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Traveling Salesman Problem (TSP)

Input
complete undirected graph G = (V, E) and
a weight function w : E — N.

Problem
Find a tour (Hamiltonian cycle) of minimum weight.
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k-OPT local search heuristic

1. Hy := arbitrary Hamiltonian cycle.

2. As long as possible, get a better cycle H; by means of the
k-move operation.
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k-move

For a tour H, a k-move is defined by a pair (E—, E™) such that
» |[E7|=|ET| =k and
» H =H\ E- UET is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H') < w(H).
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k-move

For a tour H, a k-move is defined by a pair (E—, E™) such that
» |[E-|=|E"| =k and
» H =H\ E- UET is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H') < w(H).
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k-OPT heuristic

Practice
An implementation of a variant, called Lin-Kernighan heuristic
solves 80K-vertex instances optimally (Hellsgaun '09).

Theory
Interesting results (lower, upper bounds) on
» quality of local optima (e.g. Chandra et al, SICOMP'99),

» number of steps needed to find local optimum (e.g., Johnson
et al, JCSS'88),

» smoothed analysis of 2-opt (e.g. Kiinnemann and B. Manthey,
ICALP'15).
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Today's question

How fast can we perform a single step,
le.,
How fast can we find an improving k-move?
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Today's question

k-oPT OPTIMIZATION
INPUT: symmetric function w : V2 — N, a Hamiltonian cycle H
OUTPUT: a k-move that maximizes improvement over H.

k-OPT DETECTION
OUTPUT: Is there a k-move improving over H?
Lower bounds
» W/[1]-hard [Marx '08]

Upper bounds
> no n°(k/1gk) 3lgorithm under

» O(n*) exhaustive search, ETH [Guo et al. '13]
> no o(n?) algorithm for k = 2
(folklore),
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Today's question

k-oPT OPTIMIZATION
INPUT: symmetric function w : V2 — N, a Hamiltonian cycle H
OUTPUT: a k-move that maximizes improvement over H.

k-OPT DETECTION
OUTPUT: Is there a k-move improving over H?

Lower bounds
» W/[1]-hard [Marx '08]

Upper bounds
> no n°(k/1gk) 3lgorithm under

» O(n*) exhaustive search, ETH [Guo et al. '13]

> O(nl2//2%7) time, O(n) > no o(n?) algorithm for k = 2
additional space [de Berg, (folklore)
Buchin, Jansen, Woeginger '

> if o(n?9) algorithm for k = 3,
then APSP in time o(n?%°) [de
Berg et al].

'16]
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Our results

Theorem
For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(1/4+<)k) and space O(n(1/8+<)¥) where limj_ o €4 = 0.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions



Our results

Theorem

For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(1/4+<)k) and space O(n(1/8+<)¥) where limj_ o €4 = 0.

Values of ¢, (computed by a program)

k | 3| 4] 5 | 6 | 7 | 8

de Berg et al.| O(n3)| O(n®)| O(n*) |O(n®)| O(n®) | O(n®)
2

our algorithm o(n**) | 0(n*)| O(n*2%)| O(n*3)
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Our results

Theorem
For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(1/4+<)k) and space O(n(1/8+<)¥) where limj_ o €4 = 0.

Values of ¢, (computed by a program)

k | 3| 4] 5 | 6 | 7 | 8

de Berg et al.| O(n3)| O(n®)| O(n*) |O(n®)| O(n®) | O(n®)
2

our algorithm o(n**) | 0(n*)| O(n*2%)| O(n*3)

Theorem

If there is € > 0 such that 4-OPT DETECTION admits an algorithm
in time O(n3~¢ - polylog(M)), then there is § > 0 such that ALL
PAIRS SHORTEST PATHS admits an algorithm in time

O(n3~? - polylog(M)), assuming integer weights from
{-M,...,M}.
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An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions



An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions



An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

A more useful representation: a pair (f, )

» an embedding f : {1,...,k} — {1,...,n}
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An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

2
f(2) =5 M = {13,25,46}
9

A more useful representation: a pair (f, M)

» an embedding f : {1,...,k} — {1,...,n}

» connection pattern: a perfect matching M on {1,..,2k}
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de Berg et al.’s idea

2
f(2) =5 M = {13,25,46}
9

Observation 1
Now we can specify a connection pattern M before specifying an
embedding f.

Observation 2
There are only O((2k)!) connection patterns, i.e., O(1) for fixed k.
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de Berg et al.’s idea

1
o Q>,02
6, L. N o f()=2
‘:,:' f(2) =5 M = {13,25,46}
,° ~~~ * f 3 :9
5 . f3 ()
O o A

Idea

» For each of the O((2k)!) connection patterns M, find the
embedding fj; which maximizes weight improvement.

» Fixing M allows for exploiting the structure of the solution.

From now on, assume M is fixed.
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Key notion: the dependence graph Dy,

V(Dm) = [K]-

Vertex i corresponds to the j-th deleted edge from the Hamiltonian
cycle e1er - - - ep.

E(DM) = 0 U Iy,

where

» Edge j(j + 1) € O represents the property f(j) < f(j + 1).
> [y is defined by M. Edge ij € /)y means that the cost of
embedding i-the edge depends on f(j).
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E(D/w) = 0Uly

» 0=1{12,23,...,(k— 1)k}
» Get Iy from M by identifying 2i — 1 with 2/ for i € [k]:
h={ij = 7 € M,i" € {2i — 1,2i},j € {2j — 1,2}

4@

= (8], 0O U Im)
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E(D/w) = 0Uly

» 0=1{12,23,... (k- 1)k}
» Get Iy from M by identifying 2i — 1 with 2/ for i € [k]:
w={ij : ] € M,i" € {2i— 1,2/}, € {2 — 1,2]}}

1
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The algorithm of de Berg, Buchin, Jansen and Woeginger
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The algorithm of de Berg, Buchin, Jansen and Woeginger

D = ([4, O U Im)

1. Find a vertex cover A of Iy
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The algorithm of de Berg, Buchin, Jansen and Woeginger

D = ([4, O U Im)

1. Find a vertex cover A of Iy
2. Embed A in all nAl ways
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The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4, O U Im)

1. Find a vertex cover A of Iy
2. Embed A in all nl4 ways

3. Dependence graph of the rest D’ has only some edges of
D’ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| < |2/3k] (worst case: Iy is a collection of 3-cycles).

Hence, time is O(nl?/3kI+1k) for every connection pattern.
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Another possible algorithm
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Another possible algorithm

D = ([4], 0 U Iy)

1. Embed 2,4,...,2|k/2] in all ntk/2) ways
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Another possible algorithm

1 2 3 4

D = ([4], O U Ium)

1. Embed 2,4,...,2|k/2] in all ntk/2) ways
2. Dependence graph of the rest D’ has only some edges of /).

D’ is a collection of cycles and paths so we can find optimal
embedding in O(n%) time using dynamic programming.

Hence, time is O(nl%/21+3) for every connection pattern.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions



DO NOT OVERSIMPLIFY
THEDERENDENGE GRAPH!

EXBLOITITS STRUCTURE!
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Tree decompositions and treewidth

Graph G = (V,E) Tree decomposition of G
a d g
Q o o
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Tree decomposition is a tree of bags (subsets of V)

(o
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Tree decompositions and treewidth

Graph G = (V,E)

a d
c\ )

Tree decomposition of G

&

€
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N @ @
N |

Tree decomposition is a tree of bags (subsets of V) such that
> For every edge uv € E some bag contains v and v

O 0
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Tree decompositions and treewidth

Graph G = (V,E) Tree decomposition of G
a d g
Q o o

@ @
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Tree decomposition is a tree of bags (subsets of V) such that

> For every edge uv € E some bag contains v and v

> For every vertex v € V bags containing v form nonempty
subtree (connected!)
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Tree decompositions and treewidth

Graph G = (V,E) Tree decomposition of G
a d g
Q o o

® @
e

XS @@

c f i

Tree decomposition is a tree of bags (subsets of V) such that

> For every edge uv € E some bag contains v and v
> For every vertex v € V bags containing v form nonempty
subtree (connected!)
Width of the decomposition: maximum bag size —1 (here: 3).
Treewidth of G: minimum width of a decomposition of G .
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Dynamic programming

For every node t of a tree decomposition of the graph Dy:
> X; = the bag at t,
» Vi = union of all bags in the subtree rooted at t.

Xy

For every node t and partial embedding f : X; — [n], compute
T:[f]= max gainy(g).
g:Vi—[n]
glx,=f

in the bottom-up fashion.
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Dynamic programming: example

@)

oo ()

1 2 3 4

D= (4. 0Un) (123

Ti23[f] = wler(r)) + w(er(z)) + wler(s)) — w(Ef )

To3[f] = T .
zlfl = o7, Nl
8l{2,3)=f

Toza[f] = Tos[f[(2,3;] + wler(a)) — W(E;,FM \ E;T{M},M)
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The O(n(/3+<)k)_time algorithm

Theorem

Given a connection pattern M, the best k-move (f, M) can be
found in time n®V(Pm)+1j2 4 ok

Theorem (Fomin et al. 2009)

Treewidth a k-vertex graph of maximum degree 4 is bounded by
(3 + ex)k, where limy_,o €, = 0.

Corollary

For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n1/3+<)k)  where limy_,o0 €x = 0.
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One more idea: bucketing
Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/4.

| | | | |
[ I I I 1
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n
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One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/%.
1 2 3 4
0] o O 0]
| | | | |
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n

Go through all assignments b : [k] — [n'/*] of the k edges to buckets.
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» Edges of O in Dy between buckets no longer needed:

1 2 3 4
Dm.p = ([4], OU In)
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3
» Dynamic programming works faster, in time O(nZtW(D’V’*")).
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One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/%.
1 2 3 4
0] o O 0]
| | | | |
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n

Go through all assignments b : [k] — [n'/*] of the k edges to buckets.

» Edges of O in Dy between buckets no longer needed:

1 2 3 4
Dm.p = ([4], OU In)

3
» Dynamic programming works faster, in time O(nZtW(D’V’*")).

» Price: many bucket assignments to consider.
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The O(n(Y/4*+<)k)_time algorithm

Plugging in the bucketing idea gives our main result (calculations
skipped).

Theorem
For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(t/4+€) ) where lim;_,o €4 = 0.
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Further research

o(k) assuming ETH?

> Is there an algorithm in time n
» Further improvement of the exponent? For k = 57

» Can we benefit from these ideas in practice?
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