Counting Points in Polytopes and Models of Phylogenetic Trees

J.A. Wiśniewski, joint work with Weronika Buczyńska
Institute of Mathematics, Warsaw University, Poland and MSRI, Berkeley, CA

motto

e common knowledge: mathematicians do interesting things ... but completely useless

motto

e common knowledge: mathematicians do interesting things ... but completely useless
e Banach/Tarski: mathematicians look for analogies between theorems, theories ... and analogies

motto

e common knowledge: mathematicians do interesting things ... but completely useless
e Banach/Tarski: mathematicians look for analogies between theorems, theories ... and analogies
e Poincaré: poets use different words for the same thing, mathematicians use the same words for different things

phylogenetics

Phylogenetics: reconstructing historical relation between species by analyzing their present features and putting their common ancestors in a diagram which forms a tree. [e.g. Häckel, 4866]

overview: (un?)related problems

we shall discuss four definitions of a single object (doing poetry?) steming from
e counting lattice points in polytopes and their fiber products

overview: (un?)related problems

we shall discuss four definitions of a single object (doing poetry?) steming from
e counting lattice points in polytopes and their fiber products
e networks of paths in a tree

overview: (un?)related problems

we shall discuss four definitions of a single object (doing poetry?) steming from
e counting lattice points in polytopes and their fiber products
e networks of paths in a tree
e Markov processes on a tree (phylogenetics)

overview: (un?)related problems

we shall discuss four definitions of a single object (doing poetry?) steming from
e counting lattice points in polytopes and their fiber products
e networks of paths in a tree
e Markov processes on a tree (phylogenetics)
e group actions and quotients

\star product of functions

For a positive integer n let $[n]=\{0, \ldots n\}$.
Function $f:[n] \rightarrow \mathbb{Z}$ is symmetric if for every $k \in[n]$ it holds $f(k)=f(n-k)$.
By $1:[n] \rightarrow \mathbb{Z}$ denote the unit function.

\star product of functions

For a positive integer n let $[n]=\{0, \ldots n\}$.
Function $f:[n] \rightarrow \mathbb{Z}$ is symmetric if for every $k \in[n]$ it holds $f(k)=f(n-k)$.
By $1:[n] \rightarrow \mathbb{Z}$ denote the unit function.
If $f_{1} f_{2}:[n] \rightarrow \mathbb{Z}$ are symmetric functions then we define their symmetric product $f_{1} \star f_{2}:[n] \rightarrow \mathbb{Z}$ such that for $k \leq n / 2$:

$$
\begin{aligned}
\left(f_{1} \times f_{2}\right)(k)= & 2 \cdot\left(\sum_{i=0}^{k-1} \sum_{j=0}^{i} f_{1}(i) f_{2}(k+i-2 j)\right) \\
& +\left(\sum_{i=k}^{n-k} \sum_{j=0}^{k} f_{1}(i) f_{2}(k+i-2 j)\right)
\end{aligned}
$$

geometric interpretation of \star

Consider the simplex Δ as in the picture
$\left(f_{1} \notin f_{2}\right)(k)$ is equal to the sum of products of f_{1} and f_{2} counted over points of lattice spanned by Δ in k th slice of $n \cdot \Delta$
$(\mathbf{1} \mathbf{1})(k)=(k+1)(n-k+$

1) is the number of lattice points in k-th slice of $n \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

travel trough $6 \cdot \Delta$

properties of \star

e \star is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$

properties of \star

$e \star$ is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$
e \star is usually non-associative, i.e.
$\left(f_{1} \star f_{2}\right) \star f_{3} \neq f_{1} \star\left(f_{2} \star f_{3}\right)$

properties of \star

e \star is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$
e \star is usually non-associative, i.e.
$\left(f_{1} \star f_{2}\right) \star f_{3} \neq f_{1} \star\left(f_{2} \star f_{3}\right)$
e however, (!) Observation: if Ω is the smallest set of functions closed under \star and containing 1 then \star is associative within Ω

properties of \star

$e \star$ is commutative, $f_{1} \star f_{2}=f_{2} \star f_{1}$
e \star is usually non-associative, i.e.
$\left(f_{1} \star f_{2}\right) \star f_{3} \neq f_{1} \star\left(f_{2} \star f_{3}\right)$
a however, (!) Observation: if Ω is the smallest set of functions closed under \star and containing 1 then \star is associative within Ω
e

tree \rightarrow polytope

Consider a tree \mathcal{T} which has $2 d-3$ edges in set \mathcal{E}, and $2 d-2$ vertices in \mathcal{V} including d leaves in \mathcal{L} and $d-2$ inner trivalent nodes in \mathcal{N}.

tree \rightarrow polytope

Basic example: tripod tree which we associate with a tetrahedron with three projections, each one for one leaf.

tree \rightarrow polytope

Constructing a polytope $\Delta(\mathcal{T}) \subset[0,1]^{|\mathcal{E}|}$ via fibered products of tetrahedra according to relations coming from inner edges of the tree.

Ehrhard polynomial

If Δ is a polytope with vertices in a lattice M then define function counting lattice points

$$
\eta_{\Delta, M}(t)=|t \cdot \Delta \cap M|
$$

Ehrhard polynomial

If Δ is a polytope with vertices in a lattice M then define function counting lattice points

$$
\eta_{\Delta, M}(t)=|t \cdot \Delta \cap M| .
$$

The lattice M for $\Delta(\mathcal{T})$ is generated by its vertices.

Ehrhard polynomial

If Δ is a polytope with vertices in a lattice M then define function counting lattice points

$$
\eta_{\Delta, M}(t)=|t \cdot \Delta \cap M| .
$$

(!!) Observation: the polynomial

$$
\eta_{\Delta(\mathcal{T}), M}(t)
$$

does not depend on the shape of \mathcal{T} but only on the number $|\mathcal{L}|$.

tree \rightarrow variety (1)

Given a lattice polytope Δ in $M_{\mathbb{R}}$ we consider a cone $\Sigma(\Delta)$ in $(M \times \mathbb{Z})_{\mathbb{R}}$ which is spanned by the set $\Delta \times\{1\}$.

tree \rightarrow variety (1)

Given a lattice polytope Δ in $M_{\mathbb{R}}$ we consider a cone $\Sigma(\Delta)$ in $(M \times \mathbb{Z})_{\mathbb{R}}$ which is spanned by the set $\Delta \times\{1\}$. Next define a graded algebra $A(\Delta)=\bigoplus_{t \geq 0} A^{t}$ where A^{t} is a \mathbb{C}-vector space with basis

$$
\left\{\chi^{(u, t)}:(u, t) \in \Sigma(\Delta) \cap M \times \mathbb{Z}\right\}
$$

and multiplication is defined as follows:

$$
\chi^{\left(u_{1}, t_{1}\right)} \cdot \chi^{\left(u_{2}, t_{2}\right)}=\chi^{\left(u_{1}+u_{2}, t_{1}+t_{2}\right)}
$$

tree \rightarrow variety (1)

The algebra $X(\Delta(\mathcal{T}))$ is generated by its first gradation (!!) and we define a projective variety

$$
X(\mathcal{T})=\operatorname{Proj}(A(\Delta(\mathcal{T})))
$$

which we call a model of the tree \mathcal{T}.

sockets and networks

Given a trivalent tree \mathcal{T} a socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a path in \mathcal{T} is a connected union of edges with ends in \mathcal{L}; a network is a set of non-meeting paths in \mathcal{T}.

sockets and networks

Given a trivalent tree \mathcal{T} a socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a path in \mathcal{T} is a connected union of edges with ends in \mathcal{L}; a network is a set of non-meeting paths in \mathcal{T}.

sockets and networks

Given a trivalent tree \mathcal{T} socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a path in \mathcal{T} is a connected union of edges with ends in \mathcal{L}; a network is a set of non-meeting paths in \mathcal{T}.

sockets and networks

Given a trivalent tree \mathcal{T} socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a path in \mathcal{T} is a connected union of edges with ends in \mathcal{L}; a network is a set of non-meeting paths in \mathcal{T}.

sockets and networks

Given a trivalent tree \mathcal{T} socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a path in \mathcal{T} is a connected union of edges with ends in \mathcal{L}; a network is a set of non-meeting paths in \mathcal{T}.

sockets and networks

Given a trivalent tree \mathcal{T} a socket of \mathcal{T} is a subset of \mathcal{L} which has even number of elements; a path in \mathcal{T} is a connected union of edges with ends in \mathcal{L}; a network is a set of non-meeting paths in \mathcal{T}.

tree \rightarrow variety (2)

(!) There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ

tree \rightarrow variety (2)

(!) There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ
For every edge $e \in \mathcal{E}$ we consider a \mathbb{P}_{e}^{1} with
homogeneous coordinates $\left[y_{0}^{e}, y_{1}^{e}\right]$.
Moreover consider a projective space \mathbb{P}_{Σ} of dimension $2^{d-1}-1$ with homogeneous coordinates $\left[z_{\sigma}\right]$ indexed by sockets of \mathcal{T}.

tree \rightarrow variety (2)

(!) There is a bijection between the set of sockets and networks, that is for every socket σ there exists a unique network $\mu(\sigma)$ whose end points are in σ
Define rational map $\prod_{e \in \mathcal{E}} \mathbb{P}_{e}^{1} \rightarrow \mathbb{P}_{\Sigma}$ such that

$$
z_{\sigma}=\prod_{e \in \mu(\sigma)} y_{1}^{e} \cdot \prod_{e \nexists \mu(\sigma)} y_{0}^{e}
$$

The closure of the image of this map is the model of the tree, $X(\mathcal{T}) \subset \mathbb{P}_{\Sigma}$ and $\operatorname{dim} X(\mathcal{T})=2 d-3$.

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T}.

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T}.

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T}. Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}

deforming $X(\mathcal{T})$ within \mathbb{P}_{Σ}

Leaves of \mathcal{T} can be labeled by numbers $1, \ldots, d$ or, equivalently, given d points we can make them leaves of a (non-unique) tree \mathcal{T}. Thus, all the varieties representing different labeled trees can be embedded in a fixed \mathbb{P}_{Σ}
These varieties can be non-isomorphic (check it), however (!!) they are in the same connected component of the Hilbert scheme of \mathbb{P}_{Σ}, that is $X\left(\mathcal{T}_{1}\right)$ can be deformed to $X\left(\mathcal{T}_{2}\right)$ if only \mathcal{T}_{1} and \mathcal{T}_{2} have the same number of leaves.

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$.

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$. Variables ξ_{v} determine a Markov process on \mathcal{T} if (intuitively) the value of ξ_{v} depends only on the value of ξ_{u}, where u is the node immediately preceding v.

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$.
For each edge $e=\langle u, v\rangle$ bounded by vertexes $u<v$ define the transition matrix A^{e} :

$$
A_{i j}^{e}=P\left(\xi_{v}=\alpha_{j} \mid \xi_{u}=\alpha_{i}\right)
$$

binary Markov process on tree

Fix a root r in tree \mathcal{T} - this implies an order $<$ on the set of vertexes $\mathcal{V}=\mathcal{L} \cup \mathcal{N}$. To each vertex $v \in \mathcal{V}$ assign a random variable ξ_{v} which takes value in $\left\{\alpha_{1}, \alpha_{2}\right\}$.
For each edge $e=\langle u, v\rangle$ bounded by vertexes $u<v$ define the transition matrix A^{e} :

$$
A_{i j}^{e}=P\left(\xi_{v}=\alpha_{j} \mid \xi_{u}=\alpha_{i}\right)
$$

and set the probability of the variable ξ_{r} at the root:
$P_{i}^{r}=P\left(\xi_{r}=\alpha_{i}\right)$

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{V} \ni v \rightarrow \rho(v) \in\{1,2\}$

$$
P\left(\bigwedge_{v \in \mathcal{V}} \xi_{v}=\alpha_{\rho(v)}\right)=P_{\rho(r)}^{r} \cdot \prod_{e=\langle u, v\rangle \in \mathcal{E}} A_{\rho(u) \rho(v)}^{e}
$$

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \rightarrow \rho(v) \in\{1,2\}$

$$
P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right)=\sum_{\widehat{\rho}} P_{\widehat{\rho}(r)}^{r} \cdot \prod_{e=\langle u, v\rangle \in \mathcal{E}} A_{\widehat{\rho}(u) \widehat{\rho}(v)}^{e}
$$

where the sum is taken over all $\hat{\rho}: \mathcal{V} \rightarrow\{1,2\}$ which extend ρ.

from Markov to phylogenetics

For a Markov process on a rooted tree \mathcal{T} as above and any function $\mathcal{L} \ni v \rightarrow \rho(v) \in\{1,2\}$

$$
P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right)=\sum_{\widehat{\rho}} P_{\widehat{\rho}(r)}^{r} \cdot \prod_{e=\langle u, v\rangle \in \mathcal{E}} A_{\widehat{\rho}(u) \widehat{\rho}(v)}^{e}
$$

where the sum is taken over all $\widehat{\rho}: \mathcal{V} \rightarrow\{1,2\}$ which extend ρ.
Phylogenetics: understand the shape of \mathcal{T} by looking at the distribution of $P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right)$.

tree \rightarrow variety (3)

Consider the locus of possible probability values of a Markov process on a fixed tree \mathcal{T}

$$
\begin{aligned}
& \mathcal{X}(\mathcal{T}):= \\
& \left\{\zeta_{\rho}=P\left(\bigwedge_{v \in \mathcal{L}} \xi_{v}=\alpha_{\rho(v)}\right): A_{i j}^{e}, P_{i}^{r} \text { are arbitrary }\right\}
\end{aligned}
$$

in the simplex with coordinates ζ_{ρ} where $\zeta_{\rho} \geq 0$,
$\sum_{\rho} \zeta_{\rho}=1$.

tree \rightarrow variety (3)

Assume:

tree \rightarrow variety (3)

Assume:

the root distribution is uniform, $P_{1}^{r}=P_{2}^{r}$

tree \rightarrow variety (3)

Assume:

- the root distribution is uniform, $P_{1}^{r}=P_{2}^{r}$
- the transition matrices are symmetric:

$$
A_{12}^{e}=A_{21}^{e}, \quad A_{11}^{e}=A_{22}^{e}
$$

tree \rightarrow variety (3)

Assume:

- the root distribution is uniform, $P_{1}^{r}=P_{2}^{r}$
- the transition matrices are symmetric:

$$
A_{12}^{e}=A_{21}^{e}, \quad A_{11}^{e}=A_{22}^{e}
$$

then [theorem, Sturmfels, Sullivant] after suitable change of coordinates and replacing the simplex with the projective space varieties $\mathcal{X}(\mathcal{T})$ and $X(\mathcal{T})$ coincide.

examples

Leaves of \mathcal{T} are labeled by numbers $1, \ldots, d$ and sockets are denoted by $0 / 1$ sequence of length d. Edges are labeled by letters.

examples

Leaves of \mathcal{T} are labeled by numbers $1, \ldots, d$ and sockets are denoted by $0 / 1$ sequence of length d. Edges are labeled by letters.
Tripod tree model:

$$
\begin{gathered}
\mathbb{P}_{a}^{1} \times \mathbb{P}_{b}^{1} \times \mathbb{P}_{c}^{1} \rightarrow \mathbb{P}^{3} \\
z_{000}=y_{0}^{a} y_{0}^{b} y_{0}^{c} \quad z_{110}=y_{1}^{a} y_{1}^{b} y_{0}^{c} \\
z_{101}=y_{1}^{a} y_{0}^{b} y_{1}^{c} \quad z_{011}=y_{0}^{a} y_{1}^{b} y_{1}^{c}
\end{gathered}
$$

$$
2
$$

1

examples

Leaves of \mathcal{T} are labeled by numbers $1, \ldots, d$ and sockets are denoted by $0 / 1$ sequence of length d. Edges are labeled by letters.
Four leaf tree model in \mathbb{P}^{7}

$$
\begin{aligned}
& z_{0000}=y_{0}^{a} y_{0}^{b} y_{0}^{c} y_{0}^{d} y_{0}^{e} \quad z_{1111}=y_{1}^{a} y_{1}^{b} y_{0}^{c} y_{1}^{d} y_{1}^{e} \\
& z_{1100}=y_{1}^{a} y_{1}^{b} y_{0}^{c} y_{0}^{d} y_{0}^{e} \quad z_{0011}=y_{0}^{a} y_{0}^{b} y_{0}^{c} y_{1}^{d} y_{1}^{e} \\
& z_{1010}=y_{1}^{a} y_{0}^{b} y_{1}^{c} y_{1}^{d} y_{0}^{e} \quad z_{1001}=y_{1}^{a} y_{0}^{b} y_{1}^{c} y_{0}^{d} y_{1}^{e} \\
& z_{0110}=y_{0}^{a} y_{1}^{b} y_{1}^{c} y_{1}^{d} y_{0}^{e} \quad z_{0101}=y_{0}^{a} y_{1}^{b} y_{1}^{c} y_{0}^{d} y_{1}^{e}
\end{aligned}
$$

examples

Leaves of \mathcal{T} are labeled by numbers $1, \ldots, d$ and sockets are denoted by $0 / 1$ sequence of length d. Edges are labeled by letters.
Therefore $X(\rangle-) \simeq \mathbb{P}^{3}$ and $X(\rangle-\langle)$ is a complete intersection in \mathbb{P}^{7} :

$$
z_{0000} z_{1111}=z_{1100} z_{0011} \quad z_{1010} z_{0101}=z_{1001} z_{0110}
$$

tree \rightarrow variety (4)

On \mathbb{P}^{3} with homogeneous coordinates $\left[z_{000}, z_{110}, z_{101}, z_{011}\right]$ we distinguish three actions of \mathbb{C}^{*} whose weights are determined by socket $0 / 1$ sequences, for example:

$$
\lambda_{1}(t)\left[z_{000}, z_{110}, z_{101}, z_{011}\right]=\left[z_{000}, t z_{110}, t z_{101}, z_{011}\right]
$$

tree \rightarrow variety (4)

On \mathbb{P}^{3} with homogeneous coordinates $\left[z_{000}, z_{110}, z_{101}, z_{011}\right]$ we distinguish three actions of \mathbb{C}^{*} whose weights are determined by socket $0 / 1$ sequences, for example:

$$
\lambda_{1}(t)\left[z_{000}, z_{110}, z_{101}, z_{011}\right]=\left[z_{000}, t z_{110}, t z_{101}, z_{011}\right]
$$

Trivalent trees can be built from tripods (here denoted by letters) by identifying edges of leaves:

tree \rightarrow variety (4)

On \mathbb{P}^{3} with homogeneous coordinates $\left[z_{000}, z_{110}, z_{101}, z_{011}\right]$ we distinguish three actions of \mathbb{C}^{*} whose weights are determined by socket $0 / 1$ sequences, for example:

$$
\lambda_{1}(t)\left[z_{000}, z_{110}, z_{101}, z_{011}\right]=\left[z_{000}, t z_{110}, t z_{101}, z_{011}\right]
$$

Respectively, take quotient $\mathbb{P}_{a}^{3} \times \mathbb{P}_{b}^{3} / /\left(\lambda_{3 a} \cdot \lambda_{3 b}^{-1}\right)$

$$
\begin{aligned}
& \left(\left[z_{000}^{a}, z_{110}^{a}, z_{101}^{a}, z_{011}^{a}\right],\left[z_{000}^{b}, z_{110}^{b}, z_{101}^{b}, z_{011}^{b}\right]\right) \rightarrow \\
& {\left[z_{000}^{a} z_{z_{00}^{b}}, z_{000}^{a} z_{110}^{b}, z_{10}^{a} z_{000}^{b}, z_{110}^{a} z_{110}^{b}, z_{101}^{a} z_{101}^{b},\right.} \\
& \left.z_{101}^{a} z_{011}^{b}, z_{011}^{a} z_{101}^{b}, z_{011}^{a} z_{011}^{b}\right]
\end{aligned}
$$

equivariant subvarieties

There is a \mathbb{C}^{*} action associated to leaf l on \mathbb{P}_{Σ} : its weight on the coordinate z_{σ} is $1 / 0$ depending on whether l is in the socket σ or not.

This defines an action of torus $T_{\mathcal{L}}$ whose coordinates are leaves of \mathcal{T}.

The variety $X(\mathcal{T}) \subset \mathbb{P}_{\Sigma}$ is $T_{\mathcal{L}}$ equivariant.

equivariant subvarieties

As argued before, $X(\rangle-\langle)$ is a complete intersection of quadrics in \mathbb{P}^{7} :

$$
z_{0000} z_{1111}=z_{1100} z_{0011} \quad z_{1010} z_{0101}=z_{1001} z_{0110}
$$

thus it is defined by pencil in a linear system of $T_{\mathcal{L}}$ equvariant quadrics spanned by

$$
z_{0000} z_{1111} \quad z_{1100} z_{0011} \quad z_{1010} z_{0101} \quad z_{1001} z_{0110}
$$

equivariant subvarieties

Hence we get a $T_{\mathcal{L}}$ equivariant deformation

equivariant subvarieties

Because of the quotient construction this can be applied to produce deformation of respective models of trees who differ by "elementary transformation" along an inner edge.

epilogue: an analogy

Biology: XIX century

epilogue: an analogy

Biology: XIX century

Physics: XX century

epilogue: an analogy

Algebraic models of phylogenetic trees.

Deformations, moduli?

epilogue: an analogy

Algebraic models of Riemann surfaces, algebraic phylogenetic trees.

Deformations, moduli?
(pointed) curves.

Moduli of stable pointed curves $\overline{\mathcal{M}}_{0, n}$

epilogue: an analogy

Algebraic models of Sturmfels-Xu: models of phylogenetic trees.

Deformations, moduli?

epilogue: an analogy

Algebraic models of Sturmfels-Xu: models of phylogenetic trees.
 trees deform to proj. of Cox rings on moduli of parabolic bundles on pointed curves (Na gata, Mukai, Castravet, Tevelev).

Deformations, moduli?
Proof depends on Verlinde formula (physics !).

