
Is P = PSPACE for Infinite Time Turing

Machines?

Joost Winter

1 Introduction

In the existing literature on infinite time Turing machines, which were originally
defined in [HaLe], issues of time complexity have been widely considered. The

question P
?
= NP for Infinite Time Turing Machines, and several variants on

it, are treated in e.g. [Sc], [DeHaSc], and [HaWe].
Besides time complexity, we may also try to look at issues of space com-

plexity in ITTMs. However, because an ITTM contains tapes of length ω, and
all nontrivial ITTM computations will use the entire, ω-length tape, simply
measuring the space complexity by counting the portion of the tape used by
the computation is not an option. In [Lö], therefore, an alternate notion of
space complexity is provided, that is based on looking at the levels of Gödel’s
constructible hierarchy where the snapshots of the computation can be found.

With this notion of space complexity of ITTMs, we can consider questions

such of the type P
?
= PSPACE, analogous to the existing work on the question

P
?
= NP for ITTMs. In this paper, we will look at some of these questions, in

a manner analogous to the earlier work on ITTM time complexity classes.

2 Definitions

For any infinite time Turing machine computation, we define the following op-
erations:

Definition 2.1. (1) qTα (x) denotes the state a machine T is in at stage α, having
started from the input x; (2) hTα(x) denotes the position of the head at stage
α, having started from the input x; and (3) cTi,α(x), where i ∈ {1, 2, 3}, denotes
the content of tape i at stage α, having started from the input x. Also, we will
define another operation, cTi,n,α(x), which will be defined as 1 if n ∈ cTi,α(x), and
0 otherwise.

Following [Lö] and earlier articles such as [Sc], the ITTM space and time
complexity classes are defined as follows:

Definition 2.2. If T is a machine that eventually reaches the halting state qf ,
and α is the unique ordinal such that qTα (x) = qf , then we say that time(x, T) =
α.

Definition 2.3. For any function f : R→ Ord and any ITTM T , we say that
T is a time f machine if time(x, T) is defined for all x and, for all x ∈ R, we

1

have time(x, T) ≤ f(x). For any ordinal ξ, we say that T is a time ξ machine
if T is a time f machine for the constant function f with f(x) = ξ for all x.

Definition 2.4. The family of all sets of reals that are decidable by a time f
machine is denoted by Pf . For any ordinal ξ, Pξ denotes the family of all sets
of reals that are decidable by a time η machine for some η < ξ. The class P is
defined as the class Pωω .

Definition 2.5. We define: (1) `Tα(x) := min{η : cTi,α ∈ Lη[x] for i ∈ {1, 2, 3}},
and (2) space(x, T) := sup{`Tξ : ξ ≤ time(x, T)}

Definition 2.6. For any ITTM T , we say that T is a space f machine if, for
all x ∈ R, we have space(x, T) ≤ f(x). For any ordinal ξ, we say that T is a
space ξ machine if T is a space f machine for the constant function f such
that f(x) = ξ for all x.

Definition 2.7. For any function f , PSPACEf denotes the class of all sets of
reals decidable by a space f machine. For any ordinal ξ, PSPACEξ denotes
the class of all sets of reals that are decidable by a space η machine for some
η < ξ. PSPACE is defined as the class PSPACEωω .

Furthermore, we define the weak halting problem h and its relativized ver-
sions as follows:

Definition 2.8. We let h denote the set {e : φe(e) ↓ 0}. Furthermore, for any
α, we let hα denote the set {e : φe(e) ↓ 0 ∧ time(e, e) ≤ α}

In the remainder of this paper, we will readily use some of the more standard
terminology and definitions in the ITTM literature, such as clockable ordinals
and writable reals and ordinals. We also will refer to a number of basic or easily
proven results, a few of which will be listed below:

Lemma 2.9 (Welch). For any real x, the supremum of x-clockable ordinals γx

is equal to the supremum of x-writable ordinals λx.

We also have the following result about the weak halting problem h, and its
relativized variants hα:

Proposition 2.10. For every ordinal α, we have hα /∈ Pα+1. Moreover, h is
undecidable.

Regarding the constructible hierarchy L, we have the follwing:

Lemma 2.11. If α > ω, and A ⊂ ω, and A ∈ Lα[w] for a certain set w, and
for a certain set B, |(A\B) ∪ (B\A)| < ω, then B ∈ Lα[w].

3 P ⊆ PSPACE for infinite time Turing ma-
chines

First of all, we want to be sure that P is always a subset of PSPACE. Due
to the somewhat unusual definition of PSPACE, however, it is not directly
evident that time(x, T) ≥ space(x, T) for all x, T . It will be shown that this
indeed is the case, by showing that we can represent any ITTM-computation of
length α, starting from a set w, in level Lα[w] of the constructible hierarchy. We
will first define what we mean with a ‘representation’ of an ITTM computation:

2

Definition 3.1. We use the notation CTα (w) for a representation of an ITTM
computation of a machine T from w in α steps, of the form

CTα (w) = {(β, qTβ (w), hTβ (w), cT1,β(w), cT2,β(2), cT3,β(w)) : β ≤ α}

where β is an ordinal representing the stage, and qTβ (w), hTβ (w), cTi,β(w) are as
they were defined earlier.

Lemma 3.2. When we have a suitable representation of Turing machines as
finite sets, the notion ‘a one step ITTM computation by a machine T from the
state t = (q, h, c1, c2, c3) results in a state t′ = (q′, h′, c′1, c

′
2, c

′
3) is representable

by a formula of first order logic.

Lemma 3.3. The notion ‘X = CTα (w): X represents an ITTM computation
from w in α steps’ is representable in the language of set theory.

Proof. Note that X represents an ITTM computation from w in α steps, if and
only if all of the following five conditions hold: (1) Every element of X is of
the form (β, q, h, c1, c2, c3) where β is an ordinal smaller than or equal to α;
(2) If we have (β, q1, h1, c1,1, c2,1, c3,1) ∈ X and (β, q2, h2, c1,2, c2,2, c3,2) ∈ X,
then q1 = q2, h1 = h2, c1,1 = c1,2, c2,1 = c2,2 and c3,1 = c3,2; (3) We have
(0, qs, h0, c1,0, c2,0, c3,0) where qs is the initial state of the Turing machine, h0 =
0, c1,0 = w, c2,0 = c3,0 = ∅; (4) If β is a successor ordinal γ+1, and β < α, then
there are elements (γ, q1, h1, c1,1, c2,1, c3,1) and (β, q2, h2, c1,2, c2,2, c3,2) such that
a one step Turing computation from the snapshot (q1, h1, c1,1, c2,1, c3,1) results
in (q2, h2, c1,2, c2,2, c3,2); (5) If β is a limit ordinal, then there is an element
β, q, h, c1, c2, c3 such that q is the limit state of the Turing machine, h = 0,
and for each of ci, we have that x ∈ ci if and only if for every ordinal γ < β
there is an ordinal δ greater than or equal to γ and smaller than β such that if
(δ, q′, h′, c′1, c

′
2, c

′
3) ∈ X, then x ∈ c′i.

It should be clear that all of these notions are representable by a formula of
first order logic in the language of set theory.

Now we will turn to the main theorem. The final aim will be to show, that all
computations starting from an input w of length α can be carried out while only
having tape contents slightly more complicated than in Lα[w]. The addition of
‘slightly’ here only signifies that one needs a small finite fixed extra number
of steps—the construction made here assumes gives a crude upper bound of
12, although the precise number might be lower than that. First, we need an
additional auxiliary lemma:

Lemma 3.4. If β, q, h, c1, c2, c3 are all in Lα[w], then (β, q, h, c1, c2, c3) is in
Lα+10[w].

Proof. We assume that (c2, c3) is defined as {{c2}, {c2, c3}}. If c2 and c3 are in
Lα, then {c2} and {c2, c3} are definable subsets of Lα, and are thus in Lα+1.
Consequently, {{c2}, {c2, c3}} is a definable subset of Lα+1, and is hence in
Lα+2.

Assuming that (β, q, h, c1, c2, c3) is defined as (β, (q, (h, (c1, (c2, c3))))), it
easily follows by repeating the above procedure that (β, q, h, c1, c2, c3) is in
Lα+10.

3

Now we will turn to the main theorem, which will be proved using a kind of
simultaneous induction:

Theorem 3.5. The following propositions are true:

1. For any infinite ordinal α and any input set w ⊆ ω, we have that cT1,α(w),

cT2,α(w), cT3,α(w) are in Lα+1[w]. If α is a finite ordinal, however, we can
only be sure that the sets are in Lα+2[w].

2. If α is a successor ordinal above ω and is equal to β + n, where n is a
natural number, then cT1,α(w), cT2,α(w), cT3,α(w) are in Lβ+1[w]. This is a
strengthening of the above property.

3. For any ordinal α ≥ ω and any input set w ⊆ ω, we have (α, qTα (w), hTα(w),
cT1,α(w), cT2,α(w), cT3,α(w)) ∈ Lα+11[w].

4. For any ordinal α ≥ ω and any input set w ⊆ ω, we have CTα (w) ∈
Lα+12[w].

Proof. The tactic here will be to first show that, for any α, if property (1) holds
for all ordinals smaller than or equal to α, and property (4) holds for all ordinals
strictly smaller than α, then properties (2), (3), and (4) hold for α. Then, we
will show that if properties (1), (2), (3), and (4) hold for all ordinals strictly
smaller than α, then property (1) also holds for α.

• 1→ 2: We use here the fact that, assuming α > ω, and α = β+n, for each
i in {1, 2, 3}, cTi,β(w) and cTi,α(w) can only differ by finitely many elements.

So it follows from cTi,β(w) ∈ Lβ+1[w] that cTi,α(w) ∈ Lβ+1[w].

• 1 → 3: We have that α ∈ Lα+1[w] for any w. Because qTα (w) and hTα(w)
are finite sets, they are also in Lα+1[w] by the assumption that α is in-
finite, and the desired result follows from the assumption of (1) and an
application of Lemma 3.4.

• 1 (+3) → 4 for successor ordinals: If α is a successor ordinal β + 1, then
we have that x is in CTα (w) if and only if x ∈ CTβ (w) or if x is equal

to (α, qTα (w), hTα(w), cT1,α(w), cT2,α(w), cT3,α(w)). Because by the inductive

hypothesis CTβ (w) and hence, by transitivity, every element of it, is in
Lβ+12[w], or Lα+11[w], and because by (3)—which was already proven
from (1)—(α, qTα (w), htα(w), cT1,α(w), cT2,α(w), cT3,α(w)) is in Lα+11, it fol-

lows that CTα (w) is a definable subset of Lα+11[w], and hence an element
of Lα+12[w].

• 1 (+3) → 4 for limit ordinals: If α is a limit ordinal, note that, for any
β < α, we have by the inductive hypothesis that CTβ (w) ∈ Lβ+12[w], and

hence also that CTβ (w) ∈ Lα[w]. Now consider the following set CT<α(w):

{X ∈ Lα[w] : ∃β(β ∈ α ∧X ∈ CTβ (w))}

Note that β ∈ α basically just says, ‘β is an ordinal smaller than α’.
This set is clearly a set definable from Lα[w], and it is the union of all
computations from w in less than α steps. To obtain CTα (w), we only
need to add (α, qTα (w), htα(w), cT1,α(w), cT2,α(w), cT3,α(w)) to this set, which
can be done easily like in the above case of successor ordinals.

4

• Property (1) for finite ordinals: note that, at stage n, because the head
starts at 0 and can only move forward one step at a time, the head can
only be at a location between 0 and n. Because of this, the only positions
of cTi,n that can have changed by stage n are the positions in the range

[0, n − 1]. Because we have cT0,0 = w and cT1,0 = cT2,0 = ∅, we also have

cTi,0 ∈ L1[w].

Now, we can define cTi,n as (cTi,0\{j1, . . . , jl}) ∪ {k1, . . . , km}, which is a
definable subset of Ln[w] as a result of the fact that all the j and k are
not larger than n− 1 and are thus elements of Ln[w].

• Inductive case for successor ordinals larger than ω: If α is a successor
ordinal β + 1, for each i ∈ {1, 2, 3} cTi,α(w) and cTi,β(w) can only differ
by one element. Taking the largest limit ordinal γ below α, such that
α = γ + n, an appeal to Lemma 2.11 (and possibly to case (2) for β, if
β itself is a successor ordinal) suffices to show that for each i ∈ {1, 2, 3},
cTi,α is in Lγ+1[w] and hence also in Lα+1[w].

• Inductive case for limit ordinals: if α is a limit ordinal, we have, by induc-
tive assumption, that for all β < α, CTβ (w) ∈ Lβ+12[w], and hence, also

that CTβ (w) ∈ Lα[w].

To start, let us find a way of identifying ordinals smaller than α in Lα[w].
If α /∈ Lα[w], the set of ordinals in Lα[w] is exactly the set of ordinals
smaller than α: in this case we can identify any ordinal smaller than α in
Lα[w] with the property Ord(x). If somehow we do have α ∈ Lα[w], we
can identify any ordinal smaller than α in Lα[w] with the property x ∈ α.
Depending on which case we are in, let us take the appropriate property.

Now note that the definition of cells at limit values implies that x ∈ cTi,α(w)
if and only if for every ordinal β < α, there is an ordinal γ < α with γ ≥ β,
such that x ∈ cTiγ(w). We can now define cTi,α(w) in the following way:

cTi,α(w) is the set of all n ∈ ω, such that for every ordinal β < α there is
an ordinal γ < α with γ ≥ β, such that n is an element of the i + 3th
argument of CTγ (w) (i.e. n ∈ cTi,γ(w)).

Although it should be noted that we have proved property (3) and (4) only
for infinite ordinals, this does not pose a problem, because for any finite n, we
have that CTn (w) will occur at at least some finite stage of Gödel’s Constructible
hierarchy. As a result, we will have CTn (w) ∈ Lω[w] for any finite n, and the
inductive steps will still work for the ω-case.

This gives us the following result about P and PSPACE:

Proposition 3.6. For any ITTM T and any real x, if time(x, T) > ω, we have
space(x, T) ≤ time(x, T). Also, if time(x, T) ≤ ω, we have space(x, T) ≤ ω.
Hence, for any function f such that f(x) > ω for all x, every time f machine
is a space f machine, and consequently we have Pf ⊆ PSPACEf .

Proof. Assume that α > ω and α = time(x, T). For any ξ < α with ξ ≥ ω,
we have, by Theorem 3.5, cTi,ξ(x) ∈ Lξ+1[x] (here we have +1 instead of +2

because ξ ≥ ω) for i ∈ {1, 2, 3}, and hence cTi,ξ(x) ∈ Lα[x]. For finite ξ, we

have cTi,ξ(x) ∈ Lω[x] for i ∈ {1, 2, 3}, and again cTi,ξ(x) ∈ Lα[x]. Finally, we

5

notice that α must be equal to β+ 1 for some β, as ITTMs cannot halt at limit
ordinal stages. It is also immediate from the definition of ITTMs that cTi,β(x)

and cTi,β+1(x) can only differ by one element at most. Because of this, it follows

from cTi,β(x) ∈ Lα[x] that cTi,β+1(x) ∈ Lα[x] using Lemma 2.11 and the fact that
α > ω. So at all stages of the computations, the content of the tape is inside
Lβ [x], so we have space(x, T) ≤ β, and hence space(x, T) ≤ time(x, T).

If α ≤ ω and α = time(x, T), we have for all ξ < α, by Theorem 3.5,
cTi,ξ(x) ∈ Lω[x] for i ∈ {1, 2, 3}, and space(x, T) ≤ ω now follows directly.

4 The question whether Pf = PSPACEf

Now we have seen that, in all cases where the range of f contains only infinite
ordinals, Pf is a subset of PSPACEf , one is inclined to wonder whether this
inclusion can be shown to be proper. In this section, we will show that this,
indeed, is the case at least for a number of functions f .

4.1 Pα 6= PSPACEα for ordinals up to ω2

For the first result, the idea will be to construct a function that can be shown
to be PSPACEω+2, but that, at the same time, can also be shown to be not
Pα for any α < ω2. This will be done using the notion of arithmetical reals,
which are defined more-or-less analogously to arithmetic sets of reals.

First, we observe the following fact about the location of recursive sets in
Gödel’s constructible hierarchy:

Lemma 4.1. For any recursive set w ∈ R, we can write w on the tape in ω
steps, and thus we have that w ∈ Lω+1[∅], and thus also w ∈ Lω+1[x] for any
x ∈ R.

Proof. Because w is recursive, there is a Turing machine T that halts on all
inputs n ∈ N, such that φT (n) = 1 if and only if n ∈ w. Now consider an ITTM
that, in turn, for each number n, simulates the machine T , and then writes the
correct number to the nth cell of the output tape. Because every individual
computation will terminate in a finite number of steps, this can be done in ω
steps, and we can go directly from the limit state to the halting state.

We will now consider the notion of arithmetical sets of natural numbers: a
set S ⊆ N is arithmetical if and only if there is a formula φ of PA such that
φ(x) ⇐⇒ x ∈ N .

Lemma 4.2. The set A := {x ∈ R : x is arithmetical}, is not arithmetical.

Proof. This is shown in Example 13.1.9 in [Co].

This gives us the following result:

Lemma 4.3. For any ordinal α ≤ ω2, the set A := {x ∈ R : x is arithmetical}
is not in Pα.

Proof. By Theorem 2.6 in [HaLe], the arithmetic sets are exactly the sets which
can be decided in time ω · n for some n ∈ N. Because A is not arithmetical, it
cannot be decided by any algorithm using a bounded finite number of limits,
and hence, it is not in Pα for any α ≤ ω2.

6

It turns out, however, that this set A is in PSPACEω+2:

Theorem 4.4. The set A := {x ∈ R : x is arithmetical} is in PSPACEω+2.

Proof. We will make use of an ITTM with three scratch tapes (see [Wi, Propo-
sition 4.28] for a justification why this can be done without affecting the space
complexity): the first is used to enumerate over all possible formulas, the second
is used to enumerate over, and store the choices of the quantifiers occurring in
each formula, and the third is used for the actual evaluation of the resulting,
quantifier-free, formulas.

First, we can note that we can, without any problems, enumerate over all
possible formulae that determine arithmetic sets, on one of the scratch tapes:
every formula can be coded by a set which is finite, and hence in PSPACEω.
Now, we may also assume that this enumeration only gives formulae in a normal
form, with all quantifiers at the front. By enumerating over the formulas in such
a way that they are enumerated over by increasing length, we can be sure that
no infinite (and hence, no nonrecursive) set will appear on the tape before the
very end of the computation; by switching all cells with content 0 to 1 and back
during the enumeration process, we can furthermore ensure that the tape, at
the very end, will be filled with 1s, and hence again contain a recursive set.

Given a formula φ, we can also determine for any x whether φ(x) holds, by
only writing down finite sets on a scratch tape. That this is the case can be
shown by induction: if φ is quantifier free, we can simply evaluate the formula;
if φ has an existential quantifier at the front and is of the form ∃x1ψ, we can
write down every possible value n for x1 on the second scratch tape (right after
any earlier quantifiers that may have been written there), coded by n 1s followed
by a single 0, recursively evaluate ψ[n/x1] (which is possible by the inductive
assumption) using the rest of the second, as well as the third scratch tape;
succeed if this is successful, and fail otherwise; if φ has a universal quantifier at
the front and is of the form ∀x1φ, we again write down every possible value n
for x1 at the front of the scratch tape, recursively evaluate ψ[n/x1], and now
fail if this fails, and continue otherwise.

At limit stages during this process, we will, after a fixed prefix of sequences
of 1s followed by a single 0, end up with an infinite sequence of 1s on the second
scratch tape: this is a set containing only finitely many 0s, and is, hence, clearly
recursive. During the actual evaluation of formulas, on the third tape, we can
switch every cell that is accessed and that has value 0 to 1 and back again: this
way, we also easily prevent the accidental occurrence of nonrecursive sets on the
third scratch tape.

Now, the strategy for the whole function will be:

1. enumerate over all possible formulae in the aforementioned normal form;

2. for each such formula, test for each x whether the formula holds for x if
and only if the xth position on the input tape is a 1;

3. succeed if we have found such a formula, and fail otherwise.

This can, as a result of some of the precautions, be done while writing out
only recursive sets.

This gives us the following result on P and PSPACE:

7

Theorem 4.5. For any α such that α ≥ ω + 2 and α ≤ ω2, we have that
Pα (PSPACEα. Also, PSPACEω+2 contains elements that are not in Pα.

Proof. This follows directly from Theorem 4.3 and Theorem 4.4.

4.2 The case of recursive ordinals

We will now show that the inequality Pα 6= PSPACEα holds for much wider
range of ordinals. The strategy in showing this will be to show, that, for all
recursive ordinals, hα ∈ PSPACEα+1 which, together with the already known
fact that hα /∈ Pα+1, gives the desired result.

From Proposition 2.10, we know that for all α, hα /∈ Pα+1. It turns out,
however, that for all recursive ordinals α, we do have that hα ∈ PSPACEα+1:

Proposition 4.6. For any recursive ordinal α, such that α ≥ ω + 1, we have
hα ∈ PSPACEα+1.

Proof. We can compute hα in the following way, by making use of an ITTM
with several scratch tapes: to start, we will check whether the input corresponds
to a natural number; if it does not, then we output 0, and if it does, we continue.
Then, we will look if this natural number corresponds to a coding of an ITTM0—
again, we output 0 if this is not the case, and if it is, we continue. Note that the
computation so far can be performed by writing only finite sets on the scratch
tapes.

Now the real work can begin. First we write down the ordinal α, on the first
scratch tape. Because α is recursive, we can do this in ω steps, so we are sure
that the content of the first scratch tape, at all times, will be inside Lω+1[x]
and, because α ≥ ω + 1, also inside Lα[x].

Once this is done, we will check for all ordinals β smaller than α (which can
be easily found simply by restricting the ordinal written on the tape to all the
elements smaller than a certain element, without affecting the space complexity
in any way), whether the eth ITTM0 has reached the halt state by stage β. If it
turns out that this is the case, we look at the output: if the output is 0, then we
will finish the computation by writing 1 on the output tape, and otherwise we
finish by writing 0 on the output tape. If we reach stage β during the simulation
without having halted, we go on checking with the next ordinal. Finally, if we
have exhausted all ordinals β < α, we again finish by writing 0 on the output
tape.

In the case where α is a limit ordinal, we are now done, because we know that
no machine can halt at any limit ordinal stage. In the case where α is a successor
ordinal η+ 1, however, we will additionally check whether the computation has
finished at α itself.

For any β < α, we know that cTi,β [x] ∈ Lα[x] for i ∈ {1, 2, 3}. Furthermore,

in the case where α is a successor ordinal η+ 1, we know that cTi,η[x] and cTi,α[x]
can only differ by one element at most, and because α and η are known to be
infinite, we obtain Lα[x] from Lη[x] using Lemma 2.11.

It follows that this computation never writes a set on any of the tapes that
is not in Lα[x]. This proves that hα ∈ PSPACEα+1 indeed holds.

Hence we have:

8

Theorem 4.7. For every recursive successor ordinal α ≥ ω+1, Pα (PSPACEα

holds.

Unfortunately, however, this process cannot be easily extended to work for
limit ordinals: given a limit ordinal α, we can still compute hα by only writing
out information of space complexity less than α on tape, but it seems hard, if
not impossible, to do this bounded by a specific ordinal β below α.

4.3 The case of clockable ordinals

It is, however, possible, to extend the above process to many writable successor
ordinals. The strategy here is essentially the same as in the case of recursive
ordinals: we know that hα cannot be in Pα+1, and then we show that hα ∈
PSPACEα+1. In the case of clockable ordinals, we can make use of the following
theorem due to Philip Welch (Lemma 15 in [DeHaSc]):

Theorem 4.8. If α is a clockable ordinal, then every ordinal up to the next
admissible beyond α is writable in time α+ ω.

Besides this, we already know that α ∈ Lα+1[0]. However, we will also
have α ∪ {{{{∅}}, η} : η ≤ β} ∈ Lα+1[0] for any β ≤ ω. Because these sets
{{{∅}}, η} are not ordinals, it is immediate that α and {{{{∅}}, η} : η ≤ β} are
always disjoint. Thus, we can consider these sets α ∪ {{{{∅}}, η} : η ≤ β} as
alternative representations for the ordinals up to α+ω, that are within Lα+1[0].
This way, using this ‘alternative’ representation of the ordinals between α and
α+ω, instead of the regular ones, in combination with the fact that the snapshots
cTi,α+n[x] can only differ from cTi,α[x] by finitely many elements, we can represent
computations of length α+ω from x within Lα+2[x] using a construction similar
to that in section 5.1.

This gives us that, for clockable α, every ordinal up to the next admissible
ordinal beyond α can be written on the tape with the content of the tape inside
Lα+2[0] at all stages. This gives us the following theorem:

Theorem 4.9. If β is a clockable ordinal, and α is a successor ordinal between
β + 3 and the next admissible after β, then we have Pα (PSPACEα.

Proof. This goes largely analogous to the case of Proposition 4.6, with the major
difference that we can now write α on the tape while staying inside Lβ+2[0]. As
a result from this, if α = η+ 1, we get from η ≥ β + 2 that hη ∈ PSPACEη+1,
whereas hη /∈ Pη+1, giving the desired result.

4.4 The case of suitable functions f

We can extend the above results from ordinals to suitable functions as defined
in [DeHaSc]. There, a suitable function is defined as follows:

Definition 4.10. A function or a function-like operation f from R to the ordi-
nals is called suitable whenever, for all reals x and y, x ≤T y implies f(x) ≤ f(y),
and if we have, for all x, f(x) ≥ ω+ 1. The symbol ≤T here stands for ordinary
Turing reducibility as defined in e.g. [Co].

It turns out that some important functions and operations are in fact suit-
able:

9

Proposition 4.11. For any ordinal α > ω+1, the constant function f0(x) = α
is suitable. Furthermore, the functions λx, and ζx, and Σx are all suitable.

Proof. For constant functions, we have f0(x) = f0(y), and hence f0(x) ≤ f0(y)
in all cases, so also in the specific case where x ≤T y. Hence, all constant
functions are suitable.

For the function λx, assume that x ≤T y, and assume that α < λx, or, in
other words, that α is a x-writable ordinal. We can now write α from y, by
first computing x from y, and then going on with the computation that writes α
from x. Hence, α < λy, and λx ≤ λy follows directly. The cases of the functions
ζx and Σx go very similarly.

We have the following results about suitable functions:

Theorem 4.12. For any suitable function f and any set A of natural numbers,

(i) A ∈ Pf if and only if A ∈ Pf(0)+1

(ii) A ∈ PSPACEf if and only if A ∈ PSPACEf(0)+1

Proof. (i) was originally proven in [DeHaSc, Theorem 26]; here we will provide
a slightly modified version of the proof. Because for any natural number n, we
have 0 =T n, we get f(0) = f(n) by the assumption of suitability; also, we have
0 =T N, so f(0) = f(N); moreover, for any real number x, we have 0 ≤T x, and
hence f(0) ≤ f(x). Now consider the constant function g such that g(x) = f(0)
for all x. As a direct result of the definition, we obtain Pf(0)+1 = Pg. We also
have g(x) ≤ f(x) for all x, so the result Pg ⊆ Pf is immediate.

For the converse, assume that A ∈ Pf , and that T is a time f machine
deciding A. We now construct a time g machine T ′, which performs the same
computation as T , while, during the first ω steps of the computation, simulta-
neously checking if the input actually codes a natural number or the entire set
N. Because a natural number n, when considered as a real, is equal to the set
{0, . . . , n − 1}, and any such set corresponds to a natural number n, it follows
that a real x does not correspond to a natural number or the complete set N if
and only if the string 01 occurs in it. We now ensure that T ′, during the first ω
steps, searches for the string 01, and halts whenever this string is encountered,
while simultaneously simulating T . After we first reach the limit state, we know
that the input did not contain the string 01, and we continue the original com-
putation of T . If no 01 is encountered, the input x must be either a natural
number n, or the complete set of natural numbers N, and it will finish within
time f(x) = f(0). If a 01 is encountered in the input x, it is encountered within
the first ω steps, and hence f(x) < ω < f(0). So T ′ is a time f(0)-machine
deciding A, and hence, A ∈ Pf(0)+1.

(ii) can be proven similarly. It again follows directly that PSPACEf(0)+1 ⊆
PSPACEf . The converse now is a bit simpler. If T is a space f machine de-
ciding A, consider the following machine T ′: on input x, we first check, without
making any modifications (and thus, while staying within L0[x]), whether x is
a natural number. We output 0 if it does not, and if it does, we continue the
computation of which we now know that space(x, T) < f(x) = f(0). Because
at the start of this computation, the tape is still unchanged, and the algorithm
performed after the check if x is a natural number, is identical, we also obtain
space(x, T) < f(0). It is now clear that space(x, T ′) < f(0) for all x, so T ′ is
a space f(0)-machine deciding A, so A ∈ PSPACEf(0)+1.

10

Now, because for any α, the set hα always consists of only natural numbers,
we can directly extend the earlier results about ordinals to results about suitable
functions f :

Theorem 4.13. If f is a suitable function, and f(0) is either recursive, or a
clockable ordinal, such that there is an ordinal β such that f(0) is between β+ 2
and the next admissible ordinal after β, then we have Pf (PSPACEf .

Proof. On one hand, we have hf(0)+1 /∈ Pf(0)+2 from Proposition 2.10, which,
by Theorem 4.12 gives us hf(0)+1 /∈ Pf+1. On the other hand, we have hf(0)+1 ∈
PSPACEf(0)+2 from either Proposition 4.6 or Proposition 4.9, which gives us
hf(0)+1 ∈ PSPACEf+1. Hence we have Pf 6= PSPACEf , and the result
follows.

4.5 However, Pf = PSPACEf for ‘almost all’ f

So far, we have shown that, for certain classes of ‘low’ functions f and ordinals
α, there is a strict inclusion Pf ⊂ PSPACEf . This brings us to wonder we
can also find functions and ordinals where this strict inclusion does not hold,
and instead we have an equality Pf = PSPACEf .

It is easy to see that we will have this equality, at least for very high, non-
countable, ordinals and functions: if we have α > ω1, then we must have Pα =
Dec, and because we also have PSPACEα ⊆ Dec and Pα ⊆ PSPACEα, we
indeed obtain Pα = PSPACEα. However, we can generalize this towards a
wider range of functions:

Proposition 4.14. If f satisfies f(x) ≥ λx for all x, then we have Pf =
PSPACEf .

Proof. We clearly have Pf = Dec because f is, on all x, larger than the supre-
mum of halting times of ITTM computable functions on input x, as a result of
the fact that γx = λx for all x. Also, we have Pf ⊆ PSPACEf , as well as
PSPACEf ⊆ Dec. Hence, we have Pf = Dec = PSPACEf .

As this class of functions f is a superset of the class of functions f—called
‘almost all f ’ there—for which it is shown, in [HaWe], that Pf 6= NPf , we can,
with a little wink, indeed say that we have Pf = PSPACEf for ‘almost all’ f .

References

[Co] S. Barry Cooper, Computability Theory, Chapman & Hall/CRC,
2004

[DeHaSc] Vinay Deolalikar, Joel David Hamkins, Ralf-Dieter Schindler, P 6=
NP ∩ co−NP for infinite time Turing machines, Journal of Logic
and Computation 15 (2005), pp. 577-592

[HaLe] Joel David Hamkins and Andy Lewis: infinite time Turing ma-
chines, Journal Of Symbolic Logic 65 (2000), pp. 567-604

[HaWe] Joel David Hamkins and Philip D. Welch, Pf 6= NPf for almost
all f , Mathematical Logic Quarterly, 49(2003) 5, pp. 536-540

11

[Lö] Benedikt Löwe: Space bounds for infinitary computation, in Arnold
Beckmann, Ulrich Berger, Benedikt Löwe, John V. Tucker (eds.),
Logical Approaches to Computational Barriers, Second Conference
on Computability in Europe, CiE 2006, Swansea, UK, July 2006,
Proceedings, Springer-Verlag, Berlin [Lecture Notes in Computer
Science 3988] (2006), pp. 319-329

[Sc] Ralf Schindler, P 6= NP for infinite time Turing machines, Monat-
shefte der Mathematik 139 (2003), pp. 335-340

[Wi] Joost Winter: Space Complexity in infinite time Turing Machines,
ILLC Scientific Publications, MoL-2007-14, 2007

12

