On the Kummer construction

JW: joint work with Marco Andreatta, also reporting work of Maria Donten

classical Kummer

e Take abelian surface A,

classical Kummer

e Take abelian surface A,
e divide it by an involution $a \mapsto-a$,

classical Kummer

e Take abelian surface A,
e divide it by an involution $a \mapsto-a$,
e resolve 16 simple double points,

classical Kummer

e Take abelian surface A,
e divide it by an involution $a \mapsto-a$,
e resolve 16 simple double points,
e get a surface S with $H^{1}(S, \mathbb{C})=0$ and $K_{S} \simeq 0$

general Kummer

e Consider a finite group of automorphisms of an abelian variety A, that is $G<\operatorname{Aut}(A)$

general Kummer

e Consider a finite group of automorphisms of an abelian variety A, that is $G<\operatorname{Aut}(A)$
e The tangent action at the unit of A is a complex representation of G, that is $\rho: G \rightarrow G L(T A)$.

general Kummer

e Consider a finite group of automorphisms of an abelian variety A, that is $G<\operatorname{Aut}(A)$
e The tangent action at the unit of A is a complex representation of G, that is $\rho: G \rightarrow G L(T A)$.
e The same representation is in cohomology $\rho: G \rightarrow G L\left(H^{1}(A, \mathbb{C})\right)$.

general Kummer

e Consider a finite group of automorphisms of an abelian variety A, that is $G<\operatorname{Aut}(A)$
e The tangent action at the unit of A is a complex representation of G, that is $\rho: G \rightarrow G L(T A)$.
e The same representation is in cohomology $\rho: G \rightarrow G L\left(H^{1}(A, \mathbb{C})\right)$.
e Want trivial invariant subspace and $\rho(G)<S L\left(H^{1}(A, \mathbb{C})\right)$

general Kummer

e Consider a finite group of automorphisms of an abelian variety A, that is $G<\operatorname{Aut}(A)$
e The tangent action at the unit of A is a complex representation of G, that is $\rho: G \rightarrow G L(T A)$.
e The same representation is in cohomology $\rho: G \rightarrow G L\left(H^{1}(A, \mathbb{C})\right)$.
e Want trivial invariant subspace and $\rho(G)<S L\left(H^{1}(A, \mathbb{C})\right)$
e Take the quotient $Y=A / G$, find a crepant resolution $X \rightarrow Y$, get a Calabi-Yau or symplectic manifold, $H^{1}(X, \mathbb{C})=0$ and $K_{X} \simeq 0$

integral Kummer

e A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \mathbb{Z})$

integral Kummer

e A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \mathbb{Z})$
e Take an abelian variety A of $\operatorname{dim} d$ and extend ρ to
$\rho_{A}=\rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A: G \rightarrow \operatorname{Aut}\left(A^{r}\right)$

integral Kummer

e A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \mathbb{Z})$
e Take an abelian variety A of $\operatorname{dim} d$ and extend ρ to $\rho_{A}=\rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A: G \rightarrow \operatorname{Aut}\left(A^{r}\right)$
e If d not even then assume $\rho_{\mathbb{Z}}: G \rightarrow S L(r, \mathbb{Z})$.

integral Kummer

e A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \mathbb{Z})$
e Take an abelian variety A of $\operatorname{dim} d$ and extend ρ to $\rho_{A}=\rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A: G \rightarrow \operatorname{Aut}\left(A^{r}\right)$
e If d not even then assume $\rho_{\mathbb{Z}}: G \rightarrow S L(r, \mathbb{Z})$.
e Then representation on $T A^{r}$ and $H^{1}(A, \mathbb{C})$ is $r \cdot \rho_{\mathbb{C}}$

integral Kummer

e A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \mathbb{Z})$
e Take an abelian variety A of $\operatorname{dim} d$ and extend ρ to $\rho_{A}=\rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A: G \rightarrow \operatorname{Aut}\left(A^{r}\right)$
e If d not even then assume $\rho_{\mathbb{Z}}: G \rightarrow S L(r, \mathbb{Z})$.
e Then representation on $T A^{r}$ and $H^{1}(A, \mathbb{C})$ is $r \cdot \rho_{\mathbb{C}}$
e Extended version: $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \mathbb{Z}[\operatorname{Aut}(A)])$ or $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \operatorname{End}(A))$

constrains: representations

e Let $G<G L(r, \mathbb{Z})$ be a finite subgroup. Then, for every prime $p>2$ its p-th reduction $G \hookrightarrow G L(r, \mathbb{Z}) \rightarrow G L\left(r, \mathbb{Z}_{p}\right)$ is an embedding.

constrains: representations

e Let $G<G L(r, \mathbb{Z})$ be a finite subgroup. Then, for every prime $p>2$ its p-th reduction $G \hookrightarrow G L(r, \mathbb{Z}) \rightarrow G L\left(r, \mathbb{Z}_{p}\right)$ is an embedding.
e Let $g \in G L(r, \mathbb{Z})$ be of order m. Then roots of the characteristic polynomial of A, or eigenvalues of A, are among (possibly nonprimitive) m-th roots of unity. In particular, $\varphi(m) \leq r$, where φ denotes the Euler function.

constrains: Lefschetz theorem

e Let $g: A \rightarrow A$ be an automorphism and let $\rho_{g} \in G L(T A)$ be its tangent. Then $\operatorname{Fix}(g)$ is a subgroup of dimension equal to the multiplicity of 1 as an eigenvalue of ρ_{g}. If it is zero then $|F i x(g)|=\left|\operatorname{det}\left(1-\rho_{g}\right)\right|^{2}$.

constrains: Lefschetz theorem

e Let $g: A \rightarrow A$ be an automorphism and let $\rho_{g} \in G L(T A)$ be its tangent. Then $\operatorname{Fix}(g)$ is a subgroup of dimension equal to the multiplicity of 1 as an eigenvalue of ρ_{g}. If it is zero then $|F i x(g)|=\left|\operatorname{det}\left(1-\rho_{g}\right)\right|^{2}$.
e The number $\left|\operatorname{det}\left(1-\rho_{g}\right)\right|^{2}$ is integer thus, if g is of order m then $\varphi(m) \leq 2 \cdot \operatorname{dim} A$.

constrains: Lefschetz theorem

e Let $g: A \rightarrow A$ be an automorphism and let $\rho_{g} \in G L(T A)$ be its tangent. Then Fix (g) is a subgroup of dimension equal to the multiplicity of 1 as an eigenvalue of ρ_{g}. If it is zero then $|F i x(g)|=\left|\operatorname{det}\left(1-\rho_{g}\right)\right|^{2}$.
e The number $\left|\operatorname{det}\left(1-\rho_{g}\right)\right|^{2}$ is integer thus, if g is of order m then $\varphi(m) \leq 2 \cdot \operatorname{dim} A$.
e If $\operatorname{dim} A=2$ then $\varphi(m) \leq 2$ hence $m=2,3,4,6$.

constrains: resolutions

e In dimension 2 and 3 we know a lot about crepant resolutions but in higher dimensions it is hard.

constrains: resolutions

e In dimension 2 and 3 we know a lot about crepant resolutions but in higher dimensions it is hard.
e For solvable groups we can take towers of resolutions of abelian singularities, provided at each step we get an equivariant one.

ex: resolutions for solvable gps

Consider $D_{4}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ generated by matrices

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

\mathbb{C}^{3} / D_{4} has different crepant resolutions, one invariant w. resp. to permutations of coordinates.

DuVal singularities

Finite subgroups in $S L(2, \mathbb{C})$ are classified by Dynkin diagrams associated to incidence of (-2) curves in resolution of their quotients.

DuVal singularities

These Du Val groups have elements of order 1, 2, 3, 4, 6: group

\mathbb{Z}_{2}
\mathbb{Z}_{3}
\mathbb{Z}_{4}
\mathbb{Z}_{6}

quaternion Q_{8}
binary dihedral $B D_{12}$
binary tetrahedral $B T_{24}$
Dynkin diagram

Kummer surface for $G=\mathbb{Z}_{6}$

Representation $\frac{1}{6}(1,5), \rho_{\mathbb{C}}=\epsilon_{6}+\epsilon_{6}^{-1}$

Number of (-2)-curves $=1 \times 5+4 \times 2+5 \times 1=18$; dimension of invariant subspace of $\rho_{\mathbb{C}} \otimes \rho_{\mathbb{C}}$ is 2 .

Kummer surface for $B T_{24}$

Lattice of subgroups

$$
W=\mathbb{Z}_{2}, \quad W=\mathbb{Z}_{2}, \quad W=1
$$

Kummer surface for $B T_{24}$

Lattice of subgroups

$$
W=\mathbb{Z}_{2}, \quad W=\mathbb{Z}_{2}, \quad W=1
$$

Kummer surface for $B T_{24}$

Lattice of subgroups

$$
W=\mathbb{Z}_{2}, \quad W=\mathbb{Z}_{2}, \quad W=1
$$

Kummer surface for $B T_{24}$

Lattice of subgroups

Singular pts \& resolutions \# pts resolution

1
1

4
1
Number of (-2 -curves $1 \times 6+1 \times 4+4 \times 2+1 \times 1=$ 19; dimension of invariant subspace of $\rho_{\mathbb{C}} \otimes \rho_{\mathbb{C}}$ is 1 .

$$
W=\mathbb{Z}_{2}, \quad W=\mathbb{Z}_{2}, \quad W=1
$$

notation: group action

e Normalizer of $H<G$ is denoted by $N(H)$.
e Weyl group is $W_{H}=N(H) / H$
e $[H]$ is the conjugacy class of H in G, that is the set of subgroups $\left\{g H^{-1}: g \in G\right\}$.
e Note that $\#[H]=[G: N(H)]$ and for $H^{\prime} \in[H]$ we have $W_{H^{\prime}}=W_{H}$.

notation: group action

e For G acting on B, and $H<G$ by B^{H} we denote the subset of B fixed by H while $B_{0}^{H} \subset B^{H}$ is the set of points whose isotropy (or stabilizer) is exactly H.
e The restriction of the action of G to $N(H)$ defines an action of W_{H} on B^{H}.

strata of resolution

For understanding resolution

$$
f: X \rightarrow Y
$$

write the quotient $Y=A^{r} / G$ as disjoint sum of locally closed sets (strata) $Y_{[H]}$ consisting of orbits of points whose isotropy is in the conjugacy class of a subgroup $H<G$. Over $Y_{[H]}$ the singularities of Y are locally quotients of $\mathbb{C}^{r d}$ by action of H.

strata of resolution

Take inverse images of sets $Y_{[H]}$, get a decomposition of X into disjoint sum of locally closed sets $X_{[H]}$ such that the restriction

$$
X_{[H]} \rightarrow Y_{[H]}
$$

is a locally trivial fiber bundle with a fiber F_{H} depending on the resolution of the H-quotient singularity.

structure of strata

Let $\overline{Y_{[H]}} \subset Y$ denote the closure of $Y_{[H]}$ in $Y=A^{r} / G$ and $\widehat{Y_{[H]}} \rightarrow \overline{Y_{[H]}}$ be its normalization. The morphism

$$
\overline{\left(A^{r}\right)_{0}^{H}} \rightarrow \widehat{Y_{[H]}}
$$

is quotient by W_{H}, where the action of W_{H} on $\overline{\left(A^{r}\right)_{0}^{H}}$ is determined by the action of $N(H)$.

structure of strata

Action of $W_{[H]}$ on $\overline{\left(A^{r}\right)_{0}^{H}}$ lifts to $\overline{\left(A^{r}\right)_{0}^{H}} \times F_{H}$, we get commutative diagram

where the horizontal arrows on the left hand side are quotient maps while these on the right hand side are inclusions onto open subsets.

notation: ring of representations

e Consider ring $R(G)$ of complex representations of G with 1 trivial rank 1 representation.

notation: ring of representations

e Consider ring $R(G)$ of complex representations of G with 1 trivial rank 1 representation.
e By $d \cdot \rho$ denote the sum of d copies of representation while by $\rho^{\otimes m}$ and $\rho^{\wedge m}$ we denote m-th tensor and, respectively, alternating power of ρ.

notation: ring of representations

e Consider ring $R(G)$ of complex representations of G with 1 trivial rank 1 representation.
e By $d \cdot \rho$ denote the sum of d copies of representation while by $\rho^{\otimes m}$ and $\rho^{\wedge m}$ we denote m-th tensor and, respectively, alternating power of ρ.
e We have a map $\mu_{0}: R(G) \rightarrow \mathbb{Z}$ which to a representation ρ assigns the rank of its maximal trivial subrepresentation.

virtual Poincaré

e For compact manifold X of dim n its Poincaré polynomial $P_{X}(t)=\sum_{i=0}^{2 n} b_{i}(X) t^{i} \in \mathbb{Z}[t]$, with t formal variable, $b_{i}(X)=\operatorname{dim} H_{D R}^{i}(X)$.

virtual Poincaré

e For compact manifold X of dim n its Poincaré polynomial $P_{X}(t)=\sum_{i=0}^{2 n} b_{i}(X) t^{i} \in \mathbb{Z}[t]$, with t formal variable, $b_{i}(X)=\operatorname{dim} H_{D R}^{i}(X)$.
e Virtual Poincaré polynomials are defined also for differences of compact varieties, that is for $U=X \backslash Z$ set $P_{U}=P_{X}-P_{Z}$.

virtual Poincaré

e For compact manifold X of dim n its Poincaré polynomial $P_{X}(t)=\sum_{i=0}^{2 n} b_{i}(X) t^{i} \in \mathbb{Z}[t]$, with t formal variable, $b_{i}(X)=\operatorname{dim} H_{D R}^{i}(X)$.
e Virtual Poincaré polynomials are defined also for differences of compact varieties, that is for $U=X \backslash Z$ set $P_{U}=P_{X}-P_{Z}$.
e Coefficients of virtual Poincaré $P_{X}(t)$ are equal to (standard) Betti numbers if X is compact and has quotient singularities.

cohomology of quotients

e Given action of G on variety Z define G-Poincaré polynomial $P_{Z, G}(t) \in R(G)[t]$ whose coefficient with t^{i} is the vector space $H^{i}(Z, \mathbb{C})$ with induced G action.

cohomology of quotients

e Given action of G on variety Z define G-Poincaré polynomial $P_{Z, G}(t) \in R(G)[t]$ whose coefficient with t^{i} is the vector space $H^{i}(Z, \mathbb{C})$ with induced G action.
e In our set-up

$$
P_{A^{r}, G}(t)=\sum_{i=0}^{2 r d}\left(2 d \cdot \rho_{\mathbb{C}}\right)^{\wedge i} \cdot t^{i}
$$

cohomology of quotients

e Given action of G on variety Z define G-Poincaré polynomial $P_{Z, G}(t) \in R(G)[t]$ whose coefficient with t^{i} is the vector space $H^{i}(Z, \mathbb{C})$ with induced G action.
e In our set-up

$$
P_{A^{r}, G}(t)=\sum_{i=0}^{2 r d}\left(2 d \cdot \rho_{\mathbb{C}}\right)^{\wedge i} \cdot t^{i}
$$

e For $Y=A^{r} / \rho_{A}$ we have $P_{Y}(t)=\mu_{0}\left(P_{A^{r}, G}(t)\right)$.

strata of Y

Let $K \subset Y_{[H]}$ irreducible component with normalized closure \widehat{K}. Then $\widehat{K} \simeq A_{K} / W_{K}$ where $W_{K}<W_{H}$ is the subgroup which preserves $A_{K} \simeq A^{r_{0}}$, a component of the closure of $\left(A^{r}\right)_{0}^{H}$ which dominates K.

$$
P_{A_{K}, W_{K}}(t)=\sum_{i=0}^{2 r_{0} d}\left(2 d \cdot \nu_{K}\right)^{\wedge i} \cdot t^{i}
$$

where $\nu_{K}: W_{K} \rightarrow G L\left(r_{0}, \mathbb{C}\right)$ is a representation of W_{K} induced from $\rho_{\mathbb{C}}$.

strata of X

McKay correspondence postulates a canonical relation of conjugacy classes of a group H with cohomology of a crepant resolution of its quotient singularity.

strata of X

W_{H} acts on the cohomology of F_{H} as it acts on the conjugacy classes of H. So, W_{K}-Poincaré polynomial $P_{F_{H}, W_{K}}$ is determined by the adjoint action of W_{K} on conjugacy classes of H, which is $w([h]) \mapsto\left[w h w^{-1}\right]$, where $w \in N(H)$ represents an element of $W_{H}=N(H) / H$ and $h \in H$. Thus

$$
P_{\left(A_{K} \times F_{H}\right) / W_{K}}=\mu_{0}\left(P_{A_{K}, W_{K}} \cdot P_{F_{H}, W_{K}}\right)
$$

diagram of strata, again

Thus we have cohomology of some entries in the diagram:

The difference $\left(\overline{\left(A^{r}\right)_{0}^{H}} \times F_{H}\right) / W_{[H]} \backslash X_{[H]}$ lives in strata associated to supergroups of H.

subgroups of $S L(3, \mathbb{Z})$

The following are, up to isomorphism, (non-trivial) finite subgroups of $S L(3, \mathbb{Z})$:
e cyclic groups \mathbb{Z}_{a}, for $a=2,3,4$ and 6 (they are not interesting since H^{1} of quotient is $\neq 0$),
e dihedral groups $D_{2 a}$, for $a=2,3,4$ and 6 ,
e alternating group A_{4} (e.g. tetrahedral group T of isometries of tetrahedron)
e symmetric group S_{4} (e.g. octahedral group O of isometries of a cube)
We are interested in their conjugacy classes in $G L(3, \mathbb{Z})$.

subgroups of $S L(3, \mathbb{Z})$

subgroups of $S L(3, \mathbb{Z})$

Note that some of these groups are conjugate in $G L(3, \mathbb{C})$!

case $\mathbf{O}=S_{4}$, $\mathbf{1}$-dim sing

$$
\begin{aligned}
& W(\langle g\rangle) \quad \widehat{Y(\langle g\rangle)} \quad P_{F_{\langle g\rangle}} \\
& \left.\begin{array}{l}
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \quad 6 \times \mathbb{P}^{1} c c \right\rvert\, 1+t
\end{aligned}
$$

case $\mathbf{O}=S_{4}, \mathbf{1}$-dim sing

$$
\begin{gathered}
c \\
\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{gathered} \begin{aligned}
& W(\langle g\rangle) \\
& \mathbb{Z}_{2} \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0(\langle g\rangle) & 4 \times \mathbb{P}^{1} & 1+t \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

case $\mathrm{O}=S_{4}, \mathbf{0}$-dim sing

1-dim non-free point sets meet in at

$$
\left\{p \in A^{3}: 2 p=0\right\}
$$

cardinality $4^{3}=64$
H \# fixed pts \# sing pts $\quad P_{F_{H}}$

D_{4}	24	4	$1+3 t$
$3 \times D_{8}$	36	12	$1+4 t$
$G=S_{4}$	4	4	$1+4 t$

calculation in maxima

$$
\begin{aligned}
& \text { S3 (} t \text {) : }=1+t^{\wedge} 2+4 * t^{\wedge} 3+t^{\wedge} 4+t^{\wedge} 6 \\
& -\left(15 *\left(1+t^{\wedge} 2-4\right)+20\right) \text {; } \\
& \text { S12 (} t \text {) : = 10* ((1+t^2) * (1+t^2) } \\
& \left.-4 *\left(1+t^{\wedge} 2\right)\right) ; \\
& \text { S13 (} \left.t \text {) : = ((} t^{\wedge} 4+2 * t^{\wedge} 3+2 * t^{\wedge} 2+1\right) \\
& -4 \text { * (1+t^2)); } \\
& \text { S14 (t) : }=4 *\left(\left(2 * t^{\wedge} 4+2 * t^{\wedge} 3+3 * t \wedge 2+1\right)\right. \\
& -4 *(1+2 \text { *t^2)) ; } \\
& \text { S0 (t) : = 4* (1+3*t^2) + (12+4)* (1+4*t^2); } \\
& \text { P(t): }=S 3(t)+S 12(t)+S 13(t)+S 14(t)+S 0(t) ; \\
& P_{X}(t)=t^{6}+20 t^{4}+14 t^{3}+20 t^{2}+1
\end{aligned}
$$

Poincaré in $\operatorname{dim}=3$

Poincaré in $\operatorname{dim}=3$

$$
\begin{array}{cc}
D_{4} & t^{6}+51 t^{4}+8 t^{3}+51 t^{2}+1 \\
D_{4} & t^{6}+21 t^{4}+20 t^{3}+21 t^{2}+1 \\
D_{4} & t^{6}+15 t^{4}+8 t^{3}+15 t^{2}+1 \\
D_{4} & t^{6}+15 t^{4}+8 t^{3}+15 t^{2}+1 \\
\hline D_{6} & t^{6}+15 t^{4}+32 t^{3}+15 t^{2}+1 \\
D_{6} & t^{6}+15 t^{4}+32 t^{3}+15 t^{2}+1 \\
D_{6} & t^{6}+7 t^{4}+16 t^{3}+7 t^{2}+1 \\
\hline D_{8} & t^{6}+36 t^{4}+14 t^{3}+36 t^{2}+1 \\
D_{8} & t^{6}+15 t^{4}+8 t^{3}+15 t^{2}+1 \\
\hline
\end{array}
$$

Poincaré in $\operatorname{dim}=3$

$$
\begin{array}{cc}
D_{12} & t^{6}+21 t^{4}+20 t^{3}+21 t^{2}+1 \\
\hline A_{4} & t^{6}+19 t^{4}+8 t^{3}+19 t^{2}+1 \\
A_{4} & t^{6}+7 t^{4}+8 t^{3}+7 t^{2}+1 \\
A_{4} & t^{6}+7 t^{4}+8 t^{3}+7 t^{2}+1 \\
\hline S_{4} & t^{6}+20 t^{4}+14 t^{3}+20 t^{2}+1 \\
S_{4} & t^{6}+11 t^{4}+8 t^{3}+11 t^{2}+1 \\
S_{4} & t^{6}+11 t^{4}+8 t^{3}+11 t^{2}+1
\end{array}
$$

Poincaré in $\operatorname{dim}=3$

$$
\begin{array}{cc}
D_{12} & t^{6}+21 t^{4}+20 t^{3}+21 t^{2}+1 \\
\hline A_{4} & t^{6}+19 t^{4}+8 t^{3}+19 t^{2}+1 \\
A_{4} & t^{6}+7 t^{4}+8 t^{3}+7 t^{2}+1 \\
A_{4} & t^{6}+7 t^{4}+8 t^{3}+7 t^{2}+1 \\
\hline S_{4} & t^{6}+20 t^{4}+14 t^{3}+20 t^{2}+1 \\
S_{4} & t^{6}+11 t^{4}+8 t^{3}+11 t^{2}+1 \\
S_{4} & t^{6}+11 t^{4}+8 t^{3}+11 t^{2}+1
\end{array}
$$

Note that groups conjugate in $G L(3, \mathbb{C})$ may give non-isomorphic Kummer manifolds. Dual representations yield the same Poincaré; they are related to (local) symmetries of diagram of inclusions.

symplectic Kummer

e Let G be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C}=\mathfrak{h}$ its Cartan algebra. The action of G preserves the Killing form on \mathfrak{h}, hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}$.

symplectic Kummer

e Let G be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C}=\mathfrak{h}$ its Cartan algebra. The action of G preserves the Killing form on \mathfrak{h}, hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^{*}$.
e Type $A_{n}: G=S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).

symplectic Kummer

e Let G be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C}=\mathfrak{h}$ its Cartan algebra. The action of G preserves the Killing form on \mathfrak{h}, hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^{*}$.
e Type $A_{n}: G=S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).
e Type $B_{n}, C_{n}: G=\left(\mathbb{Z}_{2}\right)^{n} \rtimes S_{n}$ resulting with Hilbert schemes of (standard) Kummer surfaces.

symplectic Kummer

e Let G be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C}=\mathfrak{h}$ its Cartan algebra. The action of G preserves the Killing form on \mathfrak{h}, hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^{*}$.
e Type $A_{n}: G=S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).
e Type $B_{n}, C_{n}: G=\left(\mathbb{Z}_{2}\right)^{n} \rtimes S_{n}$ resulting with Hilbert schemes of (standard) Kummer surfaces.
e Both series are obtained by integral Kummer construction with A an abelian surface.

symplectic Kummer

e Let G be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C}=\mathfrak{h}$ its Cartan algebra. The action of G preserves the Killing form on \mathfrak{h}, hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^{*}$.
e Type $A_{n}: G=S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).
e Type $B_{n}, C_{n}: G=\left(\mathbb{Z}_{2}\right)^{n} \rtimes S_{n}$ resulting with Hilbert schemes of (standard) Kummer surfaces.
e Both series are obtained by integral Kummer construction with A an abelian surface.
e Two (out of four known) topological types of irreducible symplectic manifolds are Kummer. May be there are more of them?

binary tetrahedral, again

e Type E_{6} with $G=B T_{24}$ also admits a (local!) symplectic resolution but it does not allow a global resolution.

binary tetrahedral, again

e Type E_{6} with $G=B T_{24}$ also admits a (local!) symplectic resolution but it does not allow a global resolution.
e Key fact: symplectic resolutions are semi-small so isolated quotient singularities do not have a symplectic resolution in dimension >2

binary tetrahedral, again

Lattice of subgroups

binary tetrahedral, again

Lattice of subgroups

Lefschetz thm fixed pts

binary tetrahedral, again

Lattice of subgroups

Pts with given isotropy

binary tetrahedral, again

Lattice of subgroups

Pts with given isotropy

