
Improving TSP tours using dynamic
programming over tree decompositions

Marek Cygan, Lukasz Kowalik, Arkadiusz Soca la

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Traveling Salesman Problem (TSP)

Input

complete undirected graph G = (V ,E) and
a weight function w : E → N.

Problem
Find a tour (Hamiltonian cycle) of minimum weight.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Traveling Salesman Problem (TSP)

Input

complete undirected graph G = (V ,E) and
a weight function w : E → N.

Problem
Find a tour (Hamiltonian cycle) of minimum weight.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

The shortest tour catching all San Francisco pokemons

(from http://www.math.uwaterloo.ca/tsp/poke/)

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

k-OPT local search heuristic

1. H0 := arbitrary Hamiltonian cycle.

2. As long as possible, get a better cycle Hi by means of the
k-move operation.

→ → → · · ·

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

k-OPT heuristic

Practice
An implementation of a variant, called Lin-Kernighan heuristic
solves 80K-vertex instances optimally (Hellsgaun ’09).

Theory

Interesting results (lower, upper bounds) on

I quality of local optima (e.g. Chandra et al, SICOMP’99),

I number of steps needed to find local optimum (e.g., Johnson
et al, JCSS’88),

I smoothed analysis of 2-opt (e.g. Künnemann and B. Manthey,
ICALP’15).

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Today’s question

How fast can we perform a single step,
i.e.,

How fast can we find an improving k-move?

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Today’s question

k-opt Optimization
Input: symmetric function w : V 2 → N, a Hamiltonian cycle H
Output: a k-move that maximizes improvement over H.

k-opt Detection
Output: Is there a k-move improving over H?

Upper bounds

I O(nk) exhaustive search,

I O(nb2k/3c+1) time, O(n)
additional space [de Berg,
Buchin, Jansen, Woeginger
’16]

Lower bounds

I W [1]-hard [Marx ’08]

I no no(k/ log k) algorithm under
ETH [Guo et al. ’13]

I no o(n2) algorithm for k = 2
(folklore),

I if o(n2.99) algorithm for k = 3,
then APSP in time o(n2.99) [de
Berg et al].

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Today’s question

k-opt Optimization
Input: symmetric function w : V 2 → N, a Hamiltonian cycle H
Output: a k-move that maximizes improvement over H.

k-opt Detection
Output: Is there a k-move improving over H?

Upper bounds

I O(nk) exhaustive search,

I O(nb2k/3c+1) time, O(n)
additional space [de Berg,
Buchin, Jansen, Woeginger
’16]

Lower bounds

I W [1]-hard [Marx ’08]

I no no(k/ log k) algorithm under
ETH [Guo et al. ’13]

I no o(n2) algorithm for k = 2
(folklore),

I if o(n2.99) algorithm for k = 3,
then APSP in time o(n2.99) [de
Berg et al].

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Our results

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k) and space O(n(1/8+εk)k), where limk→∞ εk = 0.

Values of εk (computed by a program)
k 3 4 5 6 7 8

de Berg et al. O(n3) O(n3) O(n4) O(n5) O(n5) O(n6)

our algorithm O(n3.4) O(n4) O(n4.25) O(n4
2
3)

Theorem
If there is ε > 0 such that 4-opt Detection admits an algorithm
in time O(n3−ε · polylog(M)), then there is δ > 0 such that All
Pairs Shortest Paths admits an algorithm in time
O(n3−δ · polylog(M)), assuming integer weights from
{−M, . . . ,M}.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Our results

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k) and space O(n(1/8+εk)k), where limk→∞ εk = 0.

Values of εk (computed by a program)
k 3 4 5 6 7 8

de Berg et al. O(n3) O(n3) O(n4) O(n5) O(n5) O(n6)

our algorithm O(n3.4) O(n4) O(n4.25) O(n4
2
3)

Theorem
If there is ε > 0 such that 4-opt Detection admits an algorithm
in time O(n3−ε · polylog(M)), then there is δ > 0 such that All
Pairs Shortest Paths admits an algorithm in time
O(n3−δ · polylog(M)), assuming integer weights from
{−M, . . . ,M}.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Our results

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k) and space O(n(1/8+εk)k), where limk→∞ εk = 0.

Values of εk (computed by a program)
k 3 4 5 6 7 8

de Berg et al. O(n3) O(n3) O(n4) O(n5) O(n5) O(n6)

our algorithm O(n3.4) O(n4) O(n4.25) O(n4
2
3)

Theorem
If there is ε > 0 such that 4-opt Detection admits an algorithm
in time O(n3−ε · polylog(M)), then there is δ > 0 such that All
Pairs Shortest Paths admits an algorithm in time
O(n3−δ · polylog(M)), assuming integer weights from
{−M, . . . ,M}.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,

M

)

I an embedding f : {1, . . . , k} → {1, . . . , n}

I connection pattern: a perfect matching M on {1, .., 2k}

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,

M

)

I an embedding f : {1, . . . , k} → {1, . . . , n}

I connection pattern: a perfect matching M on {1, .., 2k}

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,

M

)

I an embedding f : {1, . . . , k} → {1, . . . , n}

I connection pattern: a perfect matching M on {1, .., 2k}

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,M)

I an embedding f : {1, . . . , k} → {1, . . . , n}
I connection pattern: a perfect matching M on {1, .., 2k}

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

de Berg et al.’s idea

1
2

3

4

5

6 f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

Observation 1
Now we can specify a connection pattern M before specifying an
embedding f .

Observation 2
There are only O((2k)!) connection patterns, i.e., O(1) for fixed k .

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

de Berg et al.’s idea

1
2

3

4

5

6 f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

Idea

I For each of the O((2k)!) connection patterns M, find the
embedding fM which maximizes weight improvement.

I Fixing M allows for exploiting the structure of the solution.

From now on, assume M is fixed.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Key notion: the dependence graph DM

V (DM) = [k].

Vertex i corresponds to the i-th deleted edge from the Hamiltonian
cycle e1e2 · · · en.

E (DM) = O ∪ IM ,

where

O = {12, 23, . . . , (k − 1)k}

I Edge j(j + 1) ∈ O represents the property f (j) < f (j + 1).

I IM is defined by M. Edge ij ∈ IM means that the cost of
embedding i-the edge depends on f (j).

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

E (DM) = O ∪ IM

I O = {12, 23, . . . , (k − 1)k}
I Get IM from M by identifying 2i − 1 with 2i for i ∈ [k]:

IM = {ij : i ′j ′ ∈ M, i ′ ∈ {2i − 1, 2i}, j ′ ∈ {2j − 1, 2j}}

1
2

3

4

5

6

1
2

3

4

5

6

1

2

3
1 2 3

D = ([3],O ∪ IM)

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

E (DM) = O ∪ IM

I O = {12, 23, . . . , (k − 1)k}
I Get IM from M by identifying 2i − 1 with 2i for i ∈ [k]:

IM = {ij : i ′j ′ ∈ M, i ′ ∈ {2i − 1, 2i}, j ′ ∈ {2j − 1, 2j}}

1
2

3

4
5

6

7

8
1

2

3

4
5

6

7

8
1

2

3

4

1 2 3 4

D = ([4],O ∪ IM)

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Another possible algorithm

1 2 3 4

D = ([4],O ∪ IM)

1. Embed 2, 4, . . . , 2bk/2c in all nbk/2c ways

2. Dependence graph of the rest D ′ has only some edges of IM .
D ′ is a collection of cycles and paths so we can find optimal
embedding in O(n3) time using dynamic programming.

Hence, time is O(nbk/2c+3) for every connection pattern.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Another possible algorithm

1 2 3 4

D = ([4],O ∪ IM)

1. Embed 2, 4, . . . , 2bk/2c in all nbk/2c ways

2. Dependence graph of the rest D ′ has only some edges of IM .
D ′ is a collection of cycles and paths so we can find optimal
embedding in O(n3) time using dynamic programming.

Hence, time is O(nbk/2c+3) for every connection pattern.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Another possible algorithm

1 2 3 4

D = ([4],O ∪ IM)

1. Embed 2, 4, . . . , 2bk/2c in all nbk/2c ways

2. Dependence graph of the rest D ′ has only some edges of IM .
D ′ is a collection of cycles and paths so we can find optimal
embedding in O(n3) time using dynamic programming.

Hence, time is O(nbk/2c+3) for every connection pattern.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

d

i

h

g

bdef defh

abde

bcf

dhg

ehfi

Tree decomposition is a tree of bags (subsets of V)

such that
I For every edge uv ∈ E some bag contains u and v

I For every vertex v ∈ V bags containing v form nonempty
subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

d

i

h

g

bdef defh

abde

bcf

dhg

ehfi

Tree decomposition is a tree of bags (subsets of V) such that
I For every edge uv ∈ E some bag contains u and v

I For every vertex v ∈ V bags containing v form nonempty
subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

dd

i

h

g

bdef defh

abde

bcf

dhg

ehfi

bdef defh

abde dhg

Tree decomposition is a tree of bags (subsets of V) such that
I For every edge uv ∈ E some bag contains u and v
I For every vertex v ∈ V bags containing v form nonempty

subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

d

i

h

g

bdef defh

abde

bcf

dhg

ehfi

Tree decomposition is a tree of bags (subsets of V) such that
I For every edge uv ∈ E some bag contains u and v
I For every vertex v ∈ V bags containing v form nonempty

subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Dynamic programming

For every node t of a tree decomposition of the graph DM :

I Xt = the bag at t,

I Vt = union of all bags in the subtree rooted at t.

Xt

Vt

For every node t and partial embedding f : Xt → [n], compute

Tt [f] = max
g :Vt→[n]
g |Xt=f

gainM(g).

in the bottom-up fashion.
Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Dynamic programming: example

1 2 3 4

D = ([4],O ∪ IM)

234

23

123

T123[f] = w(ef (1)) + w(ef (2)) + w(ef (3))− w(E+
f ,M)

T23[f] = max
g :{1,2,3}→[n]

g |{2,3}=f

T123[g].

T234[f] = T23[f |{2,3}] + w(ef (4))− w(E+
f ,M \ E+

f |{2,3},M
)

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

The O(n(1/3+εk)k)-time algorithm

Theorem
Given a connection pattern M, the best k-move (f ,M) can be
found in time ntw(DM)+1k2 + 2k .

Theorem (Fomin et al. 2009)

Treewidth a k-vertex graph of maximum degree 4 is bounded by
(13 + εk)k , where limk→∞ εk = 0.

Corollary

For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/3+εk)k), where limk→∞ εk = 0.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 tw(DM,b)).

I Price: many bucket assignments to consider.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 tw(DM,b)).

I Price: many bucket assignments to consider.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 tw(DM,b)).

I Price: many bucket assignments to consider.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 tw(DM,b)).

I Price: many bucket assignments to consider.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 tw(DM,b)).

I Price: many bucket assignments to consider.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

The O(n(1/4+εk)k)-time algorithm

Plugging in the bucketing idea gives our main result (calculations
skipped).

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k), where limk→∞ εk = 0.

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

Further research

I Is there an algorithm in time no(k) assuming ETH?

I Further improvement of the exponent? For k = 5?

I Can we benefit from these ideas in practice?

Cygan, Kowalik, Soca la Improving TSP tours using tree decompositions

