Extremal contractions Lecture 4: applications

J.A. Wiśniewski

J.Wisniewski@mimuw.edu.pl

Warsaw University, Poland

global set-up

In this lecture X is a complex projective manifold of dimension n. We tackle two questions:

- why a surfaces can have ∞ of (-1)-curves but at most two fiber type contractions?
- a contraction (-2)-curve is a section of contraction of isolated curve in a 3-fold, why this is not true for a (-1)-curve?

We begin with some general comments on topology of contractions.

let's recall

- $N^1(X) \subset H^2(X,\mathbb{R})$ and $N_1(X) \subset H_1(X,\mathbb{R})$ are subspaces spanned by cohomology and homology classes of divisors and curves, resp.
- topological intersection of cycles and cocycles restricts to $N_1(X)$ and $N^1(X)$ and coincides with the intersection product
- intersection product gives nondegenerate pairing on $H^2(X,\mathbb{R}) \times H_2(X,\mathbb{R})$ and $N^1(X) \times N_1(X)$

extremal rays

- given $\alpha \in H_2(X,\mathbb{R})$ define $\alpha^{\perp} := \{ \chi \in H^2(X,\mathbb{R}) : \chi \cdot \alpha = 0 \}$
- dual cones: of curves $\mathcal{C} \subset N_1(X)$ and of nef divisors $\mathcal{P} \subset N^1(X)$
- $R \subset \mathcal{C}$ Mori (extremal) ray if $R \cdot K_X < 0$

Theorem If $\varphi_R: X \to Z$ contraction of R then

$$R^{\perp} = \varphi_R^*(H^2(Z, \mathbb{R}))$$

topological vanishings

Lemma Assume: $\varphi: X \to Z$ contraction of projective manifold, $-K_X$ is φ -big and nef.

- $\forall z \in Z$ and $\forall 0 \neq \mathcal{L} \in (R^1 \varphi_* \mathcal{O}_X^*)_z$ exists $C \subset \varphi^{-1}(z)$ such that $\mathcal{L} \cdot C \neq 0$
- $(R^1\varphi_*\mathcal{O}_X^*)_z$ is a f.g. torsionfree ab gp
- $R^1 \varphi_* \mathbb{Z}_X = 0$
- $\varphi^*: H^2(Z,\mathbb{Z}) \to H^2(X,\mathbb{Z})$ is injective
- $coker(Pic(X)/\varphi^*Pic(Z) \hookrightarrow H^2(X,\mathbb{Z})/\varphi^*H^2(Z,\mathbb{Z}))$ is torsion group

proof

First point follows because $\forall m \gg 0$ bundle $m\mathcal{L}$ is φ -spanned.

For second use intersection

$$(R^1\varphi_*\mathcal{O}_X^*)_z \times H_2(\varphi^{-1}(z), \mathbb{Z}) \to \mathbb{Z}$$
 to get $R^1\varphi_*\mathcal{O}_X^* \hookrightarrow Hom(H_2(\varphi^{-1}(z), \mathbb{Z}), \mathbb{Z})$

Next use push-forward

$$0 \to R^1 \varphi_* \mathbb{Z}_X \to R^1 \varphi_* \mathcal{O}_X \to R^1 \varphi_* \mathcal{O}_X^*$$

$$\to R^2 \varphi_* \mathbb{Z}_X \to R^2 \varphi_* \mathcal{O}_X \to$$

to get
$$R^1 \varphi_* \mathbb{Z}_X = 0$$
 and $R^1 \varphi_* \mathcal{O}_X^* \simeq R^2 \varphi_* \mathbb{Z}_X$

proof, Leray

use Leray spectral

$$0 \rightarrow PicZ \rightarrow PicX \xrightarrow{u} H^{0}(R^{1}\varphi_{*}\mathcal{O}_{X}^{*})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \rightarrow H^{2}(Z,\mathbb{Z}) \rightarrow H^{2}(X,\mathbb{Z}) \xrightarrow{v} H^{0}(R^{2}\varphi_{*}\mathbb{Z}_{X})$$

- vertical arrows are 1st Chern class
- rhs vertical arrow is an isomorphism
- U := im(u), V := im(v) torfree ab, $U \hookrightarrow V$.

proof, conclusion

- $\mathcal{Z}_1(\varphi) := \{ \Gamma = \sum_{fin} a_i C_i : a_i \in \mathbb{Z}, \ \varphi(C_i) = \bullet \}$
- pairing $H^0(Z, R^1\varphi_*\mathcal{O}_X^*) \times \mathcal{Z}_1(\varphi) \longrightarrow \mathbb{Z}$ yields (because of 1st part of thm) $coker(\mathcal{Z}_1(\varphi) \to Hom(V, \mathbb{Z}))$ is torsion
- if a cycle $\Gamma \in \mathcal{Z}_1(\varphi)$ has trivial intersection with PicX then it is trivial on $H^2(X,\mathbb{Z})$

hard Lefschetz theorem

Definition $\eta \in H^2(X,\mathbb{R})$ satisfies Lefschetz condition if the k-th cup product map

$$L_k(\eta): H^{n-k}(X, \mathbb{R}) \longrightarrow H^{n+k}(X, \mathbb{R})$$

 $\chi \longrightarrow \chi \cup \eta^{\cup k}$

is an isomorphism for $k = 1, \dots n$

Hard Lefschetz Theorem Class of ample line bundle satisfies Lefschetz condition.

Lefschetz pairing

Alternatively, take $(-1)^{n-k}$ -symmetric bilinear pairing

$$H^{n-k}(X,\mathbb{R}) \times H^{n-k}(X,\mathbb{R}) \longrightarrow \mathbb{R}$$
 $(\chi,\nu) \longrightarrow \chi \cup \nu \cup \eta^{\cup k}$

so η gives a 2-form $A_k(\eta)$ which lives in $S^2(H^{n-k}(X,\mathbb{R})^*)$ or $\bigwedge^2(H^{n-k}(X,\mathbb{R})^*)$

Lefschetz locus

Let $\Delta_k = \Delta_k(X) := \{ \eta \in H^2(X, \mathbb{R}) : L_k(\eta) \text{ is not an isomorphism} \}$. Then

- Δ_k is the zero set of a homogeneous polynomial $\delta_k = det A_k$ of degree kb_{n-k}
- if n-k is odd then δ_k is the square of the pfaffian of A_k
- identifying rational homology $H_2(X,\mathbb{Q})$ with rational linear forms on $H^2(X,\mathbb{R})$ we have $\delta_k \in S^{kb_{n-k}}(H_2(X,\mathbb{Q}))$

Lefschetz line (or ray)

Lefschetz line $\mathbb{R} \cdot \alpha \subset H_2(X,\mathbb{R})$ divides δ_k for some $k=1,\ldots n$, or, equivalently, $R^\perp \subset \Delta_k$. The ray R is of type k and multiplicity m if it divides δ_k with multiplicity exactly m.

If #(k,m) is the number of Lefschetz lines of type k and multiplicity m then

$$\sum_{m>1} m \cdot \#(k,m) \le k \cdot b_{n-k}$$

Lefschetz theorem revisited

Let $R = \mathbb{R} \cdot \alpha$ be rational Lefschetz line in $H_2(X, \mathbb{R})$. Then

- the cone \mathcal{P} is not cut by the hyperplane R^{\perp} , or equivalently, either $\alpha \cdot \mathcal{P} \geq 0$ or $\alpha \cdot \mathcal{P} \leq 0$;
- $(R + (N^1)^{\perp}) \cap \bar{\mathcal{C}} \neq \{0\}$, that is, if $\beta \in N_1(X)$ is the projection of α along $N^1(X)^{\perp}$ (i.e. $\beta \in N_1(X)$ such that $(\beta \alpha) \cdot N^1(X) = 0$) then either $\beta \in \bar{\mathcal{C}}$ or $-\beta \in \bar{\mathcal{C}}$.

L-condition for ray contraction

Proposition Let $\varphi_R: X \to Z$ be contraction of ray R. If there exists a subset $S \subset X$ such that $2dim_{\mathbb{C}}S - dim_{\mathbb{C}}\varphi(S) \geq n + m$ for some positive integer m then R is a Lefschetz ray of type $k := 2dim_{\mathbb{C}}S - n$ and multiplicity $\geq m$.

proof

- set $dim_{\mathbb{C}}S=a$, $dim_{\mathbb{C}}\varphi(S)=b-1$ so that k=2a-n and m=k-b+1
- consider embeddings $i: S \to X, j: \varphi(S) \to Z$ and homology class $[S]_X \in H_{2a}(X,\mathbb{R})$
- take cocycle $\eta_Z \in H^2(Z,\mathbb{R})$ then $[S]_X \cap \varphi^*(\eta_Z)^{\cup b} = i_*([S] \cap i^*(\varphi^*(\eta_Z))^{\cup b}) = i_*([S] \cap \varphi_S^*(j^*(\eta_Z)^{\cup b}))$
- but $j^*(\eta_Z)^{\cup b} \in H^{2b}(\varphi(S), \mathbb{R}) = 0$ hence $\nu_S \cup \varphi^*(\eta_Z)^{\cup b} = 0$ where ν_S cohomology class of S

semismall maps

Definition A map $\varphi:X\to Z$ is called semismall if for any subset $S\subset X$ it holds

$$2dim_{\mathbb{C}}S - dim_{\mathbb{C}}\varphi(S) \le n$$

A ray is semismall if its contraction is semismall.

Corollary If a ray is not semismall then it is Lefschetz.

properties of semismall rays

Let R be a semismall ray

- R has length 1
- every component of $Hom(\mathbb{P}^1,X)$ parametrizing minimal rational curves in R has expected dimension
- if $\mathcal{X} \to \mathcal{B}$ is a smooth deformation of $X = \mathcal{X}_0$ then homology class of a minimal rational curve in R is holomorphic in a general \mathcal{X}_b

nef value/threshold

Assume K_X not nef and H ample divisor on X. Define

$$\tau(H) = min\{t \in \mathbb{R} : K_X + tH \text{ nef }\}$$

Theorem Let $\mathcal{X} \to \mathcal{B}$ be a smooth deformation of $X = \mathcal{X}_0$ with an ample divisor \mathcal{H} , $\mathcal{H}_0 = H$. Then the function $\mathcal{B} \ni b \to \tau(\mathcal{H}_b)$ is locally constant.