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Cox rings

Let X be a Q-factorial normal variety defined over C.
Assume Γ(X ,OX )∗ = C∗ and X projective over Spec Γ(X ,OX ).
Take a subgroup Λ ⊂ Div(X ) such that the class map gives
isomorphism Λ ' Cl(X ) (or just inclusion Λ ↪→ Cl(X )). Take a
Λ-graded Γ(OX )-module

CoxΛ(X ) =
⊕

Dλ∈Λ

Γ(X ,OX (Dλ))

where

Γ(X ,OX (D)) = {f ∈ C(X )∗ : div(f ) + D ≥ 0} ∪ {0}

and define the multiplication is as in the field of rational
functions C(X ) to make the ring structure on CoxΛ(X ).
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group action, quotient

The Λ-grading defines the action of the group TΛ = Hom(Λ,C∗)
on CoxΛ(X ) by the formula

Hom(Λ,C∗)×Γ(X ,OX (Dλ)) 3 (µ, σ) −→ µ(λ) ·σ ∈ Γ(X ,OX (Dλ))

If CoxΛ is finitely generated algebra then this defines the action
of TΛ on YΛ = Spec CoxΛ(X ).
If moreover Λ contains a divisor ample over Spec Γ(X ,OX ) then
exists an open ŶΛ ⊂ YΛ, whose complement is of codimension
≥ 2, and X is a TΛ quotient of ŶΛ.
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toric varieties

Let X = X (Σ) be a toric variety associated to a fan Σ in the
space NR spanned by the lattice N.
Denote M = Hom(N,Z) and TN = Hom(M,C∗).
Let Σ1 = {v ∈ N : R≥0 ·v ∈ Σ} be the set of generators of rays
of Σ and N̂ =

⊕
v∈Σ1 Z·v̂ a free group generated by them.

Take the sequence

0 −→ Λ∨ −→ N̂ −→ N

where the RHS morphisms maps v̂ −→ v . The dual is

0 −→ M −→ M̂ −→ Cl(X ) −→ 0

where M̂ = Hom(N̂ ,Z).
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Cox rings of toric varieties

For every Dλ ∈ Cl(X ) the torus TN acts on the space of
sections Γ(X ,OX (Dλ)) and decomposes it into the eigenspaces
associated to linear combinations of TN -invariant divisors.
Therefore Cox(X ) = C[M̂ ∩ σ̂+] where σ̂+ denotes the positive
orthant in M̂ R and

0 −→ Λ∨ −→ N̂ −→ N

determines the quotient structure in codimension 1.
Here are two examples:
www.mimuw.edu.pl/∼jarekw/java/Hannover2012.html — note
that grading makes the difference.
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J. A. Wiśniewski Cox rings and singularities

http://www.mimuw.edu.pl/~jarekw/java/Hannover2012.html


why?

Q: Why consider Cox rings in the context of singularities?
A1: Because this is a part of “coxification” attitute towards
varieties.
A2: Because resolutions of singularties are hard and their
Cox rings may be simpler.
A3: Because for quotient singularities we may get an
incarnation of McKay correspondence.
Test case: Du Val surface singularities.
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Du Val singularities

We consider surface singularities

An : xn+1 + y2 + z2 = 0 n ≥ 1

Dn : xn−1 + xy2 + z2 = 0 n ≥ 4

E6 : x4 + y3 + z2 = 0

E7 : x3y + y3 + z2 = 0

E8 : x5 + y3 + z2 = 0
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Du Val singularities

Their resolutions give a configuration of (−2)-curves with the
following dual Dynkin diagram

An : • • • • • · · · n ≥ 1

Dn : • • • •
•LLLLL

•rrrrr · · · n ≥ 4

E6 : • • • • •

•

E7 : • • • • • •

•

E8 : • • • • • • •

•
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Du Val singularities

Important property: the canonical divisor of the resolution is
trivial on the exceptional curves.

An : • • • • • · · · n ≥ 1

Dn : • • • •
•LLLLL

•rrrrr · · · n ≥ 4

E6 : • • • • •

•

E7 : • • • • • •

•
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•
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intersection matrix: An

The matrix of intersection for An:

• • • • •

is as follows

An =



−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 · · ·

−2 1
1 −2
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intersection matrix: Dn

The matrix of intersection for Dn:

• • • •
•LLLLL

•rrrrr

is as follows

Dn =



−2 1 1 1
1 −2
1 −2
1 −2 1

1 −2 · · ·

−2 1
1 −2
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finite subgroups of SL(2, C)

Du Val singularities are quotients of C2 by finite subgroups of
SL(2,C); here εd is primitive d-root of 1 :

An is the case of cyclic group Zn+1 generated by(
εn+1 0

0 ε−1
n+1

)
Dn is the case of binary dihedral group BD2n−4(

ε2n−4 0
0 ε−1

2n−4

) (
0 1
−1 0

)
E6, E7, E8 come from binary tetrahedral, octahedral and
isocahedral groups associated to Platonic solids.
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Cox ring of a quotient singularity

Suppose that a finite group G acts effectively and linearly on Cr

with no quasireflection. Let A = C[x1, . . . , xr ] be the ring of
coordinates on Cr . Then:

The ring of invariants AG is finitely generated and
Spec(AG) = Cr/G.
The divisor class group is the abelianization of G:
Cl(Cr/G) = G/[G,G] = Ab(G)

A decomposes into AG-modules, associated to irreducible
representations of G
A[G,G] is the sum of AG-modules of rank 1 associated to
characters of G and it is Ab(G)-graded AG-algebra.
Cox(Cr/G) = A[G,G]
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resolutions of singularities

Let π : X −→ C2/G be a minimal resolution of surface quotient
singularities with exceptional divisors E1, . . . ,En.

Ei ' P1 and Ei ’s meet transversally, dual graph is a tree.
The matrix ∆ = (Ei · Ej) is negative definite and E2

i ≤ −2.
Cl(X ) = Pic(X ) is generated by classes of divisors Fi such
that Fi · Ej = 1 if i = j and Fi · Ej = 0 if i 6= j .
We have an exact sequence

0 −→
⊕

i

Z[Ei ] −→ Cl(X ) −→ Cl(C2/G) = Ab(G) −→ 0

where [Ei ] −→
∑

j(Ei · Ej)[Fj ]
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two quotients

Let X be a resolution of the quotient singularity Cr/G with
Y = Spec(Cox(X )) − → X .
Then we have the following

Y

TΛ ((PPPPPPPPPPPPPP //_______ X

��

Cr

G

uukkkkkkkkkkkkkkkkk

��
Cr/G Cr/[G,G]

Ab(G)
oo

ϕ

ll

where the dotted arrow ϕ will be explained later
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two quotients

Let X be a resolution of the quotient singularity Cr/G with
Y = Spec(Cox(X )) − → X .
If G is abelian

Cr+n

TΛ ((QQQQQQQQQQQQQQ
//_______ X

��

Cr

G

vvmmmmmmmmmmmmmmm

Cr/G Cr
Ab(G)

oo

kk
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two quotients

Let X be a resolution of the quotient singularity Cr/G with
Y = Spec(Cox(X )) − → X .
If G is abelian, same picture for tori lattices

N̂ = Zr+n

/Λ
((RRRRRRRRRRRRRRR
// N

G Noo Zroo

kk

where the dotted arrow is the “splitting” homorphism.
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the homomorphism of Cox rings

There is a homomorphism of graded rings
Cox(X ) −→ Cox(Cr/G) = C[x1, . . . , xr ][G,G] which comes from
the homomorphism of groups π∗ : Cl(X ) −→ Cl(Cr/G):

Γ(X ,OX (D)) 3 f −→ f ∈ Γ(Cr/G,OCr/G(π∗(D)))

This yields the regular morphism, the “dotted arrow”

ϕ : Cr/[G,G] −→ Y = Spec(Cox(X ))

We can extend the above homomorphism to
Cox(X ) −→ Cox(Cr/G)[Cl(X )] which geometrically means that
we compose ϕ with the action of the torus to get:

φ : Cr/[G,G]× TΛ −→ Y = Spec(Cox(X ))

the latter map is not surjective but it is dominating.
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ϕ : Cr/[G,G] −→ Y = Spec(Cox(X ))

We can extend the above homomorphism to
Cox(X ) −→ Cox(Cr/G)[Cl(X )] which geometrically means that
we compose ϕ with the action of the torus to get:

φ : Cr/[G,G]× TΛ −→ Y = Spec(Cox(X ))

the latter map is not surjective but it is dominating.
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a diagram for toric quotients

For toric varieties: combine previous diagrams for abelian
quotients of Cr/G to get the following diagram

M //

��

M̂ //

��

Cl(X )

Zr //

��

Zr ⊕ Cl(X ) //

��

Cl(X )

G G

This yields the description of the morphism φ.
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matrix eAn

Let us define the extended intersection matrix

eAn =



1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 · · ·

−2 1
1 1 −2
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Cox ring of the resolution of An

Theorem
The Cox ring Cox(XAn ) of the resolution of the singularity An is
isomorphic to the polynomial ring C[u1,un, y1, . . . , yn] with the
multidegree of variables u1,un, y1, . . . , yn given by the matrix
eAn.

Theorem
The matrix eAn determines the morphism

φ : C2 × (C∗)n −→ Cn+2 = Spec(Cox(XAn ))

given by monomials

(x1t1, x2tn, t−2
1 t2, t1t−2

2 t3, t2t−1
3 t4, . . .)
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matrix eDn

We define the extended intersection matrix

eDn =



−2 1 1 1
1 1 −2

1 1 −2
1 −2 1

1 −2 · · ·

−2 1
1 1 −2
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Cox ring of resolution of Dn

Theorem (Facchini, Gonzàles-Alonso, Lasoń)
The Cox ring of the resolution of singularity Dn is isomorphic to

C[u1,u2,un−1, y0, y1, . . . , yn−1]/(y1u2
1 +y2u2

2 +y3y2
4 · · · yn−3

n−1 un−2
n−1)

where the multidegree of variables u1,u2,un−1, y0, y1, . . . , yn−1
are given by the matrix eDn.

Set yi = 1 and note that you get the relation in Cox(XDn ):

u2
1 + u2

2 + un−2
n−1 = 0

so ui are invariants of the cyclic group

Zn−2 = [BD2n−4,BD2n−4]
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parametrization for Dn

Theorem (Donten-Bury)
There exists a dominant morphism

φ : C2 × (C∗)n −→ YDn = Spec(Cox(XDn )) ⊂ C3 × Cn

such that ui = gi(x1, x2)ti for i = 1, 2, n − 1 and some explicit
G-invariant gi and yi ’s for i = 0, . . .n − 1 given by monomials

t1t2t3t−2
0 , t0t−2

1 , t0t−2
2 , t0t4t−2

3 , t3t−2
4 t5, t4t−2

5 t6, . . . tn−2t−2
n−1

Similar holds for singularities of type E .
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