On 81 symplectic resolutions of a 4-dimensional quotient by a group of order 32

Maria Donten-Bury and J. A. Wiśniewski ongoing joint project
Uniwersytet Warszawski

July 2014

(2) 81 resolutions

(3) A Kummer 4-fold (with MD-B and G. Kapustka)

This polytope comes with different names (according to Wikipedia):

- Dispentachoron
- Rectified 5-cell
- Rectified pentachoron [RAP]
- Rectified 4-simplex
- Ambopentachoron

3 dimensional simplex

4 dimensional simplex

vertices of RAP

5 simplicial faces of RAP

We consider a surface \mathbb{P}_{4}^{2} obtained by blowing up the complex plane \mathbb{P}^{2} at generic 4 points.
\mathbb{P}_{4}^{2} has 6 more (-1) curves which come from the lines passing through the pairs of points which we blow up.

We consider a surface \mathbb{P}_{4}^{2} obtained by blowing up the complex plane \mathbb{P}^{2} at generic 4 points.
\mathbb{P}_{4}^{2} has 6 more (-1) curves which come from the lines passing through the pairs of points which we blow up.

F24
(-1)-curve are dots, incidence denoted by line segments; result: Petersen graph.

divisors on \mathbb{P}_{4}^{2}

Consider 5 -dimensional \mathbb{R}-vector space N with a basis e_{0}, \ldots, e_{4}. For $0 \leq i<j \leq 4$ we set $f_{i j}=\left(e_{i}+e_{j}\right) / 2$.

divisors on \mathbb{P}_{4}^{2}

Consider 5-dimensional \mathbb{R}-vector space N with a basis e_{0}, \ldots, e_{4}. For $0 \leq i<j \leq 4$ we set $f_{i j}=\left(e_{i}+e_{j}\right) / 2$.

- we can identify $N:=\operatorname{Pic}\left(\mathbb{P}_{4}^{2}\right) \otimes \mathbb{R}$ with $f_{i j}$ classes of (-1)-curves
- the cone of effective divisors $E f\left(\mathbb{P}_{4}^{2}\right)=\sum_{i, j} \mathbb{R}_{\geq 0} \cdot f_{j j}$ has 5 simplicial facets associated to contractions to \mathbb{P}^{2},
- the total coordinate ring

is generated by the sections $x_{i j}$ associated to $f_{i j}$'s and

(the relations come from octahedral faces of RAP)

divisors on \mathbb{P}_{4}^{2}

Consider 5 -dimensional \mathbb{R}-vector space N with a basis e_{0}, \ldots, e_{4}. For $0 \leq i<j \leq 4$ we set $f_{i j}=\left(e_{i}+e_{j}\right) / 2$.

- we can identify $N:=\operatorname{Pic}\left(\mathbb{P}_{4}^{2}\right) \otimes \mathbb{R}$ with $f_{i j}$ classes of (-1)-curves
- the cone of effective divisors $\mathrm{Eff}\left(\mathbb{P}_{4}^{2}\right)=\sum_{i, j} \mathbb{R}_{\geq 0} \cdot f_{i j}$ has 5 simplicial facets associated to contractions to \mathbb{P}^{2},
- the total coordinate ring

is generated by the sections $x_{i j}$ associated to $f_{i j}$'s and $\mathcal{R}_{\mathbb{P}_{4}^{2}}=\mathbb{C}\left[x_{i j}: 0 \leq i<j \leq 4\right] /\left(x_{p q} x_{r s}-x_{p r} x_{q s}+x_{p s} x_{q r}\right)$ (the relations come from octahedral faces of RAP)

Consider 5 -dimensional \mathbb{R}-vector space N with a basis e_{0}, \ldots, e_{4}. For $0 \leq i<j \leq 4$ we set $f_{i j}=\left(e_{i}+e_{j}\right) / 2$.

- we can identify $N:=\operatorname{Pic}\left(\mathbb{P}_{4}^{2}\right) \otimes \mathbb{R}$ with $f_{i j}$ classes of (-1)-curves
- the cone of effective divisors $\operatorname{Eff}\left(\mathbb{P}_{4}^{2}\right)=\sum_{i, j} \mathbb{R}_{\geq 0} \cdot f_{i j}$ has 5 simplicial facets associated to contractions to \mathbb{P}^{2},
- the total coordinate ring

$$
\mathcal{R}_{\mathbb{P}_{4}^{2}}=\bigoplus_{[D] \in \operatorname{Pic} \mathbb{P}_{4}^{2}} \Gamma\left(\mathbb{P}_{4}^{2}, \mathcal{O}(D)\right)
$$

is generated by the sections $x_{i j}$ associated to $f_{i j}$'s and

$$
\mathcal{R}_{\mathbb{P}_{4}^{2}}=\mathbb{C}\left[x_{i j}: 0 \leq i<j \leq 4\right] /\left(x_{p q} x_{r s}-x_{p r} x_{q s}+x_{p s} x_{q r}\right)
$$

(the relations come from octahedral faces of RAP)

Suppose that

$$
\mathcal{R}=\bigoplus_{\mu \in \mathbb{Z}^{r}} \Gamma^{\mu}
$$

is a graded finitely generteed \mathbb{C}-algebra, which means that

$$
\Gamma^{\mu} \cdot \Gamma^{\mu^{\prime}} \subset \Gamma^{\mu+\mu^{\prime}}
$$

Then the algebraic torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r}$ with coordinates $t=\left(t_{1}, \ldots t_{r}\right)$ acts on \mathcal{R} :
Γ^{μ} are eigenspaces of the action of \mathbb{T}; in particular Γ^{0} is the space of invariants of the action

Suppose that

$$
\mathcal{R}=\bigoplus_{\mu \in \mathbb{Z}^{r}} \Gamma^{\mu}
$$

is a graded finitely generteed \mathbb{C}-algebra, which means that

$$
\Gamma^{\mu} \cdot \Gamma^{\mu^{\prime}} \subset \Gamma^{\mu+\mu^{\prime}}
$$

Then the algebraic torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r}$ with coordinates
$t=\left(t_{1}, \ldots t_{r}\right)$ acts on \mathcal{R} :

$$
\mathbb{T} \times \Gamma^{\mu} \ni(t, f) \longrightarrow t_{1}^{\mu_{1}} \cdots t_{r}^{\mu_{r}} \cdot f
$$

Γ^{μ} are eigenspaces of the action of \mathbb{T}; in particular Γ^{0} is the space of invariants of the action

Suppose that

$$
\mathcal{R}=\bigoplus_{\mu \in \mathbb{Z}^{r}} \Gamma^{\mu}
$$

is a graded finitely generteed \mathbb{C}-algebra, which means that

$$
\Gamma^{\mu} \cdot \Gamma^{\mu^{\prime}} \subset \Gamma^{\mu+\mu^{\prime}}
$$

Then the algebraic torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r}$ with coordinates
$t=\left(t_{1}, \ldots t_{r}\right)$ acts on \mathcal{R} :

$$
\mathbb{T} \times \Gamma^{\mu} \ni(t, f) \longrightarrow t_{1}^{\mu_{1}} \cdots t_{r}^{\mu_{r}} \cdot f
$$

Γ^{μ} are eigenspaces of the action of \mathbb{T}; in particular Γ^{0} is the space of invariants of the action

For $f \in \Gamma^{\mu}$ we take invariant fractions

$$
\mathcal{R}_{f}^{0}=\left\{u / f^{m}: m \geq 0, u \in m \mu\right\}
$$

then \mathcal{R}_{f}^{0} defines a more refined set of orbits of action of \mathbb{T}.
Idea: given the ideal $I=\left(f_{1}, \ldots f_{s}\right) \triangleleft \mathcal{R}$ generated by homogeneous $f_{j} \in \Gamma^{\mu^{j}}$ the sets associated to \mathcal{R}_{f}^{0} for homogeneous $f \in I$ can be patched together to form a space of orbitis.

For $f \in \Gamma^{\mu}$ we take invariant fractions

$$
\mathcal{R}_{f}^{0}=\left\{u / f^{m}: m \geq 0, u \in m \mu\right\}
$$

then \mathcal{R}_{f}^{0} defines a more refined set of orbits of action of \mathbb{T}.
Idea: given the ideal $I=\left(f_{1}, \ldots f_{s}\right) \triangleleft \mathcal{R}$ generated by homogeneous $f_{j} \in \Gamma^{\mu^{j}}$ the sets associated to \mathcal{R}_{f}^{0} for homogeneous $f \in I$ can be patched together to form a space of orbits.

GIT for \mathbb{P}_{4}^{2}

Take the ring

$$
\mathcal{R}_{\mathbb{P}_{4}^{2}}=\bigoplus_{[D] \in \text { Pic } \mathbb{P}_{4}^{2}} \Gamma\left(\mathbb{P}_{4}^{2}, \mathcal{O}(D)\right)
$$

and for a divisor $D \in \operatorname{Eff}\left(\mathbb{P}_{4}^{2}\right)$ take

$$
I=\sqrt{(\Gamma(X, \mathcal{O}(m D)): m \gg 0)}
$$

The GIT quotient of the ring $\mathcal{R}_{\mathbb{P}_{2}^{2}}$ depends on the choice of the

GIT for \mathbb{P}_{4}^{2}

Take the ring

$$
\mathcal{R}_{\mathbb{P}_{4}^{2}}=\bigoplus_{[D] \in \operatorname{Pic} \mathbb{P}_{4}^{2}} \Gamma\left(\mathbb{P}_{4}^{2}, \mathcal{O}(D)\right)
$$

and for a divisor $D \in \operatorname{Eff}\left(\mathbb{P}_{4}^{2}\right)$ take

$$
I=\sqrt{(\Gamma(X, \mathcal{O}(m D)): m \gg 0)}
$$

The GIT quotient of the ring $\mathcal{R}_{\mathbb{P}_{4}^{2}}$ depends on the choice of the divisor D.

The Mumford quotient depends on the choice of $[D] \in \operatorname{Eff}\left(\mathbb{P}_{4}^{2}\right)$.
In fact $E f f\left(\mathbb{P}_{4}^{2}\right)$ is divided by hyperplanes into 76 chambers which are associated to different quotients
isomorphism class of quotient

number of chambers
one, $\operatorname{Nef}\left(\mathbb{P}_{4}^{2}\right)$
ten
thirty
twenty
five $\left[\rightarrow\right.$ simplicial facets $\left.\operatorname{Eff}\left(\mathbb{P}_{4}^{2}\right)\right]$
ten

The Mumford quotient depends on the choice of $[D] \in \operatorname{Eff}\left(\mathbb{P}_{4}^{2}\right)$.
In fact $\mathrm{Eff}\left(\mathbb{P}_{4}^{2}\right)$ is divided by hyperplanes into 76 chambers which are associated to different quotients
isomorphism class of quotient number of chambers

\mathbb{P}_{4}^{2}	one, $\operatorname{Nef}\left(\mathbb{P}_{4}^{2}\right)$
\mathbb{P}_{3}^{2}	ten
\mathbb{P}_{2}^{2}	thirty
\mathbb{P}_{1}^{2}	twenty
\mathbb{P}^{2}	five $\left[\rightarrow\right.$ simplicial facets $\left.\mathrm{Eff}\left(\mathbb{P}_{4}^{2}\right)\right]$
$\mathbb{P}^{1} \times \mathbb{P}^{1}$	ten

- take a projective variety X such that $\operatorname{Pic}(X)=\mathbb{Z}^{r}$, e.g. $X=\mathbb{P}_{4}^{2}$
- construct its total coordinate ring

suppose \mathcal{R}_{X} is finitely generated \mathbb{C}-algebra
- the grading in $\operatorname{Pic}(X)$ determines an action of a torus \mathbb{T}
- Mumford's GIT allows to recover X as a quotient of \mathcal{R}_{X} by the action of \mathbb{T}; same concerns some birational modifications of X
- take a projective variety X such that $\operatorname{Pic}(X)=\mathbb{Z}^{r}$, e.g. $X=\mathbb{P}_{4}^{2}$
- construct its total coordinate ring

$$
\mathcal{R}_{X}=\bigoplus_{[D] \in \operatorname{Pic}(X)} \Gamma(X, \mathcal{O}(D))
$$

suppose \mathcal{R}_{X} is finitely generated \mathbb{C}-algebra

- the grading in $\operatorname{Pic}(X)$ determines an action of a torus \mathbb{T}
- Mumford's GIT allows to recover X as a quotient of \mathcal{R}_{X} by
the action of \mathbb{T}; same concerns some birational
modifications of x
- take a projective variety X such that $\operatorname{Pic}(X)=\mathbb{Z}^{r}$, e.g. $X=\mathbb{P}_{4}^{2}$
- construct its total coordinate ring

$$
\mathcal{R}_{X}=\bigoplus_{[D] \in \operatorname{Pic}(X)} \Gamma(X, \mathcal{O}(D))
$$

suppose \mathcal{R}_{X} is finitely generated \mathbb{C}-algebra

- the grading in $\operatorname{Pic}(X)$ determines an action of a torus \mathbb{T}
- Mumford's GIT allows to recover X as a quotient of \mathcal{R}_{X} by
the action of \mathbb{T}; same concerns some birational
modifications of X
- take a projective variety X such that $\operatorname{Pic}(X)=\mathbb{Z}^{r}$, e.g. $X=\mathbb{P}_{4}^{2}$
- construct its total coordinate ring

$$
\mathcal{R}_{X}=\bigoplus_{[D] \in \operatorname{Pic}(X)} \Gamma(X, \mathcal{O}(D))
$$

suppose \mathcal{R}_{X} is finitely generated \mathbb{C}-algebra

- the grading in $\operatorname{Pic}(X)$ determines an action of a torus \mathbb{T}
- Mumford's GIT allows to recover X as a quotient of \mathcal{R}_{X} by the action of \mathbb{T}; same concerns some birational modifications of X
(1) Classical geometry
(2) 81 resolutions
(3) A Kummer 4-fold (with MD-B and G. Kapustka)

Let V be a 4-dimensional \mathbb{C} vector space with coordinates $\left(x_{1}, \ldots, x_{4}\right)$ and the symplectic form $d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{4}$. The following reflections preserve this form

$$
T_{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$$
T_{1}=\left(\begin{array}{cccc}
0 & i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right)
$$

$$
T_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
T_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
T_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right)
$$

The group G generated by reflections T_{0}, \ldots, T_{4} has 32 elements in 17 conjugacy clases:

- [$/]$ and [-l]
- 5 classses of reflection $\pm T_{i}$
- 10 classes of \pm elements of order 4

Moreover $[G, G]=\langle-I\rangle$ and $A b(G)=G /[G, G]=\mathbb{Z}_{2}^{4}$

The group G generated by reflections T_{0}, \ldots, T_{4} has 32 elements in 17 conjugacy clases:

- [$]$] and [- I]
- 5 classses of reflection $\pm T_{i}$
- 10 classes of \pm elements of order 4

Moreover $[G, G]=\langle-I\rangle$ and $A b(G)=G /[G, G]=\mathbb{Z}_{2}^{4}$

The group G generated by reflections T_{0}, \ldots, T_{4} has 32 elements in 17 conjugacy clases:

- [$]$] and [- I]
- 5 classses of reflection $\pm T_{i}$
- 10 classes of \pm elements of order 4 Moreover $[G, G]=\langle-I\rangle$ and $A b(G)=G /[G, G]=\mathbb{Z}_{2}^{4}$

The group G generated by reflections T_{0}, \ldots, T_{4} has 32 elements in 17 conjugacy clases:

- [$]$] and [- I]
- 5 classses of reflection $\pm T_{i}$
- 10 classes of \pm elements of order 4

The group G generated by reflections T_{0}, \ldots, T_{4} has 32 elements in 17 conjugacy clases:

- [$]$] and [- I]
- 5 classses of reflection $\pm T_{i}$
- 10 classes of \pm elements of order 4

Moreover $[G, G]=\langle-I\rangle$ and $A b(G)=G /[G, G]=\mathbb{Z}_{2}^{4}$

- Bellamy and Schedler: there exists a symplectic resolution X of V / G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A_{1} singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)
- Wierzba and W: all resolutions of V/G differ by Mukai flops (\mathbb{P}^{2} flopped to its dual)
- Andreatta and W, Namikawa: resolutions are parametrized by chambers in a simplicial cone $\operatorname{Mov}(X) \subset \operatorname{Pic}(X) \otimes \mathbb{R}$ (divided by hyperplanes)
- Bellamy and Schedler: there exists a symplectic resolution X of V / G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A_{1} singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)

- Bellamy and Schedler: there exists a symplectic resolution X of V / G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A_{1} singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)
- Wierzba and W: all resolutions of V / G differ by Mukai flops (\mathbb{P}^{2} flopped to its dual)
- Andreatta and W, Namikawa: resolutions are parametrized by chambers in a simplicial cone $\operatorname{Mov}(X) \subset \operatorname{Pic}(X)$ (divided by hyperplanes)
- Bellamy and Schedler: there exists a symplectic resolution X of V / G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A_{1} singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)
- Wierzba and W: all resolutions of V / G differ by Mukai flops (\mathbb{P}^{2} flopped to its dual)
- Andreatta and W, Namikawa: resolutions are parametrized by chambers in a simplicial cone $\operatorname{Mov}(X) \subset \operatorname{Pic}(X) \otimes \mathbb{R}$ (divided by hyperplanes)
the action of $A b(G)$ on $V /[G, G]$

The ring of invariants of $[G, G]=\langle-I\rangle$ is generated by quadratic forms, $S^{2} V^{*}$.
eigenspaces of $A b(G)$:

the action of $A b(G)$ on $V /[G, G]$

The ring of invariants of $[G, G]=\langle-I\rangle$ is generated by quadratic forms, $S^{2} V^{*}$. The quadratic invariants decompose into ± 1 eigenspaces of $A b(G)$:

the action of $A b(G)$ on $V /[G, G]$
The ring of invariants of $[G, G]=\langle-I\rangle$ is generated by quadratic forms, $S^{2} V^{*}$. The quadratic invariants decompose into ± 1 eigenspaces of $A b(G)$:

$$
\begin{aligned}
& \quad \text { eigenfunction } \\
& \phi_{01}=-2\left(x_{1} x_{4}+x_{2} x_{3}\right) \\
& \phi_{02}=2 \sqrt{-1}\left(-x_{1} x_{4}+x_{2} x_{3}\right) \\
& \phi_{03}=2 \sqrt{-1}\left(x_{1} x_{2}+x_{3} x_{4}\right) \\
& \phi_{04}=2\left(-x_{1} x_{2}+x_{3} x_{4}\right) \\
& \phi_{12}=2\left(x_{1} x_{3}-x_{2} x_{4}\right) \\
& \phi_{13}=-x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \\
& \phi_{14}=\sqrt{-1}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& \phi_{23}=\sqrt{-1}\left(-x_{1}^{2}+x_{2}^{2}-x_{3}^{2}+x_{4}^{2}\right) \\
& \phi_{24}=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+x_{4}^{2} \\
& \phi_{34}=2\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{aligned}
$$

The labeling of functions $\phi_{\text {rs }}$ indicates an isomorphism between $S^{2} V^{*}$ and $\Lambda^{2} W^{*}$ where W is a 5 -dimensional space with coordinates $t_{0}, \ldots t_{4}$:

$$
F_{i j} \leftrightarrow t_{i} \wedge t_{j}
$$

Let \mathbb{T}_{W} the standard torus of W with characters t_{0}, \ldots, t_{4}. The homomorphism $\operatorname{Hom}\left(\mathbb{T}_{W}, \mathbb{C}^{*}\right)=\mathbb{Z}^{5} \longrightarrow A b(G)=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ which sends t_{i} to the class of T_{i} agrees with the isomorphism $S^{2} V^{*} \simeq \Lambda^{2} W^{*}$
That is, we have a homomorphism $G \rightarrow \mathbb{T}_{W}$ which makes $S^{2} V^{*} \simeq \Lambda^{2} W^{*}$ equivariant.

The labeling of functions $\phi_{\text {rs }}$ indicates an isomorphism between $S^{2} V^{*}$ and $\Lambda^{2} W^{*}$ where W is a 5 -dimensional space with coordinates $t_{0}, \ldots t_{4}$:

$$
F_{i j} \leftrightarrow t_{i} \wedge t_{j}
$$

Let \mathbb{T}_{W} the standard torus of W with characters t_{0}, \ldots, t_{4}. The homomorphism $\operatorname{Hom}\left(\mathbb{T}_{W}, \mathbb{C}^{*}\right)=\mathbb{Z}^{5} \longrightarrow A b(G)=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ which sends t_{i} to the class of T_{i} agrees with the isomorphism $S^{2} V^{*} \simeq \Lambda^{2} W^{*}$.
That is, we have a homomorphism $G \rightarrow \mathbb{T}_{W}$ which makes $S^{2} V^{*} \simeq \Lambda^{2} W^{*}$ equivariant.

The labeling of functions $\phi_{r s}$ indicates an isomorphism between $S^{2} V^{*}$ and $\Lambda^{2} W^{*}$ where W is a 5 -dimensional space with coordinates $t_{0}, \ldots t_{4}$:

$$
F_{i j} \leftrightarrow t_{i} \wedge t_{j}
$$

Let \mathbb{T}_{W} the standard torus of W with characters t_{0}, \ldots, t_{4}. The homomorphism $\operatorname{Hom}\left(\mathbb{T}_{W}, \mathbb{C}^{*}\right)=\mathbb{Z}^{5} \longrightarrow A b(G)=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ which sends t_{i} to the class of T_{i} agrees with the isomorphism $S^{2} V^{*} \simeq \Lambda^{2} W^{*}$.
That is, we have a homomorphism $G \rightarrow \mathbb{T}_{W}$ which makes $S^{2} V^{*} \simeq \Lambda^{2} W^{*}$ equivariant.

We define a subring \mathcal{R}_{G} in

$$
\mathbb{C}[V] \otimes \mathbb{C}\left[\mathbb{T}_{w}\right]=\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}, t_{0}^{ \pm 1}, t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1}, t_{4}^{ \pm 1}\right]
$$

generated by

- $\phi_{i j} \cdot t_{i} \cdot t_{j}$ for $0 \leq i<j \leq 4$
- t_{i}^{-2} for $i=0, \ldots, 4$
\mathcal{R}_{G} admits the natural torus action of $\mathbb{T} w$

We define a subring \mathcal{R}_{G} in

$$
\mathbb{C}[V] \otimes \mathbb{C}[\mathbb{T} w]=\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}, t_{0}^{ \pm 1}, t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1}, t_{4}^{ \pm 1}\right]
$$

generated by

- $\phi_{i j} \cdot t_{i} \cdot t_{j}$ for $0 \leq i<j \leq 4$
- t_{i}^{-2} for $i=0, \ldots, 4$
\mathcal{R}_{G} admits the natural torus action of \mathbb{T}_{W}
- $\mathbb{C}[V]^{G} \simeq \mathcal{R}_{G}^{\mathbb{T} w}$
- some GIT quotients of $\operatorname{Spec} \mathcal{R}_{G}$ are smooth and provide desingularisation of Spec $\mathbb{C}[V]^{G}$
- \mathcal{R}_{G} is the total coordinate ring of one (hence every) symplectic desingularisation of V / G
- The functions $t_{i}^{-2} \in \mathcal{R}_{G}$ are associated to exceptional divisors of the resolution of V / G.
- $\mathbb{C}[V]^{G} \simeq \mathcal{R}_{G}^{\mathbb{T} w}$
- some GIT quotients of $\operatorname{Spec} \mathcal{R}_{G}$ are smooth and provide desingularisation of $\operatorname{Spec} \mathbb{C}[V]^{G}$
- \mathcal{R}_{G} is the total coordinate ring of one (hence every) symplectic desingularisation of V / G
- The functions $t_{i}^{-2} \in \mathcal{R}_{G}$ are associated to exceptional
divisors of the resolution of V / G.
- $\mathbb{C}[V]^{G} \simeq \mathcal{R}_{G}^{\mathbb{T} w}$
- some GIT quotients of $\operatorname{Spec} \mathcal{R}_{G}$ are smooth and provide desingularisation of $\operatorname{Spec} \mathbb{C}[V]^{G}$
- \mathcal{R}_{G} is the total coordinate ring of one (hence every) symplectic desingularisation of V / G
- The functions $t_{i}^{-2} \in \mathcal{R}_{G}$ are associated to exceptional divisors of the resolution of V / G.
- $\mathbb{C}[V]^{G} \simeq \mathcal{R}_{G}^{\mathbb{T} w}$
- some GIT quotients of $\operatorname{Spec} \mathcal{R}_{G}$ are smooth and provide desingularisation of $\operatorname{Spec} \mathbb{C}[V]^{G}$
- \mathcal{R}_{G} is the total coordinate ring of one (hence every) symplectic desingularisation of V / G
- The functions $t_{i}^{-2} \in \mathcal{R}_{G}$ are associated to exceptional divisors of the resolution of V / G.

trinomial relations

The functions $\phi_{i j}$ satisfy the following trinomial relations

$$
\begin{aligned}
& \phi_{14} \phi_{23}+\phi_{13} \phi_{24}-\phi_{12} \phi_{34}=0 \\
& \phi_{04} \phi_{23}-\phi_{03} \phi_{24}-\phi_{02} \phi_{34}=0 \\
& \phi_{04} \phi_{13}+\phi_{03} \phi_{14}-\phi_{01} \phi_{34}=0 \\
& \phi_{04}=\phi_{12}-\phi_{02} \phi_{14}-\phi_{01} \phi_{24}=0 \\
& \phi_{03} \phi_{12}+\phi_{02} \phi_{13}-\phi_{01} \phi_{23}=0
\end{aligned}
$$

Hence some GIT quotients of $\operatorname{Spec} \mathcal{R}_{G}$ contain \mathbb{P}_{4}^{2} as a component of the 2-dimensional fiber.

trinomial relations

The functions $\phi_{i j}$ satisfy the following trinomial relations

$$
\begin{aligned}
& \phi_{14} \phi_{23} \\
& \phi_{04} \phi_{23} \phi_{13} \phi_{24}-\phi_{03} \phi_{12} \phi_{34}=0 \\
& \phi_{04} \phi_{13}+\phi_{24}-\phi_{03} \phi_{02} \phi_{34}=\phi_{01} \phi_{34}
\end{aligned}=0
$$

Hence some GIT quotients of $\operatorname{Spec} \mathcal{R}_{G}$ contain \mathbb{P}_{4}^{2} as a component of the 2-dimensional fiber.

the incidence of components - central chamber

here $F_{0}=\mathbb{P}_{3}^{2}$, and $\bullet=\mathbb{P}^{2}, \boldsymbol{\Delta}=\mathbb{P}_{1}^{2}$

here $F_{0}=\mathbb{P}_{2}^{2}$, and $\bullet=\mathbb{P}^{2}, \boldsymbol{\Delta}=\mathbb{P}_{1}^{2}, \boldsymbol{\bullet} \mathbb{P}_{2}^{2}$

$F_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \boldsymbol{\Delta}=\mathbb{P}_{1}^{2}$, and $\boldsymbol{\uparrow}=\mathbb{P}^{2}$ blown up in 3 collinear pts

here $F_{0}=\mathbb{P}_{1}^{2}$, and $\bullet=\mathbb{P}^{2}, \Delta=\mathbb{P}_{1}^{2}, \stackrel{P_{2}^{2}}{2}$

here $F_{0}=\mathbb{P}^{2}$, and $\bullet=\mathbb{P}^{2}, \Delta=\mathbb{P}_{1}^{2}, \stackrel{P_{2}^{2}}{2}$

here $F_{0}=\left(\mathbb{P}^{2}\right)^{\vee}$, and $\boldsymbol{\Delta}=\mathbb{P}_{1}^{2}, \square=\mathbb{P}^{1} \times \mathbb{P}^{1}$
the structure of the outer resolution

and the associated incidence on $\left(\mathbb{P}^{2}\right)^{\text {v }}$:

and the associated incidence on $\left(\mathbb{P}^{2}\right)^{\vee}$:

- take a finite group G which acts on a vector space V preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^{G}$ defines quotient singularity V / G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}}=\mathbb{C}[V]^{G}$
- GIT quotients of $\operatorname{Spec} \mathcal{R}$ yield all resolutions of the singularity V / G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)
- Bellamy got the number 81 using smoothing
- take a finite group G which acts on a vector space V preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^{G}$ defines quotient singularity V / G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}}=\mathbb{C}[V]^{G}$
- GIT quotients of $\operatorname{Spec} \mathcal{R}$ yield all resolutions of the singularity V / G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)
- Bellamy got the number 81 using smoothing
- take a finite group G which acts on a vector space V preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^{G}$ defines quotient singularity V / G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}}=\mathbb{C}[V]^{G}$
- GIT quotients of Spec \mathcal{R} yield all resolutions of the singularity V / G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)
- Bellamy got the number 81 using smoothing
- take a finite group G which acts on a vector space V preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^{G}$ defines quotient singularity V / G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}}=\mathbb{C}[V]^{G}$
- GIT quotients of $\operatorname{Spec} \mathcal{R}$ yield all resolutions of the singularity V / G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)
- Bellamy got the number 81 using smoothing
- take a finite group G which acts on a vector space V preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^{G}$ defines quotient singularity V / G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}}=\mathbb{C}[V]^{G}$
- GIT quotients of $\operatorname{Spec} \mathcal{R}$ yield all resolutions of the singularity V / G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)
- Bellamy got the number 81 using smoothing
- take a finite group G which acts on a vector space V preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^{G}$ defines quotient singularity V / G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}}=\mathbb{C}[V]^{G}$
- GIT quotients of $\operatorname{Spec} \mathcal{R}$ yield all resolutions of the singularity V / G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)
- Bellamy got the number 81 using smoothing

Suppose that $\varphi: X \rightarrow V / G$ is a resolution with exceptional divisor $\sum_{i} E_{i}$.

- Cox ring of V / G is $\mathbb{C}[V]^{[G, G]}=\oplus \mathbb{C}_{\mu}^{G}$ with $\mu \in G$ (Arzhantsev-Gizakulin)
- The push-forward map of Cox rings $\varphi_{*}: \mathcal{R}(X) \rightarrow \mathbb{C}[V]^{[G, G]}$ is a homommorphism of graded $\mathbb{C}[V]^{G}$-algebras and for every $[D] \in$ Pic \times it makes $\Gamma\left(X, \mathcal{O}_{\times}(D)\right)$ a submodule of $\Gamma\left(V / G, \mathcal{O}\left(\varphi_{*} D\right)\right)$
- Idea: use monomial valuations (Kaledin) to recover $\Gamma\left(X, \mathcal{O}_{X}(D)\right) \hookrightarrow \Gamma\left(V / G, \mathcal{O}\left(\varphi_{*} D\right)\right)$ and reconstruct $\mathcal{R}(X)$ from $\mathbb{C}[V]^{[G G]}$

Suppose that $\varphi: X \rightarrow V / G$ is a resolution with exceptional divisor $\sum_{i} E_{i}$.

- Cox ring of V / G is $\mathbb{C}[V]^{[G, G]}=\oplus \mathbb{C}_{\mu}^{G}$ with $\mu \in G^{\vee}$ (Arzhantsev-Gizakulin)

Suppose that $\varphi: X \rightarrow V / G$ is a resolution with exceptional divisor $\sum_{i} E_{i}$.

- Cox ring of V / G is $\mathbb{C}[V]^{[G, G]}=\oplus \mathbb{C}_{\mu}^{G}$ with $\mu \in G^{\vee}$ (Arzhantsev-Gizakulin)
- The push-forward map of Cox rings $\varphi_{*}: \mathcal{R}(X) \rightarrow \mathbb{C}[V]^{[G, G]}$ is a homommorphism of graded $\mathbb{C}[V]^{G}$-algebras and for every $[D] \in \operatorname{Pic} X$ it makes $\Gamma\left(X, \mathcal{O}_{X}(D)\right)$ a submodule of $\Gamma\left(V / G, \mathcal{O}\left(\varphi_{*} D\right)\right)$
- Idea: use monomial valuations (Kaledin) to recover

Suppose that $\varphi: X \rightarrow V / G$ is a resolution with exceptional divisor $\sum_{i} E_{i}$.

- Cox ring of V / G is $\mathbb{C}[V]^{[G, G]}=\oplus \mathbb{C}_{\mu}^{G}$ with $\mu \in G^{\vee}$ (Arzhantsev-Gizakulin)
- The push-forward map of Cox rings $\varphi_{*}: \mathcal{R}(X) \rightarrow \mathbb{C}[V]^{[G, G]}$ is a homommorphism of graded $\mathbb{C}[V]^{G}$-algebras and for every $[D] \in \operatorname{Pic} X$ it makes $\Gamma\left(X, \mathcal{O}_{X}(D)\right)$ a submodule of $\Gamma\left(V / G, \mathcal{O}\left(\varphi_{*} D\right)\right)$
- Idea: use monomial valuations (Kaledin) to recover $\Gamma\left(X, \mathcal{O}_{X}(D)\right) \hookrightarrow \Gamma\left(V / G, \mathcal{O}\left(\varphi_{*} D\right)\right)$ and reconstruct $\mathcal{R}(X)$ from $\mathbb{C}[V]^{[G, G]}$.

Plan

(1) Classical geometry

(2) 81 resolutions

(3) A Kummer 4-fold (with MD-B and G. Kapustka)

The group G can be presented as generated by another set of reflections in $S p(4, \mathbb{Z}[])$

$$
T_{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -1+i & 1 & 0 \\
1-i & 0 & 0 & -1
\end{array}\right)
$$

$$
T_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & -1-i \\
0 & -1 & 1+i & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

more reflections

$$
T_{2}=\left(\begin{array}{cccc}
1 & -1+i & 0 & -1-i \\
-1-i & -1 & 1+i & 0 \\
0 & -1+i & 1 & -1-i \\
1-i & 0 & -1+i & -1
\end{array}\right)
$$

$$
T_{3}=\left(\begin{array}{cccc}
i & 0 & 0 & 1-i \\
1-i & -i & -1+i & 0 \\
0 & -1-i & i & 1-i \\
1+i & 0 & 0 & -i
\end{array}\right)
$$

more reflections

$$
T_{4}=\left(\begin{array}{cccc}
i & -1-i & 0 & 1-i \\
0 & -i & -1+i & 0 \\
0 & -1-i & i & 0 \\
1+i & 0 & -1-i & -i
\end{array}\right)
$$

Consider the action of G on C^{4} where C is an elliptic curve admitting complex multiplication by i

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on C^{4} have bigger isotropy:
- 16 have isotropy $=G$
- 240 have isotropy $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- C^{4} / G admits symplectic resolution $X \rightarrow C^{4} / G$
- X is a new Kummer symplectic 4-fold
- The Poincare nolynomial of X is the same as of Hilb² of K3

Consider the action of G on C^{4} where C is an elliptic curve admitting complex multiplication by i

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on C^{4} have bigger isotropy:
- 16 have isotropy $=G$ - 240 have isotropy $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- C^{4} / G admits symplectic resolution $X \rightarrow C^{4} / G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of Hilb² of K3

Consider the action of G on C^{4} where C is an elliptic curve admitting complex multiplication by i

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on C^{4} have bigger isotropy:
- 16 have isotropy $=G$
- 240 have isotropy $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- C^{4} / G admits symplectic resolution $X \rightarrow C^{4} / G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of Hilb² of K3

Consider the action of G on C^{4} where C is an elliptic curve admitting complex multiplication by i

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on C^{4} have bigger isotropy:
- 16 have isotropy $=G$
- 240 have isotropy $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- C^{4} / G admits symplectic resolution $X \rightarrow C^{4} / G$
- X is a new Kummer symplectic 4 -fold
- The Poincare polynomial of X is the same as of Hilb ${ }^{2}$ of K3

Consider the action of G on C^{4} where C is an elliptic curve admitting complex multiplication by i

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on C^{4} have bigger isotropy:
- 16 have isotropy $=G$
- 240 have isotropy $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- C^{4} / G admits symplectic resolution $X \rightarrow C^{4} / G$
- X is a new Kummer symplectic 4 -fold
- The Poincare polynomial of X is the same as of Hilb${ }^{2}$ of K3

Consider the action of G on C^{4} where C is an elliptic curve admitting complex multiplication by i

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on C^{4} have bigger isotropy:
- 16 have isotropy $=G$
- 240 have isotropy $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- C^{4} / G admits symplectic resolution $X \rightarrow C^{4} / G$
- X is a new Kummer symplectic 4 -fold
- The Poincare polynomial of X is the same as of Hill 2 of K3

$$
1+23 t^{2}+276 t^{4}+23 t^{6}+t^{8}
$$

