Fast Witness Extraction Using a Decision Oracle

Andreas Björklund¹, Petteri Kaski² and Łukasz Kowalik³ (speaker)

¹ Lund University (Sweden)
² Aalto University (Finland)
³ University of Warsaw (Poland)

European Symposium on Algorithms (ESA 2014), Wrocław, Poland 8th September 2014

LONGEST PATH problem

Problem

INPUT: directed/undirected graph *G*, integer *k*. QUESTION: Does *G* contain a *k*-vertex path (shortly: *k*-path)?

Goal: solve it in practice

Björklund, Kaski, Kowalik ()

Fast Witness Extraction

ESA'14 2 / 30

Problem

INPUT: directed/undirected graph G, integer k. QUESTION: Does G contain a k-vertex path (shortly: k-path)?

A few facts

- NP-complete
- Monien 1985: $O(k!n^{O(1)})$ (first FPT algorithm: $O(f(k)n^{O(1)})$
- Alon, Yuster, Zwick 1994: 5.44^k n^{O(1)} (color coding)
- Kneis et al. 2006, Chen et al. 2007: $4^k n^{O(1)}$ (divide-and-color)
- Koutis 2008: 2.83^k n^{O(1)} (group algebras, randomized)
- Williams 2009: $2^k n^{O(1)}$ (group algebras, randomized)
- Björklund, Husfeldt, Kaski, Koivisto 2010: 1.66^k n^{O(1)}, undirected (polynomials over finite fields of characteristic two, randomized)
- Fomin, Lokshtanov, Saurabh 2013: 2.86^k n^{O(1)} (representative sets, deterministic)

The currently fastest algorithms are **randomized** Monte Carlo with one-sided error.

- If YES is reported, it is always correct.
- If NO is reported, it is correct with some (constant) probability (false negatives).

Another common theme

The currently fastest algorithms use algebraic tools.

This means that

- they only solve **the decision problem**. (if YES is reported, there is no way to track the solution back from the computation.)
- use non-standard arithmetic, like addition/multiplication in finite fields *GF*(2^{*q*}).

- Are the algebraic algorithms for *k*-path practical?
- Which graph sizes (n) and path lengths (k) can we process?
- How can we find solutions ("witnesses") efficiently?
- Is randomization a problem?
- How should we implement $GF(2^q)$ finite field arithmetic?

Finding the solution by self-reducibility

The inclusion oracle

For any $A \subseteq E(G)$,

INCLUDES(A) = true iff exists k-path P such that $E(P) \subseteq A$.

Observation

Using a decision algorithm we can implement the inclusion oracle. (run the algorithm in the graph induced by edge set A)

Finding *k*-paths naively

- 1: $S \leftarrow E(G)$
- 2: for $e \in E(G)$ do

3: if INCLUDES
$$(S \setminus \{e\})$$
 then

4: $S \leftarrow S \setminus \{e\}$

5: return S.

|*E*| queries. Expensive! The same situation appears in state-of-art algorithms for a number of problems:

- 3-DIMENSIONAL MATCHING,
- *k*-PACKING,
- STEINER CYCLE (AKA K-CYCLE),
- RURAL POSTMAN,
- GRAPH MOTIF AND RELATED PROBLEMS,

• . . .

Problem

Given a set U, find **any member** of an unknown **family** of subsets $S \subseteq 2^U$, using oracle INCLUDES, where for any $A \subseteq U$, INCLUDES(A) = true iff exists $S \in S$ such that $S \subseteq A$.

A seemingly unrelated story...

• World War II, 1943.

• World War II, 1943.

• testing a single recruit is expensive

Björklund, Kaski, Kowalik ()

Fast Witness Extraction

ESA'14 10 / 30

• World War II, 1943.

- testing a single recruit is expensive
- idea: mix blood of a group of soldiers

World War II, 1943.

- testing a single recruit is expensive
- idea: mix blood of a group of soldiers

• how many tests do we need?

Problem

Given a set U find an unknown subset $S \subseteq U$ using oracle INTERSECTS, where for any $A \subseteq U$,

INTERSECTS(A) = true iff $A \cap S \neq \emptyset$.

Another oracle

CANDISCARD(A) = true iff we can safely discard A.

Observation

CANDISCARD(A) = **not** INTERSECTS(A).

Theorem (Hwang, 70's)

Bisecting algorithm finds an unknown k-element set in n-element universe using $O(k \log(n/k))$ queries.

Theorem (Folklore)

Every deterministic (or randomized Las Vegas) algorithm performs $\Omega(k \log(n/k))$ queries in the worst case (in expectation).

Back to algebraic FPT algorithms

Björklund, Kaski, Kowalik ()

Problem

Given a set U, find **any member** of an unknown **family** of subsets $S \subseteq 2^U$, using oracle INCLUDES, where for any $A \subseteq U$, INCLUDES(A) = true iff exists $S \in S$ such that $S \subseteq A$.

Fast Witness Extraction

ESA'14

15 / 30

Problem

Given a set U,

find **any member** of an unknown **family** of subsets $S \subseteq 2^U$, using oracle INCLUDES, where for any $A \subseteq U$,

INCLUDES(A) = true iff exists $S \in S$ such that $S \subseteq A$.

Observation

 $CANDISCARD(A) = INCLUDES(U \setminus A).$

Problem

Given a set U,

find **any member** of an unknown **family** of subsets $S \subseteq 2^U$, using oracle INCLUDES, where for any $A \subseteq U$,

INCLUDES(A) = true iff exists $S \in S$ such that $S \subseteq A$.

Observation

 $\operatorname{CanDiscard}(A) = \operatorname{IncLudes}(U \setminus A).$

Corollary

Bisecting algorithm works here! And finds a witness in $O(k \log(n/k))$ queries.

Problem

Given a set U,

find **any member** of an unknown **family** of subsets $S \subseteq 2^U$, using oracle INCLUDES, where for any $A \subseteq U$,

INCLUDES(A) = true iff exists $S \in S$ such that $S \subseteq A$.

Observation

 $\operatorname{CanDiscard}(A) = \operatorname{IncLudes}(U \setminus A).$

Corollary

Bisecting algorithm works here! And finds a witness in $O(k \log(n/k))$ queries.

Theorem (folklore)

Every algorithm needs $\Omega(k \log(n/k))$ queries.

Does it work for our k-path problem?

Does it work for our *k*-path problem?

Almost, we need to take care about false negatives.

Problem

Given a set U,

find **any member** of an unknown **family** of subsets $S \subseteq 2^U$, using oracle INCLUDES, where for any $A \subseteq U$,

- If INCLUDES(A) = true then exists $S \in S$ such that $S \subseteq A$.
- If INCLUDES(A) = false then with probability at least 1/2 there is no $S \in S$ such that $S \subseteq A$.

Implementing CANDISCARD(A)

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Implementing CANDISCARD(A)

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Note: we never discard elements erroneously! Errors can be fixed in future:

Implementing CANDISCARD(A)

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Note: we never discard elements erroneously! Errors can be fixed in future:

Implementing CANDISCARD(A)

Return INCLUDES($U \setminus A$).

- If true, for sure we can discard A.
- If false, keep A (error probability at most 1/2).

Note: we never discard elements erroneously! Errors can be fixed in future:

Algorithm

- Q Run Bisecting Algorithm (with no change!)
- 2 While the remaining set is not a witness, run the naive algorithm.

Theorem (our result)

If there is a witness, it is (always) found within $O(k \log n)$ queries in expectation.

Conjecture

This is optimal. (Best lower bound: $\Omega(k \log(n/k))$.)

Implementation of finding k-paths

How should we implement $GF(2^q)$ arithmetic?

- For correctness, we need $q \ge 2 + \lceil \log_2 k \rceil$.
- We can assume $k \leq 30$ (otherwise too slow) $\Rightarrow q \geq 7$.
- Large $q \Rightarrow$ slow arithmetic, low error probability.
- Small $q \Rightarrow$ fast arithmetic, big error probability.

Possible implementations:

- naive: do it yourself slow.
- clmul: using carry-less multiplication PCLMULQDQ (new Intel, AMD processors) quite fast, q = 64 (very low error probability).
- **lookup**: whole multiplication table stored in cache extremely fast, q = 7 (quite high error probability).

Comparision of $GF(2^q)$ implementations

For decision algorithm (single query): PCLMULQDQ wins.

Path size k = 16. No solutions in the instance.

Björklund, Kaski, Kowalik ()

ESA'14 22 / 30

Comparision of $GF(2^q)$ implementations

For extraction algorithm (multiple queries): lookup table wins.

Path size k = 12. No solutions in the instance.

Björklund, Kaski, Kowalik ()

ESA'14 23 / 30

Comparision of $GF(2^q)$ implementations

Optimizing the implementation and the size of the field:

Statistics for 200 runs of the extraction algorithm (n = 1000, k = 12) using lookup implementation for q = 5, ..., 12 and clmul implementation (q = 64).

Björklund, Kaski, Kowalik ()

We have implemented:

- **divide-and-color** algorithm for finding *k*-path
- an O(2^kk|E|)-time decision algorithm D for k-path (based on Bjorklund et al paper),
- witness extraction using our modified bisection and D (denoted fifo)
- Independently, Hassidim, Keller, Lewenstein, and Roditty (WADS'13) found an extraction algorithm based on similar ideas.

we implemented witness extraction using their method and D (denoted **HKLR**)

Comparision of algorithms (2.53-GHz Intel Xeon CPU)

n = 1000, size of the path $k = 6, \ldots, 18$, exactly one witness.

Björklund, Kaski, Kowalik ()

ESA'14 26 / 30

Comparision of algorithms (2.53-GHz Intel Xeon CPU)

k = 14, size of the path $n = 100, \ldots, 10000$, exactly one witness.

Björklund, Kaski, Kowalik ()

ESA'14 27 / 30

Comparision of algorithms (2.53-GHz Intel Xeon CPU)

If many witnesses, they are easier to find - fifo exploits it nicely.

k = 15, size of the path $n = 100, \ldots, 10000$, $O(n^2)$ witnesses.

Björklund, Kaski, Kowalik ()

- A fast algorithm for extrating witnesses
- Multiplication in $GF(2^q)$ should be implemented using lookup table
- We can find 14-vertex paths in 10000-vertex graphs below 5 minutes.

Thank you!

The presentation contains some figures of Felix Reidl from a book

Cygan, Fomin, Marx, Kowalik, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh Parameterized Algorithms

(to appear in early 2015)

