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motto

common knowledge: mathematicians do interesting
things . . . but completely useless
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motto

common knowledge: mathematicians do interesting
things . . . but completely useless

Banach/Tarski: mathematicians look for analogies
between theorems, theories . . . and analogies

Poincaré: poets use different words for the same
thing, mathematicians use the same words for
different things
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phylogenetics

Phylogenetics: re-
constructing historical
relation between
species by analyzing
their present features
and putting their com-
mon ancestors in a
diagram which forms
a tree. [e.g. Häckel,
1866]
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overview: (un?)related problems

we shall discuss four definitions of a single object (doing
poetry?) steming from

counting lattice points in polytopes and their fiber
products
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overview: (un?)related problems

we shall discuss four definitions of a single object (doing
poetry?) steming from

counting lattice points in polytopes and their fiber
products

networks of paths in a tree

Markov processes on a tree (phylogenetics)
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overview: (un?)related problems

we shall discuss four definitions of a single object (doing
poetry?) steming from

counting lattice points in polytopes and their fiber
products

networks of paths in a tree

Markov processes on a tree (phylogenetics)

group actions and quotients
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⋆ product of functions

For a positive integer n let [n] = {0, . . . n}.
Function f : [n]→ Z is symmetric if for every k ∈ [n] it
holds f(k) = f(n− k).
By 1 : [n]→ Z denote the unit function.
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⋆ product of functions

For a positive integer n let [n] = {0, . . . n}.
Function f : [n]→ Z is symmetric if for every k ∈ [n] it
holds f(k) = f(n− k).
By 1 : [n]→ Z denote the unit function.
If f1 f2 : [n]→ Z are symmetric functions then we define
their symmetric product f1⋆f2 : [n]→ Z such that for
k ≤ n/2:

(f1⋆f2)(k) = 2 ·
(∑k−1

i=0

∑i
j=0 f1(i)f2(k + i− 2j)

)

+
(∑n−k

i=k

∑k
j=0 f1(i)f2(k + i− 2j)

)

CSU, April 2009 – p.4
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geometric interpretation of ⋆

Consider the simplex ∆ as
in the picture
(f1⋆f2)(k) is equal to the
sum of products of f1 and
f2 counted over points of
lattice spanned by ∆ in k-
th slice of n ·∆
(1⋆1)(k) = (k + 1)(n − k +
1) is the number of lattice
points in k-th slice of n ·∆

CSU, April 2009 – p.5
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travel trough 6 ·∆

k = 0

•

•����������������������������
•

•

•

•

•
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travel trough 6 ·∆
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travel trough 6 ·∆
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travel trough 6 ·∆

k = 5
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travel trough 6 ·∆

k = 6
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properties of ⋆

⋆ is commutative, f1⋆f2 = f2⋆f1
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properties of ⋆

⋆ is commutative, f1⋆f2 = f2⋆f1

⋆ is usually non-associative, i.e.
(f1⋆f2)⋆f3 6= f1⋆(f2⋆f3)
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properties of ⋆

⋆ is commutative, f1⋆f2 = f2⋆f1

⋆ is usually non-associative, i.e.
(f1⋆f2)⋆f3 6= f1⋆(f2⋆f3)

however, (!) Observation: if Ω is the smallest set of
functions closed under ⋆ and containing 1 then ⋆ is
associative within Ω
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properties of ⋆

⋆ is commutative, f1⋆f2 = f2⋆f1

⋆ is usually non-associative, i.e.
(f1⋆f2)⋆f3 6= f1⋆(f2⋆f3)

however, (!) Observation: if Ω is the smallest set of
functions closed under ⋆ and containing 1 then ⋆ is
associative within Ω

⋆ ⋆

////

��
��

����
//

//

f2

f1

f3

(f1⋆f2)⋆f3

←→
⋆

⋆
OOOO

oooo

oooo

OOOO

f2

f1

f3

f1⋆(f2⋆f3)
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tree→polytope

Consider a tree T which has 2d− 3 edges in set E , and
2d− 2 vertices in V including d leaves in L and d− 2 inner
trivalent nodes in N .
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tree→polytope

Basic example: tripod tree which we associate with a
tetrahedron with three projections, each one for one leaf.
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tree→polytope

Constructing a polytope ∆(T ) ⊂ [0, 1]|E| via fibered
products of tetrahedra according to relations coming
from inner edges of the tree.

CSU, April 2009 – p.8
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Ehrhard polynomial

If ∆ is a polytope with vertices in a lattice M then define
function counting lattice points

η∆,M (t) = |t ·∆ ∩M |.

▽CSU, April 2009 – p.9



TT
33
�� mm��11

zzDD

KKrr

Ehrhard polynomial

If ∆ is a polytope with vertices in a lattice M then define
function counting lattice points

η∆,M (t) = |t ·∆ ∩M |.

The lattice M for ∆(T ) is generated by its vertices.
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Ehrhard polynomial

If ∆ is a polytope with vertices in a lattice M then define
function counting lattice points

η∆,M (t) = |t ·∆ ∩M |.

(!!) Observation: the polynomial

η∆(T ),M (t)

does not depend on the shape of T but only on the
number |L|.

CSU, April 2009 – p.9
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tree→variety (1)

Given a lattice polytope ∆ in MR we consider a cone
Σ(∆) in (M × Z)R which is spanned by the set ∆× {1}.

▽CSU, April 2009 – p.10
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tree→variety (1)

Given a lattice polytope ∆ in MR we consider a cone
Σ(∆) in (M × Z)R which is spanned by the set ∆× {1}.
Next define a graded algebra A(∆) =

⊕
t≥0 At where At

is a C-vector space with basis
{

χ(u,t) : (u, t) ∈ Σ(∆) ∩M × Z

}

and multiplication is defined as follows:

χ(u1,t1) · χ(u2,t2) = χ(u1+u2,t1+t2)

▽CSU, April 2009 – p.10
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tree→variety (1)

The algebra X(∆(T )) is generated by its first gradation
(!!) and we define a projective variety

X(T ) = Proj(A(∆(T )))

which we call a model of the tree T .

CSU, April 2009 – p.10
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sockets and networks

Given a trivalent tree T a
socket of T is a subset of
L which has even number
of elements; a path in T is
a connected union of edges
with ends in L; a network is
a set of non-meeting paths in
T .
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sockets and networks

Given a trivalent tree T a
socket of T is a subset of
L which has even number
of elements; a path in T is
a connected union of edges
with ends in L; a network is
a set of non-meeting paths in
T .
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sockets and networks

Given a trivalent tree T a
socket of T is a subset of
L which has even number
of elements; a path in T is
a connected union of edges
with ends in L; a network is
a set of non-meeting paths in
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sockets and networks

Given a trivalent tree T a
socket of T is a subset of
L which has even number
of elements; a path in T is
a connected union of edges
with ends in L; a network is
a set of non-meeting paths in
T .
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sockets and networks

Given a trivalent tree T a
socket of T is a subset of
L which has even number
of elements; a path in T is
a connected union of edges
with ends in L; a network is
a set of non-meeting paths in
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sockets and networks

Given a trivalent tree T a
socket of T is a subset of
L which has even number
of elements; a path in T is
a connected union of edges
with ends in L; a network is
a set of non-meeting paths in
T .
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tree→variety (2)

(!) There is a bijection between the set of sockets and
networks, that is for every socket σ there exists a unique
network µ(σ) whose end points are in σ
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tree→variety (2)

(!) There is a bijection between the set of sockets and
networks, that is for every socket σ there exists a unique
network µ(σ) whose end points are in σ

For every edge e ∈ E we consider a P
1
e with

homogeneous coordinates [ye
0, y

e
1].

Moreover consider a projective space PΣ of dimension
2d−1 − 1 with homogeneous coordinates [zσ] indexed by
sockets of T .

▽CSU, April 2009 – p.12
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tree→variety (2)

(!) There is a bijection between the set of sockets and
networks, that is for every socket σ there exists a unique
network µ(σ) whose end points are in σ

Define rational map
∏

e∈E P
1
e → PΣ such that

zσ =
∏

e∈µ(σ)

ye
1 ·

∏

e6∈µ(σ)

ye
0

The closure of the image of this map is the model of the
tree, X(T ) ⊂ PΣ and dim X(T ) = 2d− 3.

CSU, April 2009 – p.12
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deforming X(T ) within PΣ

Leaves of T can be labeled by numbers 1, . . . , d or,
equivalently, given d points we can make them leaves of
a (non-unique) tree T .
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deforming X(T ) within PΣ

Leaves of T can be labeled by numbers 1, . . . , d or,
equivalently, given d points we can make them leaves of
a (non-unique) tree T .

////

��
��

����
//

//

2

1

3

4

←→

OOOO

oooo

oooo

OOOO

2

1

3

4
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deforming X(T ) within PΣ

Leaves of T can be labeled by numbers 1, . . . , d or,
equivalently, given d points we can make them leaves of
a (non-unique) tree T . Thus, all the varieties
representing different labeled trees can be embedded in
a fixed PΣ
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deforming X(T ) within PΣ

Leaves of T can be labeled by numbers 1, . . . , d or,
equivalently, given d points we can make them leaves of
a (non-unique) tree T . Thus, all the varieties
representing different labeled trees can be embedded in
a fixed PΣ

These varieties can be non-isomorphic (check it),
however (!!) they are in the same connected component
of the Hilbert scheme of PΣ, that is X(T1) can be
deformed to X(T2) if only T1 and T2 have the same
number of leaves.

CSU, April 2009 – p.13
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binary Markov process on tree

Fix a root r in tree T - this implies an order < on the set
of vertexes V = L ∪N . To each vertex v ∈ V assign a
random variable ξv which takes value in {α1, α2}.

▽CSU, April 2009 – p.14
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binary Markov process on tree

Fix a root r in tree T - this implies an order < on the set
of vertexes V = L ∪N . To each vertex v ∈ V assign a
random variable ξv which takes value in {α1, α2}.
Variables ξv determine a Markov process on T if
(intuitively) the value of ξv depends only on the value of
ξu, where u is the node immediately preceding v.

▽CSU, April 2009 – p.14
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binary Markov process on tree

Fix a root r in tree T - this implies an order < on the set
of vertexes V = L ∪N . To each vertex v ∈ V assign a
random variable ξv which takes value in {α1, α2}.
For each edge e = 〈u, v〉 bounded by vertexes u < v
define the transition matrix Ae:

Ae
ij = P (ξv = αj |ξu = αi)

▽CSU, April 2009 – p.14
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binary Markov process on tree

Fix a root r in tree T - this implies an order < on the set
of vertexes V = L ∪N . To each vertex v ∈ V assign a
random variable ξv which takes value in {α1, α2}.
For each edge e = 〈u, v〉 bounded by vertexes u < v
define the transition matrix Ae:

Ae
ij = P (ξv = αj |ξu = αi)

and set the probability of the variable ξr at the root:
P r

i = P (ξr = αi)

CSU, April 2009 – p.14
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from Markov to phylogenetics

For a Markov process on a rooted tree T as above
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from Markov to phylogenetics

For a Markov process on a rooted tree T as above and
any function V ∋ v → ρ(v) ∈ {1, 2}

P (
∧

v∈V

ξv = αρ(v)) = P r
ρ(r) ·

∏

e=〈u,v〉∈E

Ae
ρ(u)ρ(v)

▽CSU, April 2009 – p.15
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from Markov to phylogenetics

For a Markov process on a rooted tree T as above and
any function L ∋ v → ρ(v) ∈ {1, 2}

P (
∧

v∈L

ξv = αρ(v)) =
∑

bρ

P r
bρ(r) ·

∏

e=〈u,v〉∈E

Ae
bρ(u)bρ(v)

where the sum is taken over all ρ̂ : V → {1, 2} which
extend ρ.

▽CSU, April 2009 – p.15
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from Markov to phylogenetics

For a Markov process on a rooted tree T as above and
any function L ∋ v → ρ(v) ∈ {1, 2}

P (
∧

v∈L

ξv = αρ(v)) =
∑

bρ

P r
bρ(r) ·

∏

e=〈u,v〉∈E

Ae
bρ(u)bρ(v)

where the sum is taken over all ρ̂ : V → {1, 2} which
extend ρ.
Phylogenetics: understand the shape of T by looking at
the distribution of P (

∧
v∈L ξv = αρ(v)).

CSU, April 2009 – p.15
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tree→variety (3)

Consider the locus of possible probability values of a
Markov process on a fixed tree T

X (T ) :=

{ζρ = P (
∧

v∈L ξv = αρ(v)) : Ae
ij , P

r
i are arbitrary}

in the simplex with coordinates ζρ where ζρ ≥ 0,∑
ρ ζρ = 1.

▽CSU, April 2009 – p.16
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tree→variety (3)

Assume:
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tree→variety (3)

Assume:
• the root distribution is uniform, P r

1 = P r
2
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tree→variety (3)

Assume:
• the root distribution is uniform, P r

1 = P r
2

• the transition matrices are symmetric:

Ae
12 = Ae

21, Ae
11 = Ae

22
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tree→variety (3)

Assume:
• the root distribution is uniform, P r

1 = P r
2

• the transition matrices are symmetric:

Ae
12 = Ae

21, Ae
11 = Ae

22

then [theorem, Sturmfels, Sullivant] after suitable change
of coordinates and replacing the simplex with the
projective space varieties X (T ) and X(T ) coincide.

CSU, April 2009 – p.16
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examples

Leaves of T are labeled by numbers 1, . . . , d and sockets
are denoted by 0/1 sequence of length d. Edges are
labeled by letters.
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examples

Leaves of T are labeled by numbers 1, . . . , d and sockets
are denoted by 0/1 sequence of length d. Edges are
labeled by letters.
Tripod tree model:

P
1
a × P

1
b × P

1
c → P

3

z000 = ya
0yb

0y
c
0 z110 = ya

1yb
1y

c
0

z101 = ya
1yb

0y
c
1 z011 = ya

0yb
1y

c
1

///////

��
��
��
�

2

1

3
a

b c

▽CSU, April 2009 – p.17
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examples

Leaves of T are labeled by numbers 1, . . . , d and sockets
are denoted by 0/1 sequence of length d. Edges are
labeled by letters.
Four leaf tree model in P

7

z0000 = ya
0yb

0y
c
0y

d
0y

e
0 z1111 = ya

1yb
1y

c
0y

d
1y

e
1

z1100 = ya
1yb

1y
c
0y

d
0y

e
0 z0011 = ya

0yb
0y

c
0y

d
1y

e
1

z1010 = ya
1yb

0y
c
1y

d
1y

e
0 z1001 = ya

1yb
0y

c
1y

d
0y

e
1

z0110 = ya
0yb

1y
c
1y

d
1y

e
0 z0101 = ya

0yb
1y

c
1y

d
0y

e
1

/////

��
��
�

�����

//
//

/

2

1

3

4

b

a

d

e

c
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examples

Leaves of T are labeled by numbers 1, . . . , d and sockets
are denoted by 0/1 sequence of length d. Edges are
labeled by letters.
Therefore X(

//
�� ) ≃ P

3 and X(
//
��

��//) is a complete
intersection in P

7:

z0000z1111 = z1100z0011 z1010z0101 = z1001z0110

///

��
�

���
//

/ +

///

��
�

���
//

/ =

///

��
�

���
//

/ +

///

��
�

���
//

/

///

��
�

���
//

/ +

///

��
�

���
//

/ =

///

��
� //

/
��� +

///

��
� //

/
���
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tree→variety (4)

On P
3 with homogeneous coordinates [z000, z110, z101, z011]

we distinguish three actions of C
∗ whose weights are

determined by socket 0/1 sequences, for example:

λ1(t)[z000, z110, z101, z011] = [z000, tz110, tz101, z011]
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tree→variety (4)

On P
3 with homogeneous coordinates [z000, z110, z101, z011]

we distinguish three actions of C
∗ whose weights are

determined by socket 0/1 sequences, for example:

λ1(t)[z000, z110, z101, z011] = [z000, tz110, tz101, z011]

Trivalent trees can be built from tripods (here denoted
by letters) by identifying edges of leaves:

////

��
��

1a

2a

3a +

����
//

//

1b

2b

3b =

////

��
�� //

//
����

1a

2a

1b

2b
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tree→variety (4)

On P
3 with homogeneous coordinates [z000, z110, z101, z011]

we distinguish three actions of C
∗ whose weights are

determined by socket 0/1 sequences, for example:

λ1(t)[z000, z110, z101, z011] = [z000, tz110, tz101, z011]

Respectively, take quotient P
3
a × P

3
b//(λ3a · λ

−1
3b )

([za
000, z

a
110, z

a
101, z

a
011], [z

b
000, z

b
110, z

b
101, z

b
011])→

[za
000z

b
000, z

a
000z

b
110, z

a
110z

b
000, z

a
110z

b
110, z

a
101z

b
101,

za
101z

b
011, z

a
011z

b
101, z

a
011z

b
011]
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equivariant subvarieties

There is a C
∗ action associated to leaf l on PΣ: its weight

on the coordinate zσ is 1/0 depending on whether l is in
the socket σ or not.

This defines an action of torus TL whose coordinates are
leaves of T .

The variety X(T ) ⊂ PΣ is TL equivariant.
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equivariant subvarieties

As argued before, X(
//
��

��//) is a complete intersection of
quadrics in P

7:

z0000z1111 = z1100z0011 z1010z0101 = z1001z0110

thus it is defined by pencil in a linear system of TL

equvariant quadrics spanned by

z0000z1111 z1100z0011 z1010z0101 z1001z0110
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equivariant subvarieties

Hence we get a TL equivariant deformation

////

��
��

����
//

//

2

1

3

4

←→

OOOO

oooo

oooo

OOOO

2

1

3

4

z0000z1111 = z1100z0011 z0000z1111 = z1001z0110

z1010z0101 = z1001z0110 z1100z0011 = z1010z0101
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equivariant subvarieties

Because of the quotient construction this can be applied
to produce deformation of respective models of trees
who differ by “elementary transformation” along an inner
edge.

////

��
��

����
//

//

T2

T1

T3

T4

←→

OOOO

oooo

oooo

OOOO

T2

T1

T3

T4
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epilogue: an analogy

Biology: XIX century
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epilogue: an analogy

Biology: XIX century Physics: XX century
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epilogue: an analogy

Algebraic models of
phylogenetic trees.

Deformations, moduli?
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epilogue: an analogy

Algebraic models of
phylogenetic trees.

Deformations, moduli?

Riemann surfaces, algebraic
(pointed) curves.

Moduli of stable pointed
curvesM0,n
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epilogue: an analogy

Algebraic models of
phylogenetic trees.

Deformations, moduli?

Sturmfels-Xu: models of
trees deform to proj. of
Cox rings on moduli
of parabolic bundles
on pointed curves (Na-
gata, Mukai, Castravet,
Tevelev).
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epilogue: an analogy

Algebraic models of
phylogenetic trees.

Deformations, moduli?

Sturmfels-Xu: models of
trees deform to proj. of
Cox rings on moduli
of parabolic bundles
on pointed curves (Na-
gata, Mukai, Castravet,
Tevelev).

Proof depends on Verlinde formula (physics !).

CSU, April 2009 – p.20
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