On the Kummer construction

JW: joint work with Marco Andreatta, also reporting work of Maria Donten

• Take abelian surface *A*,

- Take abelian surface A,
- divide it by an involution $a \mapsto -a$,

- Take abelian surface A,
- divide it by an involution $a \mapsto -a$,
- resolve 16 simple double points,

- Take abelian surface A,
- divide it by an involution $a \mapsto -a$,
- resolve 16 simple double points,
- get a surface S with $H^1(S, \mathbb{C}) = 0$ and $K_S \simeq 0$

• Consider a finite group of automorphisms of an abelian variety A, that is G < Aut(A)

- Consider a finite group of automorphisms of an abelian variety A, that is G < Aut(A)
- The tangent action at the unit of A is a complex representation of G, that is $\rho: G \to GL(TA)$.

- Consider a finite group of automorphisms of an abelian variety A, that is G < Aut(A)
- The tangent action at the unit of A is a complex representation of G, that is $\rho: G \to GL(TA)$.
- The same representation is in cohomology $\rho: G \to GL(H^1(A, \mathbb{C})).$

- Consider a finite group of automorphisms of an abelian variety A, that is G < Aut(A)
- The tangent action at the unit of A is a complex representation of G, that is $\rho: G \to GL(TA)$.
- The same representation is in cohomology $\rho: G \to GL(H^1(A, \mathbb{C})).$
- Want trivial invariant subspace and $\rho(G) < SL(H^1(A, \mathbb{C}))$

- Consider a finite group of automorphisms of an abelian variety A, that is G < Aut(A)
- The tangent action at the unit of A is a complex representation of G, that is $\rho: G \to GL(TA)$.
- The same representation is in cohomology $\rho: G \to GL(H^1(A, \mathbb{C})).$
- Want trivial invariant subspace and $\rho(G) < SL(H^1(A, \mathbb{C}))$
- Take the quotient Y = A/G, find a crepant resolution $X \to Y$, get a Calabi-Yau or symplectic manifold, $H^1(X, \mathbb{C}) = 0$ and $K_X \simeq 0$

• A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}} : G \to GL(r, \mathbb{Z})$

- A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}} : G \to GL(r, \mathbb{Z})$
- Take an abelian variety A of dim d and extend ρ to $\rho_A = \rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A : G \to Aut(A^r)$

- A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}} : G \to GL(r, \mathbb{Z})$
- Take an abelian variety A of dim d and extend ρ to $\rho_A = \rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A : G \to Aut(A^r)$
- If d not even then assume $\rho_{\mathbb{Z}} : G \to SL(r, \mathbb{Z})$.

- A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}} : G \to GL(r, \mathbb{Z})$
- Take an abelian variety A of dim d and extend ρ to $\rho_A = \rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A : G \to Aut(A^r)$
- If d not even then assume $\rho_{\mathbb{Z}} : G \to SL(r, \mathbb{Z})$.
- Then representation on TA^r and $H^1(A, \mathbb{C})$ is $r \cdot \rho_{\mathbb{C}}$

- A special case: take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}} : G \to GL(r, \mathbb{Z})$
- Take an abelian variety A of dim d and extend ρ to $\rho_A = \rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A : G \to Aut(A^r)$
- If d not even then assume $\rho_{\mathbb{Z}} : G \to SL(r, \mathbb{Z})$.
- Then representation on TA^r and $H^1(A, \mathbb{C})$ is $r \cdot \rho_{\mathbb{C}}$
- Extended version: $\rho_{\mathbb{Z}} : G \to GL(r, \mathbb{Z}[Aut(A)])$ or $\rho_{\mathbb{Z}} : G \to GL(r, End(A))$

constrains: representations

• Let $G < GL(r, \mathbb{Z})$ be a finite subgroup. Then, for every prime p > 2 its *p*-th reduction $G \hookrightarrow GL(r, \mathbb{Z}) \to GL(r, \mathbb{Z}_p)$ is an embedding.

constrains: representations

- Let $G < GL(r, \mathbb{Z})$ be a finite subgroup. Then, for every prime p > 2 its *p*-th reduction $G \hookrightarrow GL(r, \mathbb{Z}) \to GL(r, \mathbb{Z}_p)$ is an embedding.
- Let $g \in GL(r, \mathbb{Z})$ be of order m. Then roots of the characteristic polynomial of A, or eigenvalues of A, are among (possibly nonprimitive) m-th roots of unity. In particular, $\varphi(m) \leq r$, where φ denotes the Euler function.

constrains: Lefschetz theorem

• Let $g: A \to A$ be an automorphism and let $\rho_g \in GL(TA)$ be its tangent. Then Fix(g) is a subgroup of dimension equal to the multiplicity of 1 as an eigenvalue of ρ_g . If it is zero then

 $|Fix(g)| = |det(1 - \rho_g)|^2.$

constrains: Lefschetz theorem

- Let $g: A \to A$ be an automorphism and let $\rho_g \in GL(TA)$ be its tangent. Then Fix(g) is a subgroup of dimension equal to the multiplicity of 1 as an eigenvalue of ρ_g . If it is zero then $|Fix(g)| = |det(1 - \rho_g)|^2$.
- The number $|det(1 \rho_g)|^2$ is integer thus, if g is of order m then $\varphi(m) \leq 2 \cdot dimA$.

constrains: Lefschetz theorem

- Let $g: A \to A$ be an automorphism and let $\rho_g \in GL(TA)$ be its tangent. Then Fix(g) is a subgroup of dimension equal to the multiplicity of 1 as an eigenvalue of ρ_g . If it is zero then $|Fix(g)| = |det(1 - \rho_g)|^2$.
- The number $|det(1 \rho_g)|^2$ is integer thus, if g is of order m then $\varphi(m) \leq 2 \cdot dimA$.
- If dimA = 2 then $\varphi(m) \leq 2$ hence m = 2, 3, 4, 6.

constrains: resolutions

 In dimension 2 and 3 we know a lot about crepant resolutions but in higher dimensions it is hard.

constrains: resolutions

- In dimension 2 and 3 we know a lot about crepant resolutions but in higher dimensions it is hard.
- For solvable groups we can take towers of resolutions of abelian singularities, provided at each step we get an equivariant one.

ex: resolutions for solvable gps

Consider $D_4 = \mathbb{Z}_2 \times \mathbb{Z}_2$ generated by matrices

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

 \mathbb{C}^3/D_4 has different crepant resolutions, one invariant w. resp. to permutations of coordinates.

DuVal singularities

Finite subgroups in $SL(2, \mathbb{C})$ are classified by Dynkin diagrams associated to incidence of (-2) curves in resolution of their quotients.

DuVal singularities

These Du Val groups have elements of order 1, 2, 3, 4, 6: Dynkin diagram group \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_4 \mathbb{Z}_6 quaternion Q_8

binary dihedral BD_{12} binary tetrahedral BT_{24}

Kummer surface for $G = \mathbb{Z}_6$

Representation $\frac{1}{6}(1,5)$, $\rho_{\mathbb{C}} = \epsilon_6 + \epsilon_6^{-1}$

Number of (-2)-curves $= 1 \times 5 + 4 \times 2 + 5 \times 1 = 18$; dimension of invariant subspace of $\rho_{\mathbb{C}} \otimes \rho_{\mathbb{C}}$ is 2.

Lattice of subgroups

 $W = \mathbb{Z}_2, \quad W = \mathbb{Z}_2, \quad W = 1$

Lattice of subgroups Lefschetz thm fixed pts BTQ \mathbb{Z}_6 \mathbb{Z}_4 4 \mathbb{Z}_3

1 9 16

 $W = \mathbb{Z}_2, \quad W = \mathbb{Z}_2, \quad W = 1$

Lattice of subgroups

Pts with given isotropy

 $W = \mathbb{Z}_2, \quad W = \mathbb{Z}_2, \quad W = 1$

Lattice of subgroups

 $W = \mathbb{Z}_2, \quad W = \mathbb{Z}_2, \quad W = 1$

Singular pts & resolutions # pts resolution 1 • • • • • • 1 • • • • • 4 • • • 1 • • • • •

Number of (-2)-curves $1 \times 6 + 1 \times 4 + 4 \times 2 + 1 \times 1 =$ 19; dimension of invariant subspace of $\rho_{\mathbb{C}} \otimes \rho_{\mathbb{C}}$ is 1.

notation: group action

- Normalizer of H < G is denoted by N(H).
- Weyl group is $W_H = N(H)/H$
- [H] is the conjugacy class of H in G, that is the set of subgroups $\{gHg^{-1} : g \in G\}$.
- Note that #[H] = [G : N(H)] and for $H' \in [H]$ we have $W_{H'} = W_H$.

notation: group action

- For *G* acting on *B*, and H < G by B^H we denote the subset of *B* fixed by *H* while $B_0^H \subset B^H$ is the set of points whose isotropy (or stabilizer) is exactly *H*.
- The restriction of the action of *G* to N(H) defines an action of W_H on B^H .

strata of resolution

For understanding resolution

$$f: X \to Y$$

write the quotient $Y = A^r/G$ as disjoint sum of locally closed sets (strata) $Y_{[H]}$ consisting of orbits of points whose isotropy is in the conjugacy class of a subgroup H < G. Over $Y_{[H]}$ the singularities of Y are locally quotients of \mathbb{C}^{rd} by action of H. Take inverse images of sets $Y_{[H]}$, get a decomposition of X into disjoint sum of locally closed sets $X_{[H]}$ such that the restriction

 $X_{[H]} \to Y_{[H]}$

is a locally trivial fiber bundle with a fiber F_H depending on the resolution of the *H*-quotient singularity.

structure of strata

Let $\overline{Y_{[H]}} \subset Y$ denote the closure of $Y_{[H]}$ in $Y = A^r/G$ and $\widehat{Y_{[H]}} \to \overline{Y_{[H]}}$ be its normalization. The morphism

$\overline{(A^r)^H_0} \to \widehat{Y_{[H]}}$

is quotient by W_H , where the action of W_H on $(A^r)_0^H$ is determined by the action of N(H).

structure of strata

Action of $W_{[H]}$ on $\overline{(A^r)_0^H}$ lifts to $\overline{(A^r)_0^H} \times F_H$, we get commutative diagram

where the horizontal arrows on the left hand side are quotient maps while these on the right hand side are inclusions onto open subsets.

notation: ring of representations

• Consider ring R(G) of complex representations of G with 1 trivial rank 1 representation.

notation: ring of representations

- Consider ring R(G) of complex representations of G with 1 trivial rank 1 representation.
- By $d \cdot \rho$ denote the sum of d copies of representation while by $\rho^{\otimes m}$ and $\rho^{\wedge m}$ we denote m-th tensor and, respectively, alternating power of ρ .

notation: ring of representations

- Consider ring R(G) of complex representations of G with 1 trivial rank 1 representation.
- By $d \cdot \rho$ denote the sum of d copies of representation while by $\rho^{\otimes m}$ and $\rho^{\wedge m}$ we denote m-th tensor and, respectively, alternating power of ρ .
- We have a map $\mu_0 : R(G) \to \mathbb{Z}$ which to a representation ρ assigns the rank of its maximal trivial subrepresentation.

virtual Poincaré

• For compact manifold X of dim n its Poincaré polynomial $P_X(t) = \sum_{i=0}^{2n} b_i(X) t^i \in \mathbb{Z}[t]$, with t formal variable, $b_i(X) = dim H_{DR}^i(X)$.

virtual Poincaré

- For compact manifold X of dim n its Poincaré polynomial $P_X(t) = \sum_{i=0}^{2n} b_i(X) t^i \in \mathbb{Z}[t]$, with t formal variable, $b_i(X) = dim H_{DR}^i(X)$.
- Virtual Poincaré polynomials are defined also for differences of compact varieties, that is for $U = X \setminus Z$ set $P_U = P_X P_Z$.

virtual Poincaré

- For compact manifold X of dim n its Poincaré polynomial $P_X(t) = \sum_{i=0}^{2n} b_i(X) t^i \in \mathbb{Z}[t]$, with t formal variable, $b_i(X) = dim H_{DR}^i(X)$.
- Virtual Poincaré polynomials are defined also for differences of compact varieties, that is for $U = X \setminus Z$ set $P_U = P_X P_Z$.
- Coefficients of virtual Poincaré $P_X(t)$ are equal to (standard) Betti numbers if X is compact and has quotient singularities.

cohomology of quotients

• Given action of *G* on variety *Z* define *G*-Poincaré polynomial $P_{Z,G}(t) \in R(G)[t]$ whose coefficient with t^i is the vector space $H^i(Z, \mathbb{C})$ with induced *G* action.

cohomology of quotients

- Given action of *G* on variety *Z* define *G*-Poincaré polynomial $P_{Z,G}(t) \in R(G)[t]$ whose coefficient with t^i is the vector space $H^i(Z, \mathbb{C})$ with induced *G* action.
- In our set-up

$$P_{A^r,G}(t) = \sum_{i=0}^{2rd} (2d \cdot \rho_{\mathbb{C}})^{\wedge i} \cdot t^i$$

cohomology of quotients

- Given action of *G* on variety *Z* define *G*-Poincaré polynomial $P_{Z,G}(t) \in R(G)[t]$ whose coefficient with t^i is the vector space $H^i(Z, \mathbb{C})$ with induced *G* action.
- In our set-up

$$P_{A^r,G}(t) = \sum_{i=0}^{2rd} (2d \cdot \rho_{\mathbb{C}})^{\wedge i} \cdot t^i$$

• For $Y = A^r / \rho_A$ we have $P_Y(t) = \mu_0(P_{A^r,G}(t))$.

strata of Y

Let $K \subset Y_{[H]}$ irreducible component with normalized closure \widehat{K} . Then $\widehat{K} \simeq A_K/W_K$ where $W_K < W_H$ is the subgroup which preserves $A_K \simeq A^{r_0}$, a component of the closure of $(A^r)_0^H$ which dominates K.

$$P_{A_K,W_K}(t) = \sum_{i=0}^{2r_0 d} (2d \cdot \nu_K)^{\wedge i} \cdot t^i$$

where $\nu_K : W_K \to GL(r_0, \mathbb{C})$ is a representation of W_K induced from $\rho_{\mathbb{C}}$.

McKay correspondence postulates a *canonical* relation of conjugacy classes of a group H with cohomology of a crepant resolution of its quotient singularity.

strata of X

 W_H acts on the cohomology of F_H as it acts on the conjugacy classes of H. So, W_K -Poincaré polynomial P_{F_H,W_K} is determined by the adjoint action of W_K on conjugacy classes of H, which is $w([h]) \mapsto [whw^{-1}]$, where $w \in N(H)$ represents an element of $W_H = N(H)/H$ and $h \in H$. Thus

$$P_{(A_K \times F_H)/W_K} = \mu_0(P_{A_K,W_K} \cdot P_{F_H,W_K})$$

diagram of strata, again

Thus we have cohomology of some entries in the diagram:

The difference $(\overline{(A^r)_0^H} \times F_H)/W_{[H]} \setminus X_{[H]}$ lives in strata associated to supergroups of *H*.

subgroups of $SL(3, \mathbb{Z})$

The following are, up to isomorphism, (non-trivial) finite subgroups of $SL(3,\mathbb{Z})$:

- cyclic groups \mathbb{Z}_a , for a = 2, 3, 4 and 6 (they are not interesting since H^1 of quotient is $\neq 0$),
- dihedral groups D_{2a} , for a = 2, 3, 4 and 6,
- alternating group A_4 (e.g. tetrahedral group T of isometries of tetrahedron)
- symmetric group S_4 (e.g. octahedral group O of isometries of a cube)

We are interested in their conjugacy classes in $GL(3, \mathbb{Z})$.

subgroups of $SL(3, \mathbb{Z})$

subgroups of $SL(3, \mathbb{Z})$

Note that some of these groups are conjugate in $GL(3, \mathbb{C})!$

case $O = S_4$, 1-dim sing

$$\begin{array}{cccc} g & W(\langle g \rangle) & \widehat{Y(\langle g \rangle)} & P_{F_{\langle g \rangle}} \\ \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \mathbb{Z}_2 \times \mathbb{Z}_2 & 6 \times \mathbb{P}^1 & 1+t \\ \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \mathbb{Z}_2 & 4 \times \mathbb{P}^1 & 1+(2+\epsilon)t \end{array}$$

case $O = S_4$, 1-dim sing

case $O = S_4$, 0-dim sing

1-dim non-free point sets meet in at

$${p \in A^3 : 2p = 0}$$

cardinality $4^{3} = 64$ *H* # fixed pts # sing pts $P_{F_{H}}$ *D*₄ 24 4 1+3t $3 \times D_{8}$ 36 12 1+4t $G = S_{4}$ 4 4 1+4t

calculation in maxima

$$S3(t) := 1+t^{2}+4*t^{3}+t^{4}+t^{6}$$

$$-(15*(1+t^{2}-4)+20);$$

$$S12(t) := 10*((1+t^{2})*(1+t^{2}))$$

$$-4*(1+t^{2}));$$

$$S13(t) := ((t^{4}+2*t^{3}+2*t^{2}+1))$$

$$-4*(1+t^{2}));$$

$$S14(t) := 4*((2*t^{4}+2*t^{3}+3*t^{2}+1))$$

$$-4*(1+2*t^{2}));$$

$$S0(t) := 4*(1+3*t^{2})+(12+4)*(1+4*t^{2});$$

$$P(t) := S3(t)+S12(t)+S13(t)+S14(t)+S0(t);$$

$$\begin{array}{rrrr} D_4 & t^6+51t^4+8t^3+51t^2+1\\ D_4 & t^6+21t^4+20t^3+21t^2+1\\ D_4 & t^6+15t^4+8t^3+15t^2+1\\ \hline D_4 & t^6+15t^4+8t^3+15t^2+1\\ \hline D_6 & t^6+15t^4+32t^3+15t^2+1\\ \hline D_6 & t^6+15t^4+32t^3+15t^2+1\\ \hline D_6 & t^6+7t^4+16t^3+7t^2+1\\ \hline D_8 & t^6+36t^4+14t^3+36t^2+1\\ \hline D_8 & t^6+15t^4+8t^3+15t^2+1\\ \end{array}$$

$$\begin{array}{cccc} D_{12} & t^6 + 21t^4 + 20t^3 + 21t^2 + 1 \\ \hline A_4 & t^6 + 19t^4 + 8t^3 + 19t^2 + 1 \\ A_4 & t^6 + 7t^4 + 8t^3 + 7t^2 + 1 \\ \hline A_4 & t^6 + 7t^4 + 8t^3 + 7t^2 + 1 \\ \hline S_4 & t^6 + 20t^4 + 14t^3 + 20t^2 + 1 \\ \hline S_4 & t^6 + 11t^4 + 8t^3 + 11t^2 + 1 \\ \hline S_4 & t^6 + 11t^4 + 8t^3 + 11t^2 + 1 \\ \hline \end{array}$$

Note that groups conjugate in $GL(3, \mathbb{C})$ may give non-isomorphic Kummer manifolds. Dual representations yield the same Poincaré; they are related to (local) symmetries of diagram of inclusions.

• Let *G* be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C} = \mathfrak{h}$ its Cartan algebra. The action of *G* preserves the Killing form on \mathfrak{h} , hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^*$.

- Let *G* be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C} = \mathfrak{h}$ its Cartan algebra. The action of *G* preserves the Killing form on \mathfrak{h} , hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^*$.
- Type A_n : $G = S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).

- Let *G* be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C} = \mathfrak{h}$ its Cartan algebra. The action of *G* preserves the Killing form on \mathfrak{h} , hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^*$.
- Type A_n : $G = S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).
- Type B_n , C_n : $G = (\mathbb{Z}_2)^n \rtimes S_n$ resulting with Hilbert schemes of (standard) Kummer surfaces.

- Let *G* be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C} = \mathfrak{h}$ its Cartan algebra. The action of *G* preserves the Killing form on \mathfrak{h} , hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^*$.
- Type A_n : $G = S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).
- Type B_n , C_n : $G = (\mathbb{Z}_2)^n \rtimes S_n$ resulting with Hilbert schemes of (standard) Kummer surfaces.
- Both series are obtained by integral Kummer construction with A an abelian surface.

- Let *G* be a Weyl group of a simple Lie algebra acting on its lattice of roots Γ with $\Gamma \otimes_{\mathbb{Z}} \mathbb{C} = \mathfrak{h}$ its Cartan algebra. The action of *G* preserves the Killing form on \mathfrak{h} , hence a symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^*$.
- Type A_n : $G = S_{n+1}$ (with standard repr.), resulting with "generalized Kummer" (Fujiki, Beauville).
- Type B_n , C_n : $G = (\mathbb{Z}_2)^n \rtimes S_n$ resulting with Hilbert schemes of (standard) Kummer surfaces.
- Both series are obtained by integral Kummer construction with A an abelian surface.
- Two (out of four known) topological types of
 irreducible symplectic manifolds are Kummer. May be there are more of them?

• Type E_6 with $G = BT_{24}$ also admits a (local!) symplectic resolution but it does not allow a global resolution.

- Type E_6 with $G = BT_{24}$ also admits a (local!) symplectic resolution but it does not allow a global resolution.
- Key fact: symplectic resolutions are semi-small so isolated quotient singularities do not have a symplectic resolution in dimension > 2

Lattice of subgroups

Lattice of subgroups BTQ \mathbb{Z}_6 \mathbb{Z}_4 \mathbb{Z}_3

Lefschetz thm fixed pts

Lattice of subgroups

Pts with given isotropy

