Extremal contractions Lecture 4: applications

J.A. Wiśniewski

J.Wisniewski@mimuw.edu.pl

Warsaw University, Poland

global set-up

In this lecture X is a complex projective manifold of dimension n. We tackle two questions:

- why a surfaces can have ∞ of (-1)-curves but at most two fiber type contractions?
- a contraction (-2)-curve is a section of contraction of isolated curve in a 3-fold, why this is not true for a (-1)-curve?

We begin with some general comments on topology of contractions.

let's recall

- $N^{1}(X) \subset H^{2}(X, \mathbb{R})$ and $N_{1}(X) \subset H_{1}(X, \mathbb{R})$ are subspaces spanned by cohomology and homology classes of divisors and curves, resp.
- topological intersection of cycles and cocycles restricts to $N_{1}(X)$ and $N^{1}(X)$ and coincides with the intersection product
- intersection product gives nondegenerate pairing on $H^{2}(X, \mathbb{R}) \times H_{2}(X, \mathbb{R})$ and $N^{1}(X) \times N_{1}(X)$

extremal rays

- given $\alpha \in H_{2}(X, \mathbb{R})$ define

$$
\alpha^{\perp}:=\left\{\chi \in H^{2}(X, \mathbb{R}): \chi \cdot \alpha=0\right\}
$$

- dual cones: of curves $\mathcal{C} \subset N_{1}(X)$ and of nef divisors $\mathcal{P} \subset N^{1}(X)$
- $R \subset \mathcal{C}$ Mori (extremal) ray if $R \cdot K_{X}<0$

Theorem If $\varphi_{R}: X \rightarrow Z$ contraction of R then

$$
R^{\perp}=\varphi_{R}^{*}\left(H^{2}(Z, \mathbb{R})\right)
$$

topological vanishings

Lemma Assume: $\varphi: X \rightarrow Z$ contraction of projective manifold, $-K_{X}$ is φ-big and nef.

- $\forall z \in Z$ and $\forall 0 \neq \mathcal{L} \in\left(R^{1} \varphi_{*} \mathcal{O}_{X}^{*}\right)_{z}$ exists $C \subset \varphi^{-1}(z)$ such that $\mathcal{L} \cdot C \neq 0$
- $\left(R^{1} \varphi_{*} \mathcal{O}_{X}^{*}\right)_{z}$ is a f.g. torsionfree ab gp
- $R^{1} \varphi_{*} \mathbb{Z}_{X}=0$
- $\varphi^{*}: H^{2}(Z, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z})$ is injective
- $\operatorname{coker}\left(\operatorname{Pic}(X) / \varphi^{*} \operatorname{Pic}(Z) \hookrightarrow\right.$ $\left.H^{2}(X, \mathbb{Z}) / \varphi^{*} H^{2}(Z, \mathbb{Z})\right)$ is torsion group

proof

First point follows because $\forall m \gg 0$ bundle $m \mathcal{L}$ is φ-spanned.
For second use intersection
$\left(R^{1} \varphi_{*} \mathcal{O}_{X}^{*}\right)_{z} \times H_{2}\left(\varphi^{-1}(z), \mathbb{Z}\right) \rightarrow \mathbb{Z}$ to get
$R^{1} \varphi_{*} \mathcal{O}_{X}^{*} \hookrightarrow \operatorname{Hom}\left(H_{2}\left(\varphi^{-1}(z), \mathbb{Z}\right), \mathbb{Z}\right)$
Next use push-forward

$$
\begin{aligned}
& 0 \rightarrow R^{1} \varphi_{*} \mathbb{Z}_{X} \rightarrow R^{1} \varphi_{*} \mathcal{O}_{X} \rightarrow R^{1} \varphi_{*} \mathcal{O}_{X}^{*} \\
& \rightarrow R^{2} \varphi_{*} \mathbb{Z}_{X} \rightarrow R^{2} \varphi_{*} \mathcal{O}_{X} \rightarrow
\end{aligned}
$$

to get $R^{1} \varphi_{*} \mathbb{Z}_{X}=0$ and $R^{1} \varphi_{*} \mathcal{O}_{X}^{*} \simeq R^{2} \varphi_{*} \mathbb{Z}_{X}$

proof, Leray

use Leray spectral
$0 \rightarrow \operatorname{PicZ} \quad \rightarrow \quad \operatorname{PicX} \quad \xrightarrow{u} H^{0}\left(R^{1} \varphi_{*} \mathcal{O}_{X}^{*}\right)$
$0 \rightarrow H^{2}(Z, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \xrightarrow{v} H^{0}\left(R^{2} \varphi_{*} \mathbb{Z}_{X}\right)$

- vertical arrows are 1st Chern class
- rhs vertical arrow is an isomorphism
- $U:=i m(u), V:=i m(v)$ torfree $\mathrm{ab}, U \hookrightarrow V$.

proof, conclusion

- $\mathcal{Z}_{1}(\varphi):=\left\{\Gamma=\sum_{f i n} a_{i} C_{i}: a_{i} \in \mathbb{Z}, \varphi\left(C_{i}\right)=\bullet\right\}$
- pairing $H^{0}\left(Z, R^{1} \varphi_{*} \mathcal{O}_{X}^{*}\right) \times \mathcal{Z}_{1}(\varphi) \longrightarrow \mathbb{Z}$ yields (because of 1st part of thm) $\operatorname{coker}\left(\mathcal{Z}_{1}(\varphi) \rightarrow \operatorname{Hom}(V, \mathbb{Z})\right)$ is torsion
- if a cycle $\Gamma \in \mathcal{Z}_{1}(\varphi)$ has trivial intersection with PicX then it is trivial on $H^{2}(X, \mathbb{Z})$

hard Lefschetz theorem

Definition $\eta \in H^{2}(X, \mathbb{R})$ satisfies Lefschetz condition if the k-th cup product map

$$
\begin{aligned}
L_{k}(\eta): H^{n-k}(X, \mathbb{R}) & \longrightarrow H^{n+k}(X, \mathbb{R}) \\
\chi & \longrightarrow \chi \cup \eta^{\dagger k}
\end{aligned}
$$

is an isomorphism for $k=1, \ldots n$
Hard Lefschetz Theorem Class of ample line bundle satisfies Lefschetz condition.

Lefschetz pairing

Alternatively, take $(-1)^{n-k}$-symmetric bilinear pairing

$$
\begin{aligned}
H^{n-k}(X, \mathbb{R}) \times H^{n-k}(X, \mathbb{R}) & \longrightarrow \mathbb{R} \\
(\chi, \nu) & \longrightarrow \chi \cup \nu \cup \eta^{\cup k}
\end{aligned}
$$

so η gives a 2-form $A_{k}(\eta)$ which lives in $S^{2}\left(H^{n-k}(X, \mathbb{R})^{*}\right)$ or $\bigwedge^{2}\left(H^{n-k}(X, \mathbb{R})^{*}\right)$

Lefschetz locus

Let $\Delta_{k}=\Delta_{k}(X):=\left\{\eta \in H^{2}(X, \mathbb{R}): L_{k}(\eta)\right.$ is not an isomorphism $\}$. Then

- Δ_{k} is the zero set of a homogeneous polynomial $\delta_{k}=\operatorname{det} A_{k}$ of degree $k b_{n-k}$
- if $n-k$ is odd then δ_{k} is the square of the pfaffian of A_{k}
- identifying rational homology $H_{2}(X, \mathbb{Q})$ with rational linear forms on $H^{2}(X, \mathbb{R})$ we have $\delta_{k} \in S^{k b_{n-k}}\left(H_{2}(X, \mathbb{Q})\right)$

Lefschetz line (or ray)

Lefschetz line $\mathbb{R} \cdot \alpha \subset H_{2}(X, \mathbb{R})$ divides δ_{k} for some $k=1, \ldots n$, or, equivalently, $R^{\perp} \subset \Delta_{k}$. The ray R is of type k and multiplicity m if it divides δ_{k} with multiplicity exactly m.

If $\#(k, m)$ is the number of Lefschetz lines of type k and multiplicity m then

$$
\sum_{m \geq 1} m \cdot \#(k, m) \leq k \cdot b_{n-k}
$$

Lefschetz theorem revisited

Let $R=\mathbb{R} \cdot \alpha$ be rational Lefschetz line in $H_{2}(X, \mathbb{R})$. Then

- the cone \mathcal{P} is not cut by the hyperplane R^{\perp}, or equivalently, either $\alpha \cdot \mathcal{P} \geq 0$ or $\alpha \cdot \mathcal{P} \leq 0$;
- $\left(R+\left(N^{1}\right)^{\perp}\right) \cap \overline{\mathcal{C}} \neq\{0\}$, that is, if $\beta \in N_{1}(X)$ is the projection of α along $N^{1}(X)^{\perp}$ (i.e. $\beta \in N_{1}(X)$ such that $(\beta-\alpha) \cdot N^{1}(X)=0$) then either $\beta \in \overline{\mathcal{C}}$ or $-\beta \in \overline{\mathcal{C}}$.

L-condition for ray contraction

Proposition Let $\varphi_{R}: X \rightarrow Z$ be contraction of ray R. If there exists a subset $S \subset X$ such that $2 \operatorname{dim}_{\mathbb{C}} S-\operatorname{dim}_{\mathbb{C}} \varphi(S) \geq n+m$ for some positive integer m then R is a Lefschetz ray of type $k:=$ $2 \operatorname{dim}_{\mathbb{C}} S-n$ and multiplicity $\geq m$.

proof

- set $\operatorname{dim}_{\mathbb{C}} S=a, \operatorname{dim}_{\mathbb{C}} \varphi(S)=b-1$ so that $k=2 a-n$ and $m=k-b+1$
- consider embeddings $i: S \rightarrow X, j: \varphi(S) \rightarrow Z$ and homology class $[S]_{X} \in H_{2 a}(X, \mathbb{R})$
- take cocycle $\eta_{Z} \in H^{2}(Z, \mathbb{R})$ then
$[S]_{X} \cap \varphi^{*}\left(\eta_{Z}\right)^{\cup b}=i_{*}\left([S] \cap i^{*}\left(\varphi^{*}\left(\eta_{Z}\right)\right)^{\cup b}\right)=$ $i_{*}\left([S] \cap \varphi_{S}^{*}\left(j^{*}\left(\eta_{Z}\right)^{\cup b}\right)\right)$
- but $j^{*}\left(\eta_{Z}\right)^{\cup b} \in H^{2 b}(\varphi(S), \mathbb{R})=0$ hence $\nu_{S} \cup \varphi^{*}\left(\eta_{Z}\right)^{\cup b}=0$ where ν_{S} cohomology class of S

semismall maps

Definition A map $\varphi: X \rightarrow Z$ is called semismall if for any subset $S \subset X$ it holds

$$
2 \operatorname{dim}_{\mathbb{C}} S-\operatorname{dim}_{\mathbb{C}} \varphi(S) \leq n
$$

A ray is semismall if its contraction is semismall.
Corollary If a ray is not semismall then it is Lefschetz.

properties of semismall rays

Let R be a semismall ray

- R has length 1
- every component of $\operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ parametrizing minimal rational curves in R has expected dimension
- if $\mathcal{X} \rightarrow \mathcal{B}$ is a smooth deformation of $X=\mathcal{X}_{0}$ then homology class of a minimal rational curve in R is holomorphic in a general \mathcal{X}_{b}

nef value/threshold

Assume K_{X} not nef and H ample divisor on X. Define

$$
\tau(H)=\min \left\{t \in \mathbb{R}: K_{X}+t H \text { nef }\right\}
$$

Theorem Let $\mathcal{X} \rightarrow \mathcal{B}$ be a smooth deformation of $X=\mathcal{X}_{0}$ with an ample divisor $\mathcal{H}, \mathcal{H}_{0}=H$. Then the function $\mathcal{B} \ni b \rightarrow \tau\left(\mathcal{H}_{b}\right)$ is locally constant.

