On 81 symplectic resolutions of a 4-dimensional quotient by a group of order 32

Maria Donten-Bury and J. A. Wiśniewski ongoing joint project

Uniwersytet Warszawski

July 2014

ヘロト ヘアト ヘビト ヘビト

ъ

2 81 resolutions

3 A Kummer 4-fold (with MD-B and G. Kapustka)

<ロ> (日) (日) (日) (日) (日)

This polytope comes with different names (according to Wikipedia):

- Dispentachoron
- Rectified 5-cell
- Rectified pentachoron [RAP]
- Rectified 4-simplex
- Ambopentachoron

ヘロト ヘアト ヘビト ヘビト

3 dimensional simplex

æ

4 dimensional simplex

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

vertices of RAP

5 simplicial faces of RAP

5 octahedral faces of RAP

We consider a surface \mathbb{P}_4^2 obtained by blowing up the complex plane \mathbb{P}^2 at generic 4 points.

 \mathbb{P}_4^2 has 6 more (-1) curves which come from the lines passing through the pairs of points which we blow up.

- We consider a surface \mathbb{P}_4^2 obtained by blowing up the complex plane \mathbb{P}^2 at generic 4 points.
- \mathbb{P}_4^2 has 6 more (-1) curves which come from the lines passing through the pairs of points which we blow up.

• •

<ロト <回 > < 注 > < 注 > 、

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

ヘロト 人間 とくほとく ほとう

æ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

incidence of lines

(-1)-curve are dots, incidence denoted by line segments; result: Petersen graph.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Consider 5-dimensional \mathbb{R} -vector space *N* with a basis e_0, \ldots, e_4 . For $0 \le i < j \le 4$ we set $f_{ij} = (e_i + e_j)/2$.

- we can identify N := Pic(P₄²) ⊗ ℝ with f_{ij} classes of (-1)-curves
- the cone of effective divisors Eff(P₄²) = ∑_{i,j} ℝ_{≥0} · f_{ij} has 5 simplicial facets associated to contractions to P²,
- the total coordinate ring

$$\mathcal{R}_{\mathbb{P}^2_4} = \bigoplus_{[D] \in \operatorname{Pic} \mathbb{P}^2_4} \Gamma(\mathbb{P}^2_4, \mathcal{O}(D))$$

is generated by the sections x_{ii} associated to f_{ii} 's and

 $\mathcal{R}_{\mathbb{P}^2_4} = \mathbb{C}[x_{ij}: 0 \le i < j \le 4] / (x_{pq}x_{rs} - x_{pr}x_{qs} + x_{ps}x_{qr})$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Consider 5-dimensional \mathbb{R} -vector space *N* with a basis e_0, \ldots, e_4 . For $0 \le i < j \le 4$ we set $f_{ij} = (e_i + e_j)/2$.

- we can identify N := Pic(ℙ₄²) ⊗ ℝ with f_{ij} classes of (-1)-curves
- the cone of effective divisors Eff(P₄²) = ∑_{i,j} ℝ_{≥0} · f_{ij} has 5 simplicial facets associated to contractions to P²,
- the total coordinate ring

$$\mathcal{R}_{\mathbb{P}^2_4} = igoplus_{[D] \in \mathsf{Pic} \, \mathbb{P}^2_4} \Gamma(\mathbb{P}^2_4, \mathcal{O}(D))$$

is generated by the sections x_{ij} associated to f_{ij} 's and

$$\mathcal{R}_{\mathbb{P}^2_4} = \mathbb{C}[x_{ij}: 0 \le i < j \le 4] / (x_{pq}x_{rs} - x_{pr}x_{qs} + x_{ps}x_{qr})$$

御 と く ヨ と く ヨ と … ヨ

Consider 5-dimensional \mathbb{R} -vector space *N* with a basis e_0, \ldots, e_4 . For $0 \le i < j \le 4$ we set $f_{ij} = (e_i + e_j)/2$.

- we can identify N := Pic(ℙ₄²) ⊗ ℝ with f_{ij} classes of (−1)-curves
- the cone of effective divisors Eff(P₄²) = ∑_{i,j} ℝ_{≥0} · f_{ij} has 5 simplicial facets associated to contractions to P²,
- the total coordinate ring

$$\mathcal{R}_{\mathbb{P}^2_4} = igoplus_{[D] \in \mathsf{Pic} \, \mathbb{P}^2_4} \Gamma(\mathbb{P}^2_4, \mathcal{O}(D))$$

is generated by the sections x_{ij} associated to f_{ij} 's and

$$\mathcal{R}_{\mathbb{P}^2_4} = \mathbb{C}[x_{ij}: 0 \le i < j \le 4] / (x_{pq}x_{rs} - x_{pr}x_{qs} + x_{ps}x_{qr})$$

御 と く ヨ と く ヨ と … ヨ

Consider 5-dimensional \mathbb{R} -vector space *N* with a basis e_0, \ldots, e_4 . For $0 \le i < j \le 4$ we set $f_{ij} = (e_i + e_j)/2$.

- we can identify N := Pic(ℙ₄²) ⊗ ℝ with f_{ij} classes of (−1)-curves
- the cone of effective divisors Eff(P₄²) = ∑_{i,j} ℝ_{≥0} · f_{ij} has 5 simplicial facets associated to contractions to P²,
- the total coordinate ring

$$\mathcal{R}_{\mathbb{P}^2_4} = igoplus_{[D] \in \mathsf{Pic} \, \mathbb{P}^2_4} \mathsf{\Gamma}(\mathbb{P}^2_4, \mathcal{O}(D))$$

is generated by the sections x_{ij} associated to f_{ij} 's and

$$\mathcal{R}_{\mathbb{P}^2_4} = \mathbb{C}[x_{ij}: 0 \le i < j \le 4]/(x_{pq}x_{rs} - x_{pr}x_{qs} + x_{ps}x_{qr})$$

algebraic torus action and \mathbb{Z}^r grading

Suppose that

$$\mathcal{R} = igoplus_{\mu \in \mathbb{Z}^r} \mathsf{\Gamma}^\mu$$

is a graded finitely generteed $\mathbb{C}\text{-algebra},$ which means that

$$\Gamma^{\mu}\cdot\Gamma^{\mu'}\subset\Gamma^{\mu+\mu'}$$

Then the algebraic torus $\mathbb{T} = (\mathbb{C}^*)^r$ with coordinates $t = (t_1, \dots, t_r)$ acts on \mathcal{R} :

$$\mathbb{T} imes \Gamma^{\mu}
i (t, f) \longrightarrow t_1^{\mu_1} \cdots t_r^{\mu_r} \cdot f$$

イロン 不良 とくほう 不良 とうほ

 Γ^{μ} are eigenspaces of the action of \mathbb{T} ; in particular Γ^{0} is the space of invariants of the action

algebraic torus action and \mathbb{Z}^r grading

Suppose that

$$\mathcal{R} = igoplus_{\mu \in \mathbb{Z}^r} \mathsf{\Gamma}^\mu$$

is a graded finitely generteed $\mathbb C\text{-algebra},$ which means that

$$\Gamma^{\mu}\cdot\Gamma^{\mu'}\subset\Gamma^{\mu+\mu'}$$

Then the algebraic torus $\mathbb{T} = (\mathbb{C}^*)^r$ with coordinates $t = (t_1, \dots, t_r)$ acts on \mathcal{R} :

$$\mathbb{T} \times \Gamma^{\mu} \ni (t, f) \longrightarrow t_1^{\mu_1} \cdots t_r^{\mu_r} \cdot f$$

イロン 不良 とくほう 不良 とうほ

 Γ^{μ} are eigenspaces of the action of \mathbb{T} ; in particular Γ^{0} is the space of invariants of the action

algebraic torus action and \mathbb{Z}^r grading

Suppose that

$$\mathcal{R} = igoplus_{\mu \in \mathbb{Z}^r} \mathsf{\Gamma}^\mu$$

is a graded finitely generteed $\mathbb C\text{-algebra},$ which means that

$$\Gamma^{\mu}\cdot\Gamma^{\mu'}\subset\Gamma^{\mu+\mu'}$$

Then the algebraic torus $\mathbb{T} = (\mathbb{C}^*)^r$ with coordinates $t = (t_1, \dots, t_r)$ acts on \mathcal{R} :

$$\mathbb{T} \times \Gamma^{\mu} \ni (t, f) \longrightarrow t_1^{\mu_1} \cdots t_r^{\mu_r} \cdot f$$

・ロト ・ 理 ト ・ ヨ ト ・

 Γ^{μ} are eigenspaces of the action of \mathbb{T} ; in particular Γ^{0} is the space of invariants of the action

For $f \in \Gamma^{\mu}$ we take invariant fractions

$$\mathcal{R}_f^0 = \{ u/f^m : m \ge 0, u \in m\mu \}$$

then \mathcal{R}_{f}^{0} defines a more refined set of orbits of action of \mathbb{T} .

Idea: given the ideal $I = (f_1, \ldots, f_s) \triangleleft \mathcal{R}$ generated by homogeneous $f_j \in \Gamma^{\mu^j}$ the sets associated to \mathcal{R}_f^0 for homogeneous $f \in I$ can be patched together to form a space of orbits.

A (1) > A (2) > A

For $f \in \Gamma^{\mu}$ we take invariant fractions

$$\mathcal{R}_f^0 = \{ u/f^m : m \ge 0, u \in m\mu \}$$

then \mathcal{R}^0_f defines a more refined set of orbits of action of \mathbb{T} .

Idea: given the ideal $I = (f_1, \ldots, f_s) \triangleleft \mathcal{R}$ generated by homogeneous $f_j \in \Gamma^{\mu^j}$ the sets associated to \mathcal{R}_f^0 for homogeneous $f \in I$ can be patched together to form a space of orbits.

Take the ring

$$\mathcal{R}_{\mathbb{P}^2_4} = \bigoplus_{[D] \in \mathsf{Pic} \, \mathbb{P}^2_4} \Gamma(\mathbb{P}^2_4, \mathcal{O}(D))$$

and for a divisor $D \in \mathsf{Eff}(\mathbb{P}^2_4)$ take

$$I = \sqrt{(\Gamma(X, \mathcal{O}(mD)) : m \gg 0)}$$

The GIT quotient of the ring $\mathcal{R}_{\mathbb{P}^2_4}$ depends on the choice of the divisor *D*.

・ロト ・聞 ト ・ ヨト ・ ヨト

Take the ring

$$\mathcal{R}_{\mathbb{P}^2_4} = \bigoplus_{[D] \in \mathsf{Pic} \, \mathbb{P}^2_4} \Gamma(\mathbb{P}^2_4, \mathcal{O}(D))$$

and for a divisor $D \in \mathsf{Eff}(\mathbb{P}^2_4)$ take

$$I = \sqrt{(\Gamma(X, \mathcal{O}(mD)) : m \gg 0)}$$

The GIT quotient of the ring $\mathcal{R}_{\mathbb{P}^2_4}$ depends on the choice of the divisor *D*.

▲口 > ▲圖 > ▲ 国 > ▲ 国 > .

ъ

The Mumford quotient depends on the choice of $[D] \in Eff(\mathbb{P}_4^2)$.

In fact $\operatorname{Eff}(\mathbb{P}^2_4)$ is divided by hyperplanes into 76 chambers which are associated to different quotients

isomorphism class of quotient number of chamber

\mathbb{P}^2_4	one, $Nef(\mathbb{P}_4^2)$
	ten
\mathbb{P}_2^2	thirty
\mathbb{P}^2_1	twenty
	five $[\rightarrow \text{ simplicial facets Eff}(\mathbb{P}^2_4)]$
$\mathbb{P}^1 imes \mathbb{P}^1$	ten

< □ > < 同 > < 三 > <

The Mumford quotient depends on the choice of $[D] \in Eff(\mathbb{P}_4^2)$.

In fact $\text{Eff}(\mathbb{P}_4^2)$ is divided by hyperplanes into 76 chambers which are associated to different quotients

isomorphism class of quotient

\mathbb{P}_4^2	one, $Nef(\mathbb{P}^2_4)$
\mathbb{P}_3^2	ten
\mathbb{P}_2^2	thirty
\mathbb{P}_1^2	twenty
\mathbb{P}^2	five [\rightarrow simplicial facets Eff(\mathbb{P}_4^2)]
$\mathbb{P}^1\times\mathbb{P}^1$	ten

number of chambers

< ロ > < 同 > < 三 >

- take a projective variety X such that Pic(X) = Z^r,
 e.g. X = P²₄
- construct its total coordinate ring

$$\mathcal{R}_X = \bigoplus_{[D] \in \operatorname{Pic}(X)} \Gamma(X, \mathcal{O}(D))$$

suppose \mathcal{R}_X is finitely generated \mathbb{C} -algebra

- the grading in Pic(X) determines an action of a torus T
- Mumford's GIT allows to recover X as a quotient of R_X by the action of T; same concerns some birational modifications of X

< □ > < 同 > < 三 > <

- take a projective variety X such that Pic(X) = Z^r,
 e.g. X = P²₄
- construct its total coordinate ring

$$\mathcal{R}_X = \bigoplus_{[D] \in \mathsf{Pic}(X)} \Gamma(X, \mathcal{O}(D))$$

suppose \mathcal{R}_X is finitely generated \mathbb{C} -algebra

- the grading in Pic(X) determines an action of a torus T
- Mumford's GIT allows to recover X as a quotient of R_X by the action of T; same concerns some birational modifications of X

- take a projective variety X such that Pic(X) = Z^r,
 e.g. X = P²₄
- construct its total coordinate ring

$$\mathcal{R}_X = \bigoplus_{[D] \in \mathsf{Pic}(X)} \Gamma(X, \mathcal{O}(D))$$

suppose \mathcal{R}_X is finitely generated \mathbb{C} -algebra

- the grading in Pic(X) determines an action of a torus T
- Mumford's GIT allows to recover X as a quotient of R_X by the action of T; same concerns some birational modifications of X

- take a projective variety X such that Pic(X) = Z^r,
 e.g. X = P²₄
- construct its total coordinate ring

$$\mathcal{R}_X = \bigoplus_{[D] \in \mathsf{Pic}(X)} \Gamma(X, \mathcal{O}(D))$$

suppose \mathcal{R}_X is finitely generated \mathbb{C} -algebra

- the grading in Pic(X) determines an action of a torus T
- Mumford's GIT allows to recover X as a quotient of R_X by the action of T; same concerns some birational modifications of X

3 A Kummer 4-fold (with MD-B and G. Kapustka)

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

Let *V* be a 4-dimensional \mathbb{C} vector space with coordinates (x_1, \ldots, x_4) and the symplectic form $dx_1 \wedge dx_3 + dx_2 \wedge dx_4$. The following reflections preserve this form

æ

$$T_0 = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)$$

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

・ロト ・聞ト ・ヨト ・ヨト
$$T_1 = \left(\begin{array}{rrrrr} 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{array}\right)$$

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

$$T_2 = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

$$T_3 = \left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

・ロト ・聞ト ・ヨト ・ヨト

$$T_4 = \left(\begin{array}{rrrr} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{array}\right)$$

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

● [*I*] and [−*I*]

• 5 classses of reflection $\pm T_i$

• 10 classes of \pm elements of order 4

Moreover $[G, G] = \langle -I \rangle$ and $Ab(G) = G/[G, G] = \mathbb{Z}_2^4$

- [/] and [-/]
- 5 classses of reflection $\pm T_i$
- 10 classes of \pm elements of order 4

Moreover $[G, G] = \langle -I \rangle$ and $Ab(G) = G/[G, G] = \mathbb{Z}_2^4$

- [/] and [-/]
- 5 classses of reflection $\pm T_i$
- 10 classes of \pm elements of order 4

Moreover $[G, G] = \langle -I \rangle$ and $Ab(G) = G/[G, G] = \mathbb{Z}_2^4$

- [/] and [-/]
- 5 classses of reflection $\pm T_i$
- 10 classes of ± elements of order 4

Moreover $[G, G] = \langle -I \rangle$ and $Ab(G) = G/[G, G] = \mathbb{Z}_2^4$

- [/] and [-/]
- 5 classses of reflection $\pm T_i$
- 10 classes of \pm elements of order 4

Moreover $[G, G] = \langle -I \rangle$ and $Ab(G) = G/[G, G] = \mathbb{Z}_2^4$

- Bellamy and Schedler: there exists a symplectic resolution X of V/G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A₁ singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)
- Wierzba and W: all resolutions of V/G differ by Mukai flops (\mathbb{P}^2 flopped to its dual)
- Andreatta and W, Namikawa: resolutions are parametrized by chambers in a simplicial cone Mov(X) ⊂ Pic(X) ⊗ ℝ (divided by hyperplanes)

ヘロト ヘアト ヘビト ヘビト

- Bellamy and Schedler: there exists a symplectic resolution X of V/G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A₁ singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)
- Wierzba and W: all resolutions of V/G differ by Mukai flops (P² flopped to its dual)
- Andreatta and W, Namikawa: resolutions are parametrized by chambers in a simplicial cone Mov(X) ⊂ Pic(X) ⊗ ℝ (divided by hyperplanes)

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

- Bellamy and Schedler: there exists a symplectic resolution X of V/G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A₁ singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)
- Wierzba and W: all resolutions of V/G differ by Mukai flops (\mathbb{P}^2 flopped to its dual)
- Andreatta and W, Namikawa: resolutions are parametrized by chambers in a simplicial cone Mov(X) ⊂ Pic(X) ⊗ ℝ (divided by hyperplanes)

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

- Bellamy and Schedler: there exists a symplectic resolution X of V/G (non-constructive proof following Namikawa and Ginzburg-Kaledin smoothing)
- Kaledin: the resolution should have 5 divisors contracted to 5 surfaces of A₁ singularities and one exceptional fiber with 11 components of dimension 2 (McKay correspondence)
- Wierzba and W: all resolutions of V/G differ by Mukai flops (\mathbb{P}^2 flopped to its dual)
- Andreatta and W, Namikawa: resolutions are parametrized by chambers in a simplicial cone Mov(X) ⊂ Pic(X) ⊗ ℝ (divided by hyperplanes)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

the action of Ab(G) on V/[G, G]

The ring of invariants of $[G, G] = \langle -I \rangle$ is generated by quadratic forms, $S^2 V^*$. The quadratic invariants decompose into ± 1 eigenspaces of Ab(G):

ヘロト ヘ戸ト ヘヨト ヘヨト

the action of Ab(G) on V/[G, G]

The ring of invariants of $[G, G] = \langle -I \rangle$ is generated by quadratic forms, $S^2 V^*$. The quadratic invariants decompose into ± 1 eigenspaces of Ab(G):

イロト イポト イヨト イヨト

the action of Ab(G) on V/[G, G]

The ring of invariants of $[G, G] = \langle -I \rangle$ is generated by quadratic forms, $S^2 V^*$. The quadratic invariants decompose into ± 1 eigenspaces of Ab(G):

	eigenfunction	T_0	T_1	T_2	T_3	T_4
$\phi_{01} =$	$-2(x_1x_4+x_2x_3)$	_	_	+	+	+
$\phi_{02} =$	$2\sqrt{-1}(-x_1x_4+x_2x_3)$	_	+	_	+	+
$\phi_{03} =$	$2\sqrt{-1}(x_1x_2+x_3x_4)$	_	+	+	_	+
$\phi_{04} =$	$2(-x_1x_2+x_3x_4)$	_	+	+	+	_
$\phi_{12} =$	$2(x_1x_3 - x_2x_4)$	+	_	_	+	+
$\phi_{13} =$	$-x_1^2 - x_2^2 + x_3^2 + x_4^2$	+	_	+	_	+
$\phi_{14} =$	$\sqrt{-1}(x_1^2 + x_2^2 + x_3^2 + x_4^2)$	+	_	+	+	_
$\phi_{23} =$	$\sqrt{-1}(-x_1^2+x_2^2-x_3^2+x_4^2)$	+	+	_	_	+
$\phi_{24} =$	$x_1^2 - x_2^2 - x_3^2 + x_4^2$	+	+	_	+	_
$\phi_{34} =$	$2(x_1x_3 + x_2x_4)$	+	+	+	_	_

・ロン・(理)・ ・ ヨン・

3

The labeling of functions ϕ_{rs} indicates an isomorphism between $S^2 V^*$ and $\Lambda^2 W^*$ where W is a 5-dimensional space with coordinates $t_0, \ldots t_4$:

 $F_{ij} \leftrightarrow t_i \wedge t_j$

Let \mathbb{T}_W the standard torus of W with characters t_0, \ldots, t_4 . The homomorphism $\text{Hom}(\mathbb{T}_W, \mathbb{C}^*) = \mathbb{Z}^5 \longrightarrow Ab(G) = \text{Hom}(G, \mathbb{C}^*)$ which sends t_i to the class of T_i agrees with the isomorphism $S^2 V^* \simeq \Lambda^2 W^*$.

ヘロト 人間 とくほとく ほとう

3

That is, we have a homomorphism $G \to \mathbb{T}_W$ which makes $S^2 V^* \simeq \Lambda^2 W^*$ equivariant.

The labeling of functions ϕ_{rs} indicates an isomorphism between $S^2 V^*$ and $\Lambda^2 W^*$ where W is a 5-dimensional space with coordinates $t_0, \ldots t_4$:

$$F_{ij} \leftrightarrow t_i \wedge t_j$$

Let \mathbb{T}_W the standard torus of W with characters t_0, \ldots, t_4 . The homomorphism $\text{Hom}(\mathbb{T}_W, \mathbb{C}^*) = \mathbb{Z}^5 \longrightarrow Ab(G) = \text{Hom}(G, \mathbb{C}^*)$ which sends t_i to the class of T_i agrees with the isomorphism $S^2 V^* \simeq \Lambda^2 W^*$.

That is, we have a homomorphism $G \to \mathbb{T}_W$ which makes $S^2 V^* \simeq \Lambda^2 W^*$ equivariant.

The labeling of functions ϕ_{rs} indicates an isomorphism between $S^2 V^*$ and $\Lambda^2 W^*$ where W is a 5-dimensional space with coordinates $t_0, \ldots t_4$:

$$F_{ij} \leftrightarrow t_i \wedge t_j$$

Let \mathbb{T}_W the standard torus of W with characters t_0, \ldots, t_4 . The homomorphism $\text{Hom}(\mathbb{T}_W, \mathbb{C}^*) = \mathbb{Z}^5 \longrightarrow Ab(G) = \text{Hom}(G, \mathbb{C}^*)$ which sends t_i to the class of T_i agrees with the isomorphism $S^2 V^* \simeq \Lambda^2 W^*$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

That is, we have a homomorphism $G \to \mathbb{T}_W$ which makes $S^2 V^* \simeq \Lambda^2 W^*$ equivariant.

We define a subring \mathcal{R}_{G} in

$$\mathbb{C}[V] \otimes \mathbb{C}[\mathbb{T}_W] = \mathbb{C}[x_1, x_2, x_3, x_4, t_0^{\pm 1}, t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}, t_4^{\pm 1}]$$

generated by

•
$$\phi_{ij} \cdot t_i \cdot t_j$$
 for $0 \le i < j \le 4$

•
$$t_i^{-2}$$
 for $i = 0, ..., 4$

 \mathcal{R}_G admits the natural torus action of \mathbb{T}_W

ヘロト 人間 とくほとくほとう

2

We define a subring \mathcal{R}_{G} in

$$\mathbb{C}[V] \otimes \mathbb{C}[\mathbb{T}_W] = \mathbb{C}[x_1, x_2, x_3, x_4, t_0^{\pm 1}, t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}, t_4^{\pm 1}]$$

generated by

•
$$\phi_{ij} \cdot t_i \cdot t_j$$
 for $0 \le i < j \le 4$

•
$$t_i^{-2}$$
 for $i = 0, ..., 4$

 \mathcal{R}_{G} admits the natural torus action of \mathbb{T}_{W}

・ロン・西方・ ・ ヨン・ ヨン・

■ のへで

• $\mathbb{C}[V]^G \simeq \mathcal{R}_G^{\mathbb{T}_W}$

- some GIT quotients of Spec R_G are smooth and provide desingularisation of Spec C[V]^G
- \mathcal{R}_G is the total coordinate ring of one (hence every) symplectic desingularisation of V/G
- The functions t_i⁻² ∈ R_G are associated to exceptional divisors of the resolution of V/G.

イロト イポト イヨト イヨト

- $\mathbb{C}[V]^G \simeq \mathcal{R}_G^{\mathbb{T}_W}$
- some GIT quotients of Spec *R_G* are smooth and provide desingularisation of Spec ℂ[*V*]^G
- \mathcal{R}_G is the total coordinate ring of one (hence every) symplectic desingularisation of V/G
- The functions t_i⁻² ∈ R_G are associated to exceptional divisors of the resolution of V/G.

イロト イポト イヨト イヨト 三日

- $\mathbb{C}[V]^G \simeq \mathcal{R}_G^{\mathbb{T}_W}$
- some GIT quotients of Spec R_G are smooth and provide desingularisation of Spec C[V]^G
- *R_G* is the total coordinate ring of one (hence every) symplectic desingularisation of *V/G*
- The functions t_i⁻² ∈ R_G are associated to exceptional divisors of the resolution of V/G.

イロト イポト イヨト イヨト 三日

- $\mathbb{C}[V]^G \simeq \mathcal{R}_G^{\mathbb{T}_W}$
- some GIT quotients of Spec *R_G* are smooth and provide desingularisation of Spec ℂ[*V*]^G
- \mathcal{R}_G is the total coordinate ring of one (hence every) symplectic desingularisation of V/G
- The functions t_i⁻² ∈ R_G are associated to exceptional divisors of the resolution of V/G.

ヘロン 人間 とくほ とくほ とう

The functions ϕ_{ij} satisfy the following trinomial relations

$$\begin{split} \phi_{14}\phi_{23} + \phi_{13}\phi_{24} - \phi_{12}\phi_{34} &= 0\\ \phi_{04}\phi_{23} - \phi_{03}\phi_{24} - \phi_{02}\phi_{34} &= 0\\ \phi_{04}\phi_{13} + \phi_{03}\phi_{14} - \phi_{01}\phi_{34} &= 0\\ \phi_{04}\phi_{12} - \phi_{02}\phi_{14} - \phi_{01}\phi_{24} &= 0\\ \phi_{03}\phi_{12} + \phi_{02}\phi_{13} - \phi_{01}\phi_{23} &= 0 \end{split}$$

Hence some GIT quotients of Spec \mathcal{R}_G contain \mathbb{P}_4^2 as a component of the 2-dimensional fiber.

ヘロト ヘアト ヘビト ヘビト

1

The functions ϕ_{ij} satisfy the following trinomial relations

$$\begin{split} \phi_{14}\phi_{23} + \phi_{13}\phi_{24} - \phi_{12}\phi_{34} &= 0\\ \phi_{04}\phi_{23} - \phi_{03}\phi_{24} - \phi_{02}\phi_{34} &= 0\\ \phi_{04}\phi_{13} + \phi_{03}\phi_{14} - \phi_{01}\phi_{34} &= 0\\ \phi_{04}\phi_{12} - \phi_{02}\phi_{14} - \phi_{01}\phi_{24} &= 0\\ \phi_{03}\phi_{12} + \phi_{02}\phi_{13} - \phi_{01}\phi_{23} &= 0 \end{split}$$

Hence some GIT quotients of Spec \mathcal{R}_G contain \mathbb{P}_4^2 as a component of the 2-dimensional fiber.

ヘロト ヘアト ヘビト ヘ

프 🕨 🗉 프

the incidence of components - central chamber

first flop, 10 chambers

second flop, 30 chambers

third flop, first option, 10 chambers

<ロ> (四) (四) (三) (三) (三)

third flop, second option, 20 chambers

fourth flop, 5 chambers

fourth flop, 5 outer chambers

the structure of the outer resolution

and the associated incidence on $(\mathbb{P}^2)^{\vee}$:

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

the structure of the outer resolution

and the associated incidence on $(\mathbb{P}^2)^{\vee}$:

- take a finite group *G* which acts on a vector space *V* preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^G$ defines quotient singularity V/G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}} = \mathbb{C}[V]^{G}$
- GIT quotients of Spec \mathcal{R} yield all resolutions of the singularity V/G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)

くロト (過) (目) (日)

- take a finite group *G* which acts on a vector space *V* preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^G$ defines quotient singularity V/G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}} = \mathbb{C}[V]^G$
- GIT quotients of Spec \mathcal{R} yield all resolutions of the singularity V/G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)

ヘロト 人間 ト ヘヨト ヘヨト

- take a finite group *G* which acts on a vector space *V* preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^G$ defines quotient singularity V/G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}} = \mathbb{C}[V]^{G}$
- GIT quotients of Spec \mathcal{R} yield all resolutions of the singularity V/G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)

ヘロン 人間 とくほ とくほ とう

- take a finite group *G* which acts on a vector space *V* preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^G$ defines quotient singularity V/G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}} = \mathbb{C}[V]^{G}$
- GIT quotients of Spec R yield all resolutions of the singularity V/G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)

ヘロン 人間 とくほ とくほ とう

- take a finite group *G* which acts on a vector space *V* preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^G$ defines quotient singularity V/G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}} = \mathbb{C}[V]^{G}$
- GIT quotients of Spec R yield all resolutions of the singularity V/G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- take a finite group *G* which acts on a vector space *V* preserving a symplectic form
- the ring of invariants $\mathbb{C}[V]^G$ defines quotient singularity V/G
- we can find a ring \mathcal{R} with and action of a torus \mathbb{T} such that $\mathcal{R}^{\mathbb{T}} = \mathbb{C}[V]^{G}$
- GIT quotients of Spec R yield all resolutions of the singularity V/G
- Construction of Cox rings for resolutions of quotient singularities was done by Facchini, Gonzáles-Alonso, Lasoń (DuVal case) and Donten-Bury (general)

ヘロン 人間 とくほ とくほ とう

э.

construction of Cox ring of symplectic resolutions

Suppose that $\varphi : X \to V/G$ is a resolution with exceptional divisor $\sum_i E_i$.

- Cox ring of V/G is $\mathbb{C}[V]^{[G,G]} = \bigoplus \mathbb{C}^G_\mu$ with $\mu \in G^{\vee}$ (Arzhantsev-Gizakulin)
- The push-forward map of Cox rings φ_{*} : R(X) → C[V]^[G,G] is a homommorphism of graded C[V]^G-algebras and for every [D] ∈ Pic X it makes Γ(X, O_X(D)) a submodule of Γ(V/G, O(φ_{*}D))
- Idea: use monomial valuations (Kaledin) to recover $\Gamma(X, \mathcal{O}_X(D)) \hookrightarrow \Gamma(V/G, \mathcal{O}(\varphi_*D))$ and reconstruct $\mathcal{R}(X)$ from $\mathbb{C}[V]^{[G,G]}$.

イロト イ団ト イヨト イヨト

construction of Cox ring of symplectic resolutions

Suppose that $\varphi : X \to V/G$ is a resolution with exceptional divisor $\sum_{i} E_{i}$.

- Cox ring of V/G is $\mathbb{C}[V]^{[G,G]} = \bigoplus \mathbb{C}^G_\mu$ with $\mu \in G^{\vee}$ (Arzhantsev-Gizakulin)
- The push-forward map of Cox rings φ_{*} : R(X) → C[V]^[G,G] is a homommorphism of graded C[V]^G-algebras and for every [D] ∈ Pic X it makes Γ(X, O_X(D)) a submodule of Γ(V/G, O(φ_{*}D))
- Idea: use monomial valuations (Kaledin) to recover $\Gamma(X, \mathcal{O}_X(D)) \hookrightarrow \Gamma(V/G, \mathcal{O}(\varphi_*D))$ and reconstruct $\mathcal{R}(X)$ from $\mathbb{C}[V]^{[G,G]}$.

イロト イポト イヨト イヨト

construction of Cox ring of symplectic resolutions

Suppose that $\varphi : X \to V/G$ is a resolution with exceptional divisor $\sum_{i} E_{i}$.

- Cox ring of V/G is $\mathbb{C}[V]^{[G,G]} = \bigoplus \mathbb{C}^G_\mu$ with $\mu \in G^{\vee}$ (Arzhantsev-Gizakulin)
- The push-forward map of Cox rings φ_{*} : R(X) → C[V]^[G,G] is a homommorphism of graded C[V]^G-algebras and for every [D] ∈ Pic X it makes Γ(X, O_X(D)) a submodule of Γ(V/G, O(φ_{*}D))
- Idea: use monomial valuations (Kaledin) to recover $\Gamma(X, \mathcal{O}_X(D)) \hookrightarrow \Gamma(V/G, \mathcal{O}(\varphi_*D))$ and reconstruct $\mathcal{R}(X)$ from $\mathbb{C}[V]^{[G,G]}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Suppose that $\varphi : X \to V/G$ is a resolution with exceptional divisor $\sum_{i} E_{i}$.

- Cox ring of V/G is $\mathbb{C}[V]^{[G,G]} = \bigoplus \mathbb{C}^G_\mu$ with $\mu \in G^{\vee}$ (Arzhantsev-Gizakulin)
- The push-forward map of Cox rings φ_{*} : R(X) → C[V]^[G,G] is a homommorphism of graded C[V]^G-algebras and for every [D] ∈ Pic X it makes Γ(X, O_X(D)) a submodule of Γ(V/G, O(φ_{*}D))
- Idea: use monomial valuations (Kaledin) to recover $\Gamma(X, \mathcal{O}_X(D)) \hookrightarrow \Gamma(V/G, \mathcal{O}(\varphi_*D))$ and reconstruct $\mathcal{R}(X)$ from $\mathbb{C}[V]^{[G,G]}$.

イロト イポト イヨト イヨト 三日

A Kummer 4-fold (with MD-B and G. Kapustka)

ヘロト 人間 とくほとく ほとう

The group *G* can be presented as generated by another set of reflections in $Sp(4, \mathbb{Z}[i])$

ヘロト ヘアト ヘヨト ヘ

프 > 프

$$T_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1+i & 1 & 0 \\ 1-i & 0 & 0 & -1 \end{pmatrix}$$

・ロト ・聞ト ・ヨト ・ヨト

■ のへで

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

$$T_1 = \begin{pmatrix} 1 & 0 & 0 & -1 - i \\ 0 & -1 & 1 + i & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

・ロト ・聞ト ・ヨト ・ヨト

■ のへで

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

$$T_2 = \begin{pmatrix} 1 & -1+i & 0 & -1-i \\ -1-i & -1 & 1+i & 0 \\ 0 & -1+i & 1 & -1-i \\ 1-i & 0 & -1+i & -1 \end{pmatrix}$$

・ロト ・聞ト ・ヨト ・ヨト

■ のへで

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

$$T_{3} = \begin{pmatrix} i & 0 & 0 & 1-i \\ 1-i & -i & -1+i & 0 \\ 0 & -1-i & i & 1-i \\ 1+i & 0 & 0 & -i \end{pmatrix}$$

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

・ロト ・聞ト ・ヨト ・ヨト

■ のへで

$$T_4 = \begin{pmatrix} i & -1-i & 0 & 1-i \\ 0 & -i & -1+i & 0 \\ 0 & -1-i & i & 0 \\ 1+i & 0 & -1-i & -i \end{pmatrix}$$

Maria Donten-Bury, J. A. Wiśniewski 81 resolutions

・ロト ・聞ト ・ヨト ・ヨト

■ のへで

new Kummer

Consider the action of G on C^4 where C is an elliptic curve admitting complex multiplication by *i*

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on *C*⁴ have bigger isotropy:
 - 16 have isotropy = G
 - 240 have isotropy $\mathbb{Z}_2\times\mathbb{Z}_2$
- C^4/G admits symplectic resolution $X \to C^4/G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of Hilb² of K3

$$1 + 23t^2 + 276t^4 + 23t^6 + t^8$$

ヘロト ヘヨト ヘヨト

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on *C*⁴ have bigger isotropy:
 - 16 have isotropy = G
 - 240 have isotropy $\mathbb{Z}_2\times\mathbb{Z}_2$
- C^4/G admits symplectic resolution $X \to C^4/G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of $Hilb^2$ of K3

$$1 + 23t^2 + 276t^4 + 23t^6 + t^8$$

(日)

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on *C*⁴ have bigger isotropy:
 - 16 have isotropy = G
 - 240 have isotropy $\mathbb{Z}_2 \times \mathbb{Z}_2$
- C^4/G admits symplectic resolution $X \to C^4/G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of Hilb² of K3

$$1 + 23t^2 + 276t^4 + 23t^6 + t^8$$

< ロ > < 回 > < 回 > < 回 > <</p>

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on *C*⁴ have bigger isotropy:
 - 16 have isotropy = G
 - 240 have isotropy $\mathbb{Z}_2 \times \mathbb{Z}_2$
- C^4/G admits symplectic resolution $X \to C^4/G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of Hilb² of K3

$$1 + 23t^2 + 276t^4 + 23t^6 + t^8$$

ヘロト ヘアト ヘヨト

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on *C*⁴ have bigger isotropy:
 - 16 have isotropy = G
 - 240 have isotropy $\mathbb{Z}_2\times\mathbb{Z}_2$
- C^4/G admits symplectic resolution $X \to C^4/G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of Hilb² of K3

 $1 + 23t^2 + 276t^4 + 23t^6 + t^8$

ヘロン 人間 とくほ とくほ とう

- The reflections have fixed points consisting of 40 components.
- 256 points which are of order two on *C*⁴ have bigger isotropy:
 - 16 have isotropy = G
 - 240 have isotropy $\mathbb{Z}_2\times\mathbb{Z}_2$
- C^4/G admits symplectic resolution $X \to C^4/G$
- X is a new Kummer symplectic 4-fold
- The Poincare polynomial of X is the same as of Hilb² of K3

$$1 + 23t^2 + 276t^4 + 23t^6 + t^8$$

ヘロト ヘヨト ヘヨト