Improving TSP tours using dynamic programming over tree decompositions

Marek Cygan, Łukasz Kowalik, Arkadiusz Socała

UNIVERSITY
OF WARSAW

Traveling Salesman Problem (TSP)

Input

complete undirected graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{N}$.

Problem

Find a tour (Hamiltonian cycle) of minimum weight.

Traveling Salesman Problem (TSP)

Input

complete undirected graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{N}$.

Problem

Find a tour (Hamiltonian cycle) of minimum weight.

The shortest tour catching all San Francisco pokemons

Cygan, Kowalik, Socała
Improving TSP tours using tree decompositions

k-OPT local search heuristic

1. $H_{0}:=$ arbitrary Hamiltonian cycle.
2. As long as possible, get a better cycle H_{i} by means of the k-move operation.

k-move

For a tour H, a k-move is defined by a pair $\left(E^{-}, E^{+}\right)$such that

- $\left|E^{-}\right|=\left|E^{+}\right|=k$ and
- $H^{\prime}=H \backslash E^{-} \cup E^{+}$is a Hamiltonian cycle.

Example for $k=3$:

k-move is improving when $w\left(H^{\prime}\right)<w(H)$.

k-move

For a tour H, a k-move is defined by a pair $\left(E^{-}, E^{+}\right)$such that

- $\left|E^{-}\right|=\left|E^{+}\right|=k$ and
- $H^{\prime}=H \backslash E^{-} \cup E^{+}$is a Hamiltonian cycle.

Example for $k=3$:

k-move is improving when $w\left(H^{\prime}\right)<w(H)$.

k-move

For a tour H, a k-move is defined by a pair $\left(E^{-}, E^{+}\right)$such that

- $\left|E^{-}\right|=\left|E^{+}\right|=k$ and
- $H^{\prime}=H \backslash E^{-} \cup E^{+}$is a Hamiltonian cycle.

Example for $k=3$:

k-move is improving when $w\left(H^{\prime}\right)<w(H)$.

k-move

For a tour H, a k-move is defined by a pair $\left(E^{-}, E^{+}\right)$such that

- $\left|E^{-}\right|=\left|E^{+}\right|=k$ and
- $H^{\prime}=H \backslash E^{-} \cup E^{+}$is a Hamiltonian cycle.

Example for $k=3$:

k-move is improving when $w\left(H^{\prime}\right)<w(H)$.

k-move

For a tour H, a k-move is defined by a pair $\left(E^{-}, E^{+}\right)$such that

- $\left|E^{-}\right|=\left|E^{+}\right|=k$ and
- $H^{\prime}=H \backslash E^{-} \cup E^{+}$is a Hamiltonian cycle.

Example for $k=3$:

k-move is improving when $w\left(H^{\prime}\right)<w(H)$.

k-OPT heuristic

Practice

An implementation of a variant, called Lin-Kernighan heuristic solves 80 K -vertex instances optimally (Hellsgaun '09).

Theory
Interesting results (lower, upper bounds) on

- quality of local optima (e.g. Chandra et al, SICOMP'99),
- number of steps needed to find local optimum (e.g., Johnson et al, JCSS'88),
- smoothed analysis of 2-opt (e.g. Künnemann and B. Manthey, ICALP'15).

Today's question

How fast can we perform a single step,
i.e.,

How fast can we find an improving k-move?

Today's question

k-opt Optimization

InPUT: symmetric function $w: V^{2} \rightarrow \mathbb{N}$, a Hamiltonian cycle H
Output: a k-move that maximizes improvement over H.
k-opt Detection
Output: Is there a k-move improving over H ?
Lower bounds

Upper bounds

- $O\left(n^{k}\right)$ exhaustive search,
- W[1]-hard [Marx '08]
- no $n^{o(k / \log k)}$ algorithm under ETH [Guo et al. '13]
- no o $\left(n^{2}\right)$ algorithm for $k=2$ (folklore),

Today's question

k-opt Optimization

InPUT: symmetric function $w: V^{2} \rightarrow \mathbb{N}$, a Hamiltonian cycle H
Output: a k-move that maximizes improvement over H.
k-opt Detection
Output: Is there a k-move improving over H ?
Lower bounds

Upper bounds

- $O\left(n^{k}\right)$ exhaustive search,
- $O\left(n^{\lfloor 2 k / 3\rfloor+1}\right)$ time, $O(n)$ additional space [de Berg, Buchin, Jansen, Woeginger '16]
- W[1]-hard [Marx '08]
- no $n^{o(k / \log k)}$ algorithm under ETH [Guo et al. '13]
- no o(n^{2}) algorithm for $k=2$ (folklore),
- if $o\left(n^{2.99}\right)$ algorithm for $k=3$, then APSP in time $o\left(n^{2.99}\right)$ [de Berg et al].

Our results

Theorem
For every fixed integer k, k-opt Optimization can be solved in time $O\left(n^{\left(1 / 4+\epsilon_{k}\right) k}\right)$ and space $O\left(n^{\left(1 / 8+\epsilon_{k}\right) k}\right)$, where $\lim _{k \rightarrow \infty} \epsilon_{k}=0$.

Our results

Theorem
For every fixed integer k, k-OPT Optimization can be solved in time $O\left(n^{\left(1 / 4+\epsilon_{k}\right) k}\right)$ and space $O\left(n^{\left(1 / 8+\epsilon_{k}\right) k}\right)$, where $\lim _{k \rightarrow \infty} \epsilon_{k}=0$.

Values of ϵ_{k} (computed by a program)

k	3	4	5	6	7	8
de Berg et al.	$O\left(n^{3}\right)$	$O\left(n^{3}\right)$	$O\left(n^{4}\right)$	$O\left(n^{5}\right)$	$O\left(n^{5}\right)$	$O\left(n^{6}\right)$
our algorithm			$O\left(n^{3.4}\right)$	$O\left(n^{4}\right)$	$O\left(n^{4.25}\right)$	$O\left(n^{4 \frac{2}{3}}\right)$

Our results

Theorem

For every fixed integer k, k-OPT Optimization can be solved in time $O\left(n^{\left(1 / 4+\epsilon_{k}\right) k}\right)$ and space $O\left(n^{\left(1 / 8+\epsilon_{k}\right) k}\right)$, where $\lim _{k \rightarrow \infty} \epsilon_{k}=0$.
Values of ϵ_{k} (computed by a program)

k	3	4	5	6	7	8
de Berg et al.	$O\left(n^{3}\right)$	$O\left(n^{3}\right)$	$O\left(n^{4}\right)$	$O\left(n^{5}\right)$	$O\left(n^{5}\right)$	$O\left(n^{6}\right)$
our algorithm			$O\left(n^{3.4}\right)$	$O\left(n^{4}\right)$	$O\left(n^{4.25}\right)$	$O\left(n^{4 \frac{2}{3}}\right)$

Theorem
If there is $\epsilon>0$ such that 4-Opt Detection admits an algorithm in time $O\left(n^{3-\epsilon} \cdot \operatorname{polylog}(M)\right)$, then there is $\delta>0$ such that ALL Pairs Shortest Paths admits an algorithm in time $O\left(n^{3-\delta} \cdot \operatorname{polylog}(M)\right)$, assuming integer weights from $\{-M, \ldots, M\}$.

An equivalent representation of k-move

(The most intuitive) representation of k-move A pair (E^{-}, E^{+}), where $E^{-} \subseteq H, E^{+} \subseteq E(G)$

An equivalent representation of k-move

(The most intuitive) representation of k-move A pair (E^{-}, E^{+}), where $E^{-} \subseteq H, E^{+} \subseteq E(G)$

An equivalent representation of k-move

(The most intuitive) representation of k-move A pair (E^{-}, E^{+}), where $E^{-} \subseteq H, E^{+} \subseteq E(G)$

A more useful representation: a pair (f, \quad)

- an embedding $f:\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$

An equivalent representation of k-move

(The most intuitive) representation of k-move A pair (E^{-}, E^{+}), where $E^{-} \subseteq H, E^{+} \subseteq E(G)$

$$
\begin{aligned}
& f(1)=2 \\
& f(2)=5
\end{aligned} \quad M=\{13,25,46\}
$$

$$
f(3)=9
$$

A more useful representation: a pair (f, M)

- an embedding $f:\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$
- connection pattern: a perfect matching M on $\{1, . ., 2 k\}$

de Berg et al.'s idea

$$
\begin{aligned}
& f(1)=2 \\
& f(2)=5 \\
& f(3)=9
\end{aligned} \quad M=\{13,25,46\}
$$

Observation 1
Now we can specify a connection pattern M before specifying an embedding f.

Observation 2
There are only $O((2 k)!)$ connection patterns, i.e., $O(1)$ for fixed k.

de Berg et al.'s idea

$$
\begin{aligned}
& f(1)=2 \\
& f(2)=5
\end{aligned} \quad M=\{13,25,46\}
$$

$$
f(3)=9
$$

Idea

- For each of the $O((2 k)!)$ connection patterns M, find the embedding f_{M} which maximizes weight improvement.
- Fixing M allows for exploiting the structure of the solution.

From now on, assume M is fixed.

Key notion: the dependence graph D_{M}

$$
V\left(D_{M}\right)=[k] .
$$

Vertex i corresponds to the i-th deleted edge from the Hamiltonian cycle $e_{1} e_{2} \cdots e_{n}$.

$$
E\left(D_{M}\right)=O \cup I_{M},
$$

where

$$
O=\{12,23, \ldots,(k-1) k\}
$$

- Edge $j(j+1) \in O$ represents the property $f(j)<f(j+1)$.
- I_{M} is defined by M. Edge $i j \in I_{M}$ means that the cost of embedding i-the edge depends on $f(j)$.

$E\left(D_{M}\right)=O \cup I_{M}$

- $O=\{12,23, \ldots,(k-1) k\}$
- Get I_{M} from M by identifying $2 i-1$ with $2 i$ for $i \in[k]$: $I_{M}=\left\{i j: i^{\prime} j^{\prime} \in M, i^{\prime} \in\{2 i-1,2 i\}, j^{\prime} \in\{2 j-1,2 j\}\right\}$

$E\left(D_{M}\right)=O \cup I_{M}$

- $O=\{12,23, \ldots,(k-1) k\}$
- Get I_{M} from M by identifying $2 i-1$ with $2 i$ for $i \in[k]$: $I_{M}=\left\{i j: i^{\prime} j^{\prime} \in M, i^{\prime} \in\{2 i-1,2 i\}, j^{\prime} \in\{2 j-1,2 j\}\right\}$

The algorithm of de Berg, Buchin, Jansen and Woeginger

The algorithm of de Berg, Buchin, Jansen and Woeginger

1. Find a vertex cover A of I_{M}

The algorithm of de Berg, Buchin, Jansen and Woeginger

1. Find a vertex cover A of I_{M}
2. Embed A in all $n^{|A|}$ ways

The algorithm of de Berg, Buchin, Jansen and Woeginger

$$
D=\left([4], O \cup I_{M}\right)
$$

1. Find a vertex cover A of I_{M}
2. Embed A in all $n^{|A|}$ ways
3. Dependence graph of the rest D^{\prime} has only some edges of O. D^{\prime} is a collection of paths so we can find optimal embedding in $O(n k)$ time using dynamic programming.

We have $|A| \leq\lfloor 2 / 3 k\rfloor$ (worst case: I_{M} is a collection of 3-cycles).
Hence, time is $O\left(n^{\lfloor 2 / 3 k\rfloor+1} k\right)$ for every connection pattern.

Another possible algorithm

Another possible algorithm

1. Embed $2,4, \ldots, 2\lfloor k / 2\rfloor$ in all $n^{\lfloor k / 2\rfloor}$ ways

Another possible algorithm

1. Embed $2,4, \ldots, 2\lfloor k / 2\rfloor$ in all $n^{\lfloor k / 2\rfloor}$ ways
2. Dependence graph of the rest D^{\prime} has only some edges of I_{M}. D^{\prime} is a collection of cycles and paths so we can find optimal embedding in $O\left(n^{3}\right)$ time using dynamic programming.
Hence, time is $O\left(n^{\lfloor k / 2\rfloor+3}\right)$ for every connection pattern.

Cygan, Kowalik, Socała

Tree decompositions and treewidth

Tree decomposition of G

Tree decomposition is a tree of bags (subsets of V)

Tree decompositions and treewidth

Tree decomposition of G

Tree decomposition is a tree of bags (subsets of V) such that

- For every edge $u v \in E$ some bag contains u and v

Tree decompositions and treewidth

Tree decomposition of G

Tree decomposition is a tree of bags (subsets of V) such that

- For every edge $u v \in E$ some bag contains u and v
- For every vertex $v \in V$ bags containing v form nonempty subtree (connected!)

Tree decompositions and treewidth

Tree decomposition of G

Tree decomposition is a tree of bags (subsets of V) such that

- For every edge $u v \in E$ some bag contains u and v
- For every vertex $v \in V$ bags containing v form nonempty subtree (connected!)
Width of the decomposition: maximum bag size -1 (here: 3).
Treewidth of G : minimum width of a decomposition of G.

Dynamic programming

For every node t of a tree decomposition of the graph D_{M} :

- $X_{t}=$ the bag at t,
- $V_{t}=$ union of all bags in the subtree rooted at t.

For every node t and partial embedding $f: X_{t} \rightarrow[n]$, compute

$$
T_{t}[f]=\max _{\substack{g:\left.V_{t} \rightarrow[n] \\ g\right|_{x_{t}}=f}} \operatorname{gain}_{M}(g)
$$

in the bottom-up fashion.

Dynamic programming: example

$$
T_{123}[f]=w\left(e_{f(1)}\right)+w\left(e_{f(2)}\right)+w\left(e_{f(3)}\right)-w\left(E_{f, M}^{+}\right)
$$

$$
T_{23}[f]=\max _{\substack{g:\{1,2,3\} \rightarrow[n] \\ g \mid\{2,3\}=f}} T_{123}[g] .
$$

$$
T_{234}[f]=T_{23}\left[\left.f\right|_{\{2,3\}}\right]+w\left(e_{f(4)}\right)-w\left(E_{f, M}^{+} \backslash E_{\left.f\right|_{\{2,3\}}, M}^{+}\right)
$$

The $O\left(n^{\left(1 / 3+\epsilon_{k}\right) k}\right)$-time algorithm

Theorem
Given a connection pattern M, the best k-move (f, M) can be found in time $n^{\operatorname{tw}\left(D_{M}\right)+1} k^{2}+2^{k}$.

Theorem (Fomin et al. 2009)
Treewidth a k-vertex graph of maximum degree 4 is bounded by $\left(\frac{1}{3}+\epsilon_{k}\right) k$, where $\lim _{k \rightarrow \infty} \epsilon_{k}=0$.

Corollary
For every fixed integer k, k-OPT Optimization can be solved in time $O\left(n^{\left(1 / 3+\epsilon_{k}\right) k}\right)$, where $\lim _{k \rightarrow \infty} \epsilon_{k}=0$.

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into $n^{1 / 4}$ buckets of size $s=n^{3 / 4}$.

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into $n^{1 / 4}$ buckets of size $s=n^{3 / 4}$.

Go through all assignments $b:[k] \rightarrow\left[n^{1 / 4}\right]$ of the k edges to buckets.

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into $n^{1 / 4}$ buckets of size $s=n^{3 / 4}$.

Go through all assignments $b:[k] \rightarrow\left[n^{1 / 4}\right]$ of the k edges to buckets.

- Edges of O in D_{M} between buckets no longer needed:

$$
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 2 & 3 \\
D_{M, b}=\left([4], O \cup I_{M}\right)
\end{array}
$$

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into $n^{1 / 4}$ buckets of size $s=n^{3 / 4}$.

Go through all assignments $b:[k] \rightarrow\left[n^{1 / 4}\right]$ of the k edges to buckets.

- Edges of O in D_{M} between buckets no longer needed:

$$
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 2 & 3 \\
D_{M, b}=\left([4], O \cup I_{M}\right)
\end{array}
$$

- Dynamic programming works faster, in time $O\left(n^{\frac{3}{4} \operatorname{tw}\left(D_{M, b}\right)}\right)$.

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into $n^{1 / 4}$ buckets of size $s=n^{3 / 4}$.

Go through all assignments $b:[k] \rightarrow\left[n^{1 / 4}\right]$ of the k edges to buckets.

- Edges of O in D_{M} between buckets no longer needed:

$$
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 2 & 3 \\
D_{M, b}=\left([4], O \cup I_{M}\right)
\end{array}
$$

- Dynamic programming works faster, in time $O\left(n^{\frac{3}{4} \operatorname{tw}\left(D_{M, b}\right)}\right)$.
- Price: many bucket assignments to consider.

The $O\left(n^{\left(1 / 4+\epsilon_{k}\right) k}\right)$-time algorithm

Plugging in the bucketing idea gives our main result (calculations skipped).

Theorem
For every fixed integer k, k-Opt Optimization can be solved in time $O\left(n^{\left(1 / 4+\epsilon_{k}\right) k}\right)$, where $\lim _{k \rightarrow \infty} \epsilon_{k}=0$.

Further research

- Is there an algorithm in time $n^{o(k)}$ assuming ETH?
- Further improvement of the exponent? For $k=5$?
- Can we benefit from these ideas in practice?

