
On the Kummer construction
JW: joint work with Marco Andreatta,

also reporting work of Maria Donten
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classical Kummer

Take abelian surface A,

divide it by an involution a 7→ −a,

resolve 16 simple double points,

get a surface S with H1(S, C) = 0 and KS ≃ 0
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general Kummer

Consider a finite group of automorphisms of an
abelian variety A, that is G < Aut(A)

The tangent action at the unit of A is a complex
representation of G, that is ρ : G → GL(TA).

The same representation is in cohomology
ρ : G → GL(H1(A, C)).

Want trivial invariant subspace and
ρ(G) < SL(H1(A, C))

Take the quotient Y = A/G, find a crepant resolution
X → Y , get a Calabi-Yau or symplectic manifold,
H1(X, C) = 0 and KX ≃ 0
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integral Kummer

A special case: take an integral (irreducible)
representation of a finite group ρZ : G → GL(r, Z)
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integral Kummer

A special case: take an integral (irreducible)
representation of a finite group ρZ : G → GL(r, Z)

Take an abelian variety A of dim d and extend ρ to
ρA = ρZ ⊗Z A : G → Aut(Ar)

If d not even then assume ρZ : G → SL(r, Z).

Then representation on TAr and H1(A, C) is r · ρC

Extended version: ρZ : G → GL(r, Z[Aut(A)]) or
ρZ : G → GL(r, End(A))
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constrains: representations

Let G < GL(r, Z) be a finite subgroup. Then, for every
prime p > 2 its p-th reduction
G →֒ GL(r, Z) → GL(r, Zp) is an embedding.
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constrains: representations

Let G < GL(r, Z) be a finite subgroup. Then, for every
prime p > 2 its p-th reduction
G →֒ GL(r, Z) → GL(r, Zp) is an embedding.

Let g ∈ GL(r, Z) be of order m. Then roots of the
characteristic polynomial of A, or eigenvalues of A,
are among (possibly nonprimitive) m-th roots of unity.
In particular, ϕ(m) ≤ r, where ϕ denotes the Euler
function.
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constrains: Lefschetz theorem

Let g : A → A be an automorphism and let
ρg ∈ GL(TA) be its tangent. Then Fix(g) is a
subgroup of dimension equal to the multiplicity of 1
as an eigenvalue of ρg. If it is zero then
|Fix(g)| = |det(1 − ρg)|

2.
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constrains: Lefschetz theorem

Let g : A → A be an automorphism and let
ρg ∈ GL(TA) be its tangent. Then Fix(g) is a
subgroup of dimension equal to the multiplicity of 1
as an eigenvalue of ρg. If it is zero then
|Fix(g)| = |det(1 − ρg)|

2.

The number |det(1 − ρg)|
2 is integer thus, if g is of

order m then ϕ(m) ≤ 2 · dimA.

If dimA = 2 then ϕ(m) ≤ 2 hence m = 2, 3, 4, 6.
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constrains: resolutions

In dimension 2 and 3 we know a lot about crepant
resolutions but in higher dimensions it is hard.
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constrains: resolutions

In dimension 2 and 3 we know a lot about crepant
resolutions but in higher dimensions it is hard.

For solvable groups we can take towers of
resolutions of abelian singularities, provided at each
step we get an equivariant one.
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ex: resolutions for solvable gps

Consider D4 = Z2 × Z2 generated by matrices



−1 0 0

0 −1 0

0 0 1







−1 0 0

0 1 0

0 0 −1







1 0 0

0 −1 0

0 0 −1




C3/D4 has different crepant resolutions, one invariant
w. resp. to permutations of coordinates.

◦ • ◦

•222222

•





◦

◦ • ◦

•222222

•





◦
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DuVal singularities

Finite subgroups in SL(2, C) are classified by Dynkin
diagrams associated to incidence of (−2) curves in
resolution of their quotients.
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DuVal singularities

These Du Val groups have elements of order 1, 2, 3, 4, 6:
group Dynkin diagram
Z2 •

Z3 • •

Z4 • • •

Z6 • • • • •

quaternion Q8 • • •
•

binary dihedral BD12 • • • •
•

binary tetrahedral BT24 • • • • •
•
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Kummer surface for G = Z6

Representation 1
6(1, 5), ρC = ǫ6 + ǫ−1

6

g # fix pts # sing pts resolution(
0 −1

1 1

)
1 1 • • • • •

(
0 −1

1 −1

)
9 4 • •

(
−1 0

0 −1

)
16 5 •

Number of (−2)-curves = 1 × 5 + 4 × 2 + 5 × 1 = 18;
dimension of invariant subspace of ρC ⊗ ρC is 2.
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Kummer surface for BT24

Lattice of subgroups

•

•

•????????
•












•












•

•��������

44444444444

1

〈−1〉

Z4

Q

Z3

Z6

BT

W = Z2, W = Z2, W = 1
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•

•????????
•












•












•

•��������

44444444444

16

4
9

1

▽MSRI, Berkeley, April 2009 – p.10



Kummer surface for BT24

Lattice of subgroups

•
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44444444444
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Z4

Q
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BT

W = Z2, W = Z2, W = 1

Pts with given isotropy

•

•

•????????
•












•












•
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44444444444

12

0

3

8

0

1
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Kummer surface for BT24

Lattice of subgroups

•

•

•????????
•












•












•

•��������

44444444444

1

〈−1〉

Z4

Q

Z3

Z6

BT

W = Z2, W = Z2, W = 1

Singular pts & resolutions
# pts resolution

1 • • • • •
•

1 • • •
•

4 • •

1 •

Number of (−2)-curves
1×6+1×4+4×2+1×1 =
19; dimension of invariant
subspace of ρC ⊗ ρC is 1.

MSRI, Berkeley, April 2009 – p.10



notation: group action

Normalizer of H < G is denoted by N(H).

Weyl group is WH = N(H)/H

[H] is the conjugacy class of H in G, that is the set of
subgroups {gHg−1 : g ∈ G}.

Note that #[H] = [G : N(H)] and for H ′ ∈ [H] we have
WH ′ = WH .
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notation: group action

For G acting on B, and H < G by BH we denote the
subset of B fixed by H while BH

0 ⊂ BH is the set of
points whose isotropy (or stabilizer) is exactly H.

The restriction of the action of G to N(H) defines an
action of WH on BH .
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strata of resolution

For understanding resolution

f : X → Y

write the quotient Y = Ar/G as disjoint sum of locally
closed sets (strata) Y[H] consisting of orbits of points
whose isotropy is in the conjugacy class of a subgroup
H < G. Over Y[H] the singularities of Y are locally
quotients of Crd by action of H.
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strata of resolution

Take inverse images of sets Y[H], get a decomposition of
X into disjoint sum of locally closed sets X[H] such that
the restriction

X[H] → Y[H]

is a locally trivial fiber bundle with a fiber FH depending
on the resolution of the H-quotient singularity.

MSRI, Berkeley, April 2009 – p.12



structure of strata

Let Y[H] ⊂ Y denote the closure of Y[H] in Y = Ar/G and

Ŷ[H] → Y[H] be its normalization. The morphism

(Ar)H0 → Ŷ[H]

is quotient by WH , where the action of WH on (Ar)H0 is
determined by the action of N(H).
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structure of strata

Action of W[H] on (Ar)H0 lifts to (Ar)H0 × FH , we get
commutative diagram

(Ar)H0 × FH
//

��

(
(Ar)H0 × FH

)
/W[H]

��

X[H]oo

��

(Ar)H0
// Ŷ[H]

Y[H]oo

where the horizontal arrows on the left hand side are
quotient maps while these on the right hand side are
inclusions onto open subsets.
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notation: ring of representations

Consider ring R(G) of complex representations of G
with 1 trivial rank 1 representation.
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notation: ring of representations

Consider ring R(G) of complex representations of G
with 1 trivial rank 1 representation.

By d · ρ denote the sum of d copies of representation
while by ρ⊗m and ρ∧m we denote m-th tensor and,
respectively, alternating power of ρ.

We have a map µ0 : R(G) → Z which to a
representation ρ assigns the rank of its maximal
trivial subrepresentation.

MSRI, Berkeley, April 2009 – p.14



virtual Poincaré

For compact manifold X of dim n its Poincaré
polynomial PX(t) =

∑2n
i=0 bi(X) ti ∈ Z[t], with t formal

variable, bi(X) = dimHi
DR(X).
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virtual Poincaré

For compact manifold X of dim n its Poincaré
polynomial PX(t) =

∑2n
i=0 bi(X) ti ∈ Z[t], with t formal

variable, bi(X) = dimHi
DR(X).

Virtual Poincaré polynomials are defined also for
differences of compact varieties, that is for U = X \ Z
set PU = PX − PZ .

Coefficients of virtual Poincaré PX(t) are equal to
(standard) Betti numbers if X is compact and has
quotient singularities.
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cohomology of quotients

Given action of G on variety Z define G-Poincaré
polynomial PZ,G(t) ∈ R(G)[t] whose coefficient with ti

is the vector space Hi(Z, C) with induced G action.
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cohomology of quotients

Given action of G on variety Z define G-Poincaré
polynomial PZ,G(t) ∈ R(G)[t] whose coefficient with ti

is the vector space Hi(Z, C) with induced G action.

In our set-up

PAr,G(t) =
2rd∑

i=0

(2d · ρC)∧i · ti

For Y = Ar/ρA we have PY (t) = µ0(PAr,G(t)) .
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strata of Y

Let K ⊂ Y[H] irreducible component with normalized

closure K̂. Then K̂ ≃ AK/WK where WK < WH is the
subgroup which preserves AK ≃ Ar0, a component of the
closure of (Ar)H0 which dominates K.

PAK ,WK
(t) =

2r0d∑

i=0

(2d · νK)∧i · ti

where νK : WK → GL(r0, C) is a representation of WK

induced from ρC.
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strata of X

McKay correspondence postulates a canonical relation
of conjugacy classes of a group H with cohomology of a
crepant resolution of its quotient singularity.
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strata of X

WH acts on the cohomology of FH as it acts on the
conjugacy classes of H. So, WK-Poincaré polynomial
PFH ,WK

is determined by the adjoint action of WK on
conjugacy classes of H, which is w([h]) 7→ [whw−1],
where w ∈ N(H) represents an element of
WH = N(H)/H and h ∈ H. Thus

P(AK×FH)/WK
= µ0(PAK ,WK

· PFH ,WK
)
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diagram of strata, again

Thus we have cohomology of some entries in the
diagram:

(Ar)H0 × FH
//

��

(
(Ar)H0 × FH

)
/W[H]

��

X[H]oo

��

(Ar)H0
// Ŷ[H]

Y[H]oo

The difference
(
(Ar)H0 × FH

)
/W[H] \ X[H] lives in strata

associated to supergroups of H.
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subgroups ofSL(3, Z)

The following are, up to isomorphism, (non-trivial) finite
subgroups of SL(3, Z):

cyclic groups Za, for a = 2, 3, 4 and 6 (they are not
interesting since H1 of quotient is 6= 0),

dihedral groups D2a, for a = 2, 3, 4 and 6,

alternating group A4 (e.g. tetrahedral group T of
isometries of tetrahedron)

symmetric group S4 (e.g. octahedral group O of
isometries of a cube)

We are interested in their conjugacy classes in GL(3, Z).
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subgroups ofSL(3, Z)

S4(1)

S4(2)

S4(3)

A4(1)

A4(2)

A4(3)

D8(1)

D8(2)

D6(1)

D6(2)

D6(3)

D12

D4(1)

D4(2)

D4(3)

D4(4)
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subgroups ofSL(3, Z)

Note that some of these groups are conjugate in
GL(3, C)!
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caseO = S4, 1-dim sing

g W (〈g〉) Ŷ (〈g〉) PF〈g〉


−1 0 0

0 −1 0

0 0 1


 Z2 × Z2 6 × P1 1 + t




0 −1 0

1 0 0

0 0 1


 Z2 4 × P1 1 + (2 + ǫ)t
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caseO = S4, 1-dim sing

g W (〈g〉) Ŷ (〈g〉) PF〈g〉


0 1 0

1 0 0

0 0 −1


 Z2 4 × P1 1 + t




0 0 1

1 0 0

0 1 0


 Z2 1 × P1 1 + (1 + ǫ)t
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caseO = S4, 0-dim sing

1-dim non-free point sets meet in at

{p ∈ A3 : 2p = 0}

cardinality 43 = 64

H # fixed pts # sing pts PFH

D4 24 4 1 + 3t

3 × D8 36 12 1 + 4t

G = S4 4 4 1 + 4t

MSRI, Berkeley, April 2009 – p.22



calculation in maxima

S3(t):=1+tˆ2+4 * tˆ3+tˆ4+tˆ6
-(15 * (1+tˆ2-4)+20);

S12(t):=10 * ((1+tˆ2) * (1+tˆ2)
-4 * (1+tˆ2));

S13(t):=((tˆ4+2 * tˆ3+2 * tˆ2+1)
-4 * (1+tˆ2));

S14(t):=4 * ((2 * tˆ4+2 * tˆ3+3 * tˆ2+1)
-4 * (1+2 * tˆ2));

S0(t):=4 * (1+3 * tˆ2)+(12+4) * (1+4 * tˆ2);
P(t):=S3(t)+S12(t)+S13(t)+S14(t)+S0(t);

PX(t) = t6 + 20 t4 + 14 t3 + 20 t2 + 1
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Poincaré indim = 3

S4(1)

S4(2)

S4(3)

A4(1)

A4(2)

A4(3)

D8(1)

D8(2)

D6(1)

D6(2)

D6(3)

D12

D4(1)

D4(2)

D4(3)

D4(4)
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Poincaré indim = 3

D4 t6 + 51t4 + 8t3 + 51t2 + 1

D4 t6 + 21t4 + 20t3 + 21t2 + 1

D4 t6 + 15t4 + 8t3 + 15t2 + 1

D4 t6 + 15t4 + 8t3 + 15t2 + 1

D6 t6 + 15t4 + 32t3 + 15t2 + 1

D6 t6 + 15t4 + 32t3 + 15t2 + 1

D6 t6 + 7t4 + 16t3 + 7t2 + 1

D8 t6 + 36t4 + 14t3 + 36t2 + 1

D8 t6 + 15t4 + 8t3 + 15t2 + 1
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Poincaré indim = 3

D12 t6 + 21t4 + 20t3 + 21t2 + 1

A4 t6 + 19t4 + 8t3 + 19t2 + 1

A4 t6 + 7t4 + 8t3 + 7t2 + 1

A4 t6 + 7t4 + 8t3 + 7t2 + 1

S4 t6 + 20t4 + 14t3 + 20t2 + 1

S4 t6 + 11t4 + 8t3 + 11t2 + 1

S4 t6 + 11t4 + 8t3 + 11t2 + 1
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Poincaré indim = 3

D12 t6 + 21t4 + 20t3 + 21t2 + 1

A4 t6 + 19t4 + 8t3 + 19t2 + 1

A4 t6 + 7t4 + 8t3 + 7t2 + 1

A4 t6 + 7t4 + 8t3 + 7t2 + 1

S4 t6 + 20t4 + 14t3 + 20t2 + 1

S4 t6 + 11t4 + 8t3 + 11t2 + 1

S4 t6 + 11t4 + 8t3 + 11t2 + 1

Note that groups conjugate in GL(3, C) may give
non-isomorphic Kummer manifolds. Dual representations
yield the same Poincaré; they are related to (local)
symmetries of diagram of inclusions.
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symplectic Kummer

Let G be a Weyl group of a simple Lie algebra acting
on its lattice of roots Γ with Γ ⊗Z C = h its Cartan
algebra. The action of G preserves the Killing form
on h, hence a symplectic form on h ⊕ h∗.
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on its lattice of roots Γ with Γ ⊗Z C = h its Cartan
algebra. The action of G preserves the Killing form
on h, hence a symplectic form on h ⊕ h∗.

Type An: G = Sn+1 (with standard repr.), resulting
with “generalized Kummer” (Fujiki, Beauville).
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▽MSRI, Berkeley, April 2009 – p.25



symplectic Kummer

Let G be a Weyl group of a simple Lie algebra acting
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algebra. The action of G preserves the Killing form
on h, hence a symplectic form on h ⊕ h∗.

Type An: G = Sn+1 (with standard repr.), resulting
with “generalized Kummer” (Fujiki, Beauville).
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n ⋊ Sn resulting with Hilbert

schemes of (standard) Kummer surfaces.

Both series are obtained by integral Kummer
construction with A an abelian surface.
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symplectic Kummer

Let G be a Weyl group of a simple Lie algebra acting
on its lattice of roots Γ with Γ ⊗Z C = h its Cartan
algebra. The action of G preserves the Killing form
on h, hence a symplectic form on h ⊕ h∗.

Type An: G = Sn+1 (with standard repr.), resulting
with “generalized Kummer” (Fujiki, Beauville).

Type Bn, Cn: G = (Z2)
n ⋊ Sn resulting with Hilbert

schemes of (standard) Kummer surfaces.

Both series are obtained by integral Kummer
construction with A an abelian surface.

Two (out of four known) topological types of
irreducible symplectic manifolds are Kummer. May
be there are more of them? MSRI, Berkeley, April 2009 – p.25



binary tetrahedral, again

Type E6 with G = BT24 also admits a (local!)
symplectic resolution but it does not allow a global
resolution.
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binary tetrahedral, again

Type E6 with G = BT24 also admits a (local!)
symplectic resolution but it does not allow a global
resolution.

Key fact: symplectic resolutions are semi-small so
isolated quotient singularities do not have a
symplectic resolution in dimension > 2
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binary tetrahedral, again

Lattice of subgroups

•

•

•????????
•












•












•

•��������

44444444444

1

〈−1〉

Z4

Q

Z3

Z6

BT
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binary tetrahedral, again

Lattice of subgroups

•

•
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Lefschetz thm fixed pts
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•












•












•

•��������

44444444444

28

24

dim = 2

24
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binary tetrahedral, again

Lattice of subgroups

•

•
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Pts with given isotropy
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