Counting Points in Polytopes and Models of Phylogenetic Trees

J.A. Wiśniewski, joint work with Weronika Buczyńska

Institute of Mathematics, Warsaw University, Poland and MSRI, Berkeley, CA

motto

 common knowledge: mathematicians do interesting things ... but completely useless

motto

- common knowledge: mathematicians do interesting things ... but completely useless
- Banach/Tarski: mathematicians look for analogies between theorems, theories ... and analogies

motto

- common knowledge: mathematicians do interesting things ... but completely useless
- Banach/Tarski: mathematicians look for analogies between theorems, theories ... and analogies
- Poincaré: poets use different words for the same thing, mathematicians use the same words for different things

phylogenetics

Phylogenetics: reconstructing historical relation between species by analyzing their present features and putting their common ancestors in a diagram which forms a tree. [e.g. Häckel, 1866]

we shall discuss four definitions of a single object (doing poetry?) steming from

 counting lattice points in polytopes and their fiber products

we shall discuss four definitions of a single object (doing poetry?) steming from

- counting lattice points in polytopes and their fiber products
- networks of paths in a tree

we shall discuss four definitions of a single object (doing poetry?) steming from

- counting lattice points in polytopes and their fiber products
- networks of paths in a tree
- Markov processes on a tree (phylogenetics)

we shall discuss four definitions of a single object (doing poetry?) steming from

- counting lattice points in polytopes and their fiber products
- networks of paths in a tree
- Markov processes on a tree (phylogenetics)
- group actions and quotients

***** product of functions

For a positive integer n let $[n] = \{0, ..., n\}$. Function $f : [n] \to \mathbb{Z}$ is symmetric if for every $k \in [n]$ it holds f(k) = f(n - k). By $\mathbf{1} : [n] \to \mathbb{Z}$ denote the unit function.

***** product of functions

For a positive integer n let $[n] = \{0, ..., n\}$. Function $f : [n] \to \mathbb{Z}$ is symmetric if for every $k \in [n]$ it holds f(k) = f(n - k). By $\mathbf{1} : [n] \to \mathbb{Z}$ denote the unit function. If $f_1 f_2 : [n] \to \mathbb{Z}$ are symmetric functions then we define their symmetric product $f_1 \star f_2 : [n] \to \mathbb{Z}$ such that for $k \leq n/2$:

$$(f_1 \star f_2)(k) = 2 \cdot \left(\sum_{i=0}^{k-1} \sum_{j=0}^{i} f_1(i) f_2(k+i-2j) \right) \\ + \left(\sum_{i=k}^{n-k} \sum_{j=0}^{k} f_1(i) f_2(k+i-2j) \right)$$

geometric interpretation of *****

Consider the simplex Δ as in the picture $(f_1 \star f_2)(k)$ is equal to the sum of products of f_1 and f_2 counted over points of lattice spanned by Δ in kth slice of $n \cdot \Delta$ $(1 \times 1)(k) = (k+1)(n-$ 1) is the number of lattice points in k-th slice of $n \cdot \Delta$

• \star is commutative, $f_1 \star f_2 = f_2 \star f_1$

- \star is commutative, $f_1 \star f_2 = f_2 \star f_1$
- \star is usually non-associative, i.e. $(f_1 \star f_2) \star f_3 \neq f_1 \star (f_2 \star f_3)$

- \star is commutative, $f_1 \star f_2 = f_2 \star f_1$
- \star is usually non-associative, i.e. $(f_1 \star f_2) \star f_3 \neq f_1 \star (f_2 \star f_3)$
- however, (!) Observation: if Ω is the smallest set of functions closed under \star and containing 1 then \star is associative within Ω

- \star is commutative, $f_1 \star f_2 = f_2 \star f_1$
- \star is usually non-associative, i.e. $(f_1 \star f_2) \star f_3 \neq f_1 \star (f_2 \star f_3)$
- however, (!) Observation: if Ω is the smallest set of functions closed under \star and containing 1 then \star is associative within Ω

tree—**polytope**

Consider a tree \mathcal{T} which has 2d - 3 edges in set \mathcal{E} , and 2d - 2 vertices in \mathcal{V} including d leaves in \mathcal{L} and d - 2 inner trivalent nodes in \mathcal{N} .

tree—**polytope**

Basic example: tripod tree which we associate with a tetrahedron with three projections, each one for one leaf.

tree—**polytope**

Constructing a polytope $\Delta(\mathcal{T}) \subset [0, 1]^{|\mathcal{E}|}$ via fibered products of tetrahedra according to relations coming from inner edges of the tree.

Ehrhard polynomial

If Δ is a polytope with vertices in a lattice M then define function counting lattice points

$$\eta_{\Delta,M}(t) = |t \cdot \Delta \cap M|.$$

Ehrhard polynomial

If Δ is a polytope with vertices in a lattice M then define function counting lattice points

$$\eta_{\Delta,M}(t) = |t \cdot \Delta \cap M|.$$

The lattice M for $\Delta(\mathcal{T})$ is generated by its vertices.

Ehrhard polynomial

If Δ is a polytope with vertices in a lattice M then define function counting lattice points

$$\eta_{\Delta,M}(t) = |t \cdot \Delta \cap M|.$$

(!!) Observation: the polynomial

 $\eta_{\Delta(\mathcal{T}),M}(t)$

does not depend on the shape of ${\mathcal T}$ but only on the number $|{\mathcal L}|.$

tree \rightarrow variety (1)

Given a lattice polytope Δ in $M_{\mathbb{R}}$ we consider a cone $\Sigma(\Delta)$ in $(M \times \mathbb{Z})_{\mathbb{R}}$ which is spanned by the set $\Delta \times \{1\}$.

tree \rightarrow variety (1)

Given a lattice polytope Δ in $M_{\mathbb{R}}$ we consider a cone $\Sigma(\Delta)$ in $(M \times \mathbb{Z})_{\mathbb{R}}$ which is spanned by the set $\Delta \times \{1\}$. Next define a graded algebra $A(\Delta) = \bigoplus_{t \ge 0} A^t$ where A^t is a \mathbb{C} -vector space with basis

$$\left\{\chi^{(u,t)}: (u,t) \in \Sigma(\Delta) \cap M \times \mathbb{Z}\right\}$$

and multiplication is defined as follows:

$$\chi^{(u_1,t_1)} \cdot \chi^{(u_2,t_2)} = \chi^{(u_1+u_2,t_1+t_2)}$$

tree \rightarrow variety (1)

The algebra $X(\Delta(\mathcal{T}))$ is generated by its first gradation (!!) and we define a projective variety

 $X(\mathcal{T}) = Proj(A(\Delta(\mathcal{T})))$

which we call a model of the tree \mathcal{T} .

sockets and networks

Given a trivalent tree \mathcal{T} a socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a *path* in \mathcal{T} is a connected union of edges with ends in \mathcal{L} ; a *network* is a set of non-meeting paths in \mathcal{T} .

sockets and networks

Given a trivalent tree \mathcal{T} a socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a *path* in \mathcal{T} is a connected union of edges with ends in \mathcal{L} ; a *network* is a set of non-meeting paths in \mathcal{T} .

(!) There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ

(!) There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ . For every edge $e \in \mathcal{E}$ we consider a \mathbb{P}^1_e with homogeneous coordinates $[y^e_0, y^e_1]$. Moreover consider a projective space \mathbb{P}_{Σ} of dimension $2^{d-1} - 1$ with homogeneous coordinates $[z_{\sigma}]$ indexed by sockets of \mathcal{T} .

(!) There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ Define rational map $\prod_{e \in \mathcal{E}} \mathbb{P}^1_e \to \mathbb{P}_{\Sigma}$ such that

$$z_{\sigma} = \prod_{e \in \mu(\sigma)} y_1^e \cdot \prod_{e \notin \mu(\sigma)} y_0^e$$

The closure of the image of this map is the model of the tree, $X(\mathcal{T}) \subset \mathbb{P}_{\Sigma}$ and $\dim X(\mathcal{T}) = 2d - 3$.

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T} .

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T} .

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T} . Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T} . Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}

These varieties can be non-isomorphic (check it), however (!!) they are in the same connected component of the Hilbert scheme of \mathbb{P}_{Σ} , that is $X(\mathcal{T}_1)$ can be deformed to $X(\mathcal{T}_2)$ if only \mathcal{T}_1 and \mathcal{T}_2 have the same number of leaves.

Fix a root r in tree T - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$.

Fix a root r in tree T - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$. Variables ξ_v determine a Markov process on T if (intuitively) the value of ξ_v depends only on the value of ξ_u , where u is the node immediately preceding v.

Fix a root r in tree T - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$. For each edge $e = \langle u, v \rangle$ bounded by vertexes u < vdefine the transition matrix A^e :

$$A_{ij}^e = P(\xi_v = \alpha_j | \xi_u = \alpha_i)$$

Fix a root r in tree T - this implies an order < on the set of vertexes $\mathcal{V} = \mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_v which takes value in $\{\alpha_1, \alpha_2\}$. For each edge $e = \langle u, v \rangle$ bounded by vertexes u < vdefine the transition matrix A^e :

$$A_{ij}^e = P(\xi_v = \alpha_j | \xi_u = \alpha_i)$$

and set the probability of the variable ξ_r at the root: $P_i^r = P(\xi_r = \alpha_i)$

For a Markov process on a rooted tree ${\mathcal T}$ as above

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{V} \ni v \to \rho(v) \in \{1, 2\}$

$$P(\bigwedge_{v\in\mathcal{V}}\xi_v=\alpha_{\rho(v)})=P^r_{\rho(r)}\cdot\prod_{e=\langle u,v\rangle\in\mathcal{E}}A^e_{\rho(u)\rho(v)}$$

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \to \rho(v) \in \{1, 2\}$

$$P(\bigwedge_{v \in \mathcal{L}} \xi_v = \alpha_{\rho(v)}) = \sum_{\widehat{\rho}} P^r_{\widehat{\rho}(r)} \cdot \prod_{e = \langle u, v \rangle \in \mathcal{E}} A^e_{\widehat{\rho}(u)\widehat{\rho}(v)}$$

where the sum is taken over all $\hat{\rho} : \mathcal{V} \to \{1, 2\}$ which extend ρ .

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \to \rho(v) \in \{1, 2\}$

$$P(\bigwedge_{v \in \mathcal{L}} \xi_v = \alpha_{\rho(v)}) = \sum_{\widehat{\rho}} P^r_{\widehat{\rho}(r)} \cdot \prod_{e = \langle u, v \rangle \in \mathcal{E}} A^e_{\widehat{\rho}(u)\widehat{\rho}(v)}$$

where the sum is taken over all $\hat{\rho} : \mathcal{V} \to \{1, 2\}$ which extend ρ . Phylogenetics: understand the shape of \mathcal{T} by looking at

the distribution of $P(\bigwedge_{v \in \mathcal{L}} \xi_v = \alpha_{\rho(v)})$.

Consider the locus of possible probability values of a Markov process on a fixed tree $\ensuremath{\mathcal{T}}$

$$\mathcal{X}(\mathcal{T}) := \{\zeta_{\rho} = P(\bigwedge_{v \in \mathcal{L}} \xi_{v} = \alpha_{\rho(v)}) : A^{e}_{ij}, P^{r}_{i} \text{ are arbitrary}\}$$

in the simplex with coordinates ζ_{ρ} where $\zeta_{\rho} \ge 0$, $\sum_{\rho} \zeta_{\rho} = 1$.

Assume:

Assume:

• the root distribution is uniform, $P_1^r = P_2^r$

Assume:

- the root distribution is uniform, $P_1^r = P_2^r$
- the transition matrices are symmetric:

$$A_{12}^e = A_{21}^e, \quad A_{11}^e = A_{22}^e$$

Assume:

- the root distribution is uniform, $P_1^r = P_2^r$
- the transition matrices are symmetric:

$$A_{12}^e = A_{21}^e, \quad A_{11}^e = A_{22}^e$$

then [theorem, Sturmfels, Sullivant] after suitable change of coordinates and replacing the simplex with the projective space varieties $\mathcal{X}(\mathcal{T})$ and $X(\mathcal{T})$ coincide.

Leaves of T are labeled by numbers $1, \ldots, d$ and sockets are denoted by 0/1 sequence of length d. Edges are labeled by letters.

Leaves of \mathcal{T} are labeled by numbers $1, \ldots, d$ and sockets are denoted by 0/1 sequence of length d. Edges are labeled by letters. Tripod tree model:

$$\mathbb{P}_{a}^{1} \times \mathbb{P}_{b}^{1} \times \mathbb{P}_{c}^{1} \to \mathbb{P}^{3}$$

$$z_{000} = y_{0}^{a} y_{0}^{b} y_{0}^{c} \quad z_{110} = y_{1}^{a} y_{1}^{b} y_{0}^{c}$$

$$z_{101} = y_{1}^{a} y_{0}^{b} y_{1}^{c} \quad z_{011} = y_{0}^{a} y_{1}^{b} y_{1}^{c}$$

Leaves of \mathcal{T} are labeled by numbers $1, \ldots, d$ and sockets are denoted by 0/1 sequence of length d. Edges are labeled by letters. Four leaf tree model in \mathbb{P}^7

$$z_{0000} = y_0^a y_0^b y_0^c y_0^d y_0^e \quad z_{1111} = y_1^a y_1^b y_0^c y_1^d y_1^e \qquad 2$$

$$z_{1100} = y_1^a y_1^b y_0^c y_0^d y_0^e \quad z_{0011} = y_0^a y_0^b y_0^c y_1^d y_1^e \qquad b$$

$$z_{1010} = y_1^a y_0^b y_1^c y_1^d y_0^e \quad z_{1001} = y_1^a y_0^b y_1^c y_0^d y_1^e \qquad a$$

$$z_{0110} = y_0^a y_1^b y_1^c y_1^d y_0^e \quad z_{0101} = y_0^a y_1^b y_1^c y_0^d y_1^e \qquad 1$$

3

Leaves of \mathcal{T} are labeled by numbers $1, \ldots, d$ and sockets are denoted by 0/1 sequence of length d. Edges are labeled by letters. Therefore $X(\succ) \simeq \mathbb{P}^3$ and $X(\succ)$ is a complete intersection in \mathbb{P}^7 :

 $z_{0000}z_{1111} = z_{1100}z_{0011}$

 $z_{1010}z_{0101} = z_{1001}z_{0110}$

$$\left| \left\langle + \right\rangle - \left$$

On \mathbb{P}^3 with homogeneous coordinates $[z_{000}, z_{110}, z_{101}, z_{011}]$ we distinguish three actions of \mathbb{C}^* whose weights are determined by socket 0/1 sequences, for example:

$$\lambda_1(t)[z_{000}, z_{110}, z_{101}, z_{011}] = [z_{000}, tz_{110}, tz_{101}, z_{011}]$$

On \mathbb{P}^3 with homogeneous coordinates $[z_{000}, z_{110}, z_{101}, z_{011}]$ we distinguish three actions of \mathbb{C}^* whose weights are determined by socket 0/1 sequences, for example:

$$\lambda_1(t)[z_{000}, z_{110}, z_{101}, z_{011}] = [z_{000}, tz_{110}, tz_{101}, z_{011}]$$

Trivalent trees can be built from tripods (here denoted by letters) by identifying edges of leaves:

On \mathbb{P}^3 with homogeneous coordinates $[z_{000}, z_{110}, z_{101}, z_{011}]$ we distinguish three actions of \mathbb{C}^* whose weights are determined by socket 0/1 sequences, for example:

$$\lambda_1(t)[z_{000}, z_{110}, z_{101}, z_{011}] = [z_{000}, tz_{110}, tz_{101}, z_{011}]$$

Respectively, take quotient $\mathbb{P}_a^3 \times \mathbb{P}_b^3 / / (\lambda_{3a} \cdot \lambda_{3b}^{-1})$

$$\begin{array}{l} ([z_{000}^{a}, z_{110}^{a}, z_{101}^{a}, z_{011}^{a}], [z_{000}^{b}, z_{110}^{b}, z_{101}^{b}, z_{011}^{b}]) \rightarrow \\ [z_{000}^{a} z_{000}^{b}, z_{000}^{a} z_{110}^{b}, z_{110}^{a} z_{000}^{b}, z_{110}^{a} z_{101}^{b}, z_{101}^{a} z_{101}^{b}, z_{101}^{a} z_{101}^{b}, z_{101}^{a} z_{101}^{b}, z_{101}^{a} z_{101}^{b}, z_{101}^{a} z_{011}^{b}] \end{array}$$

There is a \mathbb{C}^* action associated to leaf l on \mathbb{P}_{Σ} : its weight on the coordinate z_{σ} is 1/0 depending on whether l is in the socket σ or not.

This defines an action of torus $T_{\mathcal{L}}$ whose coordinates are leaves of \mathcal{T} .

The variety $X(\mathcal{T}) \subset \mathbb{P}_{\Sigma}$ is $T_{\mathcal{L}}$ equivariant.

As argued before, $X(\succ)$ is a complete intersection of quadrics in \mathbb{P}^7 :

 $z_{0000}z_{1111} = z_{1100}z_{0011} \qquad z_{1010}z_{0101} = z_{1001}z_{0110}$

thus it is defined by pencil in a linear system of $T_{\mathcal{L}}$ equvariant quadrics spanned by

 $z_{0000}z_{1111}$ $z_{1100}z_{0011}$ $z_{1010}z_{0101}$ $z_{1001}z_{0110}$

Hence we get a $T_{\mathcal{L}}$ equivariant deformation

 $z_{0000}z_{1111} = z_{1100}z_{0011}$ $z_{1010}z_{0101} = z_{1001}z_{0110}$

 $z_{0000}z_{1111} = z_{1001}z_{0110}$ $z_{1100}z_{0011} = z_{1010}z_{0101}$

Because of the quotient construction this can be applied to produce deformation of respective models of trees who differ by "elementary transformation" along an inner edge.

epilogue: an analogy

Biology: XIX century

epilogue: an analogy

Biology: XIX century

Physics: XX century

∇CSU, April 2009 – p.20

epilogue: an analogy

Algebraic models of phylogenetic trees.

Deformations, moduli?

epilogue: an analogy

Algebraic phylogenetic trees. (pointed) curves.

Deformations, moduli?

models of Riemann surfaces, algebraic

pointed Moduli of stable curves $\overline{\mathcal{M}}_{0,n}$

epilogue: an analogy

phylogenetic trees.

Algebraic models of Sturmfels-Xu: models of trees deform to proj. of Cox rings on moduli of parabolic bundles on pointed curves (Nagata, Mukai, Castravet, Tevelev).

Deformations, moduli?

epilogue: an analogy

Algebraic models of phylogenetic trees.

of Sturmfels-Xu: models of trees deform to proj. of Cox rings on moduli of parabolic bundles on pointed curves (Nagata, Mukai, Castravet, Tevelev).

Deformations, moduli?

Proof depends on Verlinde formula (physics !).

