Algebraic varieties arising from phylogenetic trees

W. Buczynska, J.A. Wisniewski

Institute of Mathematics, Warsaw University, Poland

phylogenetics

Phylogenetics: reconstructing historical relation between species by analyzing their present features and putting their common ancestors in a diagram which forms a tree. [e.g. Häckel, 1866]

three (un?)related problems

- counting points in polyhedra

three (un?)related problems

- counting points in polyhedra
- networks of paths in a tree

three (un?)related problems

- counting points in polyhedra
- networks of paths in a tree
- Markov processes on a tree

* product of functions

For a positive integer n let $[n]=\{0, \ldots n\}$. Function $f:[n] \rightarrow \mathbb{Z}$ is symmetric if for every $k \in[n]$ it holds $f(k)=f(n-k)$.
By $1:[n] \rightarrow \mathbb{Z}$ denote the unit function.

* product of functions

For a positive integer n let $[n]=\{0, \ldots n\}$.
Function $f:[n] \rightarrow \mathbb{Z}$ is symmetric if for every $k \in[n]$ it holds $f(k)=f(n-k)$.
By $1:[n] \rightarrow \mathbb{Z}$ denote the unit function.
If $f_{1} f_{2}:[n] \rightarrow \mathbb{Z}$ are symmetric functions then we define their symmetric product $f_{1} \star f_{2}:[n] \rightarrow \mathbb{Z}$ such that for $k \leq n / 2$:

$$
\begin{aligned}
\left(f_{1} \star f_{2}\right)(k)= & 2 \cdot\left(\sum_{i=0}^{k-1} \sum_{j=0}^{i} f_{1}(i) f_{2}(k+i-2 j)\right) \\
& +\left(\sum_{i=k}^{n-k} \sum_{j=0}^{k} f_{1}(i) f_{2}(k+i-2 j)\right)
\end{aligned}
$$

geometric interpretation of \star

Consider the simplex Δ as in the picture $\left(f_{1} \star f_{2}\right)(k)$ is equal to the sum of products of f_{1} and f_{2} counted over points of lattice spanned by Δ in k-th slice of $n \cdot \Delta$
$(\mathbf{1} \star \mathbf{1})(k)=(k+1)(n-$ $k+1$) is the number of lattice points in k-th slice of $n \cdot \Delta$
travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

properties of \star

- \star is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$
properties of \star
- \star is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$
- \star is usually nonassociative, i.e.
$\left(f_{1} \star f_{2}\right) \star f_{3} \neq f_{1} \star\left(f_{2} \star f_{3}\right)$

properties of \star

- \star is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$
- \star is usually nonassociative, i.e.
$\left(f_{1} \star f_{2}\right) \star f_{3} \neq f_{1} \star\left(f_{2} \star f_{3}\right)$
- however, [theorem 1] If Ω is the smallest set of functions closed under \star and containing 1 then \star is associative within Ω

properties of \star

- \star is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$
- \star is usually nonassociative, i.e.
$\left(f_{1} \star f_{2}\right) \star f_{3} \neq f_{1} \star\left(f_{2} \star f_{3}\right)$
- however, [theorem 1] If Ω is the smallest set of functions closed under \star and containing 1 then \star is associative within Ω

trees, sockets and networks

Consider a tree \mathcal{T} which has $d+1$ leaves $\mathcal{L}, d-$
1 inner trivalent nodes
\mathcal{N} and $2 d-1$ edges \mathcal{E}; socket is a subset of \mathcal{L} which has even number of elements; path in \mathcal{T} is a connected union of edges, network is a set of non-meeting paths in \mathcal{T} with ends in \mathcal{L}

trees, sockets and networks

Consider a tree \mathcal{T} which has $d+1$ leaves $\mathcal{L}, d-$ 1 inner trivalent nodes \mathcal{N} and $2 d-1$ edges \mathcal{E}; socket is a subset of \mathcal{L} which has even number of elements; path in \mathcal{T} is a connected union of edges, network is a set of non-meeting paths in \mathcal{T} with ends in \mathcal{L}

trees, sockets and networks

Consider a tree \mathcal{T} which has $d+1$ leaves $\mathcal{L}, d-$ 1 inner trivalent nodes \mathcal{N} and $2 d-1$ edges \mathcal{E}; socket is a subset of \mathcal{L} which has even number of elements; path in \mathcal{T} is a connected union of edges, network is a set of non-meeting paths in \mathcal{T} with ends in \mathcal{L}

trees, sockets and networks

Consider a tree \mathcal{T} which has $d+1$ leaves $\mathcal{L}, d-$ 1 inner trivalent nodes \mathcal{N} and $2 d-1$ edges \mathcal{E}; socket is a subset of \mathcal{L} which has even number of elements; path in \mathcal{T} is a connected union of edges, network is a set of non-meeting paths in \mathcal{T} with ends in \mathcal{L}

trees, sockets and networks

Consider a tree \mathcal{T} which has $d+1$ leaves $\mathcal{L}, d-$ 1 inner trivalent nodes \mathcal{N} and $2 d-1$ edges \mathcal{E}; socket is a subset of \mathcal{L} which has even number of elements; path in \mathcal{T} is a connected union of edges, network is a set of non-meeting paths in \mathcal{T} with ends in \mathcal{L}

trees, sockets and networks

Consider a tree \mathcal{T} which has $d+1$ leaves $\mathcal{L}, d-$ 1 inner trivalent nodes \mathcal{N} and $2 d-1$ edges \mathcal{E}; socket is a subset of \mathcal{L} which has even number of elements; path in \mathcal{T} is a connected union of edges, network is a set of non-meeting paths in \mathcal{T} with ends in \mathcal{L}

varieties associated to trees

[lemma] There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ

varieties associated to trees

[lemma] There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ
For every edge $e \in \mathcal{E}$ we consider a \mathbb{P}_{e}^{1} with homogeneous coordinates $\left[y_{0}^{e}, y_{1}^{e}\right]$. Moreover consider a projective space \mathbb{P}_{Σ} of dimension $2^{d}-1$ with homogeneous coordinates $\left[z_{\sigma}\right]$ indexed by sockets of \mathcal{T}.

varieties associated to trees

[lemma] There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ
Define rational map $\prod_{e \in \mathcal{E}} \mathbb{P}_{e}^{1} \rightarrow \mathbb{P}_{\Sigma}$ such that

$$
z_{\sigma}=\prod_{e \in \mu(\sigma)} y_{1}^{e} \cdot \prod_{e \notin \mu(\sigma)} y_{0}^{e}
$$

The model of the tree, $X(\mathcal{T}) \subset \mathbb{P}_{\Sigma}$, is the closure of the image of this map, $\operatorname{dim} X(\mathcal{T})=2 d$.

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers
$1, \ldots, d+1$ or, equivalently, given $d+1$ points we can make them leaves of a (non-unique) tree \mathcal{T}.

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers
$1, \ldots, d+1$ or, equivalently, given $d+1$ points we can make them leaves of a (non-unique) tree \mathcal{T}.

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers
$1, \ldots, d+1$ or, equivalently, given $d+1$ points we can make them leaves of a (non-unique) tree \mathcal{T}. Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers
$1, \ldots, d+1$ or, equivalently, given $d+1$ points we can make them leaves of a (non-unique) tree \mathcal{T}. Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}
These varieties can be non-isomorphic (one can check it), however [theorem 2] they are in the same connected component of the Hilbert scheme of \mathbb{P}_{Σ}, that is $X\left(\mathcal{T}_{1}\right)$ can be deformed to $X\left(\mathcal{T}_{2}\right)$ if only \mathcal{T}_{1} and \mathcal{T}_{2} have the same number of leaves.

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$.

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$.
Variables ξ_{v} determine a Markov process on \mathcal{T} if (intuitively) the value of ξ_{v} depends only on the value of ξ_{u}, where u is the node immediately preceeding v.

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$.
For each edge $e=\langle u, v\rangle$ bounded by vertexes $u<v$ define the transition matrix A^{e} :

$$
A_{i j}^{e}=P\left(\xi_{v}=\alpha_{j} \mid \xi_{u}=\alpha_{i}\right)
$$

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$.
For each edge $e=\langle u, v\rangle$ bounded by vertexes $u<v$ define the transition matrix A^{e} :

$$
A_{i j}^{e}=P\left(\xi_{v}=\alpha_{j} \mid \xi_{u}=\alpha_{i}\right)
$$

and set the probability of the variable ξ_{r} at the root: $P_{i}^{r}=P\left(\xi_{r}=\alpha_{i}\right)$

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{V} \ni v \rightarrow \rho(v) \in\{1,2\}$

$$
P\left(\bigwedge_{v \in \mathcal{V}} \xi_{v}=\alpha_{\rho(v)}\right)=P_{\rho(r)}^{r} \cdot \prod_{e=\langle u, v\rangle \in \mathcal{E}} A_{\rho(u) \rho(v)}^{e}
$$

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \rightarrow \rho(v) \in\{1,2\}$

$$
P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right)=\sum_{\widehat{\rho}} P_{\widehat{\rho}(r)}^{r} \cdot \prod_{e=\langle u, v\rangle \in \mathcal{E}} A_{\widehat{\rho}(u) \widehat{\rho}(v)}^{e}
$$

where the sum is taken over all $\widehat{\rho}: \mathcal{V} \rightarrow\{1,2\}$ which extend ρ.

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \rightarrow \rho(v) \in\{1,2\}$

$$
P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right)=\sum_{\widehat{\rho}} P_{\widehat{\rho}(r)}^{r} \cdot \prod_{e=\langle u, v\rangle \in \mathcal{E}} A_{\widehat{\rho}(u) \widehat{\rho}(v)}^{e}
$$

where the sum is taken over all $\widehat{\rho}: \mathcal{V} \rightarrow\{1,2\}$ which extend ρ.
Phylogenetics: understand the shape of \mathcal{T} by looking at the distribution of $P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right)$, that is

Fourier transformation

Phylogenetics wants to understand the locus of possible probability values of a Markov process on a fixed tree \mathcal{T}

$$
\begin{aligned}
& \mathcal{X}(\mathcal{T}):= \\
& \left\{\zeta_{\rho}=P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right): A_{i j}^{e}, P_{i}^{r} \text { are arbitrary }\right\}
\end{aligned}
$$

in the simplex with coordinates ζ_{ρ} where $\zeta_{\rho} \geq 0$,
$\sum_{\rho} \zeta_{\rho}=1$.

Fourier transformation

Assume:

Fourier transformation

Assume:

- the root distribution is uniform, $P_{1}^{r}=P_{2}^{r}$

Fourier transformation

Assume:

- the root distribution is uniform, $P_{1}^{r}=P_{2}^{r}$
- the transition matrices are symmetric:

$$
A_{12}^{e}=A_{21}^{e}, \quad A_{11}^{e}=A_{22}^{e}
$$

Fourier transformation

Assume:

- the root distribution is uniform, $P_{1}^{r}=P_{2}^{r}$
- the transition matrices are symmetric:

$$
A_{12}^{e}=A_{21}^{e}, \quad A_{11}^{e}=A_{22}^{e}
$$

then [proposition] after suitable change of coordinates (and identifying spaces) the varieties $\mathcal{X}(\mathcal{T})$ and $X(\mathcal{T})$ coincide.

proof: working dictionary

Translate the original problem into toric geometry

proof: working dictionary

Translate the original problem into toric geometry tree

proof: working dictionary

Translate the original problem into toric geometry tree
variety

proof: working dictionary

Translate the original problem into toric geometry tree
polytope
variety

proof: working dictionary

Translate the original problem into toric geometry tree polytope
variety
understand the basic objects

proof: working dictionary

Translate the original problem into toric geometry tree
polytope
variety

proof: working dictionary

Translate the original problem into toric geometry
tree
al
polytope
variety
\mathbb{P}^{3}

proof: working dictionary

Translate the original problem into toric geometry
tree

polytope

variety
\mathbb{P}^{3}

proof: working dictionary

Translate the original problem into toric geometry
tree

a leaf
polytope

variety
\mathbb{P}^{3}

proof: working dictionary

Translate the original problem into toric geometry
tree

a leaf
polytope

projection
variety
\mathbb{P}^{3}

proof: working dictionary

Translate the original problem into toric geometry
tree

a leaf
polytope

projection
variety
\mathbb{P}^{3}
\mathbb{C}^{*} action

proof: working dictionary

Translate the original problem into toric geometry
tree

a leaf
polytope

projection
variety
\mathbb{P}^{3}
\mathbb{C}^{*} action

proof: working dictionary

Translate the original problem into toric geometry
tree

a leaf

polytope

projection
variety
\mathbb{P}^{3}
\mathbb{C}^{*} action

proof: working dictionary

Translate the original problem into toric geometry
tree

a leaf

polytope

projection

variety
\mathbb{P}^{3}
\mathbb{C}^{*} action

GIT quotient

proof: working dictionary

Translate the original problem into toric geometry

a leaf

\leftrightarrow
polytope

projection

variety
\mathbb{P}^{3}
\mathbb{C}^{*} action

GIT quotient

proof: working dictionary

Translate the original problem into toric geometry

a leaf

\leftrightarrow

projection
variety
\mathbb{P}^{3}
\mathbb{C}^{*} action

GIT quotient deformation

proof: the idea

The mutation of a 4-leaf tree

can be explicitely written as deformation which preserves the action of \mathbb{C}^{*} groups associated to leaves,

proof: the idea

The mutation of a 4-leaf tree

can be explicitely written as deformation which preserves the action of \mathbb{C}^{*} groups associated to leaves, thus via GIT quotient it can be extended to a mutation of any tree along any inner edge

