Fast Witness Extraction Using a Decision Oracle

Andreas Björklund ${ }^{1}$, Petteri Kaski ${ }^{2}$ and Łukasz Kowalik ${ }^{3}$ (speaker)

${ }^{1}$ Lund University (Sweden)
${ }^{2}$ Aalto University (Finland)
${ }^{3}$ University of Warsaw (Poland)

European Symposium on Algorithms (ESA 2014),
Wrocław, Poland
8th September 2014

LONGEST PatH problem

Problem

InPuT: directed/undirected graph G, integer k.
Question: Does G contain a k-vertex path (shortly: k-path)?

Goal: solve it in practice

Longest Path problem

Problem

InpuT: directed/undirected graph G, integer k.
Question: Does G contain a k-vertex path (shortly: k-path)?
A few facts

- NP-complete
- Monien 1985: $O\left(k!n^{O(1)}\right)$ (first FPT algorithm: $O\left(f(k) n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $5.44^{k} n^{O(1)}$ (color coding)
- Kneis et al. 2006, Chen et al. 2007: $4^{k} n^{O(1)}$ (divide-and-color)
- Koutis 2008: $2.83^{k} n^{O(1)}$ (group algebras, randomized)
- Williams 2009: $2^{k} n^{O(1)}$ (group algebras, randomized)
- Björklund, Husfeldt, Kaski, Koivisto 2010: $1.66^{k} n^{O(1)}$, undirected (polynomials over finite fields of characteristic two, randomized)
- Fomin, Lokshtanov, Saurabh 2013: $2.86^{k} n^{O(1)}$
(representative sets, deterministic)

A common theme

The currently fastest algorithms are randomized Monte Carlo with one-sided error.

- If YES is reported, it is always correct.
- If NO is reported, it is correct with some (constant) probability (false negatives).

Another common theme

The currently fastest algorithms use algebraic tools.

This means that

- they only solve the decision problem. (if YES is reported, there is no way to track the solution back from the computation.)
- use non-standard arithmetic, like addition/multiplication in finite fields $G F\left(2^{q}\right)$.

Motivating questions

- Are the algebraic algorithms for k-path practical?
- Which graph sizes (n) and path lengths (k) can we process?
- How can we find solutions ("witnesses") efficiently?
- Is randomization a problem?
- How should we implement $G F\left(2^{q}\right)$ finite field arithmetic?

Finding the solution by self-reducibility

The inclusion oracle

For any $A \subseteq E(G)$,

$$
\operatorname{Includes}(A)=\text { true iff exists } k \text {-path } P \text { such that } E(P) \subseteq A \text {. }
$$

Observation

Using a decision algorithm we can implement the inclusion oracle. (run the algortithm in the graph induced by edge set A)

Finding k-paths naively

1: $S \leftarrow E(G)$

2: for $e \in E(G)$ do
3: if $\operatorname{Includes}(S \backslash\{e\})$ then
4: $\quad S \leftarrow S \backslash\{e\}$
$|E|$ queries.
Expensive!

5: return S.

More problems

The same situation appears in state-of-art algorithms for a number of problems:

- 3-dimensional matching,
- k-PACKING,
- Steiner cycle (aka K-cycle),
- RURAL POSTMAN,
- GRAPH MOTIF AND RELATED PROBLEMS,

Abstract problem

Problem

Given a set U,

 find any member of an unknown family of subsets $\mathcal{S} \subseteq 2^{U}$, using oracle Includes, where for any $A \subseteq U$, $\operatorname{Includes}(A)=$ true iff exists $S \in \mathcal{S}$ such that $S \subseteq A$.
A seemingly unrelated story...

Group testing story

- World War II, 1943.

Group testing story

- World War II, 1943.

- testing a single recruit is expensive

Group testing story

- World War II, 1943.

- testing a single recruit is expensive
- idea: mix blood of a group of soldiers

Group testing story

- World War II, 1943.

- testing a single recruit is expensive
- idea: mix blood of a group of soldiers

- how many tests do we need?

Group testing: model

Problem

Given a set U find an unknown subset $S \subseteq U$ using oracle Intersects, where for any $A \subseteq U$,
$\operatorname{Intersects}(A)=$ true iff $A \cap S \neq \emptyset$.
Another oracle
$\operatorname{CanDiscard}(A)=$ true iff we can safely discard A.

Observation

$\operatorname{CanDiscard}(A)=$ not $\operatorname{Intersects}(A)$.

Bisecting algorithm with CANDISCARD oracle $(n=40)$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=1$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=1$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=1$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=2$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=2$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=3$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=3$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=3$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=4$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=4$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=4$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=5$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=6$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=6$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=6$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=7$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=8$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=8$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=9$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=9$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=9$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=10$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=10$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=10$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=11$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=11$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=12$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=12$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=12$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=13$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=13$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=14$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=14$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=14$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=15$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=15$

Bisecting algorithm with CANDISCARD oracle $(n=40)$

number of queries $=15$

Number of queries (think: n is big, k is small)

Theorem (Hwang, 70's)

Bisecting algorithm finds an unknown k-element set in n-element universe using $O(k \log (n / k))$ queries.

Theorem (Folklore)

Every deterministic (or randomized Las Vegas) algorithm performs $\Omega(k \log (n / k))$ queries in the worst case (in expectation).

Back to algebraic FPT algorithms

Abstract problem

Problem

Given a set U, find any member of an unknown family of subsets $\mathcal{S} \subseteq 2^{U}$, using oracle Includes, where for any $A \subseteq U$, $\operatorname{Includes}(A)=$ true iff exists $S \in S$ such that $S \subseteq A$.

Abstract problem

Problem

Given a set U, find any member of an unknown family of subsets $\mathcal{S} \subseteq 2^{U}$, using oracle Includes, where for any $A \subseteq U$, $\operatorname{Includes}(A)=$ true iff exists $S \in \mathcal{S}$ such that $S \subseteq A$.

Observation

$\operatorname{CanDiscard}(A)=\operatorname{Includes}(U \backslash A)$.

Abstract problem

Problem

Given a set U, find any member of an unknown family of subsets $\mathcal{S} \subseteq 2^{U}$, using oracle Includes, where for any $A \subseteq U$, $\operatorname{Includes}(A)=$ true iff exists $S \in \mathcal{S}$ such that $S \subseteq A$.

Observation

$\operatorname{CanDiscard}(A)=\operatorname{Includes}(U \backslash A)$.

Corollary

Bisecting algorithm works here!
And finds a witness in $O(k \log (n / k))$ queries.

Abstract problem

Problem

Given a set U, find any member of an unknown family of subsets $\mathcal{S} \subseteq 2^{U}$, using oracle Includes, where for any $A \subseteq U$, $\operatorname{Includes}(A)=$ true iff exists $S \in \mathcal{S}$ such that $S \subseteq A$.

Observation
$\operatorname{CanDiscard}(A)=\operatorname{Includes}(U \backslash A)$.

Corollary

Bisecting algorithm works here!
And finds a witness in $O(k \log (n / k))$ queries.

Theorem (folklore)

Every algorithm needs $\Omega(k \log (n / k))$ queries.

Question

Does it work for our k-path problem?

Question

Does it work for our k-path problem?
Almost, we need to take care about false negatives.

Abstract problem: randomized setting

Problem

Given a set U, find any member of an unknown family of subsets $\mathcal{S} \subseteq 2^{U}$, using oracle Includes, where for any $A \subseteq U$,

- If $\operatorname{Includes}(A)=$ true then exists $S \in \mathcal{S}$ such that $S \subseteq A$.
- If $\operatorname{Includes}(A)=$ false then with probability at least $1 / 2$ there is no $S \in \mathcal{S}$ such that $S \subseteq A$.

Implementing CANDiscard (A)

Return Includes $(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Witness extraction in randomized setting

Implementing CANDiscard(A)

Return $\operatorname{Includes}(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CANDiscard(A)

Return $\operatorname{Includes}(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CANDiscard(A)

Return $\operatorname{Includes}(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CANDiscard(A)

Return Includes $(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CANDiscard(A)

Return Includes $(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CANDISCARD(A)

Return $\operatorname{Includes}(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CANDISCARD(A)

Return $\operatorname{Includes}(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CANDiscard(A)

Return $\operatorname{Includes}(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Implementing CanDiscard (A)

Return $\operatorname{Includes}(U \backslash A)$.

- If true, for sure we can discard A.
- If false, keep A (error probability at most $1 / 2$).

Note: we never discard elements erroneously! Errors can be fixed in future:

Witness extraction in randomized setting

Algorithm

(1) Run Bisecting Algorithm (with no change!)
(2) While the remaining set is not a witness, run the naive algorithm.

Theorem (our result)

If there is a witness, it is (always) found within $O(k \log n)$ queries in expectation.

Conjecture

This is optimal. (Best lower bound: $\Omega(k \log (n / k))$.)

Implementation of finding k-paths

How should we implement $G F\left(2^{q}\right)$ arithmetic?

- For correctness, we need $q \geq 2+\left\lceil\log _{2} k\right\rceil$.
- We can assume $k \leq 30$ (otherwise too slow) $\Rightarrow q \geq 7$.
- Large $q \Rightarrow$ slow arithmetic, low error probability.
- Small $q \Rightarrow$ fast arithmetic, big error probability.

Possible implementations:

- naive: do it yourself - slow.
- clmul: using carry-less multiplication PCLMULQDQ (new Intel, AMD processors) - quite fast, $q=64$ (very low error probability).
- lookup: whole multiplication table stored in cache - extremely fast, $q=7$ (quite high error probability).

Comparision of $G F\left(2^{q}\right)$ implementations

For decision algorithm (single query): PCLMULQDQ wins.

Path size $k=16$. No solutions in the instance.

Comparision of $G F\left(2^{q}\right)$ implementations

For extraction algorithm (multiple queries): lookup table wins.

Path size $k=12$. No solutions in the instance.

Comparision of $G F\left(2^{q}\right)$ implementations

Optimizing the implementation and the size of the field:

Statistics for 200 runs of the extraction algorithm ($n=1000, k=12$) using lookup implementation for $q=5, \ldots, 12$ and clmul implementation ($q=64$).

Comparision of algorithms

We have implemented:

- divide-and-color algorithm for finding k-path
- an $O\left(2^{k} k|E|\right)$-time decision algorithm D for k-path (based on Bjorklund et al paper),
- witness extraction using our modified bisection and D (denoted fifo)
- Independently, Hassidim, Keller, Lewenstein, and Roditty (WADS'13) found an extraction algorithm based on similar ideas.
we implemented witness extraction using their method and D (denoted HKLR)

Comparision of algorithms (2.53-GHz Intel Xeon CPU)

$n=1000$, size of the path $k=6, \ldots, 18$, exactly one witness.

Comparision of algorithms (2.53-GHz Intel Xeon CPU)

$k=14$, size of the path $n=100, \ldots, 10000$, exactly one witness.

Comparision of algorithms (2.53-GHz Intel Xeon CPU)

If many witnesses, they are easier to find - fifo exploits it nicely.

$k=15$, size of the path $n=100, \ldots, 10000, O\left(n^{2}\right)$ witnesses.

Conclusions

- A fast algorithm for extrating witnesses
- Multiplication in $G F\left(2^{q}\right)$ should be implemented using lookup table
- We can find 14 -vertex paths in 10000 -vertex graphs below 5 minutes.

Commercial break

Thank you!

The presentation contains some figures of Felix Reidl from a book Cygan, Fomin, Marx, Kowalik, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh Parameterized Algorithms
(to appear in early 2015)

