) 4-faces. Again, we may
assume that u0 and u1 are incident with the same ≥ 5-face, and u0 is a 3-vertex. Let
R′ be the vertex set that induces a forest in G′ = G − V (C) − {u0, u1, u3}. By the

minimality, this set is of size at least 119(n−7)−24(m−14)−24
128

≥ ϕ − 4 unless u1 and u3 are
adjacent. But in the exceptional case, u0 and u2 are not adjacent by the planarity, so
we redefine G′ = G − V (C) − {u0, u1, u2} to obtain an induced forest of size at least
119(n−7)−24(m−14)−24

128
≥ ϕ− 4. Now, we add vertices u0, v0, v1, and v3 (resp. u1, v0, v1, and

v2) to R′. We obtain an induced forest in G of size at least ϕ.

Case 5: U has three 4-vertices. By Lemma 12, we infer that there are no four 4-faces
incident with C, since u0u1u2u3 is a separating 4-cycle with one 3-vertex and its opposite
vertex is adjacent with the internal and external component.

Suppose now that there are three 4-faces incident with C. By symmetry, assume u0 is
the 4-vertex not incident to a ≥5-face. Next, let R′ be the vertex set which induces the
forest of size at least 119(n−7)−24(m−14)−24

128
≥ ϕ − 4 in G − V (C) − {u0, u1, u3}. To obtain

an induced forest of size at least ϕ in G, just introduce the vertices u0, v0, v1 and v3 to
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R′. Again, the introduced claw could be connected to the forest only by u0, thus no cycle
is introduced.

Finally, suppose that C is incident to two 4-faces. Here, let u0 be the only 3-vertex in
U . It is easy to see that by defining R′ as in the case above and by adding the vertices
u0, v0, v1, and v3 to R′ we obtain the induced forest of size at least ϕ in G.

Case 6: U has four 4-vertices. Note first that by planarity if u0 and u2 are adjacent
then u1 and u3 are non-adjacent. By symmetry, we may assume u0u2 /∈ E(G). Next, let

R′ be the vertex set that induces a forest of size at least 119(n−6)−24(m−14)−24
128

≥ ϕ − 3 in
G−V (C)−{u0, u2}. It is easy to see that R′∪{v0, v1, v2} induces a forest of size at least
ϕ in G. �

Lemma 14 The graph G has no 4-face with precisely two 3-vertices.

Proof. Let the cycle C = v0v1v2v3 be a 4-face with precisely two 3-vertices. By Lemma 11
we obtain that the 3-vertices are adjacent, so we can assume v0 and v1 are of degree 3.
Let u0 be the third neighbor of v0, and let u1 be the third neighbor of v1. By Lemma 10,
we have that u0 and u1 are adjacent, moreover, Lemma 12 implies that the cycle v0v1u1u0

bounds a face and that u0v2, u1v3 /∈ E(G). Moreover, at least one of u0 and u1 is a 4-
vertex, otherwise v0v1u1u0 is a 4-face with four 3-vertices, which is reducible by Lemma 13.
By symmetry, we may assume that deg(u0) = 4.

If u1 is a 3-vertex, there is a set of vertices R′ of size at least 119(n−6)−24(m−14)−24
128

≥ ϕ−3
in G − V (C) − {u0, u1}. The set R′ ∪ {u1, v1, v0} induces a forest of size at least ϕ in G.
It is easy to see that no cycle is introduced by this set.

Finally, assume u1 is a 4-vertex. Note that if u0 and v2 have a common neighbor, then
by the planarity and the girth assumption, u1 and v3 do not have a common neighbor. By
symmetry, we may assume that u0 and v2 have no common neighbor (and recall that u0 and
v2 are non-adjacent). Then there is a subset of vertices R′ in G+u0v2−{u1, v0, v1, v3} which

induces a forest of size at least 119(n−4)−24(m−10)−24
128

≥ ϕ − 2. The vertex set R′ ∪ {v0, v1}
induces a forest of size at least ϕ in G; observe that by adding these two vertices no cycle
is introduced, since if {u0, v2} ⊆ R′, we only subdivide an edge in the forest. �

Lemma 15 The graph G has no 5-face incident only with 3-vertices.

Proof. Assume C = v0v1v2v3v4 is a 5-face incident only with 3-vertices. Let ui be the
third neighbor of vi, where i ∈ {0, 1, 2, 3, 4}. By minimality of G, there is a subset of
vertices R′ in a graph G′ obtained by removing C and adding the vertices x, y and the
edges xu0, xu1, xy, yu2, and yu3 to G, i.e. G′ = G−V (C) + {x, y, xu0, xu1, xy, yu2, yu3},

that induces a forest F ′ of size 119(n−3)−24(m−5)−24
128

≥ ϕ − 2. Note that by adding these
edges we do not violate the girth assumption, since there is no 4-cycle with two 3-vertices
in G by Lemma 11.

Now, we distinguish few possibilities regarding whether x and y are in R′. If none of
them is in R′, then adding v0 and v2 to F ′ does not introduce a cycle and the size of the
resulting forest is at least ϕ in G. If precisely one of x and y is in R′, say x, we need to
add three vertices to F ′ to assure that its size is at least ϕ, since x is not a vertex of G.
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However, as x is in the forest, adding v0 and v1 to F ′ −x does not introduce a cycle. The
third vertex, v3, is connected to the forest with at most one edge.

Finally, if x and y are both in R′, then we replace them with four vertices of C.
Namely, we add vertices v0, v1, v2, and v3. It is easy to see that no cycle is introduced,
so we obtain an induced forest of size at least ϕ in G. �

Lemma 16 The graph G is not cubic.

Proof. Suppose for a sake of contradiction that G is cubic. By the girth assumption and
Lemmas 13 and 15, we infer that faces in G have length at least 6. On the other hand,
Lemma 9 implies that the minimum degree in G is at least 3, so by Euler’s formula G
contains a face of length at most 5, a contradiction. �

Lemma 17 Every 3-vertex of G has three 4-neighbors.

Proof. Suppose the claim is false. By Lemma 16, G is not cubic, thus it has at least
one 4-vertex. Therefore if there is any 3-vertex in G, there is also a 3-vertex v adjacent
to at least one 4-vertex u. Let w and z be the other two neighbors of v. By Lemma 10,
we know that w and z have a common neighbor x distinct from v. However, if w or z
is a 3-vertex, a separating 4-cycle or a 4-face with two 3-vertices is introduced, but such
configurations are reducible by Lemmas 12 and 14. �

Lemma 18 The graph G does not contain 4-faces with precisely one 3-vertex.

Proof. Suppose for a sake of contradiction that the cycle C = v0v1v2v3 is a 4-face in G
with exactly one 3-vertex v0. Let u0 be the neighbor of v0 distinct from v1 and v3. By
Lemma 17, it follows that u0 is a 4-vertex. Moreover, by Lemma 10, u0 and v1 have a
common neighbor x distint from v0, and also u0 and v3 have a common neighbor y distint
from v0. Lemmas 12 and 14 imply that d(x) = d(y) = 4. Now we show in few steps that
the vertices of Fig. 2 are all pairwise distinct.

v0 v1

v2v3

u0 x

y

z

u3

u1

Figure 2: The neighborhood of vertices v0, v1, v2, and v3.

First we claim that x 6= v2. Suppose contrary that x = v2. Let u2 be the neighbor
of v2 which is distinct from v1, v3, and u0. Let C1 be the separating 4-cycle v0v3v2u0. If
u2 is not in the same component of G − V (C1) as v1, then we have a separating 4-cycle
with one 3-vertex and its opposite vertex adjacent to two components. Such a cycle is
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reducible by Lemma 12. On the other hand, if u2 is in the same component, consider
instead the reducible separating 4-cycle v0v1v2u0, a contradiction. We similarly show that
y 6= v2.

Now, we claim that x 6= y. Again, suppose contrary that x = y. Let x1 be the neighbor
of x distinct from u0, v1, and v3. Consider the 4-cycles C1 = xu0v0v1, C2 = xu0v0v3, and
C3 = xv3v0v1. Note that among these three cycles we can always choose a cycle Ci such
that x1 and the neighbor of x not incident to Ci are in different parts int(Ci) and ext(Ci)
(see Fig. 3). Hence, Ci is a separating cycle. Since C1, C2, and C3 all contain a 3-vertex
v0, Ci is reducible by Lemma 12(b), a contradiction. This establishes the claim.

v0 v1

v2v3

u0

x = y
x1

C1

v0 v1

v2v3

u0

x = y

x1

C2

v0 v1

v2v3

u0

x = y

x1

C3

Figure 3: We can always find such a 4-cycle Ci that x1 and the other neighbor of x not
in incident with Ci are in different parts int(Ci) and ext(Ci).

Consider now the neighbor z of u0 distinct from v0, x, and y. We claim that z 6= v2,
for otherwise we consider the separating 4-cycles u0v0v3v2 and u0v0v1v2. At least one of
them satisfies the assumptions of Lemma 12(b), a contradiction.

Next, let u1 be the neighbor of v1 distinct from x, v0, and v2. Also, let u3 be the
neighbor of v3 distinct from y, v0, and v2. We claim that u1 6= u3. Suppose contrary that
u1 = u3. Note that xu1 and yu1 are not the edges in G, due to the girth assumption. Let
R′ be the subset of vertices that induce the forest in G − V (C) − {u0, u1, x, y} of size at

least 119(n−8)−24(m−19)−24
128

≥ ϕ− 4. Now, the set R′ ∪{u0, v0, v1, v3} induces a forest of size
at least ϕ in G. This establishes the claim that u1 and u3 are distinct.

We also claim that x 6= u3. Suppose contrary that x = u3. By planarity, y = u1.
Let G′ = G − {v0, v1, v3, u0, x, y}. There exists a set of vertices R′ in G′ that induces the

forest of size at least 119(n−6)−24(m−15)−24
128

≥ ϕ − 3. Inserting the vertices v0, v3, and u0

in R′ infers a forest of size at least ϕ in G. Observe that no cycle is introduced, since z
and v2 are in different parts of the plane regarding the separating cycle v0v1xv3. We show
similarly that y 6= u1.

As we established that all vertices from Fig. 2 are distinct, we continue by considering
the adjacency of the vertices z, u1, and u3. If neither of them are adjacent, then there exists
a set of vertices R′ of size at least 119(n−6)−24(m−15)−24

128
≥ ϕ− 3 in G∪{w, wz, wu1, wu3}−

{v0, v1, v2, v3, u0, x, y}, where w is a new vertex. If w /∈ R′, then the vertices v1, v3, and
u0 are added to R′ to induce a forest F of size at least ϕ. On the other hand, if w ∈ R′,
then such a forest is induced by adding v0, v1, v3, and u0 to F . Obviously in both cases
no cycle is introduced.

By the above paragraph, we may assume that some two vertices from {z, u1, u3} are
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adjacent, however, there exist a pair which is not, due to the girth assumption. Observe
that without loss of generality, we may assume that zu3 /∈ E(G) and u1u3 ∈ E(G), since
we may use the symmetry of the neighborhood of vertex v (see Fig. 4).

v0

v3 v1
v2

u3 u1

y x

u0

z

Figure 4: The symmetric neighborhood of vertex v0.

Next, we claim that both of the vertices u1 and u3 are of degree 4. Suppose for
a contradiction that u1 is a 3-vertex. Then, by Lemma 17, u3 is a 4-vertex, and by
Lemma 10, u3 is adjacent to x. So, consider the separating 5-cycle g = u1v1v0v3u3 and
an induced forest F ′ of G − V (g) − y. It is of size at least 119(n−6)−24(m−16)−24

128
≥ ϕ − 3.

Observe that after adding vertices v0, v3, and u1 to F ′ no cycles are introduced, thus we
obtain an induced forest of size at least ϕ in G, a contradiction.

Finally, consider two subcases regarding the degree of z:

• z is a 4-vertex. In this case, by planarity at most one of the edges u1y, and u3x exists.
By symmetry, suppose that u3x does not. Then there is a set of vertices R′ in G −
V (C) − {u0, u3, z, x, y} which induces a forest of size at least 119(n−9)−24(m−24)−24

128
≥

ϕ − 4. The vertex set R′ ∪ {u0, v0, v1, v3} induces a forest of size at least ϕ in G.

• z is a 3-vertex. Let s and t be the neighbors of z distinct from u0. By Lemma 10 we
infer that s and t have a common neighbor p. In addition, by Lemma 10, we may
assume that ty, sx ∈ E(G). Note that t 6= u3 and s 6= u1 by the girth assumption.
Moreover, if t = u1, then either p = y or p = u3. Both cases are violating the
planarity, thus t 6= u1. Similarly we show that s 6= u3.

Let q be the neighbor of x distinct from v1, u0, and s, and similarly let r be the
neighbor of y distinct from v3, u0, and t. Note that q = r is possible only when q is
a 4-vertex. Otherwise, if q is a 3-vertex, we obtain a separating 4-cycle u0xqy which
is reducible by Lemma 12(b).

Next, by the planarity at least one of the edges qt and rs does not exists, say
qt /∈ E(G). Then, there exists a set R′ in G − {v0, v1, v3, u0, x, y, z, s, t, q} which

induces a forest F ′ of size at least 119(n−10)−24(m−24)−24
128

≥ ϕ − 5. By introducing
vertices u0, v0, x, y, and z to R′, we obtain a set of vertices which induces a forest
of size at least ϕ in G. It is easy to see that the new vertices do not introduce any
cycles, since only the edge yu0 could be incident with F ′.

This analysis establishes the lemma. �
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From Lemmas 13, 14, and 16–18 immediately follows the corollary below:

Corollary 19 Every 4-face (resp. 5-face) of G is incident with four (resp. three) 4-
vertices.

Finally we are ready to establish the theorem with the following short application of
Euler’s formula.

Proof (of Theorem 3). Let nd be the number of vertices of degree d and let fl be the
number of faces of length l in G. By Corollary 19 we infer

4n4 ≥ 4f4 + 3f5 .

Using this inequality and Euler’s Formula we obtain

−12 = 6m − 6n − 6f

= 2
∑

v∈V (G)

d(v) +
∑

f∈F (G)

l(f) − 6n − 6f

=
∑

d≥3

(2d − 6)nd +
∑

l≥4

(l − 6)fl

≥ 2n4 − 2f4 − f5

≥ 0 .

Hence, we obtain a contradiction which shows that the minimal counter-example does not
exist and establish Theorem 3. �
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