

Algebraic varieties arising from phylogenetic trees

W. Buczynska, J.A. Wisniewski

Institute of Mathematics, Warsaw University, Poland

phylogenetics

Phylogenetics: reconstructing historical relation between species by analyzing their present features and putting their common ancestors in a diagram which forms a tree. [e.g. Häckel, 1866]



three (un?)related problems

counting points in polyhedra

Algebraic varieties arising from phylogenetic trees - p.3/1

three (un?)related problems

- counting points in polyhedra
- networks of paths in a tree

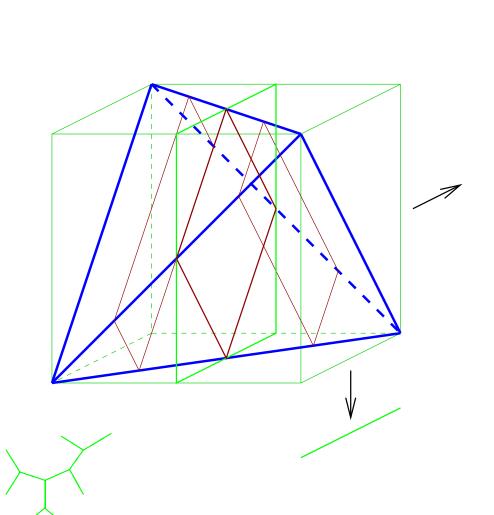
three (un?)related problems

- counting points in polyhedra
- networks of paths in a tree
- Markov processes on a tree

For a positive integer n let $[n] = \{0, ..., n\}$. Function $f : [n] \to \mathbb{Z}$ is symmetric if for every $k \in [n]$ it holds f(k) = f(n - k). By $\mathbf{1} : [n] \to \mathbb{Z}$ denote the unit function. For a positive integer n let $[n] = \{0, ..., n\}$. Function $f : [n] \to \mathbb{Z}$ is symmetric if for every $k \in [n]$ it holds f(k) = f(n - k). By $\mathbf{1} : [n] \to \mathbb{Z}$ denote the unit function. If $f_1 f_2 : [n] \to \mathbb{Z}$ are symmetric functions then we define their symmetric product $f_1 \star f_2 : [n] \to \mathbb{Z}$ such that for $k \le n/2$:

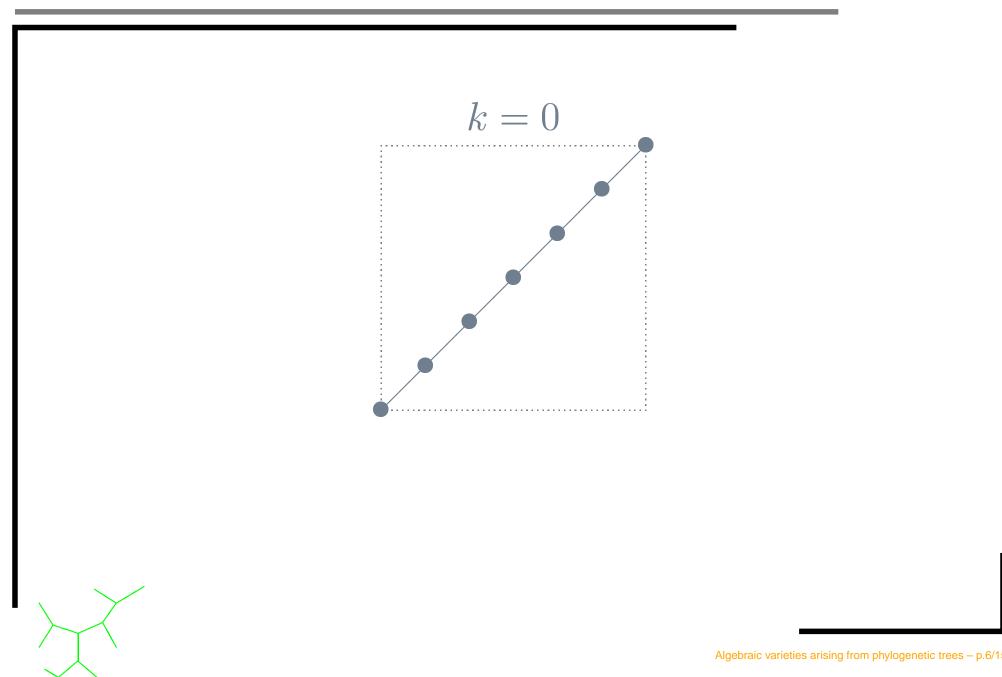
$$(f_1 \star f_2)(k) = 2 \cdot \left(\sum_{i=0}^{k-1} \sum_{j=0}^{i} f_1(i) f_2(k+i-2j) \right) \\ + \left(\sum_{i=k}^{n-k} \sum_{j=0}^{k} f_1(i) f_2(k+i-2j) \right)$$

geometric interpretation of *



Consider the simplex Δ as in the picture $(f_1 \star f_2)(k)$ is equal to the sum of products of f_1 and f_2 counted over points of lattice spanned by Δ in k-th slice of $n \cdot \Delta$ k+1) is the number of lattice points in k-th slice of $n \cdot \Delta$

travel trough $6 \cdot \Delta$

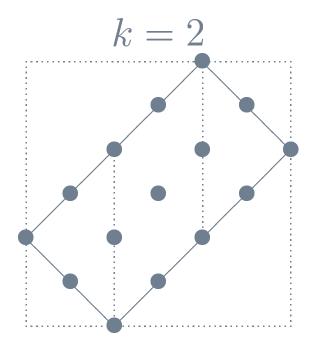


travel trough $6 \cdot \Delta$



Algebraic varieties arising from phylogenetic trees - p.6/15

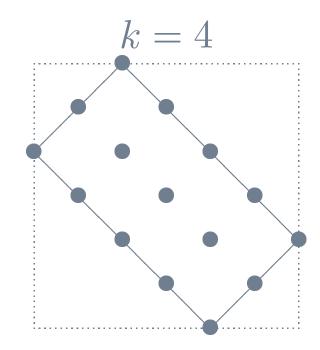
travel trough $6 \cdot \Delta$



travel trough $6 \cdot \Delta$

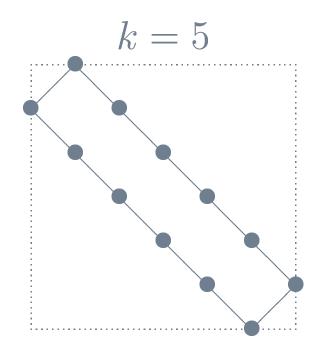


travel trough $6 \cdot \Delta$

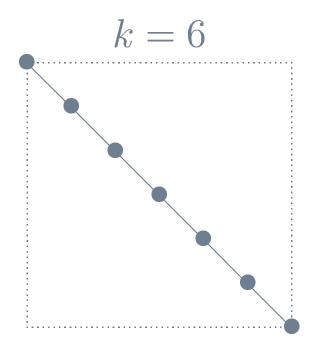


Algebraic varieties arising from phylogenetic trees - p.6/15

travel trough $6 \cdot \Delta$



travel trough $6 \cdot \Delta$



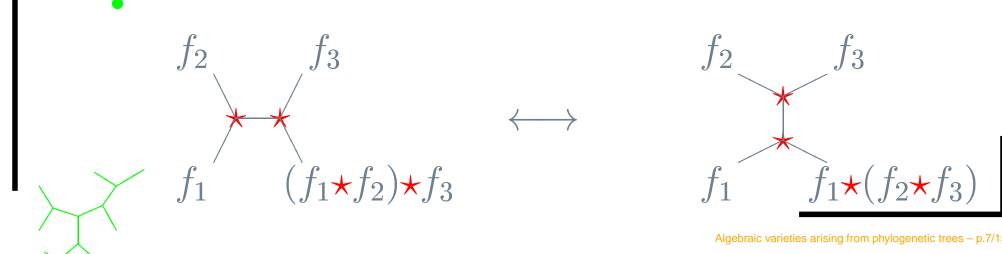
• \star is commutative, $f_1 \star f_2 = f_2 \star f_1$

Algebraic varieties arising from phylogenetic trees - p.7/1

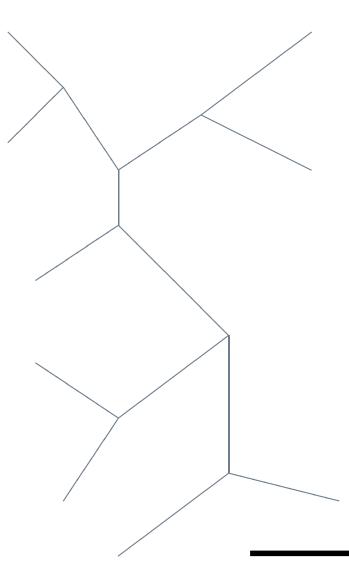
- \star is commutative, $f_1 \star f_2 = f_2 \star f_1$
- \star is usually nonassociative, i.e. $(f_1 \star f_2) \star f_3 \neq f_1 \star (f_2 \star f_3)$

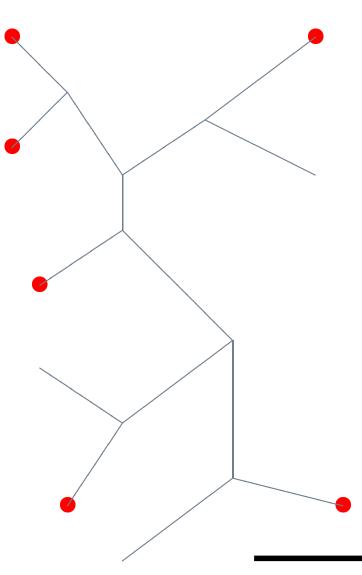
- \star is commutative, $f_1 \star f_2 = f_2 \star f_1$
- \star is usually nonassociative, i.e. $(f_1 \star f_2) \star f_3 \neq f_1 \star (f_2 \star f_3)$
- however, [theorem 1] If Ω is the smallest set of functions closed under * and containing 1 then * is associative within Ω

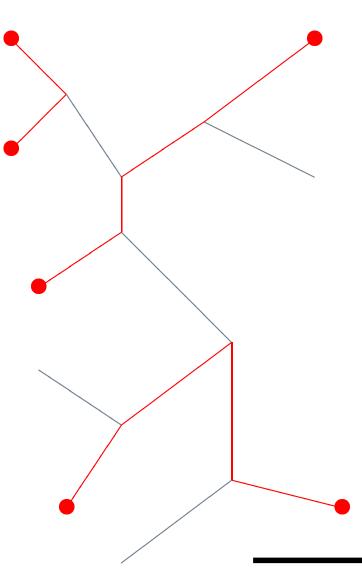
- \star is commutative, $f_1 \star f_2 = f_2 \star f_1$
- \star is usually nonassociative, i.e. $(f_1 \star f_2) \star f_3 \neq f_1 \star (f_2 \star f_3)$
- however, [theorem 1] If Ω is the smallest set of functions closed under * and containing 1 then * is associative within Ω

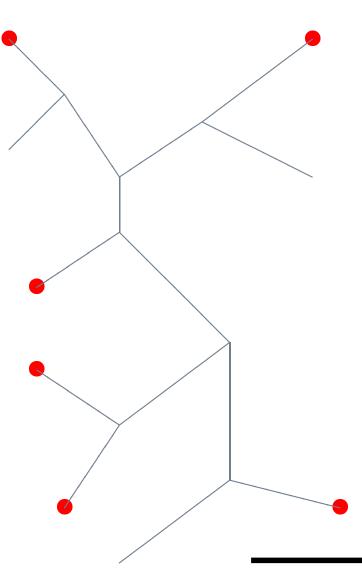


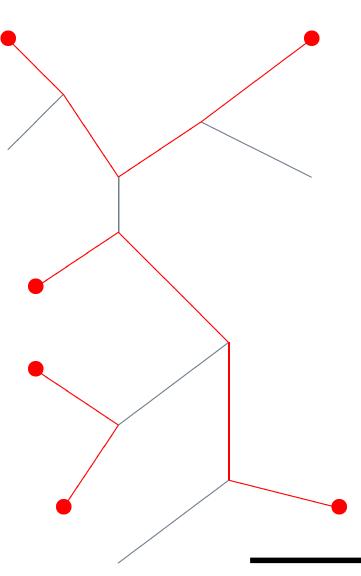
Algebraic varieties arising from phylogenetic trees - p.8/1











[lemma] There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ

[lemma] There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ

For every edge $e \in \mathcal{E}$ we consider a \mathbb{P}_e^1 with homogeneous coordinates $[y_0^e, y_1^e]$. Moreover consider a projective space \mathbb{P}_{Σ} of dimension $2^d - 1$ with homogeneous coordinates $[z_{\sigma}]$ indexed by sockets of \mathcal{T} . [lemma] There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ

Define rational map $\prod_{e \in \mathcal{E}} \mathbb{P}^1_e \to \mathbb{P}_{\Sigma}$ such that

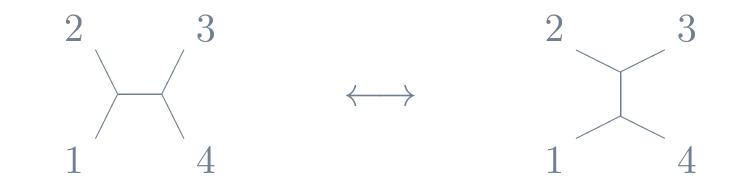
$$z_{\sigma} = \prod_{e \in \mu(\sigma)} y_1^e \cdot \prod_{e \notin \mu(\sigma)} y_0^e$$

The model of the tree, $X(\mathcal{T}) \subset \mathbb{P}_{\Sigma}$, is the closure of the image of this map, $\dim X(\mathcal{T}) = 2d$.

Algebraic varieties arising from phylogenetic trees - p.9/1

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d+1$ or, equivalently, given d+1 points we can make them leaves of a (non-unique) tree \mathcal{T} .

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d+1$ or, equivalently, given d+1 points we can make them leaves of a (non-unique) tree \mathcal{T} .



Algebraic varieties arising from phylogenetic trees - p.10/1

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d+1$ or, equivalently, given d+1 points we can make them leaves of a (non-unique) tree \mathcal{T} . Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d+1$ or, equivalently, given d+1 points we can make them leaves of a (non-unique) tree \mathcal{T} . Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}

These varieties can be non-isomorphic (one can check it), however [theorem 2] they are in the same connected component of the Hilbert scheme of \mathbb{P}_{Σ} , that is $X(\mathcal{T}_1)$ can be deformed to $X(\mathcal{T}_2)$ if only \mathcal{T}_1 and \mathcal{T}_2 have the same number of leaves.

Algebraic varieties arising from phylogenetic trees - p.10/1

Fix a root r in tree \mathcal{T} - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$.

Fix a root r in tree \mathcal{T} - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$. Variables ξ_v determine a Markov process on \mathcal{T} if (intuitively) the value of ξ_v depends only on the value of ξ_u , where u is the node immediately preceeding v.

Fix a root r in tree \mathcal{T} - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$. For each edge $e = \langle u, v \rangle$ bounded by vertexes

u < v define the transition matrix A^e :

$$A_{ij}^e = P(\xi_v = \alpha_j | \xi_u = \alpha_i)$$

Fix a root r in tree \mathcal{T} - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$. For each edge $e = \langle u, v \rangle$ bounded by vertexes

u < v define the transition matrix A^e :

$$A_{ij}^e = P(\xi_v = \alpha_j | \xi_u = \alpha_i)$$

and set the probability of the variable ξ_r at the root: $P_i^r = P(\xi_r = \alpha_i)$

Algebraic varieties arising from phylogenetic trees - p.11/1

from Markov to phylogenetics

For a Markov process on a rooted tree $\ensuremath{\mathcal{T}}$ as above

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{V} \ni v \to \rho(v) \in \{1, 2\}$

$$P(\bigwedge_{v\in\mathcal{V}}\xi_v=\alpha_{\rho(v)})=P^r_{\rho(r)}\cdot\prod_{e=\langle u,v\rangle\in\mathcal{E}}A^e_{\rho(u)\rho(v)}$$

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \to \rho(v) \in \{1, 2\}$

$$P(\bigwedge_{v \in \mathcal{L}} \xi_v = \alpha_{\rho(v)}) = \sum_{\widehat{\rho}} P^r_{\widehat{\rho}(r)} \cdot \prod_{e = \langle u, v \rangle \in \mathcal{E}} A^e_{\widehat{\rho}(u)\widehat{\rho}(v)}$$

where the sum is taken over all $\hat{\rho} : \mathcal{V} \to \{1, 2\}$ which extend ρ .

Algebraic varieties arising from phylogenetic trees - p.12/1

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \to \rho(v) \in \{1, 2\}$

$$P(\bigwedge_{v \in \mathcal{L}} \xi_v = \alpha_{\rho(v)}) = \sum_{\widehat{\rho}} P^r_{\widehat{\rho}(r)} \cdot \prod_{e = \langle u, v \rangle \in \mathcal{E}} A^e_{\widehat{\rho}(u)\widehat{\rho}(v)}$$

where the sum is taken over all $\hat{\rho} : \mathcal{V} \to \{1, 2\}$ which extend ρ .

Phylogenetics: understand the shape of \mathcal{T} by looking at the distribution of $P(\bigwedge_{v \in \mathcal{L}} \xi_v = \alpha_{\rho(v)})$, that is

Algebraic varieties arising from phylogenetic trees - p.12/1

Phylogenetics wants to understand the locus of possible probability values of a Markov process on a fixed tree ${\cal T}$

$$\begin{aligned} \mathcal{X}(\mathcal{T}) &:= \\ \{\zeta_{\rho} = P(\bigwedge_{v \in \mathcal{L}} \xi_{v} = \alpha_{\rho(v)}) : A^{e}_{ij}, P^{r}_{i} \text{ are arbitrary} \} \\ \text{in the simplex with coordinates } \zeta_{\rho} \text{ where } \zeta_{\rho} \geq 0, \\ \sum_{\rho} \zeta_{\rho} = 1. \end{aligned}$$

Assume:

Algebraic varieties arising from phylogenetic trees - p.13/1

• the root distribution is uniform, $P_1^r = P_2^r$

Assume:

Algebraic varieties arising from phylogenetic trees - p.13/1

Assume:

- the root distribution is uniform, $P_1^r = P_2^r$
- the transition matrices are symmetric:

$$A_{12}^e = A_{21}^e, \ A_{11}^e = A_{22}^e$$

Assume:

- the root distribution is uniform, $P_1^r = P_2^r$
- the transition matrices are symmetric:

$$A_{12}^e = A_{21}^e, \ A_{11}^e = A_{22}^e$$

then [proposition] after suitable change of coordinates (and identifying spaces) the varieties $\mathcal{X}(\mathcal{T})$ and $X(\mathcal{T})$ coincide.

Algebraic varieties arising from phylogenetic trees - p.13/1

Translate the original problem into toric geometry

Algebraic varieties arising from phylogenetic trees - p.14/1

Translate the original problem into toric geometry

tree

Translate the original problem into toric geometry

tree

variety

tree

Translate the original problem into toric geometry

polytope variety

Translate the original problem into toric geometry

tree polytope variety

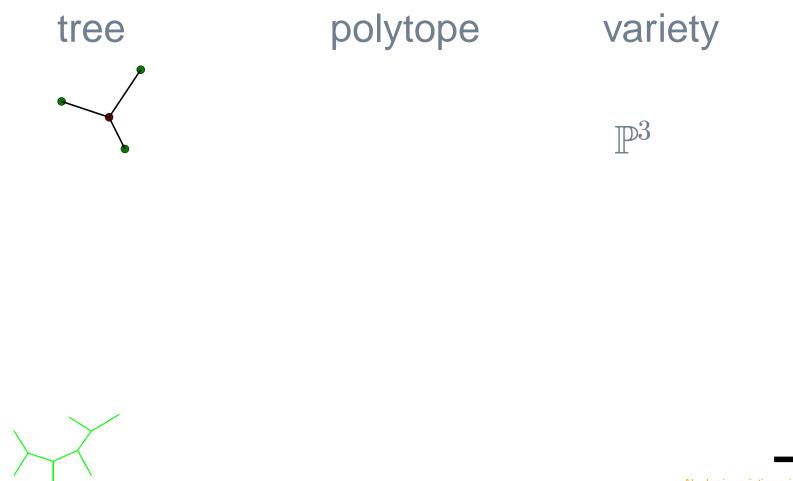
understand the basic objects

Algebraic varieties arising from phylogenetic trees - p.14/1

tree

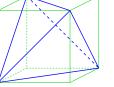
Translate the original problem into toric geometry

Translate the original problem into toric geometry



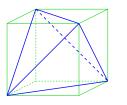
Algebraic varieties arising from phylogenetic trees - p.14/1

Translate the original problem into toric geometry



 \mathbb{P}^3

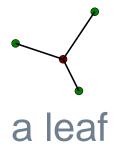
Translate the original problem into toric geometry

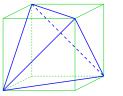


Translate the original problem into toric geometry

variety

 \mathbb{P}^3

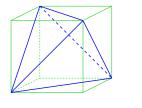




projection

Translate the original problem into toric geometry

a leaf



projection

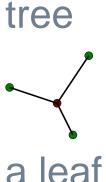
variety

 \mathbb{P}^3 \mathbb{C}^* action

polytope

projection

Translate the original problem into toric geometry

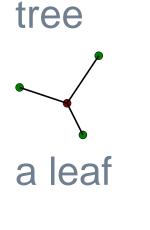


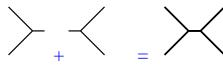
variety

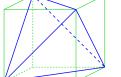
 \mathbb{P}^3 \mathbb{C}^* action

Algebraic varieties arising from phylogenetic trees - p.14/1

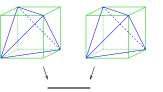
Translate the original problem into toric geometry







projection

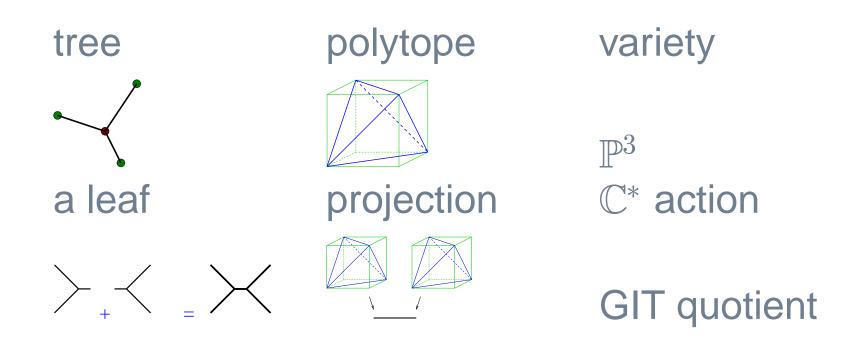


variety

 \mathbb{P}^3 \mathbb{C}^* action

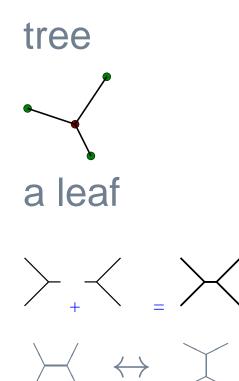
Algebraic varieties arising from phylogenetic trees - p.14/1

Translate the original problem into toric geometry



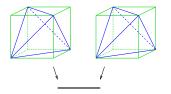
Algebraic varieties arising from phylogenetic trees - p.14/1

Translate the original problem into toric geometry





projection



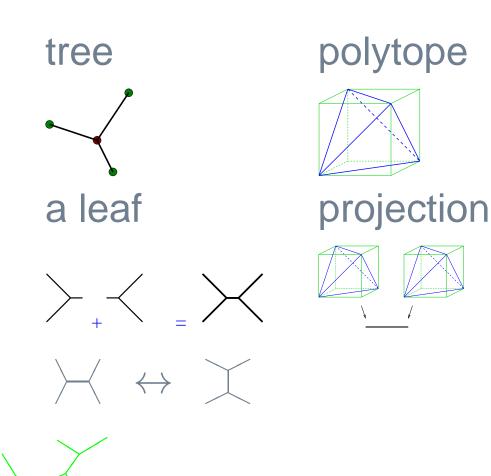
variety

 \mathbb{P}^3 \mathbb{C}^* action

GIT quotient

Algebraic varieties arising from phylogenetic trees - p.14/1

Translate the original problem into toric geometry



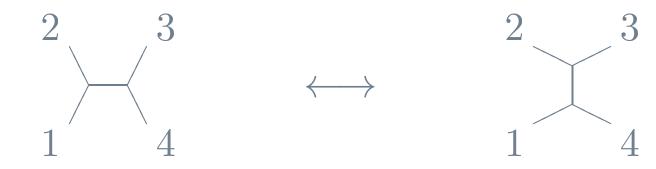
variety

 \mathbb{P}^3 \mathbb{C}^* action

GIT quotient deformation

Algebraic varieties arising from phylogenetic trees - p.14/1

The mutation of a 4-leaf tree



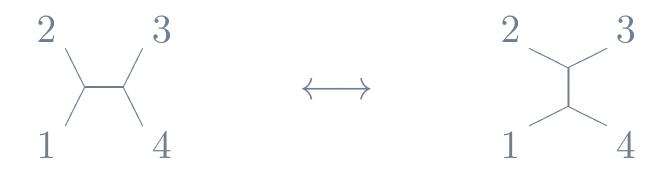
can be explicitely written as deformation which preserves the action of \mathbb{C}^* groups associated to leaves,

Algebraic varieties arising from phylogenetic trees - p.15/1

12

The mutation of a 4-leaf tree

3



can be explicitely written as deformation which preserves the action of \mathbb{C}^* groups associated to leaves, thus via GIT quotient it can be extended to a mutation of any tree along any inner edge

 \mathcal{T}_3

2