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10 faces of RAP

This polytope comes with different names
(according to Wikipedia):

Dispentachoron
Rectified 5-cell
Rectified pentachoron [RAP]
Rectified 4-simplex
Ambopentachoron
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3 dimensional simplex
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4 dimensional simplex
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5 simplicial faces of RAP
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5 octahedral faces of RAP
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P2 blown up at 4 points

We consider a surface P2
4 obtained by blowing up the complex

plane P2 at generic 4 points.

P2
4 has 6 more (−1) curves which come from the lines passing

through the pairs of points which we blow up.
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P2 blown up at 4 points

• •

••
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P2 blown up at 4 points

• •

••

F01 F02

F03 F04
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P2 blown up at 4 points

• •

••

F01 F02

F03 F04

F34

F12

F24 F13

F14

F23
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incidence of lines

•
F01

•
F02

•
F12

•
F14

•
F04

•
F23

•
F13

•
F34

•
F03

•
F24

(−1)-curve are dots, incidence denoted by line segments;
result: Petersen graph.
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divisors on P2
4

Consider 5-dimensional R-vector space N with a basis
e0, . . . ,e4. For 0 ≤ i < j ≤ 4 we set fij = (ei + ej)/2.

we can identify N := Pic(P2
4)⊗ R with fij classes of

(−1)-curves
the cone of effective divisors Eff(P2

4) =
∑

i,j R≥0 · fij has 5
simplicial facets associated to contractions to P2,
the total coordinate ring

RP2
4

=
⊕

[D]∈PicP2
4

Γ(P2
4,O(D))

is generated by the sections xij associated to fij ’s and

RP2
4

= C[xij : 0 ≤ i < j ≤ 4]/(xpqxrs − xpr xqs + xpsxqr )

(the relations come from octahedral faces of RAP)
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algebraic torus action and Zr grading

Suppose that
R =

⊕
µ∈Zr

Γµ

is a graded finitely generteed C-algebra, which means that

Γµ · Γµ′ ⊂ Γµ+µ
′

Then the algebraic torus T = (C∗)r with coordinates
t = (t1, . . . tr ) acts on R:

T× Γµ 3 (t , f ) −→ tµ1
1 · · · t

µr
r · f

Γµ are eigenspaces of the action of T; in particular Γ0 is the
space of invariants of the action
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Mumford’s Geometric Invariant Theory

For f ∈ Γµ we take invariant fractions

R0
f = {u/f m : m ≥ 0,u ∈ mµ}

then R0
f defines a more refined set of orbits of action of T.

Idea: given the ideal I = (f1, . . . fs) / R generated by
homogeneous fj ∈ Γµ

j
the sets associated to R0

f for
homogeneous f ∈ I can be patched together to form a space of
orbits.

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions
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GIT for P2
4

Take the ring
RP2

4
=

⊕
[D]∈PicP2

4

Γ(P2
4,O(D))

and for a divisor D ∈ Eff(P2
4) take

I =
√

(Γ(X ,O(mD)) : m� 0)

The GIT quotient of the ring RP2
4

depends on the choice of the
divisor D.
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76 chambers

The Mumford quotient depends on the choice of [D] ∈ Eff(P2
4).

In fact Eff(P2
4) is divided by hyperplanes into 76 chambers

which are associated to different quotients

isomorphism class of quotient number of chambers

P2
4 one, Nef(P2

4)

P2
3 ten

P2
2 thirty

P2
1 twenty

P2 five [→ simplicial facets Eff(P2
4)]

P1 × P1 ten
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halftime summary

take a projective variety X such that Pic(X ) = Zr ,
e.g. X = P2

4

construct its total coordinate ring

RX =
⊕

[D]∈Pic(X)

Γ(X ,O(D))

suppose RX is finitely generated C-algebra
the grading in Pic(X ) determines an action of a torus T
Mumford’s GIT allows to recover X as a quotient of RX by
the action of T; same concerns some birational
modifications of X
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the reflections

Let V be a 4-dimensional C vector space with coordinates
(x1, . . . , x4) and the symplectic form dx1 ∧ dx3 + dx2 ∧ dx4.

The following reflections preserve this form
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the reflections

T0 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1
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the reflections

T1 =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0
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the reflections

T2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
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the reflections

T3 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0
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the reflections

T4 =


0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0
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the group

The group G generated by reflections T0, . . . ,T4 has 32
elements in 17 conjugacy clases:

[I] and [−I]
5 classses of reflection ±Ti

10 classes of ± elements of order 4
Moreover [G,G] = 〈−I〉 and Ab(G) = G/[G,G] = Z4

2
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the group

The group G generated by reflections T0, . . . ,T4 has 32
elements in 17 conjugacy clases:

[I] and [−I]
5 classses of reflection ±Ti

10 classes of ± elements of order 4
Moreover [G,G] = 〈−I〉 and Ab(G) = G/[G,G] = Z4

2

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions
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quotient and resolution

Bellamy and Schedler: there exists a symplectic resolution
X of V/G (non-constructive proof following Namikawa and
Ginzburg-Kaledin smoothing)
Kaledin: the resolution should have 5 divisors contracted to
5 surfaces of A1 singularities and one exceptional fiber with
11 components of dimension 2 (McKay correspondence)
Wierzba and W: all resolutions of V/G differ by Mukai flops
(P2 flopped to its dual)
Andreatta and W, Namikawa: resolutions are parametrized
by chambers in a simplicial cone Mov(X ) ⊂ Pic(X )⊗ R
(divided by hyperplanes)
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the action of Ab(G) on V/[G,G]

The ring of invariants of [G,G] = 〈−I〉 is generated by quadratic
forms, S2V ∗. The quadratic invariants decompose into ±1
eigenspaces of Ab(G):

eigenfunction T0 T1 T2 T3 T4
φ01 = −2(x1x4 + x2x3) − − + + +

φ02 = 2
√
−1(−x1x4 + x2x3) − + − + +

φ03 = 2
√
−1(x1x2 + x3x4) − + + − +

φ04 = 2(−x1x2 + x3x4) − + + + −
φ12 = 2(x1x3 − x2x4) + − − + +
φ13 = −x2

1 − x2
2 + x2

3 + x2
4 + − + − +

φ14 =
√
−1(x2

1 + x2
2 + x2

3 + x2
4 ) + − + + −

φ23 =
√
−1(−x2

1 + x2
2 − x2

3 + x2
4 ) + + − − +

φ24 = x2
1 − x2

2 − x2
3 + x2

4 + + − + −
φ34 = 2(x1x3 + x2x4) + + + − −
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the action of Ab(G) on V/[G,G]

The ring of invariants of [G,G] = 〈−I〉 is generated by quadratic
forms, S2V ∗. The quadratic invariants decompose into ±1
eigenspaces of Ab(G):

eigenfunction T0 T1 T2 T3 T4
φ01 = −2(x1x4 + x2x3) − − + + +

φ02 = 2
√
−1(−x1x4 + x2x3) − + − + +

φ03 = 2
√
−1(x1x2 + x3x4) − + + − +

φ04 = 2(−x1x2 + x3x4) − + + + −
φ12 = 2(x1x3 − x2x4) + − − + +
φ13 = −x2

1 − x2
2 + x2

3 + x2
4 + − + − +

φ14 =
√
−1(x2

1 + x2
2 + x2

3 + x2
4 ) + − + + −

φ23 =
√
−1(−x2

1 + x2
2 − x2

3 + x2
4 ) + + − − +

φ24 = x2
1 − x2

2 − x2
3 + x2

4 + + − + −
φ34 = 2(x1x3 + x2x4) + + + − −

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions



S2V ∗ ' Λ2W ∗

The labeling of functions φrs indicates an isomorphism between
S2V ∗ and Λ2W ∗ where W is a 5-dimensional space with
coordinates t0, . . . t4:

Fij ↔ ti ∧ tj

Let TW the standard torus of W with characters t0, . . . , t4. The
homomorphism Hom(TW ,C∗) = Z5 −→ Ab(G) = Hom(G,C∗)
which sends ti to the class of Ti agrees with the isomorphism
S2V ∗ ' Λ2W ∗.
That is, we have a homomorphism G→ TW which makes
S2V ∗ ' Λ2W ∗ equivariant.
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ring RG

We define a subring RG in

C[V ]⊗ C[TW ] = C[x1, x2, x3, x4, t±1
0 , t±1

1 , t±1
2 , t±1

3 , t±1
4 ]

generated by
φij · ti · tj for 0 ≤ i < j ≤ 4

t−2
i for i = 0, . . . ,4

RG admits the natural torus action of TW
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total coordinate ring

C[V ]G ' RTW
G

some GIT quotients of SpecRG are smooth and provide
desingularisation of SpecC[V ]G

RG is the total coordinate ring of one (hence every)
symplectic desingularisation of V/G
The functions t−2

i ∈ RG are associated to exceptional
divisors of the resolution of V/G.
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trinomial relations

The functions φij satisfy the following trinomial relations

φ14φ23 + φ13φ24 − φ12φ34 = 0
φ04φ23 − φ03φ24 − φ02φ34 = 0
φ04φ13 + φ03φ14 − φ01φ34 = 0
φ04φ12 − φ02φ14 − φ01φ24 = 0
φ03φ12 + φ02φ13 − φ01φ23 = 0

Hence some GIT quotients of SpecRG contain P2
4 as a

component of the 2-dimensional fiber.
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the incidence of components – central chamber

•
F01

•
F02

•
F12

•
F14

•
F04

•
F23

•
F13

•
F34

•
F03

•
F24

F
F0

F0 = P2
4, Fij = P2, solid (dotted) lines = intersection in lines (pts)
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first flop, 10 chambers

•
F01

•
F02

N
F12

•
F14

•
F04

N
F23

N
F13

•
F34

•
F03

•
F24

F
F0

here F0 = P2
3, and • = P2, N = P2

1
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second flop, 30 chambers

•
F01

•
F02

�
F12

N
F14

•
F04

N
F23

N
F13

•
F34

•
F03

N
F24

F
F0

here F0 = P2
2, and • = P2, N = P2

1, � = P2
2
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third flop, first option, 10 chambers

N
F01

N
F02

♠
F12

N
F14

•
F04

N
F23

N
F13

•
F34

•
F03

N
F24

F
F0

F0 = P1 × P1, N = P2
1, and ♠ = P2 blown up in 3 collinear pts
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third flop, second option, 20 chambers

•
F01

•
F02

�
F12

�
F14

•
F04

N
F23

�
F13

N
F34

•
F03

N
F24

F
F0

here F0 = P2
1, and • = P2, N = P2

1, � = P2
2

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions



fourth flop, 5 chambers

•
F01

•
F02

�
F12

�
F14

•
F04

�
F23

�
F13

�
F34

•
F03

�
F24

F
F0

here F0 = P2, and • = P2, N = P2
1, � = P2

2
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fourth flop, 5 outer chambers

N
F01

N
F02

�
F12

�
F14

N
F04

�
F23

�
F13

�
F34

N
F03

�
F24

F
F0

here F0 = (P2)∨, and N = P2
1, � = P1 × P1
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the structure of the outer resolution

N
F01 N

F02

�
F12

�
F14

N
F04

�
F23

�
F13

�
F34

N
F03

�
F24

F
F0

and the associated incidence on (P2)∨:

F04F01 F03

F02
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summary

take a finite group G which acts on a vector space V
preserving a symplectic form
the ring of invariants C[V ]G defines quotient singularity
V/G
we can find a ring R with and action of a torus T such that
RT = C[V ]G

GIT quotients of SpecR yield all resolutions of the
singularity V/G
Construction of Cox rings for resolutions of quotient
singularities was done by Facchini, Gonzáles-Alonso,
Lasoń (DuVal case) and Donten-Bury (general)
Bellamy got the number 81 using smoothing
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construction of Cox ring of symplectic resolutions

Suppose that ϕ : X → V/G is a resolution with exceptional
divisor

∑
i Ei .

Cox ring of V/G is C[V ][G,G] =
⊕

CG
µ with µ ∈ G∨

(Arzhantsev-Gizakulin)
The push-forward map of Cox rings ϕ∗ : R(X )→ C[V ][G,G]

is a homommorphism of graded C[V ]G-algebras and for
every [D] ∈ Pic X it makes Γ(X ,OX (D)) a submodule of
Γ(V/G,O(ϕ∗D))

Idea: use monomial valuations (Kaledin) to recover
Γ(X ,OX (D)) ↪→ Γ(V/G,O(ϕ∗D)) and reconstruct R(X )
from C[V ][G,G].
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construction of Cox ring of symplectic resolutions

Suppose that ϕ : X → V/G is a resolution with exceptional
divisor

∑
i Ei .

Cox ring of V/G is C[V ][G,G] =
⊕

CG
µ with µ ∈ G∨

(Arzhantsev-Gizakulin)
The push-forward map of Cox rings ϕ∗ : R(X )→ C[V ][G,G]

is a homommorphism of graded C[V ]G-algebras and for
every [D] ∈ Pic X it makes Γ(X ,OX (D)) a submodule of
Γ(V/G,O(ϕ∗D))

Idea: use monomial valuations (Kaledin) to recover
Γ(X ,OX (D)) ↪→ Γ(V/G,O(ϕ∗D)) and reconstruct R(X )
from C[V ][G,G].

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions



Plan

1 Classical geometry

2 81 resolutions

3 A Kummer 4-fold (with MD-B and G. Kapustka)
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more reflections

The group G can be presented as generated by another set of
reflections in Sp(4,Z[i])
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more reflections

T0 =


1 0 0 0
0 −1 0 0
0 −1 + i 1 0

1− i 0 0 −1
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more reflections

T1 =


1 0 0 −1− i
0 −1 1 + i 0
0 0 1 0
0 0 0 −1
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more reflections

T2 =


1 −1 + i 0 −1− i

−1− i −1 1 + i 0
0 −1 + i 1 −1− i

1− i 0 −1 + i −1
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more reflections

T3 =


i 0 0 1− i

1− i −i −1 + i 0
0 −1− i i 1− i

1 + i 0 0 −i
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more reflections

T4 =


i −1− i 0 1− i
0 −i −1 + i 0
0 −1− i i 0

1 + i 0 −1− i −i
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new Kummer

Consider the action of G on C4 where C is an elliptic curve
admitting complex multiplication by i

The reflections have fixed points consisting of 40
components.
256 points which are of order two on C4 have bigger
isotropy:

16 have isotropy = G
240 have isotropy Z2 × Z2

C4/G admits symplectic resolution X → C4/G
X is a new Kummer symplectic 4-fold
The Poincare polynomial of X is the same as of Hilb2 of K3

1 + 23t2 + 276t4 + 23t6 + t8

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions
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