On Cox rings of resolutions of quotient singularities

According to Facchini, Golzàles-Alonso, Lasoń and Donten-Bury

J. A. Wiśniewski

Uniwersytet Warszawski
2. Jahrestagung des DFG-Schwerpunkts 1489 Hannover, February 27th, 2012

Cox rings

Let X be a \mathbb{Q}-factorial normal variety defined over \mathbb{C}. Assume $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=\mathbb{C}^{*}$ and X projective over $\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$.
Take a subgroup $\wedge \subset \operatorname{Div}(X)$ such that the class map gives
isomorphism $\Lambda \simeq \mathrm{Cl}(X)$ (or just inclusion $\wedge \hookrightarrow \mathrm{Cl}(X)$). Take a
Λ-graded $\Gamma\left(\mathcal{O}_{X}\right)$-module

where

and define the multiplication is as in the field of rational functions $\mathbb{C}(X)$ to make the ring structure on $\operatorname{Cox}_{\wedge}(X)$.

Cox rings

Let X be a \mathbb{Q}-factorial normal variety defined over \mathbb{C}. Assume $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=\mathbb{C}^{*}$ and X projective over $\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$. Take a subgroup $\wedge \subset \operatorname{Div}(X)$ such that the class map gives isomorphism $\wedge \simeq \mathrm{Cl}(X)$ (or just inclusion $\wedge \hookrightarrow \mathrm{Cl}(X)$). Take a

where

and define the multiplication is as in the field of rational functions $\mathbb{C}(X)$ to make the ring structure on $\operatorname{Cox}_{\wedge}(X)$.

Cox rings

Let X be a \mathbb{Q}-factorial normal variety defined over \mathbb{C}. Assume $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=\mathbb{C}^{*}$ and X projective over $\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$. Take a subgroup $\Lambda \subset \operatorname{Div}(X)$ such that the class map gives isomorphism $\Lambda \simeq \mathrm{Cl}(X)$ (or just inclusion $\Lambda \hookrightarrow \mathrm{Cl}(X)$). Take a Λ-graded $\Gamma\left(\mathcal{O}_{X}\right)$-module

$$
\operatorname{Cox}_{\Lambda}(X)=\bigoplus_{D_{\lambda} \in \Lambda} \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)
$$

where

and define the multiplication is as in the field of rational functions $\mathbb{C}(X)$ to make the ring structure on $\operatorname{Cox}_{\wedge}(X)$.

Cox rings

Let X be a \mathbb{Q}-factorial normal variety defined over \mathbb{C}. Assume $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=\mathbb{C}^{*}$ and X projective over $\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$. Take a subgroup $\Lambda \subset \operatorname{Div}(X)$ such that the class map gives isomorphism $\Lambda \simeq \mathrm{Cl}(X)$ (or just inclusion $\Lambda \hookrightarrow \mathrm{Cl}(X)$). Take a Λ-graded $\Gamma\left(\mathcal{O}_{X}\right)$-module

$$
\operatorname{Cox}_{\Lambda}(X)=\bigoplus_{D_{\lambda} \in \Lambda} \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)
$$

where

$$
\Gamma\left(X, \mathcal{O}_{X}(D)\right)=\left\{f \in \mathbb{C}(X)^{*}: \operatorname{div}(f)+D \geq 0\right\} \cup\{0\}
$$

and define the multiplication is as in the field of rational functions $\mathbb{C}(X)$ to make the ring structure on $\operatorname{Cox}_{\Lambda}(X)$.

group action, quotient

The Λ-grading defines the action of the group $\mathbb{T}_{\Lambda}=\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$ on $\operatorname{Cox}_{\Lambda}(X)$ by the formula
$\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right) \times \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right) \ni(\mu, \sigma) \longrightarrow \mu(\lambda) \cdot \sigma \in \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)$
If Cox^^ is finitely generated algebra then this defines the action If moreover Λ contains a divisor ample over $\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$ then exists an open $\widehat{Y_{\Lambda}} \subset Y_{\Lambda}$, whose complement is of codimension ≥ 2, and X is a \mathbb{T}_{\wedge} quotient of Y_{\wedge}.

group action, quotient

The Λ-grading defines the action of the group $\mathbb{T}_{\Lambda}=\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$ on $\operatorname{Cox}_{\Lambda}(X)$ by the formula
$\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right) \times \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right) \ni(\mu, \sigma) \longrightarrow \mu(\lambda) \cdot \sigma \in \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)$
If Cox_{Λ} is finitely generated algebra then this defines the action of \mathbb{T}_{Λ} on $Y_{\Lambda}=\operatorname{Spec} \operatorname{Cox}_{\wedge}(X)$.
If moreover \wedge contains a divisor ample over $\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$ then exists an open $\widehat{Y}_{\Lambda} \subset Y_{\Lambda}$, whose complement is of codimension ≥ 2, and X is a \mathbb{T}_{Λ} quotient of $\widehat{Y_{\Lambda}}$.

The Λ-grading defines the action of the group $\mathbb{T}_{\Lambda}=\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$ on $\operatorname{Cox}_{\Lambda}(X)$ by the formula
$\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right) \times \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right) \ni(\mu, \sigma) \longrightarrow \mu(\lambda) \cdot \sigma \in \Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)$
If Cox_{Λ} is finitely generated algebra then this defines the action of \mathbb{T}_{Λ} on $Y_{\Lambda}=\operatorname{Spec} \operatorname{Cox}_{\Lambda}(X)$.
If moreover Λ contains a divisor ample over $\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$ then exists an open $\widehat{Y_{\Lambda}} \subset Y_{\Lambda}$, whose complement is of codimension ≥ 2, and X is a \mathbb{T}_{Λ} quotient of $\widehat{Y_{\Lambda}}$.

toric varieties

Let $X=X(\Sigma)$ be a toric variety associated to a fan Σ in the space $N_{\mathbb{R}}$ spanned by the lattice N.
Denote $M=\operatorname{Hom}(N, \mathbb{Z})$ and $\mathbb{T}_{N}=\operatorname{Hom}\left(M, \mathbb{C}^{*}\right)$.
Let $\Sigma^{1}=\left\{v \in N: \mathbb{R}_{\geq 0} \cdot v \in \Sigma\right\}$ be the set of generators of rays
of Σ and $\widehat{N}=\bigoplus_{v \in \Sigma^{1}} \mathbb{Z} \cdot \widehat{v}$ a free group generated by them.
Take the sequence
where the RHS morphisms maps $\widehat{v} \longrightarrow v$. The dual is

where $\widehat{M}=\operatorname{Hom}(\widehat{N}, \mathbb{Z})$.

toric varieties

Let $X=X(\Sigma)$ be a toric variety associated to a fan Σ in the space $N_{\mathbb{R}}$ spanned by the lattice N.
Denote $M=\operatorname{Hom}(N, \mathbb{Z})$ and $\mathbb{T}_{N}=\operatorname{Hom}\left(M, \mathbb{C}^{*}\right)$.
Let $\Sigma^{1}=\left\{v \in N: \mathbb{R}_{\geq 0} \cdot v \in \Sigma\right\}$ be the set of generators of rays of Σ and $\widehat{N}=\bigoplus_{v \in \Sigma^{1}} \mathbb{Z} \cdot \widehat{v}$ a free group generated by them.
Take the sequence

$$
0 \longrightarrow \Lambda^{\vee} \longrightarrow \widehat{N} \longrightarrow N
$$

where the RHS morphisms maps $\widehat{v} \longrightarrow v$. The dual is

where $\widehat{M}=\operatorname{Hom}(\widehat{N}, \mathbb{Z})$.

toric varieties

Let $X=X(\Sigma)$ be a toric variety associated to a fan Σ in the space $N_{\mathbb{R}}$ spanned by the lattice N.
Denote $M=\operatorname{Hom}(N, \mathbb{Z})$ and $\mathbb{T}_{N}=\operatorname{Hom}\left(M, \mathbb{C}^{*}\right)$.
Let $\Sigma^{1}=\left\{v \in N: \mathbb{R}_{\geq 0} \cdot v \in \Sigma\right\}$ be the set of generators of rays of Σ and $\widehat{N}=\bigoplus_{v \in \Sigma^{1}} \mathbb{Z} \cdot \widehat{v}$ a free group generated by them.
Take the sequence

$$
0 \longrightarrow \Lambda^{\vee} \longrightarrow \widehat{N} \longrightarrow N
$$

where the RHS morphisms maps $\widehat{v} \longrightarrow v$. The dual is

$$
0 \longrightarrow M \longrightarrow \widehat{M} \longrightarrow \mathrm{Cl}(X) \longrightarrow 0
$$

where $\widehat{M}=\operatorname{Hom}(\widehat{N}, \mathbb{Z})$.

Cox rings of toric varieties

For every $D_{\lambda} \in \mathrm{Cl}(X)$ the torus \mathbb{T}_{N} acts on the space of sections $\Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)$ and decomposes it into the eigenspaces associated to linear combinations of \mathbb{T}_{N}-invariant divisors.

determines the quotient structure in codimension 1
Here are two examples:
www.mimuw.edu.pl/~jarekw/java/Hannover2012.html — note that grading makes the difference.

Cox rings of toric varieties

For every $D_{\lambda} \in \mathrm{Cl}(X)$ the torus \mathbb{T}_{N} acts on the space of sections $\Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)$ and decomposes it into the eigenspaces associated to linear combinations of \mathbb{T}_{N}-invariant divisors. Therefore $\operatorname{Cox}(X)=\mathbb{C}\left[\widehat{M} \cap \widehat{\sigma}^{+}\right]$where $\widehat{\sigma}^{+}$denotes the positive orthant in $\widehat{M}_{\mathbb{R}}$ and

$$
0 \longrightarrow \Lambda^{\vee} \longrightarrow \widehat{N} \longrightarrow N
$$

determines the quotient structure in codimension 1.
Here are two examples:
www.mimuw.edu.pl/~jarekw/java/Hannover2012.html — note that grading makes the difference.

Cox rings of toric varieties

For every $D_{\lambda} \in \mathrm{Cl}(X)$ the torus \mathbb{T}_{N} acts on the space of sections $\Gamma\left(X, \mathcal{O}_{X}\left(D_{\lambda}\right)\right)$ and decomposes it into the eigenspaces associated to linear combinations of \mathbb{T}_{N}-invariant divisors. Therefore $\operatorname{Cox}(X)=\mathbb{C}\left[\widehat{M} \cap \widehat{\sigma}^{+}\right]$where $\widehat{\sigma}^{+}$denotes the positive orthant in $\widehat{M}_{\mathbb{R}}$ and

$$
0 \longrightarrow \Lambda^{\vee} \longrightarrow \widehat{N} \longrightarrow N
$$

determines the quotient structure in codimension 1. Here are two examples:
www.mimuw.edu.pl/~jarekw/java/Hannover2012.html — note that grading makes the difference.

why?

- Q: Why consider Cox rings in the context of singularities?
- A1: Because this is a part of "coxification" attitute towards varieties.
- A2: Because resolutions of singularties are hard and their Cox rings may be simpler.
- A3: Because for quotient singularities we may get an incarnation of McKay correspondence.
- Test case: Du Val surface singularities.
- Q: Why consider Cox rings in the context of singularities?
- A1: Because this is a part of "coxification" attitute towards varieties.
- A2: Because resolutions of singularties are hard and their Cox rings may be simpler.
- A3: Because for quotient singularities we may get an incarnation of McKay correspondence.
- Test case: Du Val surface singularities.

why?

- Q: Why consider Cox rings in the context of singularities?
- A1: Because this is a part of "coxification" attitute towards varieties.
- A2: Because resolutions of singularties are hard and their Cox rings may be simpler.
- A3: Because for quotient singularities we may get an incarnation of McKay correspondence.
- Test case: Du Val surface singularities.

why?

- Q: Why consider Cox rings in the context of singularities?
- A1: Because this is a part of "coxification" attitute towards varieties.
- A2: Because resolutions of singularties are hard and their Cox rings may be simpler.
- A3: Because for quotient singularities we may get an incarnation of McKay correspondence.
- Test case: Du Val surface singularities.

why?

- Q: Why consider Cox rings in the context of singularities?
- A1: Because this is a part of "coxification" attitute towards varieties.
- A2: Because resolutions of singularties are hard and their Cox rings may be simpler.
- A3: Because for quotient singularities we may get an incarnation of McKay correspondence.
- Test case: Du Val surface singularities.

Du Val singularities

We consider surface singularities

$$
\begin{array}{lll}
A_{n}: & x^{n+1}+y^{2}+z^{2}=0 & n \geq 1 \\
D_{n}: & x^{n-1}+x y^{2}+z^{2}=0 & n \geq 4 \\
E_{6}: & x^{4}+y^{3}+z^{2}=0 & \\
E_{7}: & x^{3} y+y^{3}+z^{2}=0 \\
E_{8}: & x^{5}+y^{3}+z^{2}=0 &
\end{array}
$$

Du Val singularities

Their resolutions give a configuration of (-2)-curves with the following dual Dynkin diagram

Du Val singularities

Important property: the canonical divisor of the resolution is trivial on the exceptional curves.

intersection matrix: A_{n}

The matrix of intersection for A_{n} :
is as follows

$$
\mathbb{A}_{n}=\left(\begin{array}{cccccccc}
-2 & 1 & & & & & & \\
1 & -2 & 1 & & & & & \\
& 1 & -2 & 1 & & & & \\
& & 1 & -2 & 1 & & & \\
& & & 1 & -2 & \cdots & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & -2 & 1 \\
& & & & & & 1 & -2
\end{array}\right)
$$

intersection matrix: D_{n}

The matrix of intersection for D_{n} :

is as follows

$$
\mathbb{D}_{n}=\left(\begin{array}{cccccccc}
-2 & 1 & 1 & 1 & & & & \\
1 & -2 & & & & & & \\
1 & & -2 & & & & & \\
1 & & & -2 & 1 & & & \\
& & & 1 & -2 & \cdots & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & -2 & 1 \\
& & & & & & 1 & -2
\end{array}\right)
$$

finite subgroups of $S L(2, \mathbb{C})$

Du Val singularities are quotients of \mathbb{C}^{2} by finite subgroups of $S L(2, \mathbb{C})$; here ϵ_{d} is primitive d-root of 1 :

- A_{n} is the case of cyclic group \mathbb{Z}_{n+1} generated by

- D_{n} is the case of binary dihedral group $\mathbb{B D}_{2 n-4}$

- E_{6}, E_{7}, E_{8} come from binary tetrahedral, octahedral and isocahedral groups associated to Platonic solids.

finite subgroups of $S L(2, \mathbb{C})$

Du Val singularities are quotients of \mathbb{C}^{2} by finite subgroups of $S L(2, \mathbb{C})$; here ϵ_{d} is primitive d-root of 1 :

- A_{n} is the case of cyclic group \mathbb{Z}_{n+1} generated by

$$
\left(\begin{array}{cc}
\epsilon_{n+1} & 0 \\
0 & \epsilon_{n+1}^{-1}
\end{array}\right)
$$

- D_{n} is the case of binary dihedral group $\mathbb{B D}_{2 n-4}$

- E_{6}, E_{7}, E_{8} come from binary tetrahedral, octahedral and isocahedral groups associated to Platonic solids.

finite subgroups of $S L(2, \mathbb{C})$

Du Val singularities are quotients of \mathbb{C}^{2} by finite subgroups of $S L(2, \mathbb{C})$; here ϵ_{d} is primitive d-root of 1 :

- A_{n} is the case of cyclic group \mathbb{Z}_{n+1} generated by

$$
\left(\begin{array}{cc}
\epsilon_{n+1} & 0 \\
0 & \epsilon_{n+1}^{-1}
\end{array}\right)
$$

- D_{n} is the case of binary dihedral group $\mathbb{B D}_{2 n-4}$

$$
\left(\begin{array}{cc}
\epsilon_{2 n-4} & 0 \\
0 & \epsilon_{2 n-4}^{-1}
\end{array}\right) \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

- E_{6}, E_{7}, E_{8} come from binary tetrahedral, octahedral and isocahedral groups associated to Platonic solids.

finite subgroups of $S L(2, \mathbb{C})$

Du Val singularities are quotients of \mathbb{C}^{2} by finite subgroups of $S L(2, \mathbb{C})$; here ϵ_{d} is primitive d-root of 1 :

- A_{n} is the case of cyclic group \mathbb{Z}_{n+1} generated by

$$
\left(\begin{array}{cc}
\epsilon_{n+1} & 0 \\
0 & \epsilon_{n+1}^{-1}
\end{array}\right)
$$

- D_{n} is the case of binary dihedral group $\mathbb{B D}_{2 n-4}$

$$
\left(\begin{array}{cc}
\epsilon_{2 n-4} & 0 \\
0 & \epsilon_{2 n-4}^{-1}
\end{array}\right) \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

- E_{6}, E_{7}, E_{8} come from binary tetrahedral, octahedral and isocahedral groups associated to Platonic solids.

Cox ring of a quotient singularity

Suppose that a finite group G acts effectively and linearly on \mathbb{C}^{r} with no quasireflection. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ be the ring of coordinates on \mathbb{C}^{r}. Then:
> - The ring of invariants A^{G} is finitely generated and $\operatorname{Spec}\left(A^{G}\right)=\mathbb{C}^{r} / G$.
> - The divisor class group is the abelianization of G : $C l\left(\mathbb{C}^{r} / G\right)=G /[G, G]=A b(G)$
> - A decomposes into A^{G}-modules, associated to irreducible representations of G
> - $A^{[G, G]}$ is the sum of A^{G}-modules of rank 1 associated to characters of G and it is $A b(G)$-graded A^{G}-algebra.
> - $\operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=A^{[G, G]}$

Cox ring of a quotient singularity

Suppose that a finite group G acts effectively and linearly on \mathbb{C}^{r} with no quasireflection. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ be the ring of coordinates on \mathbb{C}^{r}. Then:

- The ring of invariants A^{G} is finitely generated and $\operatorname{Spec}\left(A^{G}\right)=\mathbb{C}^{r} / G$.
- The divisor class group is the abelianization of G : $\mathrm{Cl}\left(\mathbb{C}^{r} / G\right)=G /[G, G]=A b(G)$
- A decomposes into A^{G}-modules, associated to irreducible representations of G
- $A^{[G, G]}$ is the sum of A^{G}-modules of rank 1 associated to characters of G and it is $A b(G)$-graded A^{G}-algebra.
- $\operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=A^{[G, G]}$

Cox ring of a quotient singularity

Suppose that a finite group G acts effectively and linearly on \mathbb{C}^{r} with no quasireflection. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ be the ring of coordinates on \mathbb{C}^{r}. Then:

- The ring of invariants A^{G} is finitely generated and $\operatorname{Spec}\left(A^{G}\right)=\mathbb{C}^{r} / G$.
- The divisor class group is the abelianization of G :
$\mathrm{Cl}\left(\mathbb{C}^{r} / G\right)=G /[G, G]=A b(G)$
- A decomposes into A^{G}-modules, associated to irreducible
representations of G
- $A^{[G, G]}$ is the sum of A^{G}-modules of rank 1 associated to characters of G and it is $A b(G)$-graded A^{G}-algebra.
- $\operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=A^{[G, G]}$

Cox ring of a quotient singularity

Suppose that a finite group G acts effectively and linearly on \mathbb{C}^{r} with no quasireflection. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ be the ring of coordinates on \mathbb{C}^{r}. Then:

- The ring of invariants A^{G} is finitely generated and $\operatorname{Spec}\left(A^{G}\right)=\mathbb{C}^{r} / G$.
- The divisor class group is the abelianization of G :
$\mathrm{Cl}\left(\mathbb{C}^{r} / G\right)=G /[G, G]=A b(G)$
- A decomposes into A^{G}-modules, associated to irreducible representations of G

Cox ring of a quotient singularity

Suppose that a finite group G acts effectively and linearly on \mathbb{C}^{r} with no quasireflection. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ be the ring of coordinates on \mathbb{C}^{r}. Then:

- The ring of invariants A^{G} is finitely generated and $\operatorname{Spec}\left(A^{G}\right)=\mathbb{C}^{r} / G$.
- The divisor class group is the abelianization of G :
$\mathrm{Cl}\left(\mathbb{C}^{r} / G\right)=G /[G, G]=A b(G)$
- A decomposes into A^{G}-modules, associated to irreducible representations of G
- $A^{[G, G]}$ is the sum of A^{G}-modules of rank 1 associated to characters of G and it is $A b(G)$-graded A^{G}-algebra.

Cox ring of a quotient singularity

Suppose that a finite group G acts effectively and linearly on \mathbb{C}^{r} with no quasireflection. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ be the ring of coordinates on \mathbb{C}^{r}. Then:

- The ring of invariants A^{G} is finitely generated and $\operatorname{Spec}\left(A^{G}\right)=\mathbb{C}^{r} / G$.
- The divisor class group is the abelianization of G :
$\mathrm{Cl}\left(\mathbb{C}^{r} / G\right)=G /[G, G]=A b(G)$
- A decomposes into A^{G}-modules, associated to irreducible representations of G
- $A^{[G, G]}$ is the sum of A^{G}-modules of rank 1 associated to characters of G and it is $A b(G)$-graded A^{G}-algebra.
- $\operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=A^{[G, G]}$

resolutions of singularities

Let $\pi: X \longrightarrow \mathbb{C}^{2} / G$ be a minimal resolution of surface quotient singularities with exceptional divisors E_{1}, \ldots, E_{n}.

- $E_{i} \simeq \mathbb{P}^{1}$ and E_{i} 's meet transversally, dual graph is a tree.
- The matrix $\Delta=\left(E_{i} \cdot E_{j}\right)$ is negative definite and $E_{i}^{2} \leq-2$.
- $\mathrm{CI}(X)=\operatorname{Pic}(X)$ is generated by classes of divisors F_{i} such that $F_{i} \cdot E_{j}=1$ if $i=j$ and $F_{i} \cdot E_{j}=0$ if $i \neq j$.
- We have an exact sequence
$0 \longrightarrow \bigoplus \mathbb{Z}\left[E_{i}\right] \longrightarrow \mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(\mathbb{C}^{2} / G\right)=A b(G) \longrightarrow 0$
where $\left[E_{i}\right] \longrightarrow \sum_{j}\left(E_{i} \cdot E_{j}\right)\left[F_{j}\right]$

resolutions of singularities

Let $\pi: X \longrightarrow \mathbb{C}^{2} / G$ be a minimal resolution of surface quotient singularities with exceptional divisors E_{1}, \ldots, E_{n}.

- $E_{i} \simeq \mathbb{P}^{1}$ and E_{i} 's meet transversally, dual graph is a tree.
- The matrix $\Delta=\left(E_{i} \cdot E_{j}\right)$ is negative definite and $E_{i}^{2} \leq-2$.
- $\mathrm{Cl}(X)=\operatorname{Pic}(X)$ is generated by classes of divisors F_{i} such that $F_{i} \cdot E_{j}=1$ if $i=j$ and $F_{i} \cdot E_{j}=0$ if $i \neq j$.
- We have an exact sequence

where $\left[E_{i}\right] \longrightarrow \sum_{j}\left(E_{i} \cdot E_{j}\right)\left[F_{j}\right]$

resolutions of singularities

Let $\pi: X \longrightarrow \mathbb{C}^{2} / G$ be a minimal resolution of surface quotient singularities with exceptional divisors E_{1}, \ldots, E_{n}.

- $E_{i} \simeq \mathbb{P}^{1}$ and E_{i} 's meet transversally, dual graph is a tree.
- The matrix $\Delta=\left(E_{i} \cdot E_{j}\right)$ is negative definite and $E_{i}^{2} \leq-2$.
- $\mathrm{Cl}(X)=\operatorname{Pic}(X)$ is generated by classes of divisors F_{i} such that $F_{i} \cdot E_{j}=1$ if $i=j$ and $F_{i} \cdot E_{j}=0$ if $i \neq j$.
- We have an exact sequence
$0 \longrightarrow(T)\left[E^{2}\right] \longrightarrow \mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(\mathbb{C}^{2} / G\right)=\mathrm{Ab}(G) \longrightarrow 0$
where $\left[E_{i}\right] \longrightarrow \sum_{j}\left(E_{i} \cdot E_{j}\right)\left[F_{j}\right]$

resolutions of singularities

Let $\pi: X \longrightarrow \mathbb{C}^{2} / G$ be a minimal resolution of surface quotient singularities with exceptional divisors E_{1}, \ldots, E_{n}.

- $E_{i} \simeq \mathbb{P}^{1}$ and E_{i}^{\prime} 's meet transversally, dual graph is a tree.
- The matrix $\Delta=\left(E_{i} \cdot E_{j}\right)$ is negative definite and $E_{i}^{2} \leq-2$.
- $\mathrm{Cl}(X)=\operatorname{Pic}(X)$ is generated by classes of divisors F_{i} such that $F_{i} \cdot E_{j}=1$ if $i=j$ and $F_{i} \cdot E_{j}=0$ if $i \neq j$.
- We have an exact sequence

where $\left[E_{i}\right] \longrightarrow \sum_{j}\left(E_{i} \cdot E_{j}\right)\left[F_{j}\right]$

resolutions of singularities

Let $\pi: X \longrightarrow \mathbb{C}^{2} / G$ be a minimal resolution of surface quotient singularities with exceptional divisors E_{1}, \ldots, E_{n}.

- $E_{i} \simeq \mathbb{P}^{1}$ and E_{i}^{\prime} 's meet transversally, dual graph is a tree.
- The matrix $\Delta=\left(E_{i} \cdot E_{j}\right)$ is negative definite and $E_{i}^{2} \leq-2$.
- $\mathrm{Cl}(X)=\operatorname{Pic}(X)$ is generated by classes of divisors F_{i} such that $F_{i} \cdot E_{j}=1$ if $i=j$ and $F_{i} \cdot E_{j}=0$ if $i \neq j$.
- We have an exact sequence

$$
0 \longrightarrow \bigoplus_{i} \mathbb{Z}\left[E_{i}\right] \longrightarrow \mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(\mathbb{C}^{2} / G\right)=A b(G) \longrightarrow 0
$$

where $\left[E_{i}\right] \longrightarrow \sum_{j}\left(E_{i} \cdot E_{j}\right)\left[F_{j}\right]$

two quotients

Let X be a resolution of the quotient singularity \mathbb{C}^{r} / G with $Y=\operatorname{Spec}(\operatorname{Cox}(X)) \rightarrow X$.
Then we have the following

where the dotted arrow φ will be explained later

two quotients

Let X be a resolution of the quotient singularity \mathbb{C}^{r} / G with $Y=\operatorname{Spec}(\operatorname{Cox}(X)) \rightarrow X$.
If G is abelian

$$
\underbrace{\mathbb{C}^{r+n} \underset{\mathbb{T}_{\Lambda}}{\sum}--->X}
$$

two quotients

Let X be a resolution of the quotient singularity \mathbb{C}^{r} / G with $Y=\operatorname{Spec}(\operatorname{Cox}(X))-\rightarrow X$.
If G is abelian, same picture for tori lattices

where the dotted arrow is the "splitting" homorphism.

the homomorphism of Cox rings

There is a homomorphism of graded rings
$\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]^{[G, G]}$ which comes from the homomorphism of groups $\pi_{*}: \mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(\mathbb{C}^{r} / G\right)$:

This yields the regular morphism, the "dotted arrow"

We can extend the above homomorphism to
$\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)[\mathrm{Cl}(X)]$ which geometrically means that we compose φ with the action of the torus to get:

the latter map is not surjective but it is dominating.

the homomorphism of Cox rings

There is a homomorphism of graded rings
$\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]^{[G, G]}$ which comes from the homomorphism of groups $\pi_{*}: \mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(\mathbb{C}^{r} / G\right)$:

$$
\Gamma\left(X, \mathcal{O}_{X}(D)\right) \ni f \longrightarrow f \in \Gamma\left(\mathbb{C}^{r} / G, \mathcal{O}_{\mathbb{C}^{r} / G}\left(\pi_{*}(D)\right)\right)
$$

This yields the regular morphism, the "dotted arrow"

We can extend the above homomorphism to
 $\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)[\mathrm{Cl}(X)]$ which geometrically means that we compose φ with the action of the torus to get:

the latter map is not surjective but it is dominating.

the homomorphism of Cox rings

There is a homomorphism of graded rings
$\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]^{[G, G]}$ which comes from the homomorphism of groups $\pi_{*}: \mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(\mathbb{C}^{r} / G\right)$:

$$
\Gamma\left(X, \mathcal{O}_{X}(D)\right) \ni f \longrightarrow f \in \Gamma\left(\mathbb{C}^{r} / G, \mathcal{O}_{\mathbb{C}^{r} / G}\left(\pi_{*}(D)\right)\right)
$$

This yields the regular morphism, the "dotted arrow"

$$
\varphi: \mathbb{C}^{r} /[G, G] \longrightarrow Y=\operatorname{Spec}(\operatorname{Cox}(X))
$$

We can extend the above homomorphism to
$\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)[\mathrm{Cl}(X)]$ which geometrically means that we compose φ with the action of the torus to get:

the latter map is not surjective but it is dominating.

the homomorphism of Cox rings

There is a homomorphism of graded rings
$\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)=\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]^{[G, G]}$ which comes from the homomorphism of groups $\pi_{*}: \mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(\mathbb{C}^{r} / G\right)$:

$$
\Gamma\left(X, \mathcal{O}_{X}(D)\right) \ni f \longrightarrow f \in \Gamma\left(\mathbb{C}^{r} / G, \mathcal{O}_{\mathbb{C}^{r} / G}\left(\pi_{*}(D)\right)\right)
$$

This yields the regular morphism, the "dotted arrow"

$$
\varphi: \mathbb{C}^{r} /[G, G] \longrightarrow Y=\operatorname{Spec}(\operatorname{Cox}(X))
$$

We can extend the above homomorphism to $\operatorname{Cox}(X) \longrightarrow \operatorname{Cox}\left(\mathbb{C}^{r} / G\right)[\mathrm{Cl}(X)]$ which geometrically means that we compose φ with the action of the torus to get:

$$
\phi: \mathbb{C}^{r} /[G, G] \times \mathbb{T}_{\Lambda} \longrightarrow Y=\operatorname{Spec}(\operatorname{Cox}(X))
$$

the latter map is not surjective but it is dominating.

a diagram for toric quotients

For toric varieties: combine previous diagrams for abelian quotients of \mathbb{C}^{r} / G to get the following diagram

This yields the description of the morphism ϕ.

a diagram for toric quotients

For toric varieties: combine previous diagrams for abelian quotients of \mathbb{C}^{r} / G to get the following diagram

This yields the description of the morphism ϕ.

matrix $e \mathbb{A}_{n}$

Let us define the extended intersection matrix

Cox ring of the resolution of A_{n}

Theorem
 The Cox ring $\operatorname{Cox}\left(X_{A_{n}}\right)$ of the resolution of the singularity A_{n} is isomorphic to the polynomial ring $\mathbb{C}\left[u_{1}, u_{n}, y_{1}, \ldots, y_{n}\right]$ with the multidegree of variables $u_{1}, u_{n}, y_{1}, \ldots, y_{n}$ given by the matrix $e \mathbb{A}_{n}$.

Theorem
The matrix $\in \mathbb{A}_{n}$ determines the morphism
given by monomials

Cox ring of the resolution of A_{n}

Theorem

The Cox ring $\operatorname{Cox}\left(X_{A_{n}}\right)$ of the resolution of the singularity A_{n} is isomorphic to the polynomial ring $\mathbb{C}\left[u_{1}, u_{n}, y_{1}, \ldots, y_{n}\right]$ with the multidegree of variables $u_{1}, u_{n}, y_{1}, \ldots, y_{n}$ given by the matrix $e \mathbb{A}_{n}$.

Theorem

The matrix $e \mathbb{A}_{n}$ determines the morphism

$$
\phi: \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{n} \longrightarrow \mathbb{C}^{n+2}=\operatorname{Spec}\left(\operatorname{Cox}\left(X_{A_{n}}\right)\right)
$$

given by monomials

$$
\left(x_{1} t_{1}, x_{2} t_{n}, t_{1}^{-2} t_{2}, t_{1} t_{2}^{-2} t_{3}, t_{2} t_{3}^{-1} t_{4}, \ldots\right)
$$

matrix $e \mathbb{D}_{n}$

We define the extended intersection matrix

Cox ring of resolution of D_{n}

Theorem (Facchini, Gonzàles-Alonso, Lasoń)

The Cox ring of the resolution of singularity D_{n} is isomorphic to
$\mathbb{C}\left[u_{1}, u_{2}, u_{n-1}, y_{0}, y_{1}, \ldots, y_{n-1}\right] /\left(y_{1} u_{1}^{2}+y_{2} u_{2}^{2}+y_{3} y_{4}^{2} \cdots y_{n-1}^{n-3} u_{n-1}^{n-2}\right)$
where the multidegree of variables $u_{1}, u_{2}, u_{n-1}, y_{0}, y_{1}, \ldots, y_{n-1}$ are given by the matrix $e \mathbb{D}_{n}$.

Set $y_{i}=1$ and note that you get the relation in $\operatorname{Cox}\left(X_{D_{n}}\right)$
so u_{i} are invariants of the cyclic group

Cox ring of resolution of D_{n}

Theorem (Facchini, Gonzàles-Alonso, Lasoń)

The Cox ring of the resolution of singularity D_{n} is isomorphic to
$\mathbb{C}\left[u_{1}, u_{2}, u_{n-1}, y_{0}, y_{1}, \ldots, y_{n-1}\right] /\left(y_{1} u_{1}^{2}+y_{2} u_{2}^{2}+y_{3} y_{4}^{2} \cdots y_{n-1}^{n-3} u_{n-1}^{n-2}\right)$
where the multidegree of variables $u_{1}, u_{2}, u_{n-1}, y_{0}, y_{1}, \ldots, y_{n-1}$ are given by the matrix $e \mathbb{D}_{n}$.

Set $y_{i}=1$ and note that you get the relation in $\operatorname{Cox}\left(X_{D_{n}}\right)$:

$$
u_{1}^{2}+u_{2}^{2}+u_{n-1}^{n-2}=0
$$

so u_{i} are invariants of the cyclic group

$$
\mathbb{Z}_{n-2}=\left[\mathbb{B D}_{2 n-4}, \mathbb{B D}_{2 n-4}\right]
$$

parametrization for D_{n}

Theorem (Donten-Bury)

There exists a dominant morphism

$$
\phi: \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{n} \longrightarrow Y_{D_{n}}=\operatorname{Spec}\left(\operatorname{Cox}\left(X_{D_{n}}\right)\right) \subset \mathbb{C}^{3} \times \mathbb{C}^{n}
$$

such that $u_{i}=g_{i}\left(x_{1}, x_{2}\right) t_{i}$ for $i=1,2, n-1$ and some explicit G-invariant g_{i} and y_{i} 's for $i=0, \ldots n-1$ given by monomials

$$
t_{1} t_{2} t_{3} t_{0}^{-2}, t_{0} t_{1}^{-2}, t_{0} t_{2}^{-2}, t_{0} t_{4} t_{3}^{-2}, t_{3} t_{4}^{-2} t_{5}, t_{4} t_{5}^{-2} t_{6}, \ldots t_{n-2} t_{n-1}^{-2}
$$

Similar holds for singularities of type E.

parametrization for D_{n}

Theorem (Donten-Bury)

There exists a dominant morphism

$$
\phi: \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{n} \longrightarrow Y_{D_{n}}=\operatorname{Spec}\left(\operatorname{Cox}\left(X_{D_{n}}\right)\right) \subset \mathbb{C}^{3} \times \mathbb{C}^{n}
$$

such that $u_{i}=g_{i}\left(x_{1}, x_{2}\right) t_{i}$ for $i=1,2, n-1$ and some explicit G-invariant g_{i} and y_{i} 's for $i=0, \ldots n-1$ given by monomials

$$
t_{1} t_{2} t_{3} t_{0}^{-2}, t_{0} t_{1}^{-2}, t_{0} t_{2}^{-2}, t_{0} t_{4} t_{3}^{-2}, t_{3} t_{4}^{-2} t_{5}, t_{4} t_{5}^{-2} t_{6}, \ldots t_{n-2} t_{n-1}^{-2}
$$

Similar holds for singularities of type E.

