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Abstract. We present a new general 3-color criterion for planar graphs.
Applying this criterion we characterize a broad class of 3-colorable planar
graphs and provide a corresponding linear time 3-coloring algorithm. We
also characterize fully infinite 3-colorable planar triangulations.

1 Introduction

The problem of vertex coloring of a graph using few colors has given rise to one of
the most intensively studied areas of the graph theory. A frequently encountered
special case is that in which the graph to be colored is planar. Computing a
coloring that uses the smallest possible number of colors is known to be an NP-
complete problem, even when restricted to the class of planar graphs and 3 colors.
More precisely it is an NP-complete problem to decide whether a given planar
graph is 3-colorable [GJS]. On the other hand the famous ,4-color theorem” says
that every planar graph is 4-colorable. Hence it is natural to characterize those
planar graphs which are 3-colorable. The first 3-color criterion was formulated
by Heawood in 1898 and it is known as the Three Color Theorem [Hea,Ste]:
A mazximal planar graph is vertex colorable in three colors if and only if all
its vertices have even degrees. Obviously this theorem implies a very simple
algorithm for checking 3-colorability of maximal planar graphs. As the problem
of 3-colorability of planar graphs is NP-complete one cannot rather expect any
weffective” 3-color criterion for general planar graphs. On the other hand there
is a ,simple”, general 3-color criterion which does not lead to an efficient 3-
coloring algorithms: A planar graph is vertex colorable in three colors if and
only if it is a subgraph of a maximal planar graph in which all vertices have
even degrees. This theorem was already known to Heawood as well as it was
discovered independently by several authors — see the comprehensive survey
written by Steinberg [Ste].

In this paper we introduce a new general 3-color criterion which can be
efficiently checked for a broad class of planar graphs. Our criterion generalizes
the Heawood’s Three Color Theorem. In order to get this result we define a new
class of planar graph colorings, so called edge-side colorings, and prove that the
new type of coloring is equivalent to the ordinary vertex 3-coloring. The criterion
allows to characterize 3-colorable triangulations with holes, i.e. plane graphs in



which each vertex touches at most one non-triangular face. We provide a linear
time algorithm for 3-coloring such graphs. Our criterion allows also to formulate
sufficient and necessary conditions for 3-coloring infinite planar triangulations.

2 Basic Definitions and Notation

It is known that a graph is 3-colorable iff all its biconnected components are
3-colorable. In the sequel, if it is not stated explicitly, saying a graph we mean
a biconnected, finite multigraph of at least three vertices but without selfloops.

A plane graph is a graph whose vertex set is a point set in the plane and the
edges are Jordan curves such that two different edges have at most end points
in common. A graph is called planar if it can be embedded in the plane, i.e. if
it is isomorphic to a plane graph.

Let C be a simple cycle in a plane graph G. The cycle C divides the plane
into two disjoint open domains — the interior C-domain (homeomorphic to an
open disc) and the exterior C-domain. The set consisting of all vertices of G
belonging to the interior C-domain and of all edges crossing this domain is
denoted by Int C. If v is a vertex on C then the number of the graph neighbors
of v lying in the interior C-domain is called the internal degree of v with respect
to C and it is denoted by dIn(C,v) = |{(v,w) € E(G) : w € Int C}|. We define
the internal degree of the cycle C' as the sum of the internal degrees of all its
vertices. This sum is denoted by dIn(C) =} . dIn(C,v).

A face in a plane graph G is a C-domain (interior or exterior), for some cycle
C, without any vertices and edges inside. Only one face is unbounded and it is
called the outer face. Similarly, its boundary cycle is called the outer one.

A triangulation is a plane graph in which the boundary cycle of every face is
a triangle (3-cycle). A biconnected plane graph in which all the boundary cycles,
except at most one, are triangles is called a near-triangulation. W.l.o.g. we will
consider this boundary cycle to be the outer one.

A graph is even if all its vertices have even degrees. A near-triangulation is
internally even if all its vertices different from those on the outer cycle have even
degrees.

3 A New 3-color Criterion

In 1898 Heawood [Hea| proved a theorem characterizing (finite) 3-colorable tri-
angulations:

Theorem 1 (Three Color Theorem). A (finite) triangulation is 3-colorable
if and only if it is even.

This criterion applies only to the mazimal planar graphs which are isomor-
phic to triangulations. It allows to check in a very simple manner whether a
given maximal planar graph is 3-colorable. One can ask a natural question: can
the criterion be generalized to all planar graphs? Unfortunately, since checking



3-colorability is an NP-complete problem even in the planar case, we cannot
rather expect any polynomially checkable criterion for general planar graphs.
However there are general criteria which allow checking 3-colorability of a given
planar graph in some special cases. As stated in [Ste] such a general criterion
was already known to Heawood [Hea|. Nevertheless it was not widely known and
has been independently discovered and proved several times, e.g. in [Krl], [Kr2],
[Mar]. The criterion follows:

Theorem 2 (Heawood’s 3-color Criterion). Let G be a plane graph. The
following two conditions are equivalent:

(i) G is 3-colorable.
(i3) There exists an even triangulation H such that G is a subgraph of H, i.e.
HDAG.

Moreover, every 3-coloring of a plane graph G can be extended to a 3-coloring
of some even triangulation H O G.

As we can see the 3-color criterion stated above tells us nothing about the
structure of the graph under consideration. In this section we provide a new type
of graph coloring, called edge-side coloring, which is equivalent to the vertex 3-
coloring but additionally reflects some structural properties of a given graph.
This new feature will allow us to characterize a new, broad class of 3-colorable
planar graphs which are recognizable and 3-colorable in a linear time.

We start from a few indispensable definitions.

Let G be a plane graph, f a face in G and e an edge on the boundary cycle
of f. The pair s = (e, f) is called a side of edge e in face f (or shortly a side).
We say also that side s touches face f. If vertex v is an end point of e then side
s is said to be incident with v. Observe that in a biconnected graph every edge
has exactly two sides.

Let G be a plane graph and S be the set of all sides in G. Edge-side coloring
of G is an arbitrary function

m: S — {black,white}.

Edges with one side black and the other side white are called b-w edges. The
other edges are called one-color edges and can be of type b-b or w-w depending
on the colors of their sides, black or white respectively.

We say that an edge-side coloring of a plane graph G is proper if and only if
the following two conditions are satisfied:

(i) for each face f in G the numbers of white and black sides touching f are
congruent (equal) mod 3;
(ii) each vertex v in G is incident with an even number of one-color edges.

We say that a plane graph G is edge-side colorable if its edge-sides can be properly
colored.
Now we can state the main theorem of the paper.



Fig. 1. A proper edge-side coloring. Light (dark) lines indicate white (black) sides

Theorem 3 (3-color Criteria). Let G be a (biconnected) plane graph. The
following three conditions are equivalent:

(i) G is 3-colorable.
(i3) There exists an even triangulation H D G.
(iii) G is edge-side colorable.

The equivalence of conditions (i) and (ii) was proved by Heawood (see The-
orem 2). The proof of the equivalence of (ii) and (iii) is our main contribu-
tion to this paper. We start from a few observations on internally even near-
triangulations.

Lemma 1. Every internally even near-triangulation is 3-colorable.

Proof. Let C be the outer cycle of a near-triangulation G. Let us take a separate
embedding G’ of G in which the cycle C' corresponding to C is not longer the
outer one. Now we build a new plane graph H from G’ placing the entire graph
G in the interior C’'-domain and identifying the corresponding vertices and edges
of the cycles C' and C' as shown in Fig. 2. One can easily check that the graph
H is an even plane triangulation and hence it is 3-colorable by the Heawood’s
Three Color Theorem. Since G C H it is also 3-colorable.

O

Lemma 2. Let G be an even near-triangulation with the outer cycle C. Then

IC|=0 (mod 3).

Proof. By Lemma 1, G is 3-colorable. Let C' = vov; ...v|c|_1v0 and let K be an
arbitrary 3-coloring of G. We will show that one can rename the colors in K in
such a way that K(v;) = (¢ mod 3) + 1, for every i =0...|C| — 1.

Let v be an arbitrary vertex in C and let z and y be its neighbors such
that z, y and v are incident with the same internal (not unbounded) triangular
face in G. Vertices z, y, and v have different colors. Now one can observe that



Fig. 2. Proof of lemma 1

every two successive neighbors of v, in a sequence of all neighbors listed in the
clockwise order, have different colors. Since the degree of v is even its neighbors
on C have different colors. As a result we get K(v;) = (i mod 3) + 1 (possibly
after renaming the colors) what implies |C| =0 (mod 3). |

Lemma 3. For every i > 3 such that i =0 (mod 3) there exists a finite even
near-triangulation with the outer cycle of length i.

Proof. The proof is by induction on 4. For i = 3 it suffices to take Kj.
Inductive step: by the induction hypothesis there exists a finite, even near-
triangulation Gy with the outer cycle of length ¢ — 3. Let vy, vo be arbitrary
adjacent vertices in the outer cycle of Gy. Then G = Go U {vs, v4,v5} U {v2 —v3,
U3 — Us,U4 — Us,Us — U1,U2 — Vs,V — Us} IS an even near-triangulation and its
outer cycle has length <. O

Let C be a simple cycle and let m¢ be an arbitrary edge 2-coloring of C,
me : BE(C) — {black,white}. We say that coloring mc is balanced if and only
if [mg' (black)| = |mg' (white)| (mod 3).

Let G be a graph and let C be a simple cycle in G. We say that a balanced
coloring m¢ of C' corresponds with G if the following holds: for every vertex v
in C the edges of E(C) incident with v have different colors if and only if the
degree dg(v) of v in G is odd.

Lemma 4 (Key lemma).

(i) For every internally even near-triangulation G with the outer cycle C there
exists a balanced 2-coloring mc of C corresponding with G.

(i) For every balanced 2-coloring m¢ of a cycle C there exists an internally even
near-triangulation G with the outer cycle C' and such that mc corresponds
with G.



Proof (i). Since G is internally even, the number of vertices of C' with odd
degrees is even. Let vy, vs,...,v25—1,02; be a list of all such vertices given in
the clockwise order. For each ¢ = 1,2,...,k, we color black edges on C between
v2;_1 and ve;. The remaining edges are colored white (see Fig. 3). Observe that
vertices in C' are incident with edges of different colors if and only if they have
odd degrees.

Fig. 3. Constructing a balanced 2-coloring

Let b be the number of black edges on C and let w be the number of white
edges on C'. After extending G by triangles formed in the outer (unbounded) face
and with the black edges as the triangle bases (as shown in Fig. 3) we get an even
near-triangulation. By Lemma 2 the outer cycle of this triangulation has length
=0 (mod 3). Hence 2b+w =0 (mod 3) and finally b = w (mod 3). O

Proof (). Denote the number of black and white edges of C by b and w re-
spectively. We form a triangle on each black edge e in the interior C-domain as
shown in Fig. 4. As the result we get a graph H. Observe that vertex v of H has
odd degree if and only if it is incident on C with edges of different colors.

Fig. 4. The graph H with the outer cycle C' — constructing a near-triangulation

Let f be the only face of H different from the added triangles and placed
in the interior C-domain. The length of the f’s boundary cycle is 2b + w =
0 (mod 3). By Lemma 3, one can triangulate this face and obtain a required
internally even near-triangulation G. O



Lemma 5. Let G be a finite, biconnected plane graph. Let H be an even trian-
gulation (possibly infinite but locally finite) such that G C H. If for every face
f of G with facial cycle Cy there exists a balanced edge 2-coloring corresponding
with Cy Ulnty Cy, the graph G is edge-side colorable.

Proof. For every face f of G with the facial cycle Cy let mc, be a balanced edge
2-coloring corresponding with Cy U Intg Cy. Let us take an edge-side coloring
assigning each side (f,e) the color mc, (e). Obviously this coloring satisfies the
first condition of the definition of the proper edge-side coloring. In order to prove
the other one let us consider an arbitrary vertex v in G. Let f’ be an arbitrary
face in G with v on its facial cycle. Denote this cycle by C’. Let ey, es be the
edges of C' incident with v. Since m¢ b corresponds with C'pUInty Cy: the sides
of e1, es in f' have the same color if and only if the degree dIng(C’,v) is even.
Let B(v) denote the number of black sides incident with v. If dg(v) is odd then
there is an odd number of faces f’ incident with v and such that dIng(C',v) is
odd. On the other hand if dg(v) is even the number of faces f' incident with v
and such that dIng(C’,v) is odd is even. It follows that dg(v) + B(v) is always
even which is equivalent to the statement that the number of one-color edges
incident with v is even.

We have just showed that the second condition in the definition of proper
edge-side coloring is satisfied, which completes the proof. O

Now we are ready to prove the part (ii)«>(iii) of our main theorem.

Proof.

(i) — (iii)

Assume that there exists an even triangulation H O G. Observe that since G
is biconnected, every face is bounded by a simple cycle. For each face f with
the facial cycle Cy we can apply lemma 4 to get a balanced edge 2-coloring mc
of E(C) corresponding with the near-triangulation C¢ U Intg Cy. Now we can
apply lemma 5 to obtain a proper edge-side coloring of G, what completes the
proof of (ii)—(iii).

(if) «— (iii)
Assume that G is properly edge-side colored. By Lemma 4 one can triangulate
(i.e. divide into triangles) each face into an internally even near-triangulation
getting a triangulation H D G. Let v be an arbitrary vertex of G. Denote by
F(v) the number of faces incident with v for which the odd number of edges
ending in v was added during the process of triangulation. Similarly as in the
proof of lemma 5 one can show that dg(v) + F(v) is even. It implies finally that
for every vertex v, dg(v) is even, what means that H is an even triangulation.
O

As the result we get a new 3-color criterion for general planar graphs. In fact,
using this criterion for checking whether an arbitrary plane graph is 3-colorable
is equally hard as trying to find a proper 3-coloring of a given graph. However
we can apply our theorem to show a few classes of planar graphs for which the
new criterion can be effectively checked.



4 Applications

One can expect that the criterion formulated in section 3 can be effectively
checked for graphs that are "highly triangulated", i. e. when a lot of faces are
triangles. Moreover, if such a graph has a special structure it can be colored using
a greedy algorithm. We define formally a class of graphs for which the greedy
algorithm works well. A plane graph G is called triangle connected if each vertex
of GG is incident with a triangular face and the subgraph of the graph dual to G
induced by the triangular faces is connected.

In the following subsections we present the greedy algorithm and three classes
of graphs for which effective 3-color criteria can be formulated. Our general
criterion can be also used to show that plane graphs with face lengths of multiple
of three are 3-colorable.

4.1 The Greedy Algorithm

Given a planar, triangle connected graph (without its planar embedding) the
algorithm below computes its 3-coloring or reports that such a coloring doesn’t
exist. The algorithm runs in a linear time. For each vertex v set PossibleColors(v)
contains colors which are still admissible for v; S represents the set of vertices
for which set PossibleColor contains at most one color. Algorithm uses operation
RESTRICT(v) which restricts the set of admissible colors for neighbors of v.

OPERATION RESTRICT(v)::
for each u in Neighbors(v) do
if Col(u) = -1 then
begin
PossibleColors(u).Remove(Col(v))
if |PossibleColors(u)| < 1 then S.Add(u)
end

ALGORITHM GREEDY::

for each v in V(G) do

begin
PossibleColors(v) := {1, 2, 3}
Col(v) := -1 {undefined}

end

S:=90

(p, q@) := an arbitrary edge of an arbitrary triangle in G
Col(p) :=1

Col(q) := 2

RESTRICT(p)

RESTRICT(q)

while not S.Empty do



begin
v := S.Remove
if |PossibleColors(v)| # 1 then
Exit{G is not 3-colorable}
else
begin
Col(v) := PossibleColors(v).Get
RESTRICT(v)
end
end while

Finding a triangle in a planar graph without its embedding in the plane can
be easily done in a linear time, see [Chr]. During each iteration algorithm chooses
a triangle with two vertices already colored and colors the third vertex. It can be
easily shown that in every embedding one of edges of the initial triangle bounds a
triangular face. As graph is triangle connected algorithms stops when all vertices
are properly colored.

4.2 Triangulations with Holes

A biconnected plane graph is called a triangulation with holes if every of its
vertices is incident with at most one non-triangular face, i.e. a face of length at
least 4.

Proposition 1. Every triangulation with holes is triangle connected.

Proof. Let G be a triangulation with holes. Consider two triangular faces f, h
sharing a common vertex v. Vertex v is incident with at most one non-triangular
face and subsequently f and h can be connected by a sequence formed of trian-
gular faces, where each two successive faces share a common edge.

Now let f and h be two arbitrary triangular faces of G. Since G is connected,
f and h can be connected by a path e;, ez, ..., eg, where e; are edges of G. Each
edge belongs to at least one triangular face. Denote such face for e; by t;. Every
two successive faces t;, t;+1 share a vertex. Additionally ¢, shares a vertex with
f and tj, shares a vertex with h. Hence we conclude that f and h are connected
by a path formed of triangular faces, where each two successive faces share a
common edge. O

Triangulations with holes have the following interesting property. Let G a
triangulation with holes and let f be a face in G. Let Cy be the facial cycle of
f. Then for every vertex v in Cy and an arbitrary even triangulation H D G the
parity of dIng(Cy,v) is the same. It follows that there is exactly one edge-side
coloring for every triangulation with holes (if not to consider isomorphic ones).
This implies a very simple 3-color criterion for triangulations with holes.

We say that a triangulation with holes is internally even when the degree of
every vertex incident with triangular faces only is even.



Theorem 4. A triangulation with holes G is 8-colorable if and only if

(i) it is internally even,
(it) for every non-triangular face f with the facial cycle Cy there exists a balanced
edge 2-coloring mc, of Cy corresponding with G.

Proof. The proof follows easily from Theorem 3. Let G be a triangulation with
holes satisfying conditions (7) and (ii). We shall show that G is 3-colorable. For
each triangular face f, we color all its sides (e, f) black. For each non-triangular
face f with facial cycle Cy we color every side (e, f) with color mc, (e). The
constructed edge-side coloring is balanced for each face and it is easy to check
that every vertex is incident with an even number of one-color edges. Now it
suffices to use theorem 3.

Now we will show the other implication. Let G be a 3-colorable triangulation
with holes. Using theorem 3 we can obtain its proper edge-side coloring m. We
recolor black all sides of all triangular faces obtaining a new edge-side coloring
m'. One can see that m' is also proper. Now all vertices touching only triangular
faces are ends of only one-color (black) edges. Hence they have even degrees.
Moreover one can verify that for every non-triangular face f with the facial
cycle Cy the coloring mc, (e) = m'(f,e) corresponds with G.

O

4.3 Near-triangulations and Quterplanar Graphs

Obviously near-triangulations are triangulations with holes. Informally speaking
a near-triangulation is a triangulation with only one hole. It gives a very simple
3-color criterion for near-triangulations:

Theorem 5. A near-triangulation is 3-colorable if and only if it is internally
even.

Proof. Lemma, 4 implies that the second condition of the Theorem 4 is always
satisfied for near-triangulations. O

As every outerplanar graph is a subgraph of a certain internally even near-
triangulation we immediately get the following known result:

Corollary 1. Outerplanar graphs are 3-colorable.

4.4 Plane Graphs with Faces which Lengths Are of Multiple of 3
The following theorem ([Ore], [Ste]) easily follows from our criterion:

Theorem 6. Let G be a graph embedded in the plane in such a way that the
number of edges in the boundary of each face is a multiple of 3. If G is even then
G is 3-colorable.

Proof. Tt suffices to color all edge-sides in G black and to apply Theorem 3. O



4.5 Infinite Triangulations

It is surprising that we can apply our criterion to infinite plane graphs. An
infinite triangulation is an infinite plane graph with all faces being triangles. We
will consider only locally finite triangulation where degrees of all vertices are
finite. An edge accumulation point (shortly EAP) of an infinite plane graph G
is a point P such that for every positive real number € there are infinitely many
edges of G with Euclidean distance from P less than e. We will show that the
Three Color Theorem holds also for EAP-free infinite triangulations.

Theorem 7. An EAP-free infinite triangulation is 3-colorable if and only it is
even.

Proof. Assume that EAP-free infinite triangulation G is 3-colorable. Let v be
a vertex of odd degree. Since arbitrary two successive neighbors (in clockwise
order) of v are adjacent they have different colors. As there is an odd number
of neighbors of v we need 3 colors to color them and there is no color left for v.
We have just proved implication (—»).

Assume that G is even. Let vy be an arbitrary vertex of G. We define a
sequence of graphs

GoCcGLCGyC@Gs...

Let V(Gq) = {vo} and E(Gyo) = 0. Let W; be the set of vertices with the graph
distance at most ¢ from v. Since graph G(W;) is finite, it has the outer face f;
with the facial cycle C;. Obviously there are no cut vertices in G(W;). Therefore
C; is a simple cycle. We define G; as C; U Intg C;. Since G is EAP-free for
every natural i, G; is a finite graph. Moreover GG; is an internally even near-
triangulation. It follows from Theorem 5 that graphs G; are 3-colorable. Since
G;-1 C Gy, for i > 1, and 3-colorings of G; and G;_1 are unique (i. e. they define
the unique partition of the vertices into 3 independent subsets) we can construct
3-colorings K; for graphs G, i = 0,1,2,..., such that K;g,_, = Ki—1. Now we
can define a 3-coloring of G as K(u) = Kg(v,,u)(u), where d(vo,u) denotes the
graph distance from v to u. O

It is easy to show examples of infinite even triangulations with EAP that
are even, but not 3-colorable. The construction of such triangulation is shown
in Fig. 5. One can see that even first graph in this sequence is not 3-colorable.

In the sequel we use the following well-known fact.

Fact. Let G be an infinite graph. If every finite subgraph of G is k-colorable
then @ is k-colorable.

Theorem 8. Let G be an infinite but locally finite triangulation (not necessarily
EAP-free). G is 3-colorable if and only if

(i) G is even,
(i) for every simple cycle C in G there exists a balanced edge 2-coloring of C
corresponding with C' U Intg C.



Fig. 5. A construction of not 3-colorable even infinite triangulation

Proof. Assume that G is 3-colorable. Then obviously G must be even. Now let
us consider an arbitrary cycle C' in G. Let Vg C V be a set of vertices defined
as follows: v € Vp if and only if v has a neighbor in V(C) and v € C U Intg C.
Let H = G(Vu). As H C G, H is 3-colorable. It is easy to see that H is a
biconnected graph. Therefore we can apply Theorem 3 and get a required edge
2-coloring m¢ corresponding with C U Intg C.

Now we prove that if (i) and (ii) hold then G is 3-colorable. It suffices to prove
that if G satisfies (i) and (ii) then every finite subgraph of G is 3-colorable. Let
F be a finite subgraph of G. W.l.o.g. one can assume that F' is biconnected. If
not, F is a subgraph of a certain biconnected graph G(W;) defined in the proof
of the previous theorem. Now we can use Lemma 5 to get a proper edge-side
coloring of F' and finish the proof using Theorem 3. O
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