

Lecture 1: definitions and examples

J.A. Wiśniewski

J.Wisniewski@mimuw.edu.pl

Warsaw University, Poland

plan of lectures

- 1. Definitions and examples.
- 2. Vanishing, nonvanishing, slicing.
- 3. Rational curves in fibers.
- 4. Applications.

Motivation: want to study projective varieties over \mathbb{C} and their morphisms. In fact, understanding morphisms is a part of understanding the varieties themselves. Also, will show how the methods developed in other lectures (vanishings and bendand-break) work in easy (smooth) case. Examples will follow.

Let $\psi: X \to Y$ be a projective map of noetherian schemes, X normal. Then ψ admits a factorization

 $X \xrightarrow{\varphi} Z \xrightarrow{\pi} Y$

where π is finite, Z is normal and φ has connected fibers, i.e. $\varphi_* \mathcal{O}_X = \mathcal{O}_Z$. The scheme Z is normalization of Y in the function field of X or, equivalently, $Z = Spec_Y(\psi_* \mathcal{O}_X)$.

global/local contraction

Standing assumptions

- $\varphi: X \to Z$ projective surjective map of normal algebraic \mathbb{C} -varieties, $\varphi_* \mathcal{O}_X = \mathcal{O}_Z$
- *X* is usually smooth, dimX = n
- for local description
 - choose a point $z \in Z$, shrink Z, take $X = \varphi^{-1}(Z)$, restrict φ
 - Z will be an affine variety (or a germ of analytic space)

For the fixed point $z \in Z$ with maximal ideal m_z we will consider the fiber $F = \varphi^{-1}(z)$ with, either

- schematic structure $\mathcal{O}_{F_{sch}} = \mathcal{O}_X / f^*(m_z) \cdot \mathcal{O}_X$, i.e. the ideal of F_{sch} is generated by functions from m_z , or
- reduced structure F_{red}

These two structure do not have to coincide.

additional assumptions

A (global/local) contraction $\varphi: X \to Z$ is

- Fano-Mori if $-K_X$ is φ -ample
- crepant if it is birational and $-K_X \simeq \mathcal{O}_X$
- symplectic if n = 2m, φ is birational and there exists a closed holomorphic 2-form ω such that $\omega^{\wedge m}$ does not vanish anywhere
- elementary if $dim_{\mathbb{Q}}(Pic(X)/\varphi^*Pic(Z)\otimes_{\mathbb{Z}}\mathbb{Q})=1$

locus of contraction

A contraction
$$\varphi: X \to Z$$
 is

- either birational, or
- of fiber type, if dim X > dim Z

The locus of a contraction $E(\varphi)$ is either X, if φ is of fiber type, or the smallest subset $A \subset X$ such that

$$X \setminus A \stackrel{\varphi}{\simeq} Z \setminus \varphi(A)$$

A contraction is called small if its exceptional locus is of codimension ≥ 2 .

first examples

These are Fano-Mori contractions:

- Contract Fano manifold to a point $X \rightarrow \bullet$
- Project along Fano manifold, $X_1 \times X_2 \rightarrow X_2$, where X_1 is Fano.
- Simple blow down $\varphi : X \supset E \rightarrow z \in Z$, so that $K_X = \varphi^* K_Z + (n-1)E$.
- Blow down φ : X → Z with exceptional divisor E ⊂ X contracted to smooth S ⊂ Z, so that K_X = φ^{*}K_Z + (n − k + 1)E, with k codimension of S in Z.

divisors in projective bundles

Construct *X* as a complete intersection (e.g. a divisor) in a projective bundle $p : \mathbb{P}(\mathcal{E}) \to Z$, $\varphi = p_{|X}$ Locally: \mathbb{P}^r with coordinates $[z_0, \ldots, z_r]$ and \mathbb{C}^s with coordinates (t_1, \ldots, t_s) ; then *X* given by

 $F(z_i, t_j) = 0$

homogeneous of degree d in z_i . Note: $K_X = \mathcal{O}(-r - 1 + d)$; singular set of X is

$$F = 0, \quad \frac{\partial F}{\partial z_i} = 0, \quad \frac{\partial F}{\partial t_j} = 0$$

jumping fiber

Consider hyperplane section divisor in $\mathbb{P}^r\times \mathbb{C}^{r+1}$

$$t_0 \cdot z_0 + \dots + t_r \cdot z_r = 0$$

Note that it is smooth and its contraction to \mathbb{C}^{r+1} has a general fiber \mathbb{P}^{r-1} while the special fiber over $0 \in \mathbb{C}^{r+1}$ is \mathbb{P}^r .

Take a divisor X in $\mathbb{P}^r\times\mathbb{C}^s$

$$f_0 \cdot z_0^2 + \dots + f_r \cdot z_r^2 = 0$$

where f_i are functions in (t_1, \ldots, t_s) . By adjunction $K_X \simeq \mathcal{O}(r-1)$. If r = 2 then X is called conic bundle.

conic bundle, special fiber

X in $\mathbb{P}^2\times\mathbb{C}$ given by equation

$$z_0^2 + z_1^2 + t \cdot z_2^2 = 0$$

Such X is smooth and has reducible fiber over $0 \in \mathbb{C}$. X in $\mathbb{P}^2 \times \mathbb{C}^2$ given by equation $z_0^2 + t_1 \cdot z_1^2 + t_2 \cdot z_2^2 = 0$

Such X is smooth and the schematic fiber over $0 \in \mathbb{C}$ is non-reduced line $z_0^2 = 0$.

Lefschetz hyperplane thm

Suppose that Z is projective and $X \subset \mathbb{P}(\mathcal{E}) \to Z$ is an ample divisor.

Then by Letschetz hyperplane section theorem the contraction $X \rightarrow Z$ is (globally!) elementary but locally it may be non-elementary in the analytic set up.

vector bundle trivialities

- \mathcal{E} rank r vector bundle over a projective manifold Y
- $Sym\mathcal{E} = \bigoplus_{m \ge 0} S^m\mathcal{E}$ symmetric \mathcal{O}_Y -algebra of local sections of \mathcal{E}
- $X = Spec_Y(Sym\mathcal{E})$ total space of dual bundle \mathcal{E}^* with $p: X \to Y$
- $Sym \mathcal{E} \to \mathcal{O}_Y$ defines zero section of \mathcal{E}^* , denoted $F \subset X$, such that $N^*_{F/X} \simeq \mathcal{E}$.
- $K_X = p^*(K_Y + det\mathcal{E})$ because $\Omega_{X/Y} \simeq p^*(\mathcal{E})$

vector bundle construction

- Assume that \mathcal{E} semiample, i.e. $S^m \mathcal{E}$ generated by global section for $m \gg 0$
- Consider $A = \bigoplus_{m \ge 0} H^0(Y, S^m \mathcal{E})$ with maximal ideal $m_z = \bigoplus_{m > 0} H^0(Y, S^m \mathcal{E})$.

Then the ring A is finitely generated (Zariski, [Reid, YPG p. 354]) so SpecA is an affine scheme and m_z defines its closed point z.

contraction of zero section

Evaluations

$$H^0(Y, S^m \mathcal{E}) \otimes \mathcal{O}_Y \to S^m \mathcal{E}$$

define a map

$$\psi: X \to SpecA \times Y \to SpecA$$

Its Stein factorization $\varphi: X \to Z$ is a contraction, $F \mapsto z$.

example: contraction to cone

Let \mathcal{L} be an ample line bundle over a projective manifold Y. Define $X = Spec_Y(\bigoplus_{m \ge 0} m\mathcal{L})$ and $Z = Spec(\bigoplus_{m \ge 0} H^0(Y, m\mathcal{L}))$ with the contraction morphism $\varphi : X \to Z$, then $E(\varphi) = F$.

If the pair (Y, \mathcal{L}) is projectively normal, i.e. the graded ring $\bigoplus_{m\geq 0} H^0(Y, m\mathcal{L})$ is generated by its first gradation, then Z is an affine cone over Y embedded in the projective space via complete linear system $|\mathcal{L}|$.

Take *Y* a Fano manifold with ample line bundle \mathcal{L} such that $r\mathcal{L} \simeq -K_Y$, for $r \in \mathbb{Z}_{>0}$. Define

$$X = Spec_Y\left(\bigoplus_{m \ge 0} S^m(\mathcal{L}^{\oplus s})\right)$$

Then the contraction of zero section $\varphi : X \to Z$ has exceptional locus of codimension *s* and it is Fano-Mori if s < r or crepant if s = r.

Kawamata ex: disconnected locus

- *V* projective 4-fold, K_V ample, $PicV \simeq \mathbb{Z}$
- $C, S \subset V$ smooth curve and surface
- *C* meets *S* transversally in $p_1, \ldots p_m$
- take blow-ups, \hat{S} strict transform of S wrt α

$$V \xleftarrow{\alpha} V_C \xleftarrow{\beta} V_{C,\hat{S}}$$

• strict transforms of $\alpha^{-1}(p_i)$ wrt β are \mathbb{P}^2 's with normal $\mathcal{O}(-1)^{\oplus 2}$ and contain numerically equivalent lines

symplectic contraction

Let F be homogeneous variety with TFspanned, e.g. $F = \mathbb{P}^r$. There is a universal 1-form σ over cotangent bundle $T^*F = \Omega F$, that is, take projection $p: T^*F \to F$ then section

$$\sigma: T^*F \to p^*\Omega F \to \Omega(T^*F)$$

comes from identity $T^*F = \Omega F$.

 $\omega = d\sigma$ is a symplectic form and contraction of zero section of T^*F is a symplectic contraction

mix'n match, intersect bundle

- \mathbb{Q}_3 3-dim quadric, $p : S \to \mathbb{Q}_3$ spinor bundle, $c_1 = 1, c_2 = 2$, spanned
- $Y = Spec_{\mathbb{Q}_3}(Sym\mathcal{S}) \to \mathbb{C}^4$ contraction, generically \mathbb{P}^1 -bundle
- \exists smooth divisor $X \subset Y$ such that $\varphi: X \to \mathbb{C}^4$ is generically blow-down
- special fiber is either smooth quadric, or quadric cone, or two planes

quotient

 \mathbb{C}^* action on \mathbb{C}^4 with weights (-1, -1, 1, 1):

$$t \cdot (x_1, x_2, x_3, x_4) = (t^{-1}x_1, t^{-1}x_2, tx_3, tx_4)$$

quotient is quadric cone; remove orbits which have limits at 0 or ∞ , get quotients, two sides of Atiyah flop.

Compactify \mathbb{C}^4 , add quotients at both sides of \mathbb{C}^* orbits, get smooth *X* with proper map onto quadric cone, gen. \mathbb{P}^1 bundle, special fiber two \mathbb{P}^2 meeting at pt.

Grenoble, June2007 - p.24/24