Instruments of algebraic torus action

Buczyński, Weber, Wiśniewski

Bucharest, September 2017

headline

- Can one hear the shape of a drum? [Katz, AMM 1966]
- Can one identify a (complex, projective) manifold by knowing the eigenvalues of an action of an algebraic torus?

motivation: LeBrun-Salamon conjecture

- The conjecture in Riemannian differential geometry: positive quaternion-Kähler manifolds are symmetric spaces (Wolf spaces).
- The conjecture in complex algebraic geometry: every Fano complex contact manifold is homogeneous and in fact the projectivisation of the minimal adjoint orbit of a simple group.

motivation: Fano contact manifolds

- Let L be an ample line bundle on a complex manifold X, $\operatorname{dim} X=2 n+1$, a contact form $\theta \in \mathrm{H}^{0}\left(X, \Omega_{X} \otimes L\right)$ is such that $(d \theta)^{\wedge n} \wedge \theta$ nowhere vanishes; this implies $-K_{X}=(n+1) L$
- Let F be the kernel of $\theta: T X \rightarrow L$ then $d \theta$ defines nondegenerate skew-symmetric pairing:

$$
d \theta: F \times F \rightarrow L
$$

- Partial results on contact and quaternion-Kähler manifolds: small $\operatorname{dim} X$, big torus, L has many sections, [Hitchin, Poon, LeBrun, Salamon, Herrera ${ }^{2}$, Bielawski, Fang, Druel, Beauville]
- We may assume $\operatorname{Pic} X=\mathbb{Z} \cdot L$, otherwise

$$
(X, L)=\left(\mathbb{P}^{2 n+1}, \mathcal{O}(2)\right) \text { or }\left(\mathbb{P}\left(T^{n+1}\right), \mathcal{O}(1)\right)
$$

what everyone knows about toric manifolds

Notation: H will denote an algebraic torus with M the lattice of characters; r denotes the rank of H and M.

If X is a toric manifold and L ample line bundle on X then we get a lattice polytope $\Delta=\Delta(X, H, L, \mu)$ in M such that

$$
\mathrm{H}^{0}(X, L)=\bigoplus_{u \in M \cap \Delta} \mathbb{C} u
$$

- fixed points of action of H are associated to vertices of Δ
- Δ is a simple polytope and for every vertex u of Δ the cone $\mathbb{R}_{\geq 0} \cdot(\Delta-u)$ is regular in M.

polytope of section

Let H act effectively* on (X, L), with given linearization $\mu: H \times L \rightarrow L$

- We have decomposition of space of sections into eigenspaces

$$
\mathrm{H}^{0}(X, L)=\bigoplus_{u \in M} \mathrm{H}^{0}(X, L)_{u}
$$

- By $\widetilde{\Gamma}(X, H, L, \mu) \subset M$ we denote the eigenvalues of the action of H on $\mathrm{H}^{0}(X, L)$ and by $\Gamma=\Gamma(X, H, L, \mu)$ their convex hull in $M_{\mathbb{R}}$.

polytope of fixed points

- We have decomposition of the set of fixed points

$$
X^{H}=Y_{1} \sqcup \cdots \sqcup Y_{s}
$$

- By $\widetilde{\Delta}(X, H, L, \mu) \subset M$ we denote the set of the characters $\mu\left(Y_{i}\right)$ of the action of H on Y_{i} 's and by $\Delta=\Delta(X, H, L, \mu)$ their convex hull in $M_{\mathbb{R}}$.
- A connected component $Y \subset X^{H}$ is called extremal if $\mu(Y)$ is a vertex of Δ.

first observation

- $\Delta\left(L^{\otimes m}\right)=m \cdot \Delta(L)$ and $\Gamma\left(L^{\otimes m}\right) \supseteq m \cdot \Gamma(L)$
- $\Delta(L)=\Gamma(L)$ if L is base point free
- hence $\Gamma(L) \subseteq \Delta(L)$

Note: if $\Delta(L)$ is "small" then there should not be too many fixed points components.

the compass

Let $Y \subset X^{H}$ be a connected component.
Take $y \in Y$ and consider the action of H on $T_{y}^{*} X$: it splits into eigenspaces associated to some characters in M; the trivial eigenspace is $T_{y}^{*} Y$
The set non-zero (multiple) characters of this action we call the compass of the action of H on the component Y and we denote it $\mathcal{C}(Y, X, H)$
Fact: the elements of the compass generate the semigroup

$$
\left(\mathbb{R}_{\geq 0} \cdot(\Delta(X, L, H, \mu)-\mu(Y))\right) \cap M^{\prime}
$$

where $M^{\prime} \subseteq M$ is the lattice of characters of $H^{\prime}=(H /$ stabilizer $)$, a quotient of H which acts acts effectively on X.

reduction of the action, 1

Consider a sequence of tori

$$
0 \longrightarrow H_{1} \xrightarrow{\pi} \mathrm{H} \xrightarrow{\mathrm{l}} \mathrm{H}_{2} \longrightarrow 0
$$

and the associated sequence of lattices of characters

$$
0 \longrightarrow M_{2} \xrightarrow{\iota} M \xrightarrow{\pi} M_{1} \longrightarrow 0
$$

We have the action of H_{2} on components of $X^{H_{1}}$ and for every connected component $Y_{1} \subset X^{H_{1}}$ we get

$$
Y_{1}^{H_{2}}=X^{H} \cap Y_{1}
$$

For a general choice $H_{1} \hookrightarrow H$ we have $X^{H_{1}}=X^{H}$

reduction of the action, 2

The restriction of the action to $H_{1} \hookrightarrow \mathrm{H}$ implies

$$
\pi(\Delta(X, L, H, \mu))=\Delta\left(X, L, H_{1}, \mu_{H_{1}}\right)
$$

in particular extremal fixed point components of X^{H} map into extremal fixed point components of $X^{H_{1}}$.
For every pair of connected components $Y_{1} \subset X^{H_{1}}$ and
$Y \subset Y_{1}^{H_{2}}$ we have

- the elements of $\mathcal{C}\left(Y_{1}, X, H_{1}\right)$ are π-projections of elements from $\mathcal{C}(Y, X, H)$
- the elements of $\mathcal{C}\left(Y, Y_{1}, H_{2}\right)$ are those in $\mathcal{C}(Y, X, H)$ which are in the kernel of π

example 1: odd quadrics, 1

The torus $H=\left(\mathbb{C}^{*}\right)^{n}$ with coordinates $\left(t_{1}, \ldots, t_{n}\right)$ acts on $\mathbb{C}^{2 n+1}$

$$
\begin{array}{r}
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(z_{0}, z_{1}, z_{2}, \ldots, z_{2 n-1}, z_{2 n}\right)= \\
\quad\left(z_{0}, t_{1} z_{1}, t_{1}^{-1} z_{2}, \ldots, t_{n} z_{2 n-1}, t_{n}^{-1} z_{2 n}\right)
\end{array}
$$

The action of H descends to an effective action on the quadric $\mathbb{Q}^{2 n-1} \subset \mathbb{P}^{2 n}$ given by equation

$$
z_{0}^{2}+z_{1} z_{2}+\cdots+z_{2 n-1} z_{2 n}=0
$$

with $2 n$ isolated fixed points:

$$
\begin{aligned}
& {[0,1,0, \ldots, 0,0],[0,0,1, \ldots, 0,0,], \ldots,} \\
& \quad \ldots[0,0,0, \ldots, 1,0],[0,0,0, \ldots, 0,1]
\end{aligned}
$$

example 1: odd quadrics, 2

Let M be the lattice of characters of H with the basis of \mathbb{Z}^{n}

$$
e_{1}=(1,0, \ldots, 0,0), \ldots, e_{n}=(0,0, \ldots, 0,1)
$$

Then

$$
\Delta\left(\mathbb{Q}^{2 n-1}, \mathcal{O}(1), H\right)=\operatorname{conv}\left(\pm e_{1}, \ldots, \pm e_{n}\right)
$$

and the compass of H at the the fixed point associated to the character e_{i} consists of $-e_{i}$ and $\pm e_{j}-e_{i}$, for $j \neq i$. Note that the compass generates $\mathbb{R}_{\geq 0}\left(\Delta-e_{i}\right) \cap M$

3-dimensional quadric

Two-dimensional torus acting on the 3-dimensional quadric: four fixed points, five sections, three elements in the compass:

example 2: even quadrics, 1

The torus $H=\left(\mathbb{C}^{*}\right)^{n}$ with coordinates $\left(t_{1}, \ldots, t_{n}\right)$ acts on $\mathbb{C}^{2 n}$

$$
\begin{array}{r}
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(z_{1}, z_{2}, \ldots, z_{2 n-1}, z_{2 n}\right)= \\
\left(t_{1} z_{1}, t_{1}^{-1} z_{2}, \ldots, t_{n} z_{2 n-1}, t_{n}^{-1} z_{2 n}\right)
\end{array}
$$

The action of H descends to an action of the quotient torus $H^{\prime}=H /\langle(-1, \ldots,-1)\rangle$ on the quadric $\mathbb{Q}^{2 n-2} \subset \mathbb{P}^{2 n-1}$ given by equation

$$
z_{1} z_{2}+\cdots+z_{2 n-1} z_{2 n}=0
$$

with $2 n$ isolated fixed points:

$$
\begin{aligned}
& {[1,0, \ldots, 0,0],[0,1, \ldots, 0,0,], \ldots,} \\
& \quad \ldots[0,0, \ldots, 1,0],[0,0, \ldots, 0,1]
\end{aligned}
$$

example 2: even quadric, 2

As before, $M=\mathbb{Z}^{n}$ generated by e_{i} 's and $M^{\prime} \subset M$ index 2 sublattice of vectors $\sum_{i} a_{i} e_{i}$ such that $\sum_{i} a_{i}$ is even. As before

$$
\Delta\left(\mathbb{Q}^{2 n-2}, \mathcal{O}(1), H\right)=\operatorname{conv}\left(\pm e_{1}, \ldots, \pm e_{n}\right)
$$

Now the compass of H at the fixed point associated to the character e_{i} consists of $\pm e_{j}-e_{i}$, for $j \neq i$. Note that the compass generates $\mathbb{R}_{\geq 0}\left(\Delta-e_{i}\right) \cap M^{\prime}$

example 3: minimal nilpotent orbit of B_{3}

B_{3} root system

example 3: minimal nilpotent orbit of B_{3}

Root polytope of B_{3} and the compass.

example 3: minimal nilpotent orbit of B_{3}

Downgrading the action.

example 3: minimal nilpotent orbit of B_{3}

Downgrading and restricting the action

BB decomposition

For $H=\mathbb{C}^{*}$ with coordinate t and X projective manifold we have Biatynicki-Birula decomposition:

- Take decomposition $X^{H}=Y_{1} \sqcup \cdots \sqcup Y_{s}$ and for every Y_{i} by $\nu^{ \pm}\left(Y_{i}\right)$ denote the positive and negative number of characters in the compass.
- Define

$$
\begin{aligned}
& X_{i-}^{+}=\left\{x \in X: \lim _{t \rightarrow 0} t \cdot x \in Y_{i}\right\} \\
& X_{i}^{-}=\left\{x \in X: \lim _{t \rightarrow \infty} t \cdot x \in Y_{i}\right\}
\end{aligned}
$$

- Then
- $X=X_{1}^{+} \sqcup \cdots \sqcup X_{s}^{+}=X_{1}^{-} \sqcup \cdots \sqcup X_{s}^{-}$,
- partial order $Y_{i} \prec Y_{j} \Leftrightarrow X_{i}^{+} \supset Y_{j}$ agrees with $\mu\left(Y_{i}\right)<\mu\left(Y_{j}\right)$
- the unique dense ${ }^{ \pm}$-component is called source/sink,
- $X_{i}^{ \pm} \rightarrow Y_{i}$ is a $\mathbb{C}^{v^{ \pm}\left(Y_{i}\right)}$ fibration,
- $H_{m}(X, \mathbb{Z})=\oplus_{i} H_{m-2 v+\left(Y_{i}\right)}\left(Y_{i}, \mathbb{Z}\right)=\bigoplus_{i} H_{m-2 v-\left(Y_{i}\right)}\left(Y_{i}, \mathbb{Z}\right)$

BB decomposition - consequences

Assume in addition that Pic $X=\mathbb{Z} \cdot L$ and $Y_{0} \subset X^{H}$ is the source. Then X Fano and one of the following holds:

1. $\operatorname{dim} Y_{0}>0$ and

- Y_{0} is Fano with Pic $Y_{0}=\mathbb{Z} \cdot L$,
- the complement of X_{0}^{+}is of codimension ≥ 2,
- $\mathrm{H}^{0}(X, L) \rightarrow \mathrm{H}^{0}\left(Y_{0}, L\right)$ is surjective.

2. Y_{0} is a point and

- X_{0}^{+}is an affine space
- $D=X \backslash X_{0}^{+}$is an irreducible divisor in the system $|L|$,
- there exists the unique fixed point component $Y_{1} \subset X^{H}$ such that $\mu\left(Y_{1}\right)$ is minimal in $\Delta(X, L, H, \mu) \backslash \mu\left(Y_{0}\right)$,
- X_{1}^{+}associated to Y_{1} is dense in D.

BB-decomposition - case rk $(H) \geq 1$

- Extremal fixed point components are in bijection with vertices of $\Delta(X, L, H)$.
- If Pic $X=\mathbb{Z}$ and $r \geq \operatorname{dim} X-4$ then

$$
\Delta(X, L, H)=\Gamma(X, L, H)
$$

Thus knowing the weights of sections of L we can try to recover the set of fixed point components

$$
\widetilde{\Gamma}(X, L, H) \rightsquigarrow \widetilde{\Delta}(X, L, H)
$$

from fixed points to sections

Grothendieck-Atiyah-Bott-Berline-Vergne localization in cohomology and Riemann-Roch theorem (simplest version):
Assume that X^{H} consists of isolated points $y_{1}, y_{2}, \ldots y_{k}$. Take $\mu_{i}=\mu\left(y_{i}\right)$ and $v_{i, j}$ are elements of $\mathcal{C}\left(y_{i}, X, H\right)$.
Then the character of the representation of H on $\mathrm{H}^{0}\left(X, L^{\otimes m}\right)$ is equal

$$
\sum_{i=1}^{k} \frac{t^{m \mu_{i}}}{\prod_{j}\left(1-t^{v_{i, j}}\right)}
$$

Corollary. Suppose that a simple group G with a maximal torus H acts on X, Pic $X=\mathbb{Z} L$, so that the data $\mu_{i}, v_{i, j}$ is the same as for a G-homogeneous manifold \widehat{X}, $\operatorname{Pic} \widehat{X}=\mathbb{Z} \widehat{L}$. Then

$$
(X, L)=(\widehat{X}, \widehat{L})
$$

back to contact and quaternion-Kähler manifolds

Theorem. Let X be a contact Fano manifold of dimension $2 n+1$, with $n \geq 3$, whose group of contact automorphisms G is reductive and contains an algebraic torus H of rank $\geq n-2$. Then X is homogeneous.
Theorem. Let M be a positive quaternionic Kähler manifold of dimension $4 m$. If $m \leq 4$ then M is a Wolf space.

proof: main ideas

Use sequence

$$
0 \longrightarrow F \longrightarrow T X \xrightarrow{\theta} L \longrightarrow 0
$$

to get the linearization μ of G acting on L with adjoint action on $\mathrm{H}^{0}(X, L)=\mathfrak{g}$.
Pairing $d \theta: F \times F \rightarrow L$ defines symmetry in the compass at every fixed point component Y :

- after renumbering $v_{0}=-\mu(Y)$ and $v_{i}+v_{i+n}=v_{0}$,
- if $\mu(Y) \neq 0$ then Y is isotropic, $\operatorname{dim} Y+1$ equals multiplicity of $-\mu(Y)$ in the compass,
- if $\mu(Y)=0$ then Y is contact, hence of odd dimension.

proof: main steps

1. $\Delta(X, L, H, \mu)=\Gamma(X, L, H, \mu)$, because extremal fixed point components are isotropic
2. G is semisimple (no torus component), because Δ is of maximal dimension
3. G is simple (not a product), because otherwise Δ is a coproduct of root polytopes
4. Analyse root polytopes for simple groups in lattices of weights. Case-by-case analysis, use information about root systems.

proof: adjoint orbits of simple groups

Dimension of the adjoint orbit $=$ minimal number of generators of the cone semingroup +1 :

A_{r}	B_{r}	C_{r}	D_{r}	E_{6}	E_{7}	E_{8}	F_{4}	G_{2}
$2 r-1$	$4 r-5$	$2 r-1$	$4 r-7$	21	33	57	15	5

Moreover in case A_{r} we have $\mathrm{Pic}=\mathbb{Z}^{2}$ and in case C_{r} the line bundle L is divisible by 2 in Pic.

Because of the Weyl grop action the compass satisfies symmetry.

As the result: careful discussion needed for $A_{2} / G_{2}, B_{3}, D_{4}$.

example: case of $A_{2} / G_{2}, \operatorname{dim} X=7$

Discussion: compass at extremal fixed points.

example: case of $A_{2} / G_{2}, \operatorname{dim} X=7$

Discussion: compass at "inner" fixed points.

example: case of $A_{2} / G_{2}, \operatorname{dim} X=7$

Discussion: no fixed point at 0, inner points are single

example: case of $A_{2} / G_{2}, \operatorname{dim} X=7$

Conclusion: the case of $A_{2} / G_{2}, \operatorname{dim} X=7$, is projection of the system associated to root type B_{3}; projection of the system B_{3}.

example: case of $A_{2} / G_{2}, \operatorname{dim} X=7$

Conclusion: the case of $A_{2} / G_{2}, \operatorname{dim} X=7$, is projection of the system associated to root type B_{3}; projection of the system B_{3}.

