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headline

I Can one hear the shape of a drum? [Katz, AMM 1966]
I Can one identify a (complex, projective) manifold by

knowing the eigenvalues of an action of an algebraic torus?



motivation: LeBrun–Salamon conjecture

I The conjecture in Riemannian differential geometry:
positive quaternion-Kähler manifolds are symmetric
spaces (Wolf spaces).

I The conjecture in complex algebraic geometry: every Fano
complex contact manifold is homogeneous and in fact the
projectivisation of the minimal adjoint orbit of a simple
group.



motivation: Fano contact manifolds
I Let L be an ample line bundle on a complex manifold X ,

dim X = 2n + 1, a contact form θ ∈ H0(X ,ΩX ⊗ L) is such
that (dθ)∧n ∧ θ nowhere vanishes; this implies
−KX = (n + 1)L

I Let F be the kernel of θ : TX → L then dθ defines
nondegenerate skew-symmetric pairing:

dθ : F × F → L

I Partial results on contact and quaternion-Kähler manifolds:
small dim X , big torus, L has many sections, [Hitchin, Poon,
LeBrun, Salamon, Herrera2, Bielawski, Fang, Druel, Beauville]

I We may assume Pic X = Z · L, otherwise

(X ,L) = (P2n+1,O(2)) or (P(TPn+1),O(1))



what everyone knows about toric manifolds

Notation: H will denote an algebraic torus with M the lattice of
characters; r denotes the rank of H and M.

If X is a toric manifold and L ample line bundle on X then we
get a lattice polytope ∆ = ∆(X ,H,L, µ) in M such that

H0(X ,L) =
⊕

u∈M∩∆
Cu

I fixed points of action of H are associated to vertices of ∆
I ∆ is a simple polytope and for every vertex u of ∆ the cone

R≥0 · (∆− u) is regular in M.



polytope of section

Let H act effectively∗ on (X ,L), with given linearization
µ : H × L → L
I We have decomposition of space of sections into

eigenspaces

H0(X ,L) =
⊕
u∈M

H0(X ,L)u

I By Γ̃(X ,H,L, µ) ⊂ M we denote the eigenvalues of the
action of H on H0(X ,L) and by Γ = Γ(X ,H,L, µ) their
convex hull in MR.



polytope of fixed points

I We have decomposition of the set of fixed points

X H = Y1 t · · · t Ys

I By ∆̃(X ,H,L, µ) ⊂ M we denote the set of the characters
µ(Yi) of the action of H on Yi ’s and by ∆ = ∆(X ,H,L, µ)
their convex hull in MR.

I A connected component Y ⊂ X H is called extremal if µ(Y )
is a vertex of ∆.



first observation

I ∆(L⊗m) = m · ∆(L) and Γ(L⊗m) ⊇ m · Γ(L)
I ∆(L) = Γ(L) if L is base point free
I hence Γ(L) ⊆ ∆(L)

Note: if ∆(L) is “small” then there should not be too many fixed
points components.



the compass

Let Y ⊂ X H be a connected component.
Take y ∈ Y and consider the action of H on T ∗y X : it splits into
eigenspaces associated to some characters in M; the trivial
eigenspace is T ∗y Y

The set non-zero (multiple) characters of this action we call the
compass of the action of H on the component Y and we denote
it C(Y ,X ,H)

Fact: the elements of the compass generate the semigroup

(R≥0 · (∆(X ,L,H, µ) − µ(Y ))) ∩M ′

where M ′ ⊆ M is the lattice of characters of H ′ = (H/stabilizer),
a quotient of H which acts acts effectively on X .



reduction of the action, 1

Consider a sequence of tori

0 // H1
π // H ι // H2 // 0

and the associated sequence of lattices of characters

0 // M2
ι // M π // M1 // 0

We have the action of H2 on components of X H1 and for every
connected component Y1 ⊂ X H1 we get

Y H2
1 = X H ∩ Y1

For a general choice H1 ↪→ H we have X H1 = X H



reduction of the action, 2

The restriction of the action to H1 ↪→ H implies

π(∆(X ,L,H, µ)) = ∆(X ,L,H1, µH1)

in particular extremal fixed point components of X H map into
extremal fixed point components of X H1 .

For every pair of connected components Y1 ⊂ X H1 and
Y ⊂ Y H2

1 we have
I the elements of C(Y1,X ,H1) are π-projections of elements

from C(Y ,X ,H)

I the elements of C(Y ,Y1,H2) are those in C(Y ,X ,H) which
are in the kernel of π



example 1: odd quadrics, 1

The torus H = (C∗)n with coordinates (t1, . . . , tn) acts on C2n+1

(t1, . . . , tn) · (z0, z1, z2, . . . , z2n−1, z2n) =

(z0, t1z1, t−1
1 z2, . . . , tnz2n−1, t−1

n z2n)

The action of H descends to an effective action on the quadric
Q2n−1 ⊂ P2n given by equation

z2
0 + z1z2 + · · ·+ z2n−1z2n = 0

with 2n isolated fixed points:

[0,1,0, . . . ,0,0], [0,0,1, . . . ,0,0, ], . . . ,
. . . [0,0,0, . . . ,1,0], [0,0,0, . . . ,0,1]



example 1: odd quadrics, 2

Let M be the lattice of characters of H with the basis of Zn

e1 = (1,0, . . . ,0,0), . . . ,en = (0,0, . . . ,0,1)

Then
∆(Q2n−1,O(1),H) = conv(±e1, . . . ,±en)

and the compass of H at the the fixed point associated to the
character ei consists of −ei and ±ej − ei , for j 6= i . Note that the
compass generates R≥0(∆− ei) ∩M



3-dimensional quadric

Two-dimensional torus acting on the 3-dimensional quadric:
four fixed points, five sections, three elements in the compass:

•

�� ����
• ◦ •

•



example 2: even quadrics, 1

The torus H = (C∗)n with coordinates (t1, . . . , tn) acts on C2n

(t1, . . . , tn) · (z1, z2, . . . , z2n−1, z2n) =

(t1z1, t−1
1 z2, . . . , tnz2n−1, t−1

n z2n)

The action of H descends to an action of the quotient torus
H ′ = H/〈(−1, . . . ,−1)〉 on the quadric Q2n−2 ⊂ P2n−1 given by
equation

z1z2 + · · ·+ z2n−1z2n = 0

with 2n isolated fixed points:

[1,0, . . . ,0,0], [0,1, . . . ,0,0, ], . . . ,
. . . [0,0, . . . ,1,0], [0,0, . . . ,0,1]



example 2: even quadric, 2

As before, M = Zn generated by ei ’s and M ′ ⊂ M index 2
sublattice of vectors

∑
i aiei such that

∑
i ai is even.

As before

∆(Q2n−2,O(1),H) = conv(±e1, . . . ,±en)

Now the compass of H at the fixed point associated to the
character ei consists of±ej − ei , for j 6= i . Note that the
compass generates R≥0(∆− ei) ∩M ′



example 3: minimal nilpotent orbit of B3

B3 root system
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example 3: minimal nilpotent orbit of B3

Root polytope of B3 and the compass.
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example 3: minimal nilpotent orbit of B3

Downgrading the action.
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example 3: minimal nilpotent orbit of B3

Downgrading and restricting the action
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BB decomposition

For H = C∗ with coordinate t and X projective manifold we
have Białynicki-Birula decomposition:
I Take decomposition X H = Y1 t · · · t Ys and for every Yi by
ν±(Yi) denote the positive and negative number of
characters in the compass.

I Define
X+

i = {x ∈ X : limt→0 t · x ∈ Yi }

X−
i = {x ∈ X : limt→∞ t · x ∈ Yi }

I Then
I X = X+

1 t · · · t X+
s = X−

1 t · · · t X−
s ,

I partial order Yi ≺ Yj ⇔ X+
i ⊃ Yj agrees with µ(Yi) < µ(Yj)

I the unique dense ±-component is called source/sink,
I X±

i → Yi is a Cν±(Yi) fibration,
I Hm(X ,Z) =

⊕
i Hm−2ν+(Yi)(Yi ,Z) =

⊕
i Hm−2ν−(Yi)(Yi ,Z)



BB decomposition – consequences

Assume in addition that Pic X = Z · L and Y0 ⊂ X H is the
source. Then X Fano and one of the following holds:

1. dim Y0 > 0 and
I Y0 is Fano with Pic Y0 = Z · L,
I the complement of X+

0 is of codimension ≥ 2,
I H0(X ,L) → H0(Y0,L) is surjective.

2. Y0 is a point and
I X+

0 is an affine space
I D = X \ X+

0 is an irreducible divisor in the system |L|,
I there exists the unique fixed point component Y1 ⊂ X H

such that µ(Y1) is minimal in ∆̃(X ,L,H, µ) \ µ(Y0),
I X+

1 associated to Y1 is dense in D.



BB-decomposition – case rk(H) ≥ 1

I Extremal fixed point components are in bijection with
vertices of ∆(X ,L,H).

I If Pic X = Z and r ≥ dim X − 4 then

∆(X ,L,H) = Γ(X ,L,H)

Thus knowing the weights of sections of L we can try to
recover the set of fixed point components

Γ̃(X ,L,H) ∆̃(X ,L,H)



from fixed points to sections

Grothendieck-Atiyah-Bott-Berline-Vergne localization in
cohomology and Riemann-Roch theorem (simplest version):

Assume that X H consists of isolated points y1, y2, . . . yk . Take
µi = µ(yi) and νi ,j are elements of C(yi ,X ,H).
Then the character of the representation of H on H0(X ,L⊗m) is
equal

k∑
i=1

tmµi∏
j(1 − tνi,j )

Corollary. Suppose that a simple group G with a maximal torus
H acts on X , Pic X = ZL, so that the data µi , νi ,j is the same as
for a G-homogeneous manifold X̂ , Pic X̂ = ZL̂. Then

(X ,L) = (X̂ , L̂)



back to contact and quaternion-Kähler manifolds

Theorem. Let X be a contact Fano manifold of dimension
2n + 1, with n ≥ 3, whose group of contact automorphisms G is
reductive and contains an algebraic torus H of rank ≥ n − 2.
Then X is homogeneous.

Theorem. Let M be a positive quaternionic Kähler manifold of
dimension 4m. If m ≤ 4 then M is a Wolf space.



proof: main ideas

Use sequence

0 // F // TX θ // L // 0

to get the linearization µ of G acting on L with adjoint action on
H0(X ,L) = g.
Pairing dθ : F × F → L defines symmetry in the compass at
every fixed point component Y :
I after renumbering ν0 = −µ(Y ) and νi + νi+n = ν0,
I if µ(Y ) 6= 0 then Y is isotropic, dim Y + 1 equals multiplicity

of −µ(Y ) in the compass,
I if µ(Y ) = 0 then Y is contact, hence of odd dimension.



proof: main steps

1. ∆(X ,L,H, µ) = Γ(X ,L,H, µ), because extremal fixed point
components are isotropic

2. G is semisimple (no torus component), because ∆ is of
maximal dimension

3. G is simple (not a product), because otherwise ∆ is a
coproduct of root polytopes

4. Analyse root polytopes for simple groups in lattices of
weights. Case-by-case analysis, use information about
root systems.



proof: adjoint orbits of simple groups

Dimension of the adjoint orbit = minimal number of generators
of the cone semingroup +1:

Ar Br Cr Dr E6 E7 E8 F4 G2
2r−1 4r−5 2r−1 4r−7 21 33 57 15 5

Moreover in case Ar we have Pic = Z2 and in case Cr the line
bundle L is divisible by 2 in Pic.

Because of the Weyl grop action the compass satisfies
symmetry.

As the result: careful discussion needed for A2/G2, B3, D4.



example: case of A2/G2, dim X = 7

Discussion: compass at extremal fixed points.
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example: case of A2/G2, dim X = 7

Discussion: compass at “inner” fixed points.
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example: case of A2/G2, dim X = 7

Discussion: no fixed point at 0, inner points are single

?
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example: case of A2/G2, dim X = 7

Conclusion: the case of A2/G2, dim X = 7, is projection of the
system associated to root type B3; projection of the system B3.
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example: case of A2/G2, dim X = 7

Conclusion: the case of A2/G2, dim X = 7, is projection of the
system associated to root type B3; projection of the system B3.
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