
COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE

LANGUAGES

JOOST WINTER, MARCELLO M. BONSANGUE, AND JAN RUTTEN

CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
e-mail address: winter@cwi.nl

LIACS, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
e-mail address: marcello@liacs.nl

CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
e-mail address: janr@cwi.nl

Abstract. In this article, we provide three coalgebraic characterizations of the class of
context-free languages, each based on the idea of adding coalgebraic structure to an existing
algebraic structure by specifying output-derivative pairs. Final coalgebra semantics then
gives an interpretation function into the final coalgebra of all languages with the usual
output and derivative operations. The first characterization is based on systems, where
each derivative is given as a finite language over the set of nonterminals; the second
characterization on systems where derivatives are given as elements of a term-algebra; and
the third characterization is based on adding coalgebraic structure to a class of closed
(unique) fixed point expressions. We prove equivalences between these characterizations,
discuss the generalization from languages to formal power series, as well as the relationship
to the generalized powerset construction.

1. Introduction

The set P(A∗) of all formal languages over an alphabet A is a final coalgebra of the functor
B × (−)A, where B is the Boolean semiring with carrier {0, 1}, uniquely defined by the
defining equation 1 ∨ 1 = 1. Deterministic automata are B × (−)A-coalgebras and their
behaviour, in terms of language acceptance, is given by the final homomorphism into P(A∗).
A language is regular if it is in the image of the final homomorphism from a finite B×(−)A-
coalgebra to P(A∗). Or, equivalently by Kleene’s theorem, if it is in the image of the final
homomorphism from the set of regular expressions, which constitute a B× (−)A-coalgebra
by means of so-called Brzozowski derivatives.

Thus the coalgebraic picture of regular languages and regular expressions is well-
understood (cf. [Rut98] for details). Moreover the picture is so elementary that it has

1998 ACM Subject Classification: F4.2 Grammars and Other Rewriting Systems.
Key words and phrases: coalgebra, formal languages, context-free languages, formal power series.
Supported by the NWO project CoRE: Coinductive Calculi for Regular Expressions.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Joost Winter et al.
Creative Commons

1

2 JOOST WINTER ET AL.

recently been possible [Sil10] to generalize it to a large class of other systems, including
Mealy machines, labelled transition systems, and various probabilistic automata.

In this article, we develop a similar coalgebraic picture for context-free languages, which
form another well-known class, extending regular languages. Our focus is on context-free
grammars, one of the common definition schemes for context-free languages. (Another
well-known characterization is through pushdown automata, which are treated here.)

Because the set of all languages is a final coalgebra of the functor B× (−)A, we model
context-free languages using coalgebras for this functor. We do so in three different but
ultimately equivalent ways:

(1) In Section 3, we view context-free grammars in Greibach normal form as coalgebras
for the functor B×Pω((−)∗)A, or equivalently, as systems of behavioural differential
equations, where each derivative is given as a set of words of nonterminals. These
coalgebras can then be canonically extended to B × (−)A-coalgebras, yielding a
mapping to the final coalgebra of all languages that coincides with the classical
denotational semantics of context-free grammars. For example, in the system

o(x) = 1 xa = {xy} xb = ∅
o(y) = 0 ya = ∅ yb = {ε}

x is mapped onto the language {anbn |n ∈ N}.
(2) In Section 4, we will represent context-free languages using coalgebras for the functor

B × T(−)A, where T(X) is the free term algebra containing all terminals in A and
nonterminals in X, constants 0̄ and 1̄, and closed under binary operations + and
×. These coalgebras can be seen as syntactic systems of behavioural differential
equations, again can be extended to B × (−)A-coalgebras, and thus be assigned a
semantics through the final coalgebra mapping.

(3) In Section 6, we will define context-free languages and power series by means of
generalized regular expressions, in which the Kleene star operation is replaced by
a unique fixed point operator. The set of closed expressions again can be given a
B× (−)A-coalgebra structure, again yielding an operational semantics through the
final homomorphism into the coalgebra of all languages.

We show that the three coalgebraic characterizations above are equivalent in the fol-
lowing sense: a language is context-free if and only if it is in the image of the final homo-
morphism of an extension of a B× Pω((−)∗)A-coalgebra; if and only if it is in the image of
the final homomorphism of an extension of a B× T(−)A-coalgebra; if and only if it occurs
as the image under the final homomorphism of some context-free expression.

In Section 5, we will moreover generalize the picture to a wider class of systems, namely
to Moore automata where the output alphabet possesses a commutative semiring structure.
Here, we obtain a coalgebraic characterization of classes of formal power series, which can
be called context-free or (constructively) algebraic.

In Section 7, we will cast the results from this article in a categorical framework, by
showing that the constructions from Sections 3 and 4 can be seen as instances of the gen-
eralized powerset construction presented in [SBBR10], and highlight some of the subtleties
that arise when this is attempted.

This article is an extended and revised version of [WBR11], which has been presented at
the CALCO conference in 2011. Some newer results from [BRW12] have been incorporated
as well. The main new contributions of the present version include a more precise and
formal presentation of the results, a more comprehensive treatment of the connection to the

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 3

generalized powerset construction, as well as the generalization of the results in Sections 4
and 6 to commutative semirings.

1.1. Related work. In contrast to regular languages, equality of context-free languages
is known to be an undecidable property [HMU06]. This may explain why not so much
algebraic or coalgebraic work has been devoted to study the theory of context-free languages.
The first, and only, coalgebraic treatment of context-free languages we are aware of, is
presented in [HJ05]. In this article context-free languages are described indirectly, as the
result of flattening finite skeletal parsed trees. The authors study context-free grammars as
coalgebras for a functor different from ours, i.e. the functor P((A+ (−))∗).

It should be noted that, in contrast to our approach, even for finitely many non-terminal
symbols, only some coalgebras for this functor are ordinary context-free grammars, as in-
finitely many productions must be allowed in order to obtain the set of skeletal parsed trees
of finite depth via finality.

Algebraically, the starting point is Kozen’s complete characterization of regular lan-
guages in terms of Kleene algebras, idempotent semirings equipped with a star-operation
satisfying some fixed point equations [Koz94]. In [Lei91, ÉL05], Kleene algebras have been
extended with a least fixed point operator to axiomatize fragments of the theory of context-
free languages. We take a similar approach, but coalgebraic in nature and substituting the
Kleene star with a unique fixed point operator. Whereas [Lei91, ÉL05] are interested in
providing solutions to systems of equations of the form x = t using least fixed points, we
look at systems of behavioural differential equations and give a semantic solution in terms of
context-free languages (in Section 4) and syntactic solutions in terms of regular expressions
with unique fixed points (in Section 6). Regular expressions with the Kleene star replaced
by a unique right-recursive fixed point operator have been studied in [SBR10, Sil10] for coal-
gebras for a large class of functors, including B× (−)A. The observation that context-free
languages can be seen as solutions to systems of equations dates back to [GR62].

2. Preliminaries

In this section, some important definitions and a few elementary results from algebra,
universal coalgebra, coalgebraic automata theory, and the theory of context-free languages
will be recalled. For a more extensive coalgebraic treatment of languages, automata and
regular expressions, see for example [Rut00, Rut98, Jac06].

2.1. Algebraic structures. Recall that a monoid (M, ·, 1) consists of a set M , with a
binary operation · : M ×M →M , and an identity element 1 ∈M , such that for all m ∈M ,
1 · m = m = m · 1, and for all m,n, p ∈ M , (m · n) · p = m · (n · p). Following usual
conventions, the symbol · is often omitted. A monoid is called commutative if for all m and
n, mn = nm. The set A∗ of words over an alphabet A with the empty word (here denoted
as ε) as unit, and concatenation of words as multiplication, will, in this article, be the prime
example of a monoid. This monoid is the free monoid over the alphabet A.

A semiring (K, ·,+, 1, 0) consists of a set K with two binary operations + and ·, such
that (K,+, 0) is a commutative monoid with identity element 0, and (K, ·, 1) is a monoid
with identity 1, and · distributes over +, i.e. k·(l+m) = kl+km and (k+l)·m = km+lm for
all k, l,m ∈ K, and moreover, for all k ∈ K, 0 · k = k · 0 = 0. We call a semiring idempotent
if k + k = k for all k ∈ K, and call a semiring commutative if (K, ·, 1) is commutative.

4 JOOST WINTER ET AL.

An important instance of a semiring is the Boolean semiring (B,∧,∨, 1, 0) over the set
B = {0, 1}, which can be uniquely characterized by the equation 1 ∨ 1 = 1. This semiring,
moreover, is an initial object in the category of idempotent semirings.

Given an alphabet A, the set P(A∗) of languages over A, can also be assigned a semiring
structure (P(A∗), ·,∪, {ε}, ∅). Here ∅ and ∪ have their familiar set theoretical meaning, and ·
represents language concatenation: given languages L,M ∈ P(A∗), their product is defined
by

LM = {vw | v ∈ L ∧ w ∈M}.
Closely related to this semiring is the semiring (Pω(A∗), ·,∪, {ε}, ∅) of finite languages over
A, again with ∪ denoting union and · representing language concatenation. This semiring,
moreover, is the free idempotent semiring over A.

2.2. Category theory. Although for the most part (with the major exception of Section
7), this article only has a light dependence on category theory, we will occasionally make
use of the language of category theory. When we do this, we will assume familiar the
notions of categories, (endo)functors, and natural transformations. Furthermore recall that
a monad on a category C consists of an endofunctor T on C, together with two natural
transformations η : 1C → T , called the unit of the monad, and µ : T 2 → T , called the
multiplication of the monad, such that µ ◦ µT = µ ◦ Tµ, and µ ◦ ηT = 1 = µ ◦ Tη.

In general, given a category C and endofunctor T , a T -algebra consists of an object
X of C, together with a mapping α : TX → X. Given a monad T over a category C, an
algebra for the monad T is a T -algebra α such that α ◦ ηX = 1X , and α ◦ T (α) = α ◦ µX .
We note that, given any X, µX : T 2X → TX is the free T -algebra over X.

For a more comprehensive background view on monads, algebras, and category theory
in general, we refer to e.g. [Awo10].

2.3. Coalgebraic preliminaries. A coalgebra for an endofunctor F : C→ C on a category
C consists of a carrier set X together with a map c : X → FX. The functor F is usually
called the type of the coalgebra.

In this article we will be concerned with coalgebras for automata and systems of be-
havioural differential equations, which can all be seen as of the type K × T (−)A for a
commutative semiring K and an endofunctor T : Set→ Set. Here A is a finite set (in this
context also called alphabet), K is the carrier of a commutative semiring (K, ·,+, 1, 0), and
× is the Cartesian product. For a large part of this article, we will be specifically concerned
with the case where K is the Boolean semiring B.

When T is the identity functor 1Set, K × T (−)A will be the familiar functor K × (−)A

representing deterministic automata with inputs in A and outputs in K. More generally, a
coalgebra for a functor of the form K×T (−)A can be interpreted as a system of behavioural
differential equations that for a given state x ∈ X returns a pair (o(x), δ(x)), determining
the output value o(x) ∈ K of a state x, and offering a structured state δ(x)(a) ∈ T (X) for
each alphabet symbol a ∈ A. When dealing with the semiring B, o(x) = 1 is equivalent to
the notion that x is an accepting state. Typically we will write xa for δ(x)(a), call o(x) the
output of x and xa the a-derivative of x, highlighting the connection between our work and
Brzozowski’s notion of derivatives of regular expressions [Brz64].

In the case of K×(−)A-coalgebras (but not for K×T (−)A-coalgebras in general), repre-
senting deterministic automata, we can extend the notion of a-derivative to word derivatives

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 5

xw, for w ∈ A∗, by setting xε = x for the empty word ε and xaw = (xa)w for a ∈ A and
w ∈ A∗.

For arbitrary F -coalgebras, a homomorphism from an F -coalgebra (X, c) to another
F -coalgebra (Y, d) is a mapping f : C → D, such that d ◦ f = Ff ◦ c.

When dealing with K × (−)A-coalgebras, a function f : X → Y is a homomorphism iff
f : C → D preserves outputs and next states, that is, for all x ∈ X:

o(f(x)) = o(x) and f(xa) = f(x)a

This property can easily be extended to word derivatives, as follows:

Proposition 2.1. If f : X → Y is a homomorphism from a K × (−)A-coalgebra (X, (o, δ))
to a K × (−)A-coalgebra (Y, (o′, δ′)), we have f(xw) = f(x)w for all x ∈ X and w ∈ A∗.

An F -coalgebra (Ω, ω) is called final whenever, for any F -coalgebra (X, c), there is a
unique homomorphism J−K from (X, c) to (Ω, ω). In general, this final homomorphism can
be regarded as an interpretation function, interpreting elements of F -coalgebras as elements
of Ω.

When we are concerned with different F -coalgebras simultaneously, say (X, c) and
(Y, d), and their respective mappings to the final coalgebra, we sometimes denote the re-
spective homomorphisms with the name of the carrier of the coalgebra, e.g. J−KX and J−KY .

As an example of a final coalgebra, consider the set P(A∗) of all languages on the
alphabet A. This set can be equipped with a B× (−)A-coalgebra mapping (or, equivalently:
can be assigned the structure of an—infinite—deterministic automaton) by setting

o(L) = if ε ∈ L then 1 else 0

and
La = {w ∈ A∗ | aw ∈ L}

for every L ∈ P(A∗).

Proposition 2.2. The B × (−)A-coalgebra mapping just defined on P(A∗) is final, and,
given a B× (−)A-coalgebra (X, (o, δ)), the unique homomorphism J−K : X → P(A∗) is given
by

JxK = {w ∈ A∗ | o(xw) = 1}
for all x ∈ X.

Similarly, for every set K, the set of all functions in KA∗ , or formal power series in
noncommuting variables over A and with coefficients in K, (often denoted by K〈〈A〉〉) can
be equipped with a K × (−)A-coalgebra map making it final [Rut00].

A bisimulation between two F -coalgebras (X, c) and (Y, d) is a relation R ⊆ X × Y
such that there exists a morphism r : R→ FR, making the diagram

X �
π1

R
π2
- Y

FX

c

?
�
Fπ1

FR

r

?

Fπ2
- FY

d

?

commute. Here π1 and π2 are the projections from R to X and Y , respectively. Whenever
there exists a bisimulation R such that (x, y) ∈ R, we say that x and y are bisimilar and
write x ∼ y. The relation ∼ itself again is a bisimulation, as well as an equivalence relation.

6 JOOST WINTER ET AL.

When F preserves weak pullbacks (which is true in the case of functors of typeK×(−)A)
and a final F -coalgebra exists, we have

x ∼ y iff JxKX = JyKY
for all x ∈ X and y ∈ Y . In other words, x and y are bisimilar exactly when they are
mapped onto the element in the final coalgebra [Rut00]. Again, these elements are formal
languages in the case of the functor B× (−)A, and formal power series in the more general
case of functors of the type K × (−)A.

In the case of K × (−)A-coalgebras, the above categorical definition of a bisimulation
corresponds to the following condition:

Proposition 2.3. Given K × (−)A-coalgebras (X, (o, δ)) and (Y, (o′, δ′)), a relation R ⊆
X × Y is a bisimulation iff, whenever x R y, we have o(x) = o(y), and xa R ya for all
a ∈ A.

Often the notion of a bisimulation up to some property or equivalence class comes in
handy. For instance, given K×(−)A-coalgebras (X, (o, δ)) and (Y, (o′, δ′)), we call a relation
R ⊆ X × Y a bisimulation up to bisimilarity if, whenever x R y, we have o(x) = o(y), and
for all a ∈ A, there are x′ ∈ X and y′ ∈ Y such that xa ∼ x′, x′ R y′, and y′ ∼ ya. Clearly
∼ is a bisimulation up to bisimilarity. Conversely:

Proposition 2.4. For every bisimulation up to bisimilarity R between K× (−)A-coalgebras
(X, (o, δ)) and (Y, (o′, δ′)), if x R y, then x ∼ y.

Proof. We extend R to a relation R̂ defined by:

R̂ := {(x, y) | ∃x′, y′ : x ∼ x′ ∧ x′ R y′ ∧ y′ ∼ y}
We verify that R̂ is a bisimulation: first, if x R̂ y, then there are x′ and y′ such that

x ∼ x′, x′ R y′, and y′ ∼ y, and hence o(x) = o(x′) = o(y′) = o(y). From x′ R y′, it follows
that there are x′′ ∈ X and y′′ ∈ Y such that x′a ∼ x′′, x′′ R y′′, and y′′ ∼ y′a. However,
from x ∼ x′ and y ∼ y′, respectively, we also obtain xa ∼ x′a and ya ∼ y′a. By transitivity

of ∼, we now obtain xa ∼ x′′ and y′′ ∼ ya, and hence it follows that xa R̂ ya, so R̂ is a
bisimulation.

For a more systematic account of bisimulations up to, we refer to [RBR13].

2.4. Context-free languages and grammars. We assume the reader to be familiar with
the standard definitions pertaining to context-free grammars and languages, and give only
the definitions and results we need in the rest of this article. For a more comprehensive
treatment of context-free grammars and languages, see e.g. [HMU06] or [ABB97].

We will represent context-free grammar on a finite alphabet A as a pair (X, p), where
X is a finite set of symbols we call nonterminals or variables, and

p : X → Pω((A+X)∗)

is a function describing the production rules. Here + denotes the coproduct (or disjoint
union), Pω the finite power set, and (A+X)∗ is the set of all words over the disjoint union
A+X. We use the notation

x→ w

to denote w ∈ p(x), where x ∈ X and w ∈ (A+X)∗. Furthermore, the notation

x→ w1 | . . . | wn

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 7

is used to denote {w1, . . . , wn} ⊆ p(x).
Note that the finiteness conditions on both X and the powerset are required, because

otherwise the set of resulting languages would be the set of all languages.
In order to define the language associated to a context-free grammar, we now introduce

the notion of a derivation. Given a context-free grammar (X, p), for all words v, w ∈
(A + X)∗, we write v ⇒ w, and say w is derivable from v in a single derivation step,
whenever v = v1xv2 and w = v1uv2 for a production rule x → u, and v1, v2 ∈ (A + X)∗.
We say that w is derivable from v in a single leftmost derivation step whenever v1 is a
(possibly empty) word in A∗. As usual, ⇒∗ denotes the reflexive and transitive closure of
⇒. In general, if v ⇒∗ w, then w is derivable from v using only leftmost derivation steps.
Therefore we can restrict our attention to leftmost derivations only.

For a context-free grammar (X, p) and any variable x ∈ X, called the starting symbol,
we define the language L(x) ∈ P(A∗) generated by (X, p) from x as:

L(x) := {w ∈ A∗ |x⇒∗ w}
A language L ∈ P(A∗) is called context-free if there exists a context free grammar (X, p)

and a variable x ∈ X, such that L = L(x).
For our coalgebraic treatment of context-free languages it will be convenient to work

with context-free grammars with production rules of a specific form. We say that a context-
free grammar is in Greibach normal form if all of its production rules are of the form

x→ aw or x→ ε

where a ∈ A is an alphabet symbol, and w ∈ X∗ is a (possibly empty) sequence of nonter-
minal symbols.1 It is well-known (see e.g. [Gre65]) that for every context-free language L,
there exists a context-free grammar (X, p) in Greibach normal form, and some x ∈ X, such
that L(x) = L.

3. Context-Free Languages via Grammar Coalgebras

In this section, we will represent context-free grammars in Greibach normal form (for a fixed
finite alphabet A) using coalgebras for the functor B × Pω((−)∗)A, yielding a coalgebraic
semantics for these grammars (and hence, for context-free languages in general). We do this
by showing that the unique coalgebra homomorphism from the coalgebraic representation
of the grammar to the final B× (−)A-coalgebra of all languages maps nonterminal symbols
precisely to the context-free languages they generate.

The key observation here is that every context-free grammar (X, p) with productions
in Greibach normal form can be seen as a coalgebra for the functor B × Pω((−)∗)A. More
precisely, we represent the production rules by a map (o, δ) : X → B×Pω(X∗)A defined for
all nonterminal symbols x ∈ X by

o(x) = if x→ ε then 1 else 0 and xa = {w ∈ X∗ |x→ aw}
writing as before xa for δ(x)(a). We call this coalgebra the grammar coalgebra corresponding
to the grammar (X, p).

1We remark that, in [WBR11], we used a variant called the weak Greibach normal form, differing from
the familiar Greibach normal form [Gre65] in that the right hand side of production rules there can consist
of words w over A+X, rather than simply over X.

8 JOOST WINTER ET AL.

As a first example, consider the following grammar in Greibach normal form, over the
alphabet A = {a, b} with nonterminal symbols X = {x, y, z} and productions:

x → ε | axz | byz
y → ε | byz
z → a

The language generated from x is L(x) = {anbmam+n |m,n ∈ N}, while the language
generated from y is L(y) = {bnan |n ∈ N}. In coalgebraic form, the above productions read
as follows:

output value a-derivative b-derivative
o(x) = 1 xa = {xz} xb = {yz}
o(y) = 1 ya = ∅ yb = {yz}
o(z) = 0 za = {ε} zb = ∅

We can regard systems of this type as systems of behavioural differential equations, where
each derivative is given as a set of words over X, or equivalently, as an element of Pω(X∗).

The coalgebra associated to each context-free grammar in Greibach normal form is not
a proper deterministic automaton (i.e. a B× (−)A-coalgebra) but rather a B× Pω((−)∗)A-
coalgebra. However, we can turn it into a deterministic automaton by embedding the
nonterminal symbols X into Pω(X∗) using the assignment ηX : X → Pω(X∗) mapping each
x ∈ X into the singleton set {x} (in which x is seen as a word). In fact, we extend in
a canonical manner each grammar coalgebra (o, δ) : X → B × Pω(X∗)A to a B × (−)A-

coalgebra (ô, δ̂) : Pω(X∗) → B × Pω(X∗)A, which we will call the grammar automaton
generated from (X, p), as follows: for each S ∈ Pω(X∗) we define the output value and
derivatives inductively by

S ô(S) Sa (a ∈ A)
{ε} 1 ∅
{xw}

(x ∈ X,w ∈ X∗) o(x) ∧ ô({w}) xa{w} ∪ i(o(x)){w}a⋃
i≤n{wi}

(n ∈ N, wi ∈ X∗)
∨
i≤n ô({wi})

⋃
i≤n{wi}a

Here i : B→ P(X∗) is a mapping defined by i(1) = {ε} and i(0) = ∅. It is clear that i
is a semiring morphism, and it follows directly from the semiring axioms that

i(o) · L = (if o = 1 then L else ∅).
We can now combine the B × Pω((−)∗)A-coalgebra (X, (o, δ)) with the B × (−)A-

coalgebra (Pω(X∗), (ô, δ̂)) and the unique homomorphism into the final coalgebra as in
the following commuting diagram:

X
{−}
- Pω(X∗)

J−K
- P(A∗)

B× Pω(X∗)A

(o, δ)

?
......................................-

�
(ô
, δ̂

)

B× P(A∗)A
?

We remark that the leftmost triangle in this diagram commutes: using the definition
scheme for ô and δ̂, it is easily verified that for all x ∈ X, o(x) = ô({x}) and δ(x) = δ̂({x}).

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 9

The inductive definition consisting of ô({xw}) = o(x) ∧ ô({w}) and {xw}a = xa{w} ∪
i(o(x)){w}a can be seen as an instance of a product rule. The following proposition estab-
lishes a more general version of the product rule, in which the role of the nonterminal x is
taken over by arbitrary words s ∈ X∗:

Proposition 3.1. For all words s, t ∈ X∗, the equations

ô({st}) = ô({s}) ∧ ô({t}) and {st}a = {s}a{t} ∪ i(ô({s})){t}a
hold in any system defined as above.

Proof. Induction on the length of s.
If |s| = 0, then s = ε giving

ô({st}) = ô({t}) = 1 ∧ ô(t) = ô({s}) ∧ ô({t})
and

{st}a = {εt}a = {t}a = ∅{t} ∪ {ε}{t}a = {s}a{t} ∪ i(ô({s})){t}a.
If |s| > 0, then s = xu for some x ∈ X and t ∈ X∗, and use the inductive hypothesis

that
ô({ut}) = ô({u}) ∧ ô({t}) and {ut}a = {u}a{t} ∪ i(ô({u})){t}a

and now observe

ô({st}) = ô({xut})
= o(x) ∧ ô({ut})
= o(x) ∧ ô({u}) ∧ ô({t})
= ô({xu}) ∧ ô({t})
= ô({s}) ∧ ô({t})

and

{st}a = {xut}a
= {xa}{ut} ∪ i(o(x)){ut}a
= {xa}{ut} ∪ i(o(x))({u}a{t} ∪ i(ô({u})){t}a)
= {xa}{ut} ∪ i(o(x)){u}a{t} ∪ i(o(x))i(ô({u})){t}a
= {xu}a{t} ∪ i(ô({xu})){t}a
= {s}a{t} ∪ i(ô({s}){t}a,

completing the proof.

The following version of the product rule is yet more general:

Proposition 3.2. For all finite languages S, T ∈ Pω(X∗), the equations

ô(ST) = ô(S) ∧ ô(T) and (ST)a = SaT ∪ i(ô(S))Ta

hold in any system defined as above.

Proof. We have

ô(ST) = ô({st | s ∈ S ∧ t ∈ T}) =
∨
s∈S

∨
t∈T

ô({st}) =
∨
s∈S

ô({s}) ∧
∨
t∈T

ô({t}) = ô(S) ∧ ô(T)

10 JOOST WINTER ET AL.

and

(ST)a = {st | s ∈ S ∧ t ∈ T}a
=

⋃
s∈S

⋃
t∈T
{st}a

=
⋃
s∈S

⋃
t∈T

({s}a{t} ∪ i(ô({s})){t}a)

=
⋃
s∈S

⋃
t∈T
{s}a{t} ∪

⋃
s∈S

⋃
t∈T

i(ô({s})){t}a

= SaT ∪ i(ô(S))Ta.

Lemma 3.3. Given a B × Pω((−)∗)A-coalgebra (X, (o, δ)), S ∈ Pω(X∗), and w ∈ A∗,

ô(Sw) =
∨
s∈S ô({s}w) w.r.t. the extension (Pω(X∗), (ô, δ̂)).

Proof. Induction on the length of w.
If |w| = 0, then w = ε, and hence

ô(Sw) = ô(S) =
∨
s∈S

ô({s}) =
∨
s∈S

ô({s}w)

by definition.
If |w| = k + 1, then w = av for some a ∈ A and v ∈ A∗, and assume as inductive

hypothesis that the stated property holds for all v with |v| ≤ k. We now obtain

ô(Sw) = ô((Sa)v) =
∨
t∈Sa

ô({t}v) =
∨
s∈S

∨
t∈{s}a

ô({t}v) =
∨
s∈S

ô(({s}a)v) =
∨
s∈S

ô({s}w)

and the proof is complete.

Given a context-free grammar (X, p) in Greibach normal form, let Xnul denote the set

{x ∈ X |x→ ε}
of nullable nonterminals in X.

Lemma 3.4. Given a B × Pω((−)∗)A-coalgebra (X, (o, δ)), we have {t}a ⊆ {st}a for s ∈
(Xnul)

∗ and t ∈ X∗ w.r.t. the extension (Pω(X∗), (ô, δ̂)).

Proof. From s ∈ X∗nul, we get ô({s}) = 1. We now get

{t}a ⊆ {s}a{t} ∪ {t}a = {s}a{t} ∪ i(ô({s})){t}a = {st}a
using Proposition 3.1.

Lemma 3.5. Let (X, p) be a context-free grammar in Greibach normal form over a finite
alphabet A. Let s, t ∈ X∗ and let a ∈ A. If t ∈ {s}a (w.r.t. the grammar automaton
generated from (X, p)) , then also s⇒∗ at.

Proof. Assume that t ∈ {s}a. We proceed by induction on the length of s. If |s| = 0, we
would obtain t ∈ {ε}a = ∅, which cannot be the case, making the base case trivially true.

If |s| > 0, then s = xu for some x ∈ X and u ∈ X∗. From t ∈ {s}a we now obtain

t ∈ {vu | v ∈ xa} ∪ i(o(x)){u}a.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 11

Equivalently, either t is of the form vu for some v ∈ xa, or o(x) = 1 and t ∈ {u}a. In
the first case, from v ∈ xa we get x → av directly as a result of the definition, and hence
s = xu⇒ avu = at and also s⇒∗ at. In the second case, apply the inductive hypothesis to
obtain u⇒∗ at from t ∈ {u}a, combine this with x→ ε (which we know because o(x) = 1),
giving s = xu⇒ u⇒∗ at and completing the proof.

The following proposition now establishes the correspondence between derivations in a
context-free grammar in Greibach normal form and the behaviour of a grammar automaton:

Proposition 3.6. Let (X, p) be a context-free grammar in Greibach normal form over a
finite alphabet A. Let s ∈ X∗ and let w ∈ A∗. We have s ⇒∗ w iff ô({s}w) = 1 w.r.t. the
grammar automaton generated from (X, p).

Proof. Induction on the length of w.
If |w| = 0, then w = ε, and note that we have s⇒∗ ε iff s ∈ X∗nul. Now, using induction

on the length of s, we can show that ô({s}) = 1 if and only if s ∈ X∗nul, completing the base
case as ô({s}ε) = ô({s}).

If |w| > 0 then w = av for some a ∈ A and v ∈ A∗, and now assume as inductive
hypothesis that the statement of the proposition holds for all words of length less than w.
For the left-to-right direction, take a leftmost derivation witnessing s ⇒∗ av. There must
be a first stage in the derivation where a rule of the form x→ au is applied. Because (X, p)
is in Greibach normal form, this means that at earlier stages only rules of the form y → ε
(for y ∈ X) are used, allowing us to decompose the derivation as

s = txz ⇒∗ xz ⇒ auz ⇒∗ av
for some t ∈ X∗nul, x ∈ X, u, z ∈ X∗, a ∈ A and v ∈ A∗.

Using the inductive hypothesis, we now get ô({uz}v) = 1 from uz ⇒∗ v. By Lemma 3.4,
we have {xz}a ⊆ {s}a. Observe

{s}a ⊇ {xz}a = {vz | v ∈ xa} ∪ i(o(x)){z}a ⊇ {uz}
with the last inclusion holding because u ∈ xa as a result of x→ au. But now

ô({s}w) = ô(({s}a)v) =
∨

t∈{s}a

ô(tv) > ô({uz}v) = 1

and hence also ô({s}w) = 1.
For the right-to-left direction, assume ô({s}av) = 1. We now get:

ô({s}av) = ô(({s}a)v) = ô

 ⋃
t∈{s}a

{t}v

 =
∨

t∈{s}a

ô({t}v)

Because
∨
t∈{s}a ô({t}v) = 1, there must be a t ∈ {s}a such that ô({t}v) = 1. Applying the

inductive hypothesis now gives t⇒∗ v, and from t ∈ {s}a we obtain s⇒∗ at by Lemma 3.5,
giving

s⇒∗ at⇒∗ av = w

completing the proof.

12 JOOST WINTER ET AL.

Proposition 3.7. Let (X, p) be a context-free grammar in Greibach normal form over a
finite alphabet A, and S ∈ Pω(X∗). We have

JSK =
⋃
s∈S
{w ∈ A∗ | s⇒∗ w}

w.r.t. the grammar automaton generated from (X, p).

Proof. We have

JSK = {w | ô(Sw) = 1} by Proposition 2.2

= {w |
∨
s∈S

ô({s}w) = 1} by Lemma 3.3

=
⋃
s∈S
{w | ô({s}w) = 1}

=
⋃
s∈S
{w | s⇒∗ w} by Proposition 3.6.

Theorem 3.8. The following conditions are equivalent:

(1) A language L is context-free.
(2) There exists a B×Pω((−)∗)A-coalgebra (X, (o, δ)) and an x ∈ X such that J{x}K = L

w.r.t. the extension (Pω(X∗), (ô, δ̂)).
(3) There exists a B × Pω((−)∗)A-coalgebra (X, (o, δ)) and a S ∈ Pω(X∗) such that

JSK = L w.r.t. the extension (Pω(X∗), (ô, δ̂)).

Proof. (1)⇒ (2) : If L is context-free, there exists a context-free grammar (X, p) in Greibach
normal form and a x ∈ X such that L(x) = L. We have L = {w ∈ A∗ |x⇒∗ w}, and using
Proposition 3.7, we now obtain

J{x}K = {w ∈ A∗ |x⇒∗ w} = L

w.r.t. the grammar automaton generated from (X, p).
(2)⇒ (3) : Given (X, (o, δ)), take S = {x}, and we obtain JSK = J{x}K = L.
(3)⇒ (1) : Given (X, (o, δ)), define a context-free grammar (X, p) in Greibach normal

form by setting

p(x) = i(o(x)) ∪

(⋃
a∈A
{a}xa

)
for all x ∈ X. It is easily checked that the construction from this section, starting from
(X, p), yields back (X, (o, δ)). Now, Proposition 3.7 gives JSK =

⋃
s∈S{w ∈ A∗ | s ⇒∗ w}.

Construct a new grammar (generally not in Greibach normal form) (X ∪ {x0}, p′) (with x0
not occurring in X) and set p′(x) = p(x) for all x ∈ X and p(x0) = S. We now have

L(x0) = {w ∈ A∗ |x0 ⇒∗ w} =
⋃
s∈S
{w ∈ A∗ | s⇒∗ w} = JSK = L

with the second equality holding because the first derivation step used in a derivation
x0 ⇒∗ w must be of the form x0 → s for some s ∈ S. From L(x0) = L, it follows directly
that L is context-free.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 13

4. Context-Free Languages via Syntactic Systems of Behavioural
Differential Equations

We will now take a look at another coalgebraic characterization of context-free languages,
where derivatives are given as elements of a term algebra.

Assuming a fixed finite alphabet A, and given a finite set of nonterminals X, we let the
set T(X) of terms over X be defined by the following specification:

τ ::= 0̄ | 1̄ | x̄ (x ∈ X) | ā (a ∈ A) | τ + τ | τ × τ
Examples of terms include 1̄, ā + x̄, x̄ + ā, and (ā × x̄) + b̄. We note that these terms are
purely syntactic, and assume no precedence rules: in order to disambiguate, we always will
use parentheses. In this section, we will moreover carefully distinguish variables x and their
corresponding terms x̄.

Given a finite set X of nonterminals, a syntactic system of behavioural differential
equations is a coalgebra of the type

X
(o,δ)→ B× T(X)A

assigning to each nonterminal an output value, and a function from alphabet symbols a
to a-derivatives, given as terms. Following the earlier convention, we again write xa for
δ(x)(a).

As an example of a syntactic system of behavioural equations, over the set {x, y} of
nonterminals, consider the following system:

output value a-derivative b-derivative

o(x) = 1 xa = x̄× ā xb = ȳ × ā
o(y) = 1 ya = 0̄ yb = ȳ × ā

We will later see that this system is equivalent to the B×(Pω(−)∗)A-coalgebra used as an ex-
ample in the previous section, with x being interpreted as the language {anbmam+n |m,n ∈
N}, and y being interpreted as the language {bnan |n ∈ N}.

Again, we will extend systems of equations (o, δ) : X → T(X)A to B× (−)A-coalgebras

(ō, δ̄) : T(X)→ B× T(X)A,

by inductively defining the value of the mappings ō and δ̄ on all terms τ ∈ T (and alphabet
symbols a ∈ A) as follows:

τ ō(τ) τa
x̄ (x ∈ X) o(x) xa

0̄ 0 0̄
1̄ 1 0̄

b̄ (b ∈ A) 0 j((b = a)?)
σ + υ ō(σ) ∨ ō(υ) σa + υa
σ × υ ō(σ) ∧ ō(υ) (σa × υ) + (j(ō(σ))× υa)

Here, the mapping j : B → T(X) is defined by j(0) = 0̄ and j(1) = 1̄, and (b = a)? is
defined as if b = a then 1 else 0.

We can, again, combine the coalgebras (X, (o, δ)) and (T(X), (ō, δ̄)) in the following
commuting diagram, together with the final homomorphism from (T(X), (ō, δ̄)) to the final
coalgebra:

14 JOOST WINTER ET AL.

X
ηX
- T(X)

J−K
- P(A∗)

B× T(X)A

(o, δ)

?
....................................-

�
(ō
, δ̄

)

B× P(A∗)A
?

We again call the composition JηX(−)K : X → P(A∗) of the final homomorphism J−K
with the injection ηX of the monad T the solution to the system (X, (o, δ)).

We will now, in order to transform B×T(−)A-coalgebras into B×Pω((−)∗)A-coalgebras,
inductively define a mapping f : T(X)→ Pω(Y ∗), where

Y := {x̂ |x ∈ X} ∪ {â | a ∈ A}
consists of new notational variants of the nonterminals x ∈ X as well as the alphabet
symbols a ∈ A. The mapping f is defined as follows:

τ f(τ)
x̄ (x ∈ X) {x̂}

0̄ ∅
1̄ {ε}

ā (a ∈ A) {â}
σ + υ f(σ) ∪ f(υ)
σ × υ f(σ)f(υ)

Now, say, we are given a syntactic system of behavioural differential equations

(o, δ) : X → B× T(X)A.

We now construct a B× P((−)∗)A-coalgebra (Y, (o′, δ′)) by specifying:

y ∈ Y o′(y) ya
x̂ (x ∈ X) o(x) f(xa)

b̂ (b ∈ A) 0 i((b = a)?)

The following lemma is entirely trivial but worth stating nonetheless:

Lemma 4.1. For all k ∈ B, f(j(k)) = i(k).

Proof. Check the definitions of f , i and j.

Proposition 4.2. The mapping f is a B × (−)A-coalgebra homomorphism or, in other
words, the diagram

T(X)
f
- Pω(Y ∗)

B× T(X)A

(ō, δ̄)

?
- B× Pω(Y ∗)A

(ô, δ̂)

?

commutes.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 15

Proof. In order to show that f is a homomorphism, we need to show that for all terms
σ ∈ T(X),

ô(f(σ)) = ō(σ) and f(σ)a = f(σa).

We do this by structural induction on terms σ ∈ T(X).
Base cases:

• Case σ = x̄ (x ∈ X): ô(f(x̄)) = ô({x̂}) = o′(x̂) = o(x) = ō(x̄) and f(x̄)a = {x̂}a =
x̂a = f(xa) = f(x̄a).

• Case σ = b̄ (b ∈ A): ô(f(b̄)) = ô({b̂}) = o′(b̂) = 0 = ō(b̄) and f(b̄)a = {b̂}a = b̂a =
i((b = a)?) = f(j(b = a)?) = f(b̄a).
• Case σ = 1̄: ô(f(1̄)) = ô({ε}) = 1 = ō(1̄) and f(1̄)a = {ε}a = ∅ = f(0̄) = f(1̄a).
• Case σ = 0̄: ô(f(0̄)) = ô(∅) = 0 = ō(0̄) and f(0̄)a = ∅a = ∅ = f(0̄) = f(0̄a).

For the inductive cases, use the inductive hypothesis that ô(f(τ)) = ō(τ), ô(f(υ)) =
ō(υ), f(τ)a = f(τa), and f(υ)a = f(υa) to show that the homomorphic property is satisfied
for terms τ + υ and τ × υ:

• Case σ = τ + υ: we have

ô(f(τ + υ)) = ô(f(τ) ∪ f(υ)) = ô(f(τ)) ∨ ô(f(υ)) = ō(τ) ∨ ō(υ) = ō(τ + υ)

and

f(τ + υ)a = (f(τ) ∪ f(υ))a = f(τ)a ∪ f(υ)a = f(τa) ∪ f(υa) = f((τ + υ)a).

• Case σ = τ × υ: we have

ô(f(τ × υ)) = ô(f(τ)f(υ)) = ô(f(τ)) ∧ ô(f(υ)) = ō(τ) ∧ ō(υ) = ō(τ × υ)

and

f(τ × υ)a = (f(τ)f(υ))a

= f(τ)af(υ) ∪ i(ô(f(τ))f(υ)a

= f(τa)f(υ) ∪ i(ō(τ))f(υa)

= f(τa)f(υ) ∪ f(j(ō(τ)))f(υa)

= f(τa × υ) ∪ f(j(ō(τ))× υa)
= f((τa × υ) + (j(ō(τ))× υa)).

Moreover, f is surjective and has a right-inverse g:

Proposition 4.3. There is a mapping g : Pω(Y ∗) → T(X) such that f ◦ g = 1Pω(Y ∗).
Hence, f is surjective.

We now are able to state the second equivalence theorem:

Theorem 4.4. The following conditions are equivalent:

(1) A language L is context-free.
(2) There exists a B× T(−)A-coalgebra (X, (o, δ)) and an x ∈ X such that JηX(x)K = L

w.r.t. the extension (T(X), (ō, δ̄)).
(3) There exists a B × T(−)A-coalgebra (X, (o, δ)) and a τ ∈ T(X) such that JτK = L

w.r.t. the extension (T(X), (ō, δ̄)).

16 JOOST WINTER ET AL.

Proof. (1)⇒ (2): Assume L is context-free. By Theorem 3.8, there exists a B× P((−)∗)A-

coalgebra (X̂, (o0, δ0)) and a x̂ ∈ X̂ such that JηX̂(x̂)K = L. (We assume the carrier of this

coalgebra to be of the form X̂ = {x̂ |x ∈ X} for the sake of notational convenience.)

We first construct another B× P((−)∗)A-coalgebra (Y, (o1, δ1)), with Y = X̂ ∪ {â | a ∈
A}. Set o1(x̂) = o0(x̂), o1(â) = 0, δ1(x̂)(a) = δ0(x̂)(a), and δ1(b̂)(a) = i((b = a)?). We
obtain JηY (x̂)K = L as the new system is equivalent to the old system, only with additional
(unused) notational variants for the alphabet symbols.

Now construct a B × T(−)A-coalgebra (X, (o2, δ2)), defined by o2(x) = o1(x̂) and
δ2(x)(a) = g(δ1(x̂)(a)). The construction from earlier in this section now gives yet an-
other system (Y, (o3, δ3)), defined by o3(x̂) = o2(x), o3(â) = 0, δ3(x̂)(a) = f(δ2(x)(a)), and

δ3(b̂)(a) = i((b = a)?). From o2(x) = o1(x̂), o1(â) = 0, f(δ2(x)(a)) = f(g(δ1(x̂)(a))) =

δ1(x̂)(a), and δ1(b̂)(a) = i((b = a)?), it follows that o1 = o3 and δ1 = δ3, and hence
JηX(x)K = Jx̄K = Jf(x̄)K = J{x̂}K = JηY (x̂)K = L.

(2)⇒ (3): Given (X, (o, δ)), take τ = x̄, and we obtain JτK = JηX(x)K = L.
(3)⇒ (1): Given (X, (o, δ)), use the construction presented in this section to obtain a

B × Pω((−)∗)A-coalgebra (Y, (o′, δ′)), yielding a coalgebra morphism f from the extension

(T(X), (ō, δ̄)) to the extension (Pω(Y ∗), (ô, δ̂)). Because of the uniqueness of the morphism
into the final coalgebra, we get J−KT(X) = J−KPω(Y ∗) ◦ f . But by Theorem 3.8, from
Jf(τ)KPω(Y ∗) = L it follows that L is context-free.

5. Generalizing the Notion of Context-Freeness

It turns out that the approaches from the previous two sections, as well as the main construc-
tions and almost all of the propositions and theorems, can without difficulty be generalized
from outputs in the semiring B to outputs in any commutative2 semiring K.

In order to get the right grip on this generalization, first observe that the set P(A∗) of
all languages can also, equivalently, be regarded as the function space A∗ → B assigning a
value of either 0 or 1 to every word w ∈ A∗.

If we, instead, consider mappings

A∗ → K

assigning a value taken from the semiring K to every word w ∈ A∗, we obtain K-weighted
languages, or equivalently, formal power series over noncommuting variables with coefficients
in K. This space can be represented e.g. using the notation KA∗ ; in classical texts on
automata theory, it is usually represented as either K〈〈A〉〉 or K〈〈A∗〉〉; for the remainder of
this article, we will stick to K〈〈A〉〉.

We can now add a final K × (−)A-coalgebra structure on K〈〈A〉〉 by setting, for any
σ ∈ K〈〈A〉〉:

o(σ) = σ(ε) and σa = λw.(σ(aw)).

In Section 3, derivatives were presented as elements of Pω(X∗), or, in other words, as
finite languages over the alphabet of nonterminals. These can be regarded as mappings

σ : X∗ → B
with finite support, i.e. with only finitely many w ∈ X∗ such that σ(w) 6= 0. Again
following classical notation, we let K〈X〉 denote the set of functions X∗ to K with finite

2For noncommutative semirings, defining an appropriate semiring structure on K〈X〉 is problematic.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 17

support, or equivalently the set of (noncommuting) polynomials over X with coefficients in
K. Polynomials can be represented using familiar notation, with e.g.

1 + 2xy + 3xyz ∈ N〈{x, y, z}〉
representing a function mapping ε to 1, xy to 2, xyz to 3, and all other words to 0, and
form a semiring with this standard addition and multiplication. The polynomial 1 now
takes over the role of the language {ε} as the unit of the semiring of polynomials. Note that
K〈X〉 generalizes Pω(X∗) in the same way as K〈〈A〉〉 generalizes P(A∗).

We now transform K ×K〈−〉A-coalgebras X
o,δ→ K ×K〈X〉A into K × (−)A-coalgebras

K〈X〉 ô,δ̂→ K ×K〈X〉A using the following inductive scheme:

σ ô(σ) σa (a ∈ A)
1 1 0
xw

(x ∈ X,w ∈ X∗) o(x) · ô({w}) xaw + i(o(x))wa∑
i≤n kiwi

(n ∈ N, wi ∈ X∗, ki ∈ K)

∑
i≤n kiô(wi)

∑
i≤n(wi)a

Again, this construction can be summarized using the following commuting diagram:

X
η
- K〈X〉

J−K
- K〈〈A〉〉

K ×K〈X〉A

(o, δ)

?
....................................-

�
(ô
, δ̂

)

K ×K〈〈A〉〉A
?

The class of power series can be characterized by systems of this type (for finite X)
corresponds precisely to the constructively algebraic power series [BRW12], which are the
usual generalization of the context-free languages. We remark, however, that this general
equivalence is proven by another method than the one presented in Section 3.

As an example of a context-free power series (over the semiring of the natural numbers
and over a singleton alphabet), taken from [Rut02], consider the stream defined by the
following system, consisting of just a single equation

o(x) = 1 x′ = x · x
where x′ denotes the derivative with respect to the single alphabet symbol, and · denotes
the multiplication in the semiring of polynomials.

Its solution turns out to be the stream of Catalan numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

of which nth element is a count of the number of well-bracketed words consisting of n pairs
of opening and closing brackets. For more background on these types of streams, concrete
constructions as well as the coalgebraic view on the connection to counting functions of
unambiguous grammars, we refer to [BRW12].

The approach from Section 4 can straightforwardly be generalized to commutative
semirings. The language of terms TK(X) now becomes

τ ::= k̄ (k ∈ K) | x̄ (x ∈ X) | ā (a ∈ A) | τ + τ | τ × τ

18 JOOST WINTER ET AL.

and the inductive specification of derivatives of terms now becomes

τ ō(τ) τa
x̄ (x ∈ X) o(x) xa
k̄ (k ∈ K) s 0̄
b̄ (b ∈ A) 0 j((b = a)?)
σ + υ ō(σ) + ō(υ) σa + υa
σ × υ ō(σ) · ō(υ) (σa × υ) + (j(ō(σ))× υa)

yielding the following commuting diagram:

X
η
- TK(X)

J−K
- K〈〈A〉〉

K × TK(X)A

(o, δ)

?
....................................-

�
(ō
, δ̄

)

K ×K〈〈A〉〉A
?

We remark that all the results from Section 4 can be generalized, with minimal modi-
fications, to commutative semirings.

For a more in-depth perspective on these context-free power series, and their relation
to automatic sequences and (weighted) languages, see [BRW12].

6. Context-Free Languages and Power Series via µ-expressions

In this section, we will introduce guarded µ-expressions as an extension of regular ex-
pressions, where the Kleene star is replaced by a (unique) fixed point operator µ. We
do this directly in the generalized form for commutative semirings. We will then specify a
K×(−)A-coalgebra structure on the class of these expressions, and prove that the languages
(respectively, power series) characterizable by such expressions are precisely the context-
free languages (respectively, constructively algebraic series). In contrast to the coalgebraic
approaches from the earlier sections, this formalism gives us a single coalgebra of which the
elements are mapped exactly to the context-free languages by the final homomorphism.

Our usage of fixed point expressions with a coinductive semantics has a very similar
flavour to that in [Sil10], in which fixed point expressions are used as a characterization of
regular expressions over a variety of functors. The additional expressive power obtained by
the context-free expressions presented here is due to an explicit inclusion of a concatenation
operator.3 This provides an additional perspective on the treatment given here, in which
‘context-freeness’ is obtained by the addition of a new operator to a calculus of regular
expressions4, and may pave the way for an investigation of (1) extending this approach
to other coinductively defined operators, and (2) extending this approach to a generalized
notion of context-freeness for other functors.

3In [Sil10], a translation from the familiar format of regular expressions (with concatenation) into µ-style
expressions is given by means of substitution. However, this translation does not work for expressions of the
type x · t.

4Although this calculus does not explicitly contain the Kleene star, it can easily be expressed up to
behavioural equivalence by means of the equality t∗ = µx.(1 + (

∑
a∈A(ā× (ta × x))))

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 19

We define the set of terms t (henceforth to be called µ-expressions) and guarded terms
g over a commutative semiring K, an alphabet A and a set of variables X as follows5:

t ::= k̄ (k ∈ K) |x ∈ X | ā (a ∈ A) | t+ t | t× t |µx.g
g ::= ā× t (a ∈ A) | k̄ (k ∈ K) | g + g

We now let Tµ denote the set of all closed µ-expressions, and T−µ the set of all µ-
expressions. Similarly, we let Tγ denote the set of all closed and guarded µ-expressions, and
T−γ the set of all guarded µ-expressions.

We can now assign a B×(−)A-coalgebra structure on the set Tµ of closed µ-expressions,
by presenting a mapping assigning to each t ∈ Tµ an output value o(t) ∈ B, and the
derivative ta ∈ Tµ for each alphabet symbol a. We can do this by extending the earlier
inductive scheme defining the output values and derivatives of expressions with the new
µ-operator, which performs the role of an unfolding operator here:

t o(t) ta
k̄ (k ∈ K) k 0̄
b̄ (b ∈ A) 0 j((b = a)?)
u+ v o(u) + o(v) ua + va
u× v o(u) · o(v) (ua × v) + (j(o(u))× va)
µx.u o(u[µx.u/x]) (u[µx.u/x])a

Here t[µx.u/x], as usual, denotes the term obtained from t by replacing all free occur-
rences of x by µx.u. As usual in the case of uniform substitution, this process normally also
would include a renaming of free variables occurring in the term µx.u: however, because
µx.u is a closed expression, no renaming is needed. Because of the guardedness conditions
of terms occurring directly inside the µ operator, it is easy to see that the above scheme
indeed defines a mapping (o, δ) : Tµ → K × (Tµ)A.

We will next, using purely coalgebraic techniques, show that the quotient Tµ/ ∼ forms
an idempotent semiring. In order to be able to do this, however, we first need the notion
of bisimulation up to addition.

We say a relation R ⊆ Tµ × Tµ is a bisimulation up to + iff, whenever (r1, r2) ∈ R, we
have o(r1) = o(r2) and furthermore, for all a ∈ A, there are s, t, u, v such that (r1)a = s+u,
(r2)a = t+v, s R t and u R v. We will let the latter property be denoted by s+u R+R t+v.
The following proposition establishes the soundness of bisimulation up to +:

Proposition 6.1. If R is a bisimulation up to +, then R ⊆∼.

Proof. We extend R to a new relation R̂, defined inductively by

R̂0 := R

and
R̂k+1 := {(s+ u, t+ v) | s R̂k t ∧ u R̂kv} = R̂k + R̂k

where R̂ =
⋃
n∈N R̂n.

We now will show, using induction on k, that if (r1, r2) ∈ R̂k, then o(r1) = o(r2) and

((r1)a, (r2)a) ∈ R̂k+1. The base case directly follows from the fact that R is a bisimulation

up to +. Assume the property holds for all m ≤ k, and assume (r1, r2) ∈ R̂k+1. Then

there are s, u, t, v with r1 = s + u and r2 = t + v such that (s, t) ∈ R̂k and (u, v) ∈ R̂k.
5Here, we can assume X to be any countably infinite set.

20 JOOST WINTER ET AL.

The inductive hypothesis now gives (sa, ta) ∈ R̂k+1 and (ua, va) ∈ R̂k+1. We now get
o(r1) = o(s) + o(u) = o(t) + o(v) = o(r2), and

(r1)a = sa + ua R̂k+2 ta + va = (r2)a.

By the definition of R̂, it now directly follows that R̂ is a bisimulation. Because R ⊆ R̂,
we now also get R ⊆∼.

Again, the bisimilarity relation ∼ is a congruence with respect to the sum + and
multiplication × of context-free expressions.

Proposition 6.2. If s ∼ t and u ∼ v, then also s+ u ∼ t+ v and s× t ∼ u× v.

Proof. For the first claim, construct the relation

R := {(s+ u, t+ v) | s, t, u, v ∈ Tµ and s ∼ t and u ∼ v}.
R is a bisimulation, because if (s+ u, t+ v) ∈ R, then

o(s+ u) = o(s) + o(u) = o(t) + o(v) = o(t+ v)

and
(s+ u)a = sa + ua R ta + va = (t+ v)a.

For the second claim, construct the relation

R := {(s× u, t× v) | s, t, u, v ∈ Tµ and s ∼ t and u ∼ v}.
R is a bisimulation up to +, because if (s× u, t× v) ∈ R, then

o(s× u) = o(s) · o(u) = o(t) · o(v) = o(t× v)

and

(s× u)a = (sa × u) + (j(o(s))× ua) R+R (ta × v) + (j(o(t))× va) = (t× v)a.

Moreover, we can combine the notions of bisimulation up to + and bisimulation up to
bisimlarity, yielding the following ‘bisimulation up to lemma’, which we will present without
proof:

Lemma 6.3. If R is a relation on Tµ, such that whenever (r1, r2) ∈ R, we have o(r1) = o(r2)
and for all a ∈ A there are s, t ∈ Tµ, such that (r1)a ∼ s, (r2)a ∼ t, and either s R t, or
s R+R t, or s R+ (R+R) t, then r1 ∼ r2.

For a more comprehensive view of bisimulation up to, including its categorical ramifi-
cations, we refer to [RBR13].

We now can establish that the set of context-free expressions modulo ∼ forms an idem-
potent semiring:

Proposition 6.4. For all s, t, u ∈ Tµ, the following hold:

0̄ + t ∼ t s+ t ∼ t+ s
t+ 0̄ ∼ t s+ (t+ u) ∼ (s+ t) + u
0̄× t ∼ 0̄ 1̄× t ∼ t
t× 0̄ ∼ 0̄ t× 1̄ ∼ t

s× (t+ u) ∼ (s× t) + (s× u) s× (t× u) ∼ (s× t)× u
(s+ t)× u ∼ (s× u) + (t× u)

Proof. See Appendix.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 21

These laws can be seen as a partial (sound but not complete) axiomatization of be-
havioural equivalence between context-free expressions. Note that, because language equiv-
alence of context-free languages is not decidable (see e.g. [HMU06]), there cannot be any
complete finitary axiomatization of behavioural equivalence.

As an illustration of context-free expressions over the Boolean semiring B, consider the
expression µx.(1̄ + (ā × (x × b̄))) which is mapped onto the language {anbn}. As another
example, consider the following expression:

µx.(1̄ + ((ā× (x× ā)) + (b̄× (µy.(1̄ + ((ā× 0̄) + (b̄× (y × ā))))× ā)))).

In the next subsection, it will become clear that this expression corresponds to the
language

{ambnam+n |m,n ∈ N}
from the earlier examples.

6.1. From Systems of Equations to µ-Expressions. Assume we have a coalgebra gen-
erated by a syntactic system of behavioural differential equations (o, δ) : X → B×TK(X)A,
and a term t ∈ TK(X). From Section 4, we know that this term is mapped by the final
homomorphism to a context-free language. In this section, we will look for a context-free
expression, obtained by a process of repeated substitution, corresponding to this term in
the sense that it is mapped onto the same language (or power series).

The correspondence between coalgebras and µ-expressions can be proved in various
ways. The techniques used here, moreover, have by themselves little to do with context-free
languages themselves, and can be seen as an instance of a more general transformation
between coalgebras and guarded µ-expressions. In [Mil10] , [Sil10] and [SBR10], the equiv-
alence between expressions and coalgebras is established through the notion of (uniform)
syntactic substitutions, which differ from familiar uniform substitutions in the sense that no
renaming of freely occurring variables takes place. In our presentation, instead of uniform
syntactic substitutions, we will use the notion of single syntactic substitutions, in which a
variable occurring in an expression (whether freely or not) is replaced by a corresponding
µ-expression.

Formally, given a function φ mapping variables x ∈ X to guarded terms φ(x) and an
x ∈ X, a term t′ ∈ T−µ is a single syntactic substitution of t ∈ T−µ from x, whenever either

(1) t = x and t′ = µx.φ(x);
(2) t = s+ u and t′ = s′ + u, where s′ is a single syntactic substitution of s from x;
(3) t = u+ s and t′ = u+ s′, where s′ is a single syntactic substitution of s from x;
(4) t = s× u and t′ = s′ × u, where s′ is a single syntactic substitution of s from x;
(5) t = u× s and t′ = u× s′, where s′ is a single syntactic substitution of s from x; or
(6) t = µy.u, t′ = µy.u′, where u′ is a single syntactic substitution of u from x.

Here, we emphasize that we have not imposed any requirement about the variables
being substituted occurring freely. The main reason why we can do without this usual
requirement, in this situation, is the fact that our expressions are constructed in such a
way that—and this fact we will soon prove using bisimulation—every variable corresponds
to one class of terms, all of which are behaviourally equivalent. In other words, our proof
technique will relate a term to any closure of it, rather than just one specific, or canonical,
closure. This not only significantly simplifies matters, but furthermore combines well with
the inherently relational nature of bisimulations.

22 JOOST WINTER ET AL.

A chain of syntactic substitutions (w.r.t. an assignment φ : X → T−γ) is a list of terms
t0, . . . , tn−1 such that, for each i ∈ N with i < n−1, ti+1 is a single syntactic substitution of
ti (again w.r.t. φ). We call a term t′ ∈ T−γ obtainable from another term t ∈ T−γ by a chain
of syntactic substitutions whenever there is a natural number n and a chain of syntactic
substitutions t0, . . . tn−1 such that t0 = t and tn−1 = t′.

The following lemma establishes some elementary results about chains of syntactic
substitutions:

Lemma 6.5. A term t′ is obtainable from t by a chain of syntactic substitutions with respect
to an assignment φ iff exactly one of the following conditions holds:

(1) t = t′, and either t = ā for some a ∈ A or t = k̄ for some k ∈ K.
(2) t = x for some x ∈ X, and either t′ = x or t′ is obtainable from µx.φ(x) by a chain

of syntactic substitutions.
(3) t = u + v, t′ = u′ + v′, and u′ and v′ are obtainable from u and v by chains of

syntactic substitutions.
(4) t = u × v, t′ = u′ × v′, and u′ and v′ are obtainable from u and v by chains of

syntactic substitutions.
(5) t = µx.u, t′ = µx.u′, and u′ is obtainable from u by a chain of syntactic substitutions.

Proof. Induction on the length of chains, making use of the definition of single syntactic
substitutions.

We are especially interested in chains of syntactic substitutions, where the resulting
term does not contain any free variables, or only a limited set of free variables. We say a
term t′ is a Z-pseudoclosure of t for a set Z ⊆ X of variables, with respect to a mapping
φ : X → T−γ , if t′ is obtainable by a chain of syntactic substitutions from t, and t′ only
contains free variables from Z. We call a ∅-pseudoclosure simply a closure.

Given a system of equations (X, (o, δ)), we will associate to every variable x the guarded
µ-expression

mu(x) := j(o(x)) +
∑
a∈A

(ā× xa)

and call it the corresponding or associated µ-expression. In order to give the
∑

-expression
a unique interpretation, however, we first need to assume a total ordering on the alphabet
A. However, because A is finite, such an ordering always exists.

As a continuation of our running example, recall the system of equations corresponding
to the language {anbman+m |m,n ∈ N}. From this system of equations, we obtain the
following canonical assignment mu:

mu(x) = 1̄ + ((ā× (x× ā)) + (b̄× (y × ā)))

mu(y) = 1̄ + ((ā× 0̄) + (b̄× (y × ā)))

From x, we now obtain

µx.(1̄ + ((ā× (x× ā)) + (b̄× (y × ā))))

by means of a single syntactic substitution, and another single syntactic substitution then
gives us

µx.(1̄ + ((ā× (x× ā)) + (b̄× (µy.(1̄ + ((ā× 0̄) + (b̄× (y × ā))))× ā)))).

This expression does not contain any free variables anymore, and therefore is a closure of
x. However, because single syntactic substitutions are not restricted to free variables, we

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 23

can still apply another single syntactic substitution to this expression, yielding

µx.(1̄+((ā×(µx.(1̄+((ā×(x×ā))+(b̄×(y×ā))))×ā))+(b̄×(µy.(1̄+((ā×0̄)+(b̄×(y×ā))))×ā))))

as another closure of x.
Some general laws about closures and pseudoclosures are easily established. For the

following lemma, fv(t) refers to the set of variables occurring freely in the expression t.

Lemma 6.6. If u′ is a W -pseudoclosure of u and v′ a W -pseudoclosure of v, then u′+v′ is
a W -pseudoclosure of u+ v, u′× v′ is a W -pseudoclosure of u× v, and µx.u′ is a W −{x}-
pseudoclosure of µx.u. Furthermore, if t = u+ v, and t′ is a W -pseudoclosure of t, then t′

is of the form u′ + v′, where u′ is a W -pseudoclosure of u, and v′ is a W -pseudoclosure of
v′. The last fact again holds if we replace + by ×.

Proof. Use Lemma 6.5 together with the facts that fv(u+ v) = fv(u× v) = fv(u) ∪ fv(v),
and fv(µx.u) = fv(u)− {x}.

Using the previous proposition, we can establish that, for every term t, a closure t′

exists with respect to the assignment mu. It should be noted, though, that this t′ generally
is not unique: for a term t, in general, many closures exist.

Proposition 6.7. Given a term t ∈ TK(X) (that is, a µ-free term), a set of variables
Z ⊆ X, and an assignment φ : X → T−γ of variables to µ-expressions, there exists a
Z-pseudoclosure t′ of t with respect to this assignment.

Proof. By induction on the size of X − Z. If |(X − Z)| = 0, then Z = X, and the result is
trivial because every term is its own X-pseudoclosure as witnessed by the chain of syntactic
substitutions (t).

Now say |(X − Z)| = n, assuming that statement of the theorem holds for all W with
|(X −W)| < n. Taking an arbitrary x ∈ X − Z, we obtain |X − (Z ∪ {x})| < n, so by the
inductive hypothesis any term t has a Z ∪ {x}-pseudoclosure t′. We now use this fact to
prove, using structural induction on terms, that all terms t also have Z-pseudoclosures.

(1) For terms of the form k̄ for k ∈ K and ā for a ∈ A, the result is trivial as these
terms do not contain any free variables, and hence are their own Z-pseudoclosures.

(2) For the variable x, we know that there must be a Z ∪ {x}-pseudoclosure u of φ(x).
But now µx.u is a Z-pseudoclosure of x.

(3) For variables y 6= x, assume that u is a Z ∪ {x}-pseudoclosure of φ(y), and v is a
Z ∪{x}-pseudoclosure of φ(x). Then u{µx.v/x} is a Z-pseudoclosure of φ(y). Here
{µx.v/x} denotes syntactic substitution of µx.v for x, in which no renaming of free
variables takes place. It is moreover easy to see that any such substitution u{t/x},
where t is obtainable by a chain of syntactic substitutions from x, is again obtainable
by a chain of syntactic substitutions from u, the length of which is precisely equal
to the number of free occurrences of x in u. As a consequence, it now follows that
µy.u{µx.v/x} is a Z-pseudoclosure of y.

(4) For terms t = u+v or t = u×v, the result follows from Lemma 6.6 and the inductive
hypothesis.

With the next proposition we construct a bisimulation up to bisimilarity between a
coalgebra generated by a system of equations and the coalgebra of closed context-free ex-
pressions, relating every term t ∈ TK(X) to all terms t′ ∈ Tµ that are closures of it w.r.t. the
(‘canonical’) assignment mu.

24 JOOST WINTER ET AL.

Proposition 6.8. Given a system of equations (X, (o, δ)) together with the mapping mu
just defined, the relation

R = {(t, t′) | t ∈ TK(X), t′ ∈ Tµ and t′ is a closure of t (w.r.t. mu)}
is a bisimulation up to bisimilarity between (TK(X), (ō, δ̄)) and the coalgebra of closed
context-free expressions.

Proof. The proof proceeds by proving the following claim using structural induction on
terms t: for any t′ with t R t′, we have ō(t) = o(t′), and for each alphabet symbol a, there
is a u, such that ta R u and u ∼ t′a.

• If t = k̄ for some k ∈ K, then it follows that t′ = t (as the only chain of single
syntactic substitutions starting from t has length 0), and hence ō(t) = o(t′), and
ta = 0̄ R 0̄ ∼ 0̄ = t′a.
• If t = b̄ for some b ∈ A, then it follows that t′ = t, and hence ō(t) = 0̄ = o(t′).

For any a ∈ A with a 6= b, we have ta = 0̄ R 0̄ ∼ 0̄ = t′a, and furthermore
tb = 1̄ R 1̄ ∼ 1̄ = t′b, completing the case.
• If t = x for some x ∈ X, it follows that t′ must be obtainable by a chain of syntactic

substitutions from mu(x). Because

mu(x) = j(o(x)) +
∑
a∈A

(ā× xa)

it follows that t′ must be of the form

µx.(j(o(x)) +
∑
a∈A

(ā× ψ(a)))

with each ψ(a) a {x}-pseudoclosure of xa. However, it now follows that each uniform
substitution

ψ(a)[t′/x]

is a closure of xa, as a result of the equality ψ(a)[t′/x] = ψ(a){t′/x} and the fact
that t′ is a closure of x.

We now get
ō(t) = ō(x) = o(t′)

and

ta = xa R ψ(a)[t′/x] ∼

(
(j(o(x)) +

∑
a∈A

(ā× ψ(a))[t′/x]

)
a

= t′a

completing the case.
• If t = s+u, use the inductive hypothesis that the claim holds for s and u. Hence, if
s R s′, we have ō(s) = o(s′) and for each alphabet symbol a, there is a v such that
sa R v ∼ s′a, and if u R u′, we have ō(u) = o(u′) and for each alphabet symbol a,
there is a w such that ua R w ∼ u′a.

If t R t′, then it follows from Lemma 6.6 that t′ is of the form s′ + u′, with s′ a
closure of s and u′ a closure of u. However, this implies s R s′ and u R u′ and the
foregoing now gives v and w with sa R v ∼ s′a and ua R w ∼ u′a. First, we now get
ō(t) = ō(s) + ō(u) = o(s′) + o(u′) = o(t′). Moreover, again by Lemma 6.6, v + w is
a closure of ta = sa + ua, and by Proposition 6.2, v +w ∼ s′a + u′a = t′a, completing
the case.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 25

• If t = s × u, again use the inductive hypothesis that the claim holds for s and u.
Hence, if s R s′, we have ō(s) = o(s′) and for each alphabet symbol a, there is a v
such that sa R v ∼ s′a, and if u R u′, we have ō(u) = o(u′) and for each alphabet
symbol a, there is a w such that ua R w ∼ u′a.

If t R t′, then t′ is of the form s′ × u′ by Lemma 6.6, with s′ a closure of s and u′

a closure of u. This again implies s R s′ and u R u′ and the foregoing now gives v
and w with sa R v ∼ s′a and ua R w ∼ u′a. We now get

ō(t) = ō(s) · ō(u) = o(s′) · o(u′) = o(t′)

and

ta = (sa × u) + (j(ō(s))× ua)
R (v × u′) + (j(o(s′))× w)

∼ (s′a × u′) + (j(o(s′))× u′a)
= t′a

completing the case.

Returning to our example, this proposition directly establishes that the expression

µx.(1 + ((ā× (x× ā)) + (b̄× (µy.(1 + ((ā× 0̄) + (b̄× (y × ā))))× ā)))).

corresponds to the language
{anbmam+n |m,n ∈ N}

as it was precisely obtained as a closure with respect to the canonical assignment mu.
More generally, the two previous propositions combined directly imply that, for any

term in a coalgebra generated by a system of equations (and, hence, for every context-
free language), we can use any closure of it with respect to the canonical mapping mu as
a bisimilar context-free expression. Hence for every context-free language we can find a
context-free expression that is mapped to it by the final homomorphism:

Theorem 6.9. Let L be a context-free power series over a commutative semiring. There
exists a context-free expression t over the same semiring such that JtK = L.

6.2. From Context-Free Expressions to Systems of Equations. Going in the other
direction, the recipe is as follows: given a context-free expression u in which every vari-
able is bound by a µ-operator just once, we ‘deconstruct’ this expression into a system of
equations, and a term t, of which a closure t′ exists with t′ ∼ u. Then Proposition 6.8
directly gives us the result, that there is a system of equations (X, (o, δ)), a variable x ∈ X,
such that t′ ∼ t with respect to the coalgebra of closed context-free expressions and the
coalgebra (TK(X), (ō, δ̄)) generated by (X, (o, δ)). Hence, the final homomorphism maps t
to a context-free language.

By applying a process of α-renaming, we can obtain an expression t′ from any expression
t such that, in t′, no variable is bound twice, or, in other words, such that there are no two
distinct subexpressions of t′ that bind the same variable. We will state the following lemma
without proof:

Proposition 6.10. Given a closed µ-expression t, there is a closed µ-expression t′ such
that no two subexpressions of t′ are µ-expressions binding the same variable, with t ∼ t′.

26 JOOST WINTER ET AL.

We now define the notion of the µ-pruning mp(t) of terms t ∈ T−µ inductively by setting

mp(µx.g) = x,

and furthermore mp(t) = t whenever t = ā for some a ∈ A, t = k̄ for some k ∈ K, or t = x
for some x ∈ X; mp(t+ u) = mp(t) + mp(u); and mp(t× u) = mp(t)×mp(u).

Now, given an expression t ∈ Tµ such that no two subexpressions of t bind the same
variable, construct the assignment ψ : X → T−µ , where X is the set of variables occurring
in t (and hence, as t is closed, equal to the set of variables bound by subexpressions of t),
and for all x ∈ X,

ψ(x) = mp(u) where µx.u is the unique subexpression of t binding x.

Moreover, note that for all x ∈ X, ψ(x) is guarded, and that any expression t such that no
two subexpressions of t bind the same variable is a closure of its µ-pruning.

We now construct a syntactic system of behavioural differential equations on X. In
order to be able to do this, we first define an output and derivative operations O and ∆ on
guarded expressions inductively as follows:

t ∈ T−γ O(t) ∈ K ∆(t)(a) ∈ T−µ
k̄ (k ∈ K) k 0̄
u+ v o(u) + o(v) ua + va

b̄× v (b ∈ A) 0 if b = a then v else 0̄

and now set, for all x ∈ X, o(x) = O(ψ(x)) and xa = ∆(ψ(x))(a).

Proposition 6.11. The relation

R = {(t, t′) | t ∈ TK(X), t′ ∈ Tµ and t′ is a closure of t (w.r.t. ψ)}
is a bisimulation up to bisimilarity between (TK(X), (ō, δ̄)) (as just defined) and the coalgebra
of closed context-free expressions.

Proof. The proof again proceeds by proving the following claim using structural induction
on terms t: for any t′ with t R t′, we have ō(t) = o(t′), and for each alphabet symbol a,
there is a u, such that ta R u and u ∼ t′a.

• If t = x for some x ∈ X, it follows that t′ must be obtainable by a chain of syntactic
substitutions from µx.ψ(x), and must hence be of the form µx.u, where u is a
{x}-pseudoclosure of ψ(x), and hence u[t′/x] is a closure of ψ(x).

We now get

ta = xa = ∆(ψ(x))(a) R ∆(u[t′/x])(a) ∼ (u[t′/x])a = (µx.u)a = t′a

where ∆(ψ(x))(a) and ∆(u[t′/x])(a) are related by R, because it can be derived
from the fact that u[t′/x] is a closure of ψ(x), that also ∆(u[t′/x])(a) is a closure
of ∆(ψ(x))(a) (to verify this, check the definition of ∆ and use structural induction
on guarded terms). Likewise, using the earlier established bisimilarities it can be
shown that for all closed and guarded terms g, ∆(g)(a) ∼ ga.

Using a similar argument, we also get

ō(t) = ō(x) = O(ψ(x)) = O(u[t′/x]) = o(u[t′/x]) = o(t′)

where again the 2nd and 3rd equality follow from induction on guarded terms.
• For all the other cases, the argumentation from Proposition 6.8 can be used without

modification.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 27

This proposition directly leads to the following theorem:

Theorem 6.12. For all t ∈ Tµ, JtK is context-free (or, depending on the underlying semir-
ing, constructively algebraic).

Proof. Take an expression t′ with t ∼ t′ such that no two subexpressions of t′ bind the same
variable. Proposition 6.11 now gives a syntactic system of behavioural differential equations
(X, (o, δ)), such that mp(t) R t, from which it directly follows that JtK is context-free.

7. The generalized powerset construction

In [SBBR10], a categorical generalization of the powerset construction, a well-known method
to transform nondeterministic finite automata into deterministic automata, is presented.
The finite powerset functor Pω here is generalized to an arbitrary monad T , and instead
of determinizing nondeterministic automata into deterministic automata we now transform
FT -coalgebras into F -coalgebras using a categorically analogous technique. The familiar
powerset construction can then be seen as an instance of this general construction, where F
is the functor B× (−)A representing deterministic automata, and T is the powerset monad
Pω.

In order to cast the work from this article in a more general categorical light, it would
be useful to be able to see the constructions from the earlier sections as instances of this
framework. Hence, in the remainder of this section, we will first recall some of the main
results from [SBBR10], and then investigate what needs to be done in order to be able
to see the constructions from Sections 3 and 4 as instances of the generalized powerset
construction.

7.1. The framework. To start, we present the categorical formulation of the familiar
powerset construction, for the powerset monad and deterministic automata. We start by
fixing an alphabet A.

Say, we are given a nondeterministic automaton, (o, δ) : X → B × (Pω(X))A. From

this automaton, we will construct a new, deterministic, automaton (ô, δ̂) : Pω(X) → B ×
(Pω(X))A, accepting the same language.

This can be done by specifying, for all Y ∈ Pω(X):

ô(Y) =
∨
y∈Y

o(y) , and Ya =
⋃
y∈Y

ya

This extension enables us to obtain an interpretation of the original nondeterminis-
tic automaton by means of the final homomorphism J−K, as in the following commuting
diagram:

X
{−}
- Pω(X)

J−K
- P(A∗)

B× Pω(X)A

(o, δ)

?
.....................................-

�
(ô
, δ̂

)

B× P(A∗)A
?

28 JOOST WINTER ET AL.

Another way to look at this construction, is to observe that we can assign a Pω-algebra
structure to the set B × Pω(X)A, such that there is a unique Pω-algebra homomorphism
from Pω(X), the free Pω-algebra over X, to B× Pω(X)A, making the triangle in the above
diagram commute.

We can now formulate the general case as follows: let T be a monad on a category C
and let F be an endofunctor on C, and consider any coalgebra c : X → FTX. The aim
now is to extend c into some ĉ : TX → FTX, making the diagram

X
ηX
- TX

FTX

c

?�

ĉ

commute. Here η is the unit of the monad T .
This extension can be constructed by assigning an appropriate T -algebra structure

(FTX,α) to FTX. We will now have a unique T -algebra morphism

ĉ : (TX, µX)→ (FTX,α)

from the free algebra (TX, µX) into (FTX,α) making the above diagram commute.
When F has a final coalgebra (Ω, ω), the diagram can be extended as follows:

X
ηX
- TX

J−K
- Ω

FTX

c

?
...-
�

ĉ

FΩ

ω

?

We will later see that the main constructions in this article can all be seen as instances
of this generalized powerset construction.

As a final remark, note that if λ : TF → FT is a distributive law of the monad T over
F , then the required T -algebra structure FTX can be canonically obtained as follows:

TFTX
λTX- FTTX

FµX- FTX

This algebra structure is consistent with the algebra structure one can give (by finality)
on the final coalgebra (Ω, ω) in the sense that the coalgebra map J−K is a also a T -algebra
homomorphism. (Earlier in this article, we obtained the same compositionality results
directly without reliance on distributive laws or other categorical methods.) Here, like
in the case of the generalized powerset construction, again some subtleties arise and the
easiest approach is to define a distributive law of the monad T over the copointed functor
− × (B × (−)A). From this we can obtain a distributive law of the monad Pω(−∗) over
−× (B× (−)A), as presented in [BHKR13], to which we refer for further details. For a more
general background on distributive laws, we refer to e.g. [Bar04] or [Kli11].

7.2. The constructions from this article as an instance of the framework. It is also
possible to regard the constructions from Sections 3 and 4 as instances of the generalized
powerset construction presented above.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 29

In order to be able to see the extension from B × Pω((−)∗)A-coalgebras (o, δ) into

B×(−)A-coalgebras (ô, δ̂) as an instance of the generalized powerset construction, we would
need to provide an appropriate algebra structure on B×Pω(X∗)A. First observe that Pω(X∗)
is the free idempotent semiring on X or, in other words: given any idempotent semiring
K and a function f : X → K, there is a unique semiring morphism f̂ : Pω(X∗) → K,

such that f̂ ◦ ηX = f . Hence, it is enough to assign an idempotent semiring structure to
B×Pω(X∗)A in order to obtain (ô, δ̂) via a unique mapping property. Although we already
know that the diagram

X
ηX
- Pω(X∗)

B× Pω(X∗)A

(o, δ)

?�
(ô
, δ̂

)

commutes in Set, we would like (ô, δ̂) to be a semiring morphism, in order to be able to see
this construction as an instance of the generalized powerset construction.

However, this cannot be done right away: we first need to make a suitable extension,
from B × Pω((−)∗)A-coalgebras to B × Pω((− + A)∗)A-coalgebras, which can be seen as
corresponding to grammars (X, p) in weak Greibach normal form, where for each x ∈ X,
p(x) ⊆ A(X+A)∗∪{ε} (rather than p(x) ⊆ AX∗∪{ε} as in the case of the regular Greibach
normal form). The appropriate diagram now is

X
ηX
- Pω((X +A)∗)

B× Pω((X +A)∗)A

(o, δ)

? �
(ô,
δ̂)

and in order to give a full inductive specification of (ô, δ̂), we need to extend the earlier
specification with the equations ô(b) = 0 and ba = i((b = a)?) for all a, b ∈ A. Moreover,
we need to change the definition of the derivative of products {xs} for x ∈ X and k ∈ K
by decomposing the occurrence of s in the derivative into i(ô(s))∪

(⋃
b∈A{b}{s}b

)
, yielding

S ô(S) Sa (a ∈ A)
{ε} 1 ∅
{xs}

(x ∈ X, s ∈ (A+X)∗)
o(x) ∧ ô({s}) xa ·

(
i(ô(s)) ∪

(⋃
b∈A{b}{s}b

))
∪ i(o(x)){s}a

{bs}
(b ∈ A, s ∈ (A+X)∗)

0 i((b = a)?) ·
(
i(ô(s)) ∪

(⋃
c∈A{c}{s}c

))⋃
i≤n{si}

(n ∈ N, wi ∈ X∗)
∨
i≤n ô({wi})

⋃
i≤n{si}a

as the behavioural specification of the B× (−)A-coalgebra structure on Pω((X +A)∗).
Furthermore, we can now indeed define an idempotent semiring structure on B ×

Pω((X + A)∗)A. Because Pω((X + A)∗) is the free idempotent semiring on X + A, we
need to give an interpretation of nonterminals x ∈ X as well as alphabet symbols a ∈ A.
Constants, addition, and multiplication now can be specified as follows:

30 JOOST WINTER ET AL.

0 (0, λa.∅)
1 (1, λa.∅)

x ∈ X (o(x), λa.xa)
b ∈ A (0, λa.i((b = a)?))

(o1, δ1)⊕ (o2, δ2) (o1 ∨ o2, λa.(δ1(a) ∪ δ2(a)))
(o1, δ1)⊗ (o2, δ2) (o1 ∧ o2, λa.(δ1(a)(i(o2) ∪ (

⋃
b∈A{b}δ2(b))) ∪ i(o1)δ2(a)))

We, however, still need to verify that this structure is indeed an idempotent semiring:

Proposition 7.1. (B× Pω((X +A)∗)A,⊗,⊕, 1, 0) is an idempotent semiring.

Proof. See Appendix.

This semiring structure yields a unique semiring morphism (O,∆) from Pω((X +A)∗),
to B×Pω((X +A)∗)A compatible with (o, δ), and can be combined with the unique homo-
morphism into the final coalgebra in the following commuting diagram:

X
ηX
- Pω((X +A)∗)

J−K
- P(A∗)

B× Pω((X +A)∗)A

(o, δ)

?
..-

�
(O
,∆

)

B× P(A∗)A
?

However, in order to be certain that (O,∆) = (ô, δ̂), we either need to prove that (ô, δ̂)

is a semiring morphism compatible with (o, δ), i.e. that (ô, δ̂)(ST) = (ô, δ̂)(S) ⊗ (ô, δ̂)(T)

and (ô, δ̂)(S ∪ T) = (ô, δ̂)(S)⊕ (ô, δ̂)(T) for all S, T ∈ Pω((X +A)∗), giving (O,∆) = (ô, δ̂)
by the above unique mapping property, or we need to show this equivalence directly. Taking
the latter route, we obtain the following proposition:

Proposition 7.2. (O,∆) = (ô, δ̂) (w.r.t. the B×(−)A-coalgebra structure on Pω((X+A)∗)).

Proof. We first show that for all words s ∈ (X + A)∗, (O,∆)({s}) = (ô({s}), δ̂({s})) by
induction on the length of s. Note that in what follows we will make use of the already
established fact that (O,∆) is a semiring morphism.

If |s| = 0, then s = ε and

(O,∆)({ε}) = 1 = (1, λa.∅) = (ô({ε}), δ̂({ε}))
so the property holds.

If |s| > 0, then either s = xt for x ∈ X and t ∈ (X + A)∗, or s = at for a ∈ A and

t ∈ (X +A)∗. We now can use the inductive hypothesis that (O,∆)({t}) = (ô({t}), δ̂({t})):
If s = xt for x ∈ X and t ∈ (X +A)∗, observe

(O,∆)({xt})
= (O,∆)({x})⊗ (O,∆)({t})

= (o(x), δ(x))⊗ (ô({t}, δ̂({t}))

= (o(x) ∧ ô({t}), λa.(xa

[
i(ô({t})) ∪

⋃
b∈A
{b}{t}b

]
∪ i(o(x)){t}a))

= (ô({xt}), λa.{xt}a)

= (ô({xt}), δ̂({xt}))

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 31

and if s = bt for b ∈ A and t ∈ (X +A)∗, observe

(O,∆)({bt})
= (O,∆)({b})⊗ (O,∆)({t})

= (0, λa.i((b = a)?))⊗ (ô({t}, δ̂({t}))

= (0 ∧ ô({t}), λa.(i((b = a)?)

[
i(ô({t})) ∪

⋃
c∈A
{c}{t}c

]
∪ i(0){t}a))

= (0, λa.(i((b = a)?)

[
i(ô({t})) ∪

⋃
c∈A
{c}{t}c

]
))

= (ô({bt}), λa.{bt}a)

= (ô({bt}), δ̂({bt})).
Now let S ∈ Pω((X +A)∗) and observe

(O,∆)(S) = (O,∆)(
⋃
s∈S
{s}) =

⊕
s∈S

(O,∆)({s}) =
⊕
s∈S

(ô({s}), δ̂({s}))

=

(∨
s∈S

ô(s), λa.

[⋃
s∈S
{s}a

])
= (ô(S), δ̂(S)),

completing the proof.

The construction in Section 4, too, can be seen as an instance of the generalized powerset
construction. This time we need to provide a T-algebra structure for B×T(X)A, which can
be done as follows:

0̄ (0, λa.0̄)
1̄ (1, λa.0̄)
ā (0, λb.j((b = a)?))

(o1, δ1) + (o2, δ2) ((o1 ∨ o2), λa.(δ1(a) + δ2(a)))
(o1, δ1)× (o2, δ2) ((o1 ∧ o2), λa.((j(o1)× δ2(a)) + (δ1(a)×

∑
b∈A(b̄× δ2(a)))))

As before, in order to make the expression
∑

b∈A(b̄ × δ2(a)) precise, we again assume a
canonical ordering on the alphabet A.

This T-algebra structure on B × T(X)A yields a unique T-algebra morphism from the
free T-algebra T(X) to B × T(X)A compatible with (o, δ). Moreover, this unique algebra
morphism is behaviourally equivalent to the mapping (ō, δ̄) as defined before.

8. Discussion

Our coalgebraic account of context-free languages in terms of grammar coalgebras and
automata, syntactic systems of behavioural equations, and closed µ-expressions can be taken
as a starting point for a generalization in at least two different and orthogonal directions. In
one direction (in which the first steps have already been taken, see Section 5 and [BRW12]),
we can generalize from languages towards power series in commutative semirings. Here, a
good deal of work remains to be done in order to see how existing results from the literature
on formal power series and languages can be cast into the coalgebraic framework, and to
find uses of coalgebraic and coinductive techniques in this area.

32 JOOST WINTER ET AL.

In another direction, we can consider other languages of expressions for the functor
B × (−)A to obtain different classes of languages. As an interesting example of this type,
one could consider syntactic systems of behavioural differential equations for which the term
at the right of each equation stems from the language of expressions:

t ::= 0̄ | 1̄ | x̄ (x ∈ X) | t+ t | ā× t (a ∈ A)

The semantic solution of such a system is given by regular languages, while the syntactic
one is given by a language of expressions as studied in [SBR10]. The corresponding notion
of grammars for regular languages is then given by considering productions of the form
p : X → B × Pω(A∗ ×X)A, i.e. right-linear grammars [HMU06]. When we generalize this
language of expressions to the specification

t ::= k̄ (k ∈ K) | x̄ (x ∈ X) | t+ t | ā× t (a ∈ A)

over an arbitrary semiring K, we obtain the rational power series over K. In both cases, it
is also possible to give a corresponding notion of µ-expressions.

It might also be worthwhile to look at systems of equations in which other coinductively
specified operators than sum and concatenation (or, in the general case, the convolution
product) are involved: we can for example investigate systems of equations where, on the
right-hand side, the operator for language intersection (or, more generally, the Hadamard
product) is allowed. Because the class of context-free languages is not closed under inter-
section, it is directly clear that adding this operator to the language of terms will yield a
larger class of languages.

Further research directions include a coalgebraic characterization of context-free lan-
guages in terms of pushdown automata [HMU06], and the study of coinductive decision
procedures for bisimilarity of subclasses of the context-free languages of which equivalence
is decidable, such as deterministic pushdown automata [Sti01] and visibly pushdown au-
tomata [AM04].

Acknowledgements

We would like to thank Alexandra Silva and Jurriaan Rot, for valuable suggestions and
discussions. Furthermore, we would like to thank the anonymous referees for their numerous
valuable corrections and suggestions for improvements.

Additional proofs

Proof. (of Proposition 6.4)
For each of the relations, we construct a bisimulation (up to) establishing the claimed

bisimilarity.

• 0 + t ∼ t and t+ 0 ∼ t:
Define

R := {(0 + t, t) | t ∈ Tµ} ∪ {(t+ 0, t) | t ∈ Tµ}.
If (r1, r2) ∈ R, then either r1 = 0 + t and r2 = t for some t ∈ Tµ, or r1 = t + 0

and r2 = t for some t ∈ Tµ. If (r1, r2) = (0 + t, t), then o(0 + t) = o(0) ∨ o(t) = o(t)
and (0 + t)a = 0a + ta = 0 + ta R ta, so ((0 + t)a, ta) ∈ R. If (r1, r2) = (t + 0, t),
then o(t+ 0) = o(t) ∨ o(0) = o(t) and (t+ 0)a = ta + 0a R ta, so ((t+ 0)a, ta) ∈ R.
Hence, R is a bisimulation.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 33

• s+ t ∼ t+ s:
Define

R := {(s+ t, t+ s) | s, t ∈ Tµ}
If (s+ t, t+ s) ∈ R, then o(s+ t) = o(s) ∨ o(t) = o(t) ∨ o(s) = o(t+ s) and

(s+ t)a = sa + ta R ta + sa = (t+ s)a

so R is a bisimulation.
• s+ (t+ u) ∼ (s+ t) + u:

Define
R := {s+ (t+ u), (s+ t) + u | s, t, u ∈ Tµ}

If (s+ (t+ u), (s+ t) + u) ∈ R, then

o(s+ (t+ u)) = o(s) ∨ (o(t) ∨ o(u)) = (o(s) ∨ o(t)) ∨ o(u) = o((s+ t) + u)

and

(s+ (t+ u))a = sa + (ta + ua) R (sa + ta) + ua = ((s+ t) + u)a

so R is a bisimulation.
• 0× t ∼ 0 and t× 0 ∼ 0:

Define
R := {(0× t, 0) | t ∈ Tµ} ∪ {(t× 0, 0) | t ∈ Tµ}

If (r1, r2) ∈ R, then either r1 = 0 × t and r2 = t for some t ∈ Tµ, or r1 = t × 0
and r2 = 0 for some t ∈ Tµ. If (r1, r2) = (0× t, 0), then o(0× t) = o(0)∧ o(t) = o(0)
and

(0× t)a = (0a × t) + (i(o(0))× ta) = (0× t) + (0× ta) R+R 0 + 0 ∼ 0 = 0a,

and if (r1, r2) = (t× 0, 0), then o(t× 0) = o(t) ∧ o(0) = o(0) and

(t× 0)a = (ta × 0) + (i(o(t))× 0a) = (ta × 0) + (i(o(t))× 0) R+R 0 + 0 ∼ 0 = 0a,

so R is a bisimulation up to + and bisimilarity.
• 1× t ∼ t and t× 1 ∼ t:

Define
R := {(1× t, t) | t ∈ Tµ} ∪ {(t× 1, t) | t ∈ Tµ}

If (r1, r2) ∈ R, then either r1 = 1 × t and r2 = t for some t ∈ Tµ, or r1 = t × 1
and r2 = t for some t ∈ Tµ. If (r1, r2) = (1× t, t), then o(1× t) = o(1) ∧ o(t) = o(t)
and

(1× t)a = (1a × t) + (i(o(1))× ta) = (0× t) + (1× ta) ∼ 0 + (1× ta) ∼ 1× ta R ta,

and if (r1, r2) = (t× 1, t), then o(t× 1) = o(t) ∧ o(1) = o(t) and

(t× 1)a = (ta × 1) + (i(o(t))× 1a) = (ta × 1) + (i(o(t))× 0) ∼ ta × 1 + 0 ∼ ta × 1 R ta,

so R is a bisimulation up to + and bisimilarity.
• s× (t+ u) ∼ (s× t) + (s× u).

Define
R := {s× (t+ u), (s× t) + (s× u) | s, t, u ∈ Tµ}

If (s× (t+ u), (s× t) + (s× u)) ∈ R, then

o(s× (t+ u)) = o(s) ∧ (o(t) ∨ o(u)) = (o(s) ∧ o(t)) ∨ (o(s) ∧ o(u)) = o((s× t) + (s× u))

34 JOOST WINTER ET AL.

and

(s× (t+ u))a

= (sa × (t+ u)) + (i(o(s))× (t+ u)a)

= (sa × (t+ u)) + (i(o(s))× (ta + ua))

R+R (sa × t+ sa × u) + ((i(o(s))× ta) + (i(o(s))× ua))
∼ ((sa × t) + (i(o(s))× ta)) + ((sa × u) + (i(o(s))× ua))
= ((s× t) + (s× u))a

so R is a bisimulation up to + and bisimilarity.
• (s+ t)× u ∼ (s× u) + (t× u) Define

R := {(s+ t)× u, (s× u) + (t× u) | s, t, u ∈ Tµ}
If ((s+ t)× u, (s× u) + (t× u)) ∈ R, then

o((s+ t)× u) = (o(s) ∨ o(t)) ∧ o(u) = (o(s) ∧ o(u)) ∨ (o(t) ∧ o(u)) = o((s× u) + (t× u))

and

((s+ t)× u)a

= ((s+ t)a × u) + (i(o(s+ t))× ua)
= ((sa + ta)× u) + (i(o(s+ t))× ua)
∼ ((sa + ta)× u) + ((i(o(s)) + i(o(t)))× ua

R+R ((sa × u) + (ta × u)) + ((i(o(s))× ua) + (i(o(t))× ua))
∼ ((sa × u) + (i(o(s))× ua)) + ((ta × u) + (i(o(t))× ua))
= ((s× u) + (t× u))a

so R is a bisimulation up to + and bisimilarity.
• s× (t× u) ∼ (s× t)× u Define

R := {s× (t× u), (s× t)× u | s, t, u ∈ Tµ}
If (s× (t× u), (s× t)× u) ∈ R, then

o(s× (t× u)) = o(s) ∧ (o(t) ∧ o(u)) = (o(s) ∧ o(t)) ∧ o(u) = o((s× t)× u)

and

(s× (t× u))a

= (sa × (t× u)) + (i(o(s))× (t× u)a))

= (sa × (t× u)) + (i(o(s))× ((ta × u) + (i(o(t))× ua)))
∼ (sa × (t× u)) + ((i(o(s))× (ta × u)) + (i(o(s))× (i(o(t))× ua)))

R+ (R+R) ((sa × t)× u) + (((i(o(s))× ta)× u) + ((i(o(s))× i(o(t)))× ua))
∼ (((sa × t) + (o(s)× ta))× u) + i(o(s× t))× ua)
= ((s× t)a × u) + i(o(s× t))× ua)
= ((s× t)× u)a

so R is a bisimulation up to + and bisimilarity.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 35

Proof. (of Proposition 7.1) We verify that the semiring axioms hold, as well as the axiom
of idempotence.

• 0⊕ (o, δ) = (o, δ):

0⊕ (o, δ) = (0, λa.∅)⊕ (o, δ) = (0 ∨ o, λa.((λb.∅)(a) ∪ δ(a))) = (o, λa.(∅ ∪ δ(a))) = (o, δ)

• (o, δ)⊕ 0 = (o, δ):

(o, δ)⊕ 0 = (o, δ)⊕ (0, λa.∅) = (o ∨ 0, λa.(δ(a) ∪ (λb.∅)(a)) = (o, λa.(δ(a) ∪ ∅)) = (o, δ)

• (o1, δ1)⊕ (o2, δ2) = (o2, δ2)⊕ (o1, δ1):

(o1, δ1)⊕(o2, δ2) = (o1∨o2, λa.(δ1(a)∪δ2(a))) = (o2∨o1, λa.(δ2(a)∪δ1(a))) = (o2, δ2)⊕(o1, δ1)

• ((o1, δ1)⊕ (o2, δ2))⊕ (o3, δ3) = (o1, δ1)⊕ ((o2, δ2)⊕ (o3, δ3)):

((o1, δ1)⊕ (o2, δ2))⊕ (o3, δ3)

= (o1 ∨ o2, λa.(δ1(a) ∪ δ2(a)))⊕ (o3, δ3)

= ((o1 ∨ o2) ∨ o3, λa.((λb.(δ1(b) ∪ δ2(b)))(a) ∪ δ3(a)))

= ((o1 ∨ o2) ∨ o3, λa.((δ1(a) ∪ δ2(a)) ∪ δ3(a)))

= (o1 ∨ (o2 ∨ o3), λa.(δ1(a) ∪ (δ2(a) ∪ δ3(a))))

= (o1 ∨ (o2 ∨ o3), λa.(δ1(a) ∪ (λb.(δ2(b) ∪ δ3(b)))(a)))

= (o1, δ1)⊕ (o2 ∨ o3, λa.(δ2(a) ∪ δ3(a)))

= (o1, δ1)⊕ ((o2, δ2)⊕ (o3, δ3))

• 1⊗ (o, δ) = (o, δ):

1⊗ (o, δ)

= (1, λa.∅)⊗ (o, δ)

= (1 ∧ o, λa.((λb.∅)(a)(o ∪ (
⋃
b∈A
{b}δ(b))) ∪ i(1)δ(a)))

= (1 ∧ o, λa.(∅ ∪ {ε}δ(a)))

= (o, δ)

• (o, δ)⊗ 1 = (o, δ):

(o, δ)⊗ 1

= (o, δ)⊗ (1, λa.∅)

= (o ∧ 1, λa.(δ(a)(i(1) ∪ (
⋃
b∈A
{b}(λc.∅)(b))) ∪ i(o)(λb.∅)(a)))

= (o ∧ 1, λa.(δ(a)(i(1) ∪ (
⋃
b∈A
{b}∅)) ∪ ∅))

= (o ∧ 1, λa.(δ(a)(i(1) ∪ ∅) ∪ ∅))
= (o, δ)

36 JOOST WINTER ET AL.

• ((o1, δ1)⊗ (o2, δ2))⊗ (o3, δ3) = (o1, δ1)⊗ ((o2, δ2)⊗ (o3, δ3)):

((o1, δ1)⊗ (o2, δ2))⊗ (o3, δ3)

= (o1 ∧ o2, λa.(δ1(a)(i(o2) ∪ (
⋃
b∈A
{b}δ2(b))) ∪ i(o1)δ2(a)))⊗ (o3, δ3)

= ((o1 ∧ o2) ∧ o3, λa.([
λc.(δ1(c)(i(o2) ∪ (

⋃
b∈A
{b}δ2(b))) ∪ i(o1)δ2(c))

]
(a)

[
i(o3) ∪ (

⋃
b∈A
{b}δ3(b))

]
∪ i(o1 ∧ o2)δ3(a)

))

= ((o1 ∧ o2) ∧ o3, λa.([
δ1(a)(i(o2) ∪ (

⋃
b∈A
{b}δ2(b))) ∪ i(o1)δ2(a)

][
i(o3) ∪ (

⋃
b∈A
{b}δ3(b))

]
∪ i(o1 ∧ o2)δ3(a)

))

= ((o1 ∧ o2) ∧ o3, λa.(
i(o2 ∧ o3)δ1(a)

∪ i(o3)δ1(a)

[⋃
b∈A
{b}δ2(b)

]

∪ i(o2)δ1(a)

[⋃
b∈A
{b}δ3(b)

]

∪ δ1(a)

[⋃
b∈A
{b}δ2(b)

][⋃
b∈A
{b}δ3(b)

]
∪ i(o1 ∧ o3)δ2(a)

∪ i(o1)δ2(a)

[⋃
b∈A
{b}δ3(b)

]
∪ i(o1 ∧ o2)δ3(a)

))

= (o1 ∧ (o2 ∧ o3), λa.(

δ1(a)

[
i(o2 ∧ o3) ∪

⋃
b∈A
{b}

[
δ2(b)

[
i(o3) ∪

⋃
c∈A
{c}δ3(c)

]
∪ i(o2)δ3(b)

]]

∪ i(o3)

[
δ2(a)

[
i(o3) ∪

⋃
b∈A
{b}δ3(b)

]
∪ i(o2)δ3(a)

]
))

= (o1, δ1)⊗ (o2 ∧ o3, λa.(δ2(a)(i(o3) ∪ (
⋃
b∈A
{b}δ3(b))) ∪ i(o2)δ3(a)))

= (o1, δ1)⊗ ((o2, δ2)⊗ (o3, δ3))

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 37

• ((o1, δ1)⊕ (o2, δ2))⊗ (o3, δ3) = ((o1, δ1)⊗ (o3, δ3))⊕ ((o2, δ2)⊗ (o3, δ3)):

((o1, δ1)⊕ (o2, δ2))⊗ (o3, δ3)

= (o1 ∨ o2, λa.(δ1(a) ∪ δ2(a)))⊗ (o3, δ3)

= ((o1 ∨ o2) ∧ o3, λa.((λb.(δ1(b) ∪ δ2(b)))(a)

[
i(o3) ∪ (

⋃
b∈A
{b}δ3(b))

]
∪ i(o1 ∨ o2)δ3(a)))

= ((o1 ∧ o3) ∨ (o2 ∧ o3), λa.(

δ1(a)

[
i(o3) ∪ (

⋃
b∈A
{b}δ3(b))

]
∪ i(o1)δ3(a)

∪ δ2(a)

[
i(o3) ∪ (

⋃
b∈A
{b}δ3(b))

]
∪ i(o2)δ3(a)

))

= ((o1, δ1)⊗ (o3, δ3))⊕ ((o2, δ2)⊗ (o3, δ3))

• (o1, δ1)⊗ ((o2, δ2)⊕ (o3, δ3)) = ((o1, δ1)⊗ (o2, δ2))⊕ ((o1, δ1)⊗ (o3, δ3)):

(o1, δ1)⊗ ((o2, δ2)⊕ (o3, δ3))

= (o1, δ1)⊗ (o2 ∨ o3, λa.(δ2(a) ∪ δ3(a)))

= (o1 ∧ (o2 ∨ o3), λa.(
δ1(a)(i(o2 ∨ o3) ∪ (

⋃
b∈A
{b}(λc.(δ2(c) ∪ δ3(c)))(b))) ∪ i(o1)(λc.(δ2(c) ∪ δ3(c)))(a)

))

= (o1 ∧ (o2 ∨ o3), λa.(
δ1(a)(i(o2 ∨ o3) ∪ (

⋃
b∈A
{b}(δ2(b) ∪ δ3(b)))) ∪ i(o1)(δ2(a) ∪ δ3(a))

))

= ((o1 ∧ o2) ∨ (o1 ∧ o3)), λa.(
δ1(a)(i(o2) ∪ (

⋃
b∈A
{b}δ2(b))) ∪ i(o1)δ2(a)

∪ δ1(a)(i(o3) ∪ (
⋃
b∈A
{b}δ3(b))) ∪ i(o1)δ3(a)

))

= ((o1, δ1)⊗ (o2, δ2))⊕ ((o1, δ1)⊗ (o3, δ3))

• (o, δ)⊗ 0 = 0:

(o, δ)⊗ 0

= (o, δ)⊗ (0, λa.∅)
= (o ∧ 0, λa.(δ(a)(i(0) ∪ (

⋃
b∈A
{b}(λc.∅)(b))) ∪ i(o)(λc.∅)(a)))

= (0, λa.∅)
= 0

38 JOOST WINTER ET AL.

• 0⊗ (o, δ) = 0:

0⊗ (o, δ)

= (0, λa.∅)⊗ (o, δ)

= (0 ∧ o, λa.((λb.∅)(a)(i(o) ∪ (
⋃
b∈A
{b}δ(b))) ∪ i(0)δ(a)))

= (0 ∧ o, λa.(∅(i(o) ∪ (
⋃
b∈A
{b}δ(b))) ∪ ∅δ(a)))

= (0, λa.∅)
• (o, δ)⊕ (o, δ) = (o, δ):

(o, δ)⊕ (o, δ) = (o ∨ o, λa.(δ(a) ∪ δ(a))) = (o, δ)

References

[ABB97] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-free languages and push-down
automata. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages,
Volume 1, pages 111–174. Springer, 1997.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor, STOC,
pages 202–211. ACM, 2004.

[Awo10] Steve Awodey. Category Theory. Oxford University Press, 2010.
[Bar04] Falk Bartels. On Generalized Coinduction and Probabilistic Specification Formats. PhD thesis,

Vrije Universiteit Amsterdam, 2004.
[BHKR13] Marcello M. Bonsangue, Helle H. Hansen, Alexander Kurz, and Jurriaan Rot. Presenting dis-

tributive laws. In CALCO, 2013. To appear.
[BRW12] Marcello M. Bonsangue, Jan Rutten, and Joost Winter. Defining context-free power series coal-

gebraically. In Dirk Pattinson and Lutz Schröder, editors, CMCS, volume 7399 of Lecture Notes
in Computer Science, pages 20–39. Springer, 2012.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11:481–494, 1964.

[ÉL05] Zoltán Ésik and Hans Leiß. Algebraically complete semirings and Greibach normal form. Annals
of Pure and Applied Logic, 133(1-3):173–203, 2005.

[GR62] Seymour Ginsburg and H. Gordon Rice. Two families of languages related to ALGOL. Journal
of the ACM, 9:350–371, July 1962.

[Gre65] Sheila A. Greibach. A new normal-form theorem for context-free, phrase structure grammars.
Journal of the Association for Computing Machinery, 12:42–52, 1965.

[HJ05] Ichiro Hasuo and Bart Jacobs. Context-free languages via coalgebraic trace semantics. In
José Luiz Fiadeiro, Neil Harman, Markus Roggenbach, and Jan Rutten, editors, CALCO, volume
3629 of Lecture Notes in Computer Science, pages 213–231. Springer, 2005.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd edition). Addison-Wesley, 2006.

[Jac06] Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.
In Essays Dedicated to Joseph A. Goguen, pages 375–404, 2006.

[Kli11] Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theoretical Com-
puter Science, 412(38):5043–5069, 2011.

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Information and Computation, 110(2):366–390, 1994.

[Lei91] Hans Leiß. Towards Kleene algebra with recursion. In Egon Börger, Gerhard Jäger, Hans Kleine
Büning, and Michael M. Richter, editors, CSL, volume 626 of Lecture Notes in Computer Science,
pages 242–256. Springer, 1991.

[Mil10] Stefan Milius. A sound and complete calculus for finite stream circuits. In LICS, pages 421–430.
IEEE Computer Society, 2010.

COALGEBRAIC CHARACTERIZATIONS OF CONTEXT-FREE LANGUAGES 39

[RBR13] Jurriaan Rot, Marcello M. Bonsangue, and Jan Rutten. Coalgebraic bisimulation-up-to. In Peter
van Emde Boas, Frans C. A. Groen, Giuseppe F. Italiano, Jerzy R. Nawrocki, and Harald Sack,
editors, SOFSEM, volume 7741 of Lecture Notes in Computer Science, pages 369–381. Springer,
2013.

[Rut98] Jan Rutten. Automata and coinduction (an exercise in coalgebra). In Davide Sangiorgi and
Robert de Simone, editors, CONCUR, volume 1466 of Lecture Notes in Computer Science, pages
194–218. Springer, 1998.

[Rut00] Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–
80, 2000.

[Rut02] Jan Rutten. Coinductive counting: bisimulation in enumerative combinatorics. Electronic Notes
in Theoretical Computer Science, 65(1):286–304, 2002.

[SBBR10] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan Rutten. Generalizing the
powerset construction, coalgebraically. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS,
volume 8 of LIPIcs, pages 272–283. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2010.

[SBR10] Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Non-deterministic Kleene
coalgebras. Logical Methods in Computer Science, 6(3), 2010.

[Sil10] Alexandra Silva. Kleene Coalgebra. PhD thesis, Radboud Universiteit Nijmegen, 2010.
[Sti01] Colin Stirling. Decidability of DPDA equivalence. Theoretical Computer Science, 255(1-2):1–31,

2001.
[WBR11] Joost Winter, Marcello M. Bonsangue, and Jan Rutten. Context-free languages, coalgebraically.

In Andrea Corradini, Bartek Klin, and Corina Ĉırstea, editors, CALCO, volume 6859 of Lecture
Notes in Computer Science, pages 359–376. Springer, 2011.

