Improving TSP tours using dynamic
programming over tree decompositions

Marek Cygan, tukasz Kowalik, Arkadiusz Socata

* UNIVERSITY
OF WARSAW

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Traveling Salesman Problem (TSP)

Input
complete undirected graph G = (V, E) and
a weight function w : E — N.

Problem
Find a tour (Hamiltonian cycle) of minimum weight.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Traveling Salesman Problem (TSP)

Input
complete undirected graph G = (V, E) and
a weight function w : E — N.

Problem
Find a tour (Hamiltonian cycle) of minimum weight.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Marin
Headlands

The shortest tour catching all San Francisco pokemons

atarnia morska gy
onitaLighthouse

er(from httpi/Awwif. math. uwaterloo.

ca/tsp/poke/)
@
& FortPoint[P Verf:jﬁ%ena
™ PIER 39
God® o
Marshall's Beach @

Baker Beach O
Lands End Labyrintp@®

SEA GLIFF.

v
SOUTH OF:

@ Stadion
MARKET 8 ATAT Park
MISSION BAY,
INNER SUNSET MISSION
h Avenue Tiled Steps DISTRICT: Ton
3 s Park

FOREST HILL

PORTOLA
o City College of
e San|Francisco - Ocean.

@
INGLESIDE.

QUTER MISSION

owy.
anciseo Golf Club

CROCKER-AMAZON.

Cygan, Kowalik, Socata

Improving TSP tours using tree decompositions

k-OPT local search heuristic

1. Hy := arbitrary Hamiltonian cycle.

2. As long as possible, get a better cycle H; by means of the
k-move operation.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E—, E™) such that
» |[E7|=|ET| =k and
» H =H\ E- UET is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H') < w(H).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E—, E™) such that
» |[E7|=|ET| =k and
» H =H\ E- UET is a Hamiltonian cycle.

Example for k = 3:

O

k-move is improving when w(H') < w(H).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E—, E™) such that
» |[E7|=|ET| =k and
» H =H\ E- UET is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H') < w(H).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E—, E™) such that
» |[E7|=|ET| =k and
» H =H\ E- UET is a Hamiltonian cycle.

Example for k = 3:

O

k-move is improving when w(H') < w(H).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

k-move

For a tour H, a k-move is defined by a pair (E—, E™) such that
» |[E-|=|E"| =k and
» H =H\ E- UET is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H') < w(H).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

k-OPT heuristic

Practice
An implementation of a variant, called Lin-Kernighan heuristic
solves 80K-vertex instances optimally (Hellsgaun '09).

Theory
Interesting results (lower, upper bounds) on
» quality of local optima (e.g. Chandra et al, SICOMP'99),

» number of steps needed to find local optimum (e.g., Johnson
et al, JCSS'88),

» smoothed analysis of 2-opt (e.g. Kiinnemann and B. Manthey,
ICALP'15).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Today's question

How fast can we perform a single step,
le.,
How fast can we find an improving k-move?

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Today's question

k-oPT OPTIMIZATION
INPUT: symmetric function w : V2 — N, a Hamiltonian cycle H
OUTPUT: a k-move that maximizes improvement over H.

k-OPT DETECTION
OUTPUT: Is there a k-move improving over H?
Lower bounds
» W/[1]-hard [Marx '08]

Upper bounds
> no n°(k/1gk) 3lgorithm under

» O(n*) exhaustive search, ETH [Guo et al. '13]
> no o(n?) algorithm for k = 2
(folklore),

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Today's question

k-oPT OPTIMIZATION
INPUT: symmetric function w : V2 — N, a Hamiltonian cycle H
OUTPUT: a k-move that maximizes improvement over H.

k-OPT DETECTION
OUTPUT: Is there a k-move improving over H?

Lower bounds
» W/[1]-hard [Marx '08]

Upper bounds
> no n°(k/1gk) 3lgorithm under

» O(n*) exhaustive search, ETH [Guo et al. '13]

> O(nl2//2%7) time, O(n) > no o(n?) algorithm for k = 2
additional space [de Berg, (folklore)
Buchin, Jansen, Woeginger '

> if o(n?9) algorithm for k = 3,
then APSP in time o(n?%°) [de
Berg et al].

'16]

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Our results

Theorem
For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(1/4+<)k) and space O(n(1/8+<)¥) where limj_ o €4 = 0.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Our results

Theorem

For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(1/4+<)k) and space O(n(1/8+<)¥) where limj_ o €4 = 0.

Values of ¢, (computed by a program)

k | 3| 4] 5 | 6 | 7 | 8

de Berg et al.| O(n3)| O(n®)| O(n*) |O(n®)| O(n®) | O(n®)
2

our algorithm o(n**) | 0(n*)| O(n*2%)| O(n*3)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Our results

Theorem
For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(1/4+<)k) and space O(n(1/8+<)¥) where limj_ o €4 = 0.

Values of ¢, (computed by a program)

k | 3| 4] 5 | 6 | 7 | 8

de Berg et al.| O(n3)| O(n®)| O(n*) |O(n®)| O(n®) | O(n®)
2

our algorithm o(n**) | 0(n*)| O(n*2%)| O(n*3)

Theorem

If there is € > 0 such that 4-OPT DETECTION admits an algorithm
in time O(n3~¢ - polylog(M)), then there is § > 0 such that ALL
PAIRS SHORTEST PATHS admits an algorithm in time

O(n3~? - polylog(M)), assuming integer weights from
{-M,...,M}.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

A more useful representation: a pair (f,)

» an embedding f : {1,...,k} — {1,...,n}

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

An equivalent representation of k-move

(The most intuitive) representation of k-move
A pair (E~,E™), where E- C H,E™ C E(G)

2
f(2) =5 M = {13,25,46}
9

A more useful representation: a pair (f, M)

» an embedding f : {1,...,k} — {1,...,n}

» connection pattern: a perfect matching M on {1,..,2k}

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

de Berg et al.’s idea

2
f(2) =5 M = {13,25,46}
9

Observation 1
Now we can specify a connection pattern M before specifying an
embedding f.

Observation 2
There are only O((2k)!) connection patterns, i.e., O(1) for fixed k.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

de Berg et al.’s idea

1
o Q>,02
6, L. N o f()=2
‘:,:' f(2) =5 M = {13,25,46}
,° ~~~ * f 3 :9
5 . f3 ()
O o A

Idea

» For each of the O((2k)!) connection patterns M, find the
embedding fj; which maximizes weight improvement.

» Fixing M allows for exploiting the structure of the solution.

From now on, assume M is fixed.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Key notion: the dependence graph Dy,

V(Dm) = [K]-

Vertex i corresponds to the j-th deleted edge from the Hamiltonian
cycle e1er - - - ep.

E(DM) = 0 U Iy,

where

» Edge j(j + 1) € O represents the property f(j) < f(j + 1).
> [y is defined by M. Edge ij € /)y means that the cost of
embedding i-the edge depends on f(j).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

E(D/w) = 0Uly

» 0=1{12,23,...,(k— 1)k}
» Get Iy from M by identifying 2i — 1 with 2/ for i € [k]:
h={ij = 7 € M,i" € {2i — 1,2i},j € {2j — 1,2}

4@

= (8], 0O U Im)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

E(D/w) = 0Uly

» 0=1{12,23,... (k- 1)k}
» Get Iy from M by identifying 2i — 1 with 2/ for i € [k]:
w={ij :] € M,i" € {2i— 1,2/}, € {2 — 1,2]}}

1

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

D = ([4, O U Im)

1. Find a vertex cover A of Iy

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

D = ([4, O U Im)

1. Find a vertex cover A of Iy
2. Embed A in all nAl ways

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4, O U Im)

1. Find a vertex cover A of Iy
2. Embed A in all nl4 ways

3. Dependence graph of the rest D’ has only some edges of
D’ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| < |2/3k] (worst case: Iy is a collection of 3-cycles).

Hence, time is O(nl?/3kI+1k) for every connection pattern.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Another possible algorithm

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Another possible algorithm

D = ([4], 0 U Iy)

1. Embed 2,4,...,2|k/2] in all ntk/2) ways

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Another possible algorithm

1 2 3 4

D = ([4], O U Ium)

1. Embed 2,4,...,2|k/2] in all ntk/2) ways
2. Dependence graph of the rest D’ has only some edges of /).

D’ is a collection of cycles and paths so we can find optimal
embedding in O(n%) time using dynamic programming.

Hence, time is O(nl%/21+3) for every connection pattern.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

DO NOT OVERSIMPLIFY
THEDERENDENGE GRAPH!

EXBLOITITS STRUCTURE!

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V,E) Tree decomposition of G
a d g
Q o o

@ @
e

KO @@

e) @)

c f i

Tree decomposition is a tree of bags (subsets of V)

(o

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V,E)

a d
c\)

Tree decomposition of G

&

€
S VRS
N @ @
N |

Tree decomposition is a tree of bags (subsets of V) such that
> For every edge uv € E some bag contains v and v

O 0

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V,E) Tree decomposition of G
a d g
Q o o

@ @
e

on @@

c f i

Tree decomposition is a tree of bags (subsets of V) such that

> For every edge uv € E some bag contains v and v

> For every vertex v € V bags containing v form nonempty
subtree (connected!)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Tree decompositions and treewidth

Graph G = (V,E) Tree decomposition of G
a d g
Q o o

® @
e

XS @@

c f i

Tree decomposition is a tree of bags (subsets of V) such that

> For every edge uv € E some bag contains v and v
> For every vertex v € V bags containing v form nonempty
subtree (connected!)
Width of the decomposition: maximum bag size —1 (here: 3).
Treewidth of G: minimum width of a decomposition of G .

Cygan, Kowalik, Socata

Improving TSP tours using tree decompositions

Dynamic programming

For every node t of a tree decomposition of the graph Dy:
> X; = the bag at t,
» Vi = union of all bags in the subtree rooted at t.

Xy

For every node t and partial embedding f : X; — [n], compute
T:[f]= max gainy(g).
g:Vi—[n]
glx,=f

in the bottom-up fashion.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Dynamic programming: example

@)

oo ()

1 2 3 4

D= (4. 0Un) (123

Ti23[f] = wler(r)) + w(er(z)) + wler(s)) — w(Ef)

To3[f] = T .
zlfl = o7, Nl
8l{2,3)=f

Toza[f] = Tos[f[(2,3;] + wler(a)) — W(E;,FM \ E;T{M},M)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

The O(n(/3+<)k)_time algorithm

Theorem

Given a connection pattern M, the best k-move (f, M) can be
found in time n®V(Pm)+1j2 4 ok

Theorem (Fomin et al. 2009)

Treewidth a k-vertex graph of maximum degree 4 is bounded by
(3 + ex)k, where limy_,o €, = 0.

Corollary

For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n1/3+<)k) where limy_,o0 €x = 0.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

One more idea: bucketing
Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/4.

| | | | |
[I I I 1
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/%.
1 2 3 4
0] o O 0]
| | | | |
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n

Go through all assignments b : [k] — [n'/*] of the k edges to buckets.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/%.
1 2 3 4
0] o O 0]
| | | | |
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n

Go through all assignments b : [k] — [n'/*] of the k edges to buckets.

» Edges of O in Dy between buckets no longer needed:

1 2 3 4
Dm.p = ([4], OU In)

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/%.
1 2 3 4
0] o O 0]
| | | | |
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n

Go through all assignments b : [k] — [n'/*] of the k edges to buckets.

» Edges of O in Dy between buckets no longer needed:

1 2 3 4
Dm.p = ([4], OU In)

3
» Dynamic programming works faster, in time O(nZtW(D’V’*")).

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n*/# buckets of

size s = n3/%.
1 2 3 4
0] o O 0]
| | | | |
€1,€,...,65 €s41,.-..,625 €2541,.--,6€35s €3541,.--,6€n

Go through all assignments b : [k] — [n'/*] of the k edges to buckets.

» Edges of O in Dy between buckets no longer needed:

1 2 3 4
Dm.p = ([4], OU In)

3
» Dynamic programming works faster, in time O(nZtW(D’V’*")).

» Price: many bucket assignments to consider.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

The O(n(Y/4*+<)k)_time algorithm

Plugging in the bucketing idea gives our main result (calculations
skipped).

Theorem
For every fixed integer k, k-OPT OPTIMIZATION can be solved in
time O(n(t/4+€)) where lim;_,o €4 = 0.

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

Further research

o(k) assuming ETH?

> Is there an algorithm in time n
» Further improvement of the exponent? For k = 57

» Can we benefit from these ideas in practice?

Cygan, Kowalik, Socata Improving TSP tours using tree decompositions

