

Extremal contractions *Lecture 2: Vanishing, nonvanishing and slicing*

J.A. Wiśniewski

J.Wisniewski@mimuw.edu.pl

Warsaw University, Poland

Appolonius method

Let $X^n \subset \mathbb{P}^N$ be a (smooth) projective variety of dimension n and $X^{n-1} = X^n \cap H \subset H = \mathbb{P}^{N-1}$ its hyperplane section. Then $dim X^{n-1} = n - 1$ and

$$K_{X^{n-1}} = (K_{X^n} + H)_{|X^{n-1}}$$

• Idea: use X^{n-1} to understand X^n , e.g. use divisorial sequence

$$0 \to \mathcal{O}_{X^n}(-X^{n-1}) \to \mathcal{O}_{X^n} \to \mathcal{O}_{X^{n-1}} \to 0$$

• Problem: sometimes the existence of a *good* hyperplane section is not obvious.

relative vanishing

Vanishing Theorem.

(Kawamata, Viehweg, Kollár) Let *X* be a variety with at most log terminal singularities and let $\varphi : X \to Z$ be a proper morphism onto a variety *Z*. Then $R^i \varphi_* \mathcal{O}_X(K_X) = 0$ for i > dim X - dim Z. If \mathcal{L} is a line bundle on *X* such that $-K_X + \mathcal{L}$ is φ -ample then $R^i \varphi_* \mathcal{L} = 0$ for i > 0.

vanishing w. fract. coeff

Let $\varphi: Y \to Z$ be a projective morphism from smooth Y and let A be φ -ample Q-divisor such that support of fractional divisor $\{A\} = \lceil A \rceil - A$ is simple normal crossing. Then

 $R^i \varphi_* \mathcal{O}_Y(K_Y + \lceil A \rceil) = 0 \text{ for } i > 0$

local set-up

Let $\varphi: X \to Z$ be a local contraction:

- Z normal affine variety, X has log terminal singularities, K_X is Q-Cartier
- $z \in Z$ and $F = \varphi^{-1}(z)$, and

$$\forall_{z'\in Z} \ dim(\varphi^{-1}(z')) \le dimF$$

• \mathcal{L} a φ -ample line bundle and $r \in \mathbb{Q}_{>0}$ such that $K_X + r\mathcal{L}$ is Cartier and φ -trivial, i.e.

 $K_X + r\mathcal{L} \simeq \mathcal{O}_X \text{ or } K_X \simeq -r\mathcal{L}$

highest cohomology vanishes

Vanishing of cohomology of fiber's subscheme. In the local set-up let F' be a subscheme of Xwhose support is contained in the fiber F of φ , so that $\varphi(F') = z$. If

- either t > -r, or
- t = -r and dimF > dimX dimZ

then

$$H^{dimF}(F', t\mathcal{L}_{|F'}) = 0$$

fiber coh. vanishing, proof

Let $\mathcal{I}_{F'}$ be the ideal of F' in X. Take sequence $0 \longrightarrow t\mathcal{L} \otimes \mathcal{I}_{F'} \longrightarrow t\mathcal{L} \longrightarrow t\mathcal{L}_{F'} = t\mathcal{L} \otimes \mathcal{O}_{F'} \longrightarrow 0$ Take direct image $R^{\bullet}\varphi_{*}$. Then $R^{i}\varphi_{*}(t\mathcal{L}\otimes\mathcal{I}_{F'})_{z}=0$ for i > d = dimF. Hence map $R^d \varphi_*(t\mathcal{L}_{X'}) \to H^d(F', t\mathcal{L}_{F'})$

is surjective and we are done by vanishing.

cohomology of conormal

Corollary. Let $\varphi : X \to Z$ be a Fano-Mori or crepant contraction and F' a smooth component of its fiber of dimension d. Then $H^d(F', \mathcal{O}_{F'}) = 0$ and $dim H^d(F', N^*_{F'/X}) \leq dim H^{d-1}(F', \mathcal{O}_{F'})$.

Proof. Let $\mathcal{I}_{F'}$ be ideal of F' in X; consider cohomology of sequence

 $0 \to \mathcal{I}_{F'}/\mathcal{I}_{F'}^2 \to \mathcal{O}_X/\mathcal{I}_{F'}^2 \to \mathcal{O}_X/\mathcal{I}_{F'} \to 0$

1 dim fiber

Corollary. Let $\varphi : X \to Z$ be F-M or crepant contraction. The reduced 1-dimensional fiber of φ is a tree of \mathbb{P}^1 's and conormal of each component F' satisfies

$$H^1(F', N^*_{F'/X}) = 0$$

thm: relative freeness

Local base-point-free theorem. Let $\varphi : X \to Z$ be a local contraction. Assume moreover that

- either dimF < r + 1 if dimZ < dimX
- or $dimF \leq r+1$ if φ is birational

Then the evaluation morphism

$$\varphi^*\varphi_*\mathcal{L}\to\mathcal{L}$$

is surjective at every point of F.

application: slicing

Let X' be a general divisor from $|\mathcal{L}|$. Then

- outside base point locus of $|\mathcal{L}|$ singularities of X' are not worse than these of X
- any section of $\mathcal L$ on X' extends to X
- if $\varphi' := \varphi_{|X'}$ and $\mathcal{L}' = \mathcal{L}_{|X'}$ then $K_{X'} + (r-1)\mathcal{L}'$ is φ' -trivial
- the map φ' is a contraction if
 - either r > 1 or
 - $r \ge 1$ and φ is birational

nonvanishing theorem

Theorem. Let $\varphi : X \to Z$, *F*, \mathcal{L} and *r* be as in the local set-up. Assume moreover that

- either dimF < r + 1 if dimZ < dimX, or
- $dimF \leq r+1$ if φ is birational.

Then the base point locus of \mathcal{L} does not contain any component of F.

proof, set-up

Take divisor B on X (pull back from Z) s.t.(X, B)is log canonical outside F and not log canonical at generic point of every component of F. Let $f: Y \to X$ be a log resolution of B. Then

•
$$K_Y = f^* K_X + \sum e_i E_i$$
 where $e_i > -1$

• $f^*B = \sum b_i E_i$ where $b_i \ge 0$ and

- $f^*(\epsilon \mathcal{L}) = A + \sum p_i E_i$ and $\epsilon > 0$, if dimZ < dimX
- $f^*\mathcal{O}_X = A + \sum p_i E_i$, if φ is birational
- where A is $\varphi \circ f$ -ample Q-div. $0 \le p_i \ll 1$

proof, sorting coefficients

Let $F' \subset F$ be an irreducible component, define

$$c := \min\left\{\frac{e_i + 1 - p_i}{b_i} : F' \subset f(E_i), \ b_i > 0\right\}$$

May assume the minimum is taken for one i, denote the corresponding divisor by E_0 . Then

•
$$0 < c < 1$$
 and $f(E_0) = F'$,

- if $cb_i e_i + p_i < 0$ then E_i is *f*-exceptional,
- if $cb_i e_i + p_i \ge 1$ and $i \ne 0$ then $F' \not\subset f(E_i)$.

proof, sorting divisors

$$K_Y + A + \sum (cb_i - e_i + p_i)E_i + f^*(t\mathcal{L})$$

- is equivalent to $f^*((t-r)\mathcal{L})$ if φ birational, or
- equivalent to $f^*((t r + \epsilon)\mathcal{L})$ if dimZ < dimXWrite

$$\sum (cb_i - e_i + p_i)E_i = E_0 + H'' - H' + Fr$$

with E_0 , H', H'' eff. div. no comm. comp, H' fexcept, $f(H'') \not\supseteq F'$, $Fr = \sum \{cb_i - e_i + p_i\} E_i$ fract.

Grenoble, June2007 - p.15/2

proof, setting vanishings

For $t \in \mathbb{Z}$ such that

- $t \ge -r$, if φ is birational
- $t \ge -r + \epsilon$, if φ is of fiber type

 $f^*(t\mathcal{L}) - E_0 + H' - H'' - K_Y - Fr$

is $\varphi \circ f$ -ample so, by vanishings, for i > 0

$$H^{i}(Y, f^{*}(t\mathcal{L}) - E_{0} + H' - H'') = 0$$

$$H^{i}(E_{0}, (f^{*}(t\mathcal{L}) + H' - H'')|_{E_{0}}) = 0$$

proof, extending sections

If we set

$$\mathcal{N}(t) := f^*(t\mathcal{L}) + H' - H''$$

then restriction

$$H^0(Y, \mathcal{N}(t)) \to H^0(E_0, \mathcal{N}(t)|_{E_0})$$

is surjective for $t \ge -r$ in the birational and for t > -r in the fiber case.

So, if *s* is a non-zero section of $\mathcal{N}(t)_{|E_0}$ then it extends to a section of $\mathcal{N}(t)$ on *Y*.

proof, descending sections

Divisor E_0 is not in the support of H'' so we get a section $s \in H^0(Y, f^*(t\mathcal{L}) + H')$ which is not zero on E_0 . Since H' is f-exceptional

$$H^0(Y, f^*(t\mathcal{L}) + H') = H^0(X, t\mathcal{L})$$

and *s* descends to a section of $t\mathcal{L}$ which is not zero on $F' = f(E_0)$. Therefore, if dimF' > 0, then $H^0(E_0, \mathcal{N}(t)) = 0$ for

- $-r \le t < 0$, if φ is birational
- -r < t < 0, in the fiber case

Set $\chi(t) := \chi(E_0, \mathcal{N}(t))$ then it is a polynomial of degree $\leq dim f(E_0) = dim F'$ and $\chi(t) = 0$ for -1 > t > -r (resp. -1 > t > -r), if φ is birational (resp. if φ is of fiber type.). Thus $dimF' \ge |r|$ (resp. $dimF' \ge (r-1)$) and since $\chi(0) > 0$ and $\chi(t) > 0$ for $t \gg 0$ the assumption on dimF implies $H^0(E_0, \mathcal{N}(1)) \neq 0$. Finally, by extending and descending part we obtain a section of \mathcal{L} in a neighborhood of F which does not vanish along F'.

application: bounding dimension

Corollary. As in the previous theorem, let $\varphi: X \to Z$ be a local contraction of a variety with terminal singularities. Assume that $K_X = -r\mathcal{L}$ for some positive rational number r and φ ample line bundle \mathcal{L} . Then:

- $dimF \geq \lfloor r \rfloor$, if φ is birational
- $dimF \ge r-1$, if dimZ < dimX.

application: boundary case

Assume $\varphi: X \to Z$ be a local contraction, Xsmooth, $K_X = -r\mathcal{L}$ where $dimF \leq r \in \mathbb{Z}$. Then Z is smooth and one of the following occurs.

- dimF = r and φ blow-down of divisor to smooth subvariety of Z
- dimZ < dimX and one of the following holds
 - dimF = r 1 and φ is projective bundle
 - dimF = r = dimX dimZ, φ quadr. bund.
 - dimF = r = dimX dimZ 1 and loc. anal. φ is jump fiber contr.

sketch of pf, birational case

• F' component of $F, \hat{F'} \to F'$ normalization, $\hat{\mathcal{L}'}$ pullback of \mathcal{L} ; by Kobayashi-Ochiai

$$(\hat{F}', \hat{\mathcal{L}}') = (\mathbb{P}^r, \mathcal{O}(1))$$

- by base-point-freeness $(F', \mathcal{L}_{F'}) = (\mathbb{P}^r, \mathcal{O}(1))$
- by vanishing of cohomology and slicing

$$N_{F'/X} = \mathcal{O}(-1) \oplus \mathcal{O}^{\oplus (n-r-1)}$$

- by deformations φ is divisorial and blow-down

Grenoble, June2007 - p.22/