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plan of lectures

1. Definitions and examples.

2. Vanishing, nonvanishing, slicing.

3. Rational curves in fibers.

4. Applications.
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motivation

Motivation: want to study projective varieties over

and their morphisms. In fact, understanding

morphisms is a part of understanding the varieties

themselves. Also, will show how the methods de-

veloped in other lectures (vanishings and bend-

and-break) work in easy (smooth) case. Exam-

ples will follow.
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Stein factorization

Let � be a projective map of noetherian
schemes, normal. Then admits a
factorization �� � �
where � is finite, is normal and � has connected

fibers, i.e. ��� � 	 
. The scheme is normal-

ization of in the function field of or, equiva-

lently, 	 �
� �� � � � � � .
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global/local contraction

Standing assumptions

� � � projective surjective map of
normal algebraic -varieties, � � � 	 


� is usually smooth,

�� � 	 �

� for local description

� choose a point � � , shrink , take

	 � � � � �
, restrict �

� will be an affine variety (or a germ of
analytic space)
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special fiber

For the fixed point � � with maximal ideal ���

we will consider the fiber 	 � � � � � � with, either

� schematic structure ��
�� � 	 � � � � ��

�	
� �,

i.e. the ideal of 
� � is generated by functions
from �� , or

� reduced structure 
� �

These two structure do not have to coincide.
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additional assumptions

A (global/local) contraction � � is

� Fano-Mori if � � is �-ample

� crepant if it is birational and � � � �

� symplectic if � 	 � �, � is birational and there
exists a closed holomorphic 2-form � such
that � ���

does not vanish anywhere

� elementary if

� � ��� � � � � � � �� � � � � � � 	 	
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locus of contraction

A contraction � � is

� either birational, or

� of fiber type, if

�� � � �� �
The locus of a contraction

� � � is either , if � is
of fiber type, or the smallest subset � such
that

� � � � � � �

A contraction is called small if its exceptional lo-

cus is of codimension

�

.
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first examples

These are Fano-Mori contractions:

� Contract Fano manifold to a point �

� Project along Fano manifold, � � � � ,
where � is Fano.

� Simple blow down � � � � � , so
that � 	 �� 
 � � � 	 �

.

� Blow down � � with exceptional divisor

� contracted to smooth

� � , so that

� 	 �� 
 � � � � 	 �

, with

�

codimension of

�

in .
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divisors in projective bundles

Construct as a complete intersection (e.g. a
divisor) in a projective bundle � � � �� �

,

� 	 ��� �

Locally:

� 


with coordinates
� ����� 	 	 	� � 




and




with coordinates

��� �� 	 	 	 � 

�

; then given by

� ���� ��
 � 	 �

homogeneous of degree

�

in � � .
Note: � 	 � � � � 	 � �

; singular set of is
	 ��

� �
���� 	 ��

� �
���� 	 �
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jumping fiber

Consider hyperplane sec-
tion divisor in

� 
 � 
 � �

� � � �� � � � �

� � 
 	 �

Note that it is smooth and
its contraction to


 � �
has

a general fiber

� 
 � �
while

the special fiber over

� �


 � �

is

� 


.
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quadric bundles

Take a divisor in

� 
 � 


� � �
�

� � � � 
� �
�


 	 �

where � are functions in

��� �� 	 	 	� �



�

.

By adjunction � � � � � 	 �
. If � 	 �

then is

called conic bundle.
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conic bundle, special fiber

in

� �

� given by equation

�
�

� �
�

�

� � �
�

� 	 �
Such is smooth and has reducible fiber over� � .

in

� �

�

�

given by equation

�
�

� � �� �
�

�

�
�� �

�
� 	 �

Such is smooth and the schematic fiber over

� � is non-reduced line � �
� 	 �

.
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Lefschetz hyperplane thm

Suppose that is projective and � � �� �

is an ample divisor.
Then by Letschetz hyperplane section theorem
the contraction is (globally!) elementary
but locally it may be non-elementary in the
analytic set up.
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vector bundle trivialities

� �

rank � vector bundle over a projective
manifold

� ��� �� 	 � � � �� �

symmetric �-algebra of
local sections of

�

� 	 � � � � � � �� �� �

total space of dual bundle� �

with � �

� ��� �� � defines zero section of

� �

,
denoted � , such that

�
� � � � �

.

� � 	 � � � � � �� � �

because � � � � � � �� �
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vector bundle construction

� Assume that

�

semiample, i.e.

�� �
generated by global section for � �

� Consider 	 � � �
� �

�

�� � �
with maximal

ideal �� 	 � � �
� �

�

�� � �
.

Then the ring is finitely generated (Zariski,
[Reid, YPG p. 354]) so

�
� �� is an affine
scheme and �� defines its closed point �.
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contraction of zero section

Evaluations

� �
�

�� � � � �� �

define a map

� �
� �� � � � � �

Its Stein factorization � � is a contraction,

� �.
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example: contraction to cone

Let be an ample line bundle over a projective
manifold . Define 	 � � � � � � � � � � �

and

	 � � � � �
� � �

� �
� � � �

with the contraction
morphism � � , then

� � � 	 .

If the pair

�
�

�

is projectively normal, i.e. the

graded ring � � �
� �

� � �

is generated by its

first gradation, then is an affine cone over

embedded in the projective space via complete

linear system
� �

.
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small contractions

Take a Fano manifold with ample line bundle
such that � � � �, for � �

� � . Define

	 � � � � �
� � �

�� � � 
 �

Then the contraction of zero section � �

has exceptional locus of codimension � and it is

Fano-Mori if � � � or crepant if � 	 �.
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Kawamata ex: disconnected locus

� projective 4-fold, � ample,

� � �

� �

� � smooth curve and surface

� meets

�

transversally in � �� 	 	 	 � �

� take blow-ups,

� �

strict transform of

�

wrt �

� � �

�

� ��
�

�
	

� strict transforms of � � � � � � �

wrt are

� �

’s with
normal

� � 	 � � �

and contain numerically
equivalent lines
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symplectic contraction

Let be homogeneous variety with
spanned, e.g. 	 � 


. There is a universal
1-form � over cotangent bundle

� 	 , that
is, take projection � � �

then section

� � � � � � � �

comes from identity
� 	 .

� 	 �
� is a symplectic form and contraction of

zero section of
�

is a symplectic contraction
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mix’n match, intersect bundle

� � 3-dim quadric, � � � spinor bundle,

� � 	 	

, � � 	 �

, spanned

� 	 �
� �� �
�

� ��� � � �

contraction,
generically

� �

-bundle

� �

smooth divisor � such that � � �

is generically blow-down

� special fiber is either smooth quadric, or
quadric cone, or two planes
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C* quotient

�

action on

�

with weights

� � 	� � 	� 	� 	 �
:

� � �
� �� � �� � �� � �

� 	 �� � �
� �� � � �
� �� � � �� � � �

�

quotient is quadric cone; remove orbits which
have limits at 0 or , get quotients, two sides of
Atiyah flop.

Compactify

�

, add quotients at both sides of

�

orbits, get smooth with proper map onto

quadric cone, gen.

� �

bundle, special fiber two

� �

meeting at pt.
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toric picture

P

P
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2
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