FINITE SUBGROUPS OF THE CREMONA GROUP OF THE PLANE - EXERCISES

1. Exercises that can be tried at any time

Exercise 1.1. For any polynomial $p \in \mathbf{k}(x)$, let φ_p be the birational map of \mathbb{A}^2 given by $(x,y) \dashrightarrow (x,\frac{p}{y})$. (These are the classical de Jonquières involutions). Decide for which p,p' the maps φ_p and $\varphi_{p'}$ are conjugate in $\mathrm{Bir}(\mathbb{A}^2)$.

Exercise 1.2. Let $\omega \in \mathbf{k}$ be a primitive third root of unity.

The map $g:(w:x:y:z)\mapsto (w:-x:\omega y:\omega^2 z)$ acts on the cubic surface $X_\lambda\subset\mathbb{P}^3$ given by $wx^2+w^3+y^3+z^3+\lambda wyz=0$, for any $\lambda\in\mathbf{k}$.

The map $h: (w:x:y:z) \mapsto (w:-x:\omega y:\omega z)$ acts on the cubic surface $Y \subset \mathbb{P}^3$ given by $wx^2+w^3+y^3+z^3=0$. The exercise consists of deciding if the elements g and h are conjugate, for some value of λ . By conjugate, we mean that there exists a birational map $\varphi\colon X_\lambda \dashrightarrow Y$ such that $\varphi g = h\varphi$.

Hint: 1) Look at the fixed points of the powers of g and h; you should be able to remove almost all values of λ . 2) Look at the actions of g and h on the curves that you obtained in 1).

Exercise 1.3. The map $g:(w:x:y:z)\mapsto (w:\zeta^4x:\zeta^3y:\zeta^2z)$ acts on the cubic surface $S\subset\mathbb{P}^3$ given by $w^3+wx^2+y^2z+xz^2=0$, where ζ is a primitive 8-th root of unity.

Find a conic bundle structure $S \to \mathbb{P}^1$ which is invariant by g.

Exercise 1.4. Is the birational map $\alpha \in Bir(\mathbb{A}^2)$ given by

$$\alpha \quad : (x,y) \dashrightarrow (\mathbf{i} x\,, \tfrac{(x+1)((\sqrt{2}-1)-x)y+(x^4-1)}{y+(x+1)((\sqrt{2}-1)-x))}).$$

conjugate to an element of $GL(2, \mathbf{k})$?

Hint: compute the powers of α .

2. Exercises that can be found in the notes

Exercise 1. Let X be a smooth projective surface. Show that any point $y \in \mathcal{B}(X)$ is either a proper point or is in the n-th neighbourhood of a unique point $x \in X$, for some $n \ge 1$. If n > 1, y is in the first neighbourhood of a unique point $y' \in \mathcal{B}(X)$ which is in the (n-1)-th neighbourhood of x.

Exercise 2. For $n \geq 1$, prove that $\operatorname{Aut}(\mathbb{F}_n)$ is the quotient of $\mathbf{k}^{n+1} \rtimes \operatorname{GL}(2, \mathbf{k})$ by the subgroup of $\operatorname{GL}(2, \mathbf{k})$ consisting of diagonal matrices of the form $\begin{pmatrix} \mu & 0 \\ 0 & \mu \end{pmatrix}$, where $\mu^n = 1$. (One way to do is to use induction on n: the case of \mathbb{F}_1 comes from \mathbb{F}^2 and the automorphisms of \mathbb{F}_{n+1} that fix the base-point of $(\varphi_n)^{-1}$ correspond to automorphisms of \mathbb{F}_n fixing the base-point of φ_n).

Exercise 3. Using the decomposition of birational maps from \mathbb{P}^2 to \mathbb{P}^2 into elementary links, shows that $Bir(\mathbb{P}^2)$ is generated by $Aut(\mathbb{P}^2)$ and by the birational maps preserving a given pencil of lines through one point. Deduce the Noether-Castelnuovo theorem.

Exercise 4. On the del Pezzo surface S of degree 6, show that there is only one finite cyclic group $G \subset \operatorname{Aut}(S)$ such that (G, S) is minimal, up to conjugation in $\operatorname{Aut}(S)$. Show that this group is conjugate to a subgroup of $\operatorname{Aut}(\mathbb{P}^2)$ by a birational map $S \dashrightarrow \mathbb{P}^2$. (The answer to this question can be found in [Bla09b, Lemma 9.7]).

Exercise 5. Show that the cyclic subgroups G of order 5 of $\operatorname{Aut}(S_5)$ (which are all conjugate) are such that (G, S) is minimal. Prove that however G is conjugate to a subgroup of $\operatorname{Aut}(\mathbb{P}^2)$ by a birational map $S \dashrightarrow \mathbb{P}^2$ (as before, the answer can be found in [Bla09b, Lemma 9.8])

Exercise 6. Using that a smooth cubic surface S is the blow-up of 6 points of \mathbb{P}^2 in general position, show that it contains exactly 27 lines, which are the 27 (-1)-curves of S.

Exercise 7. Let $\alpha \in \mathbf{k}^*$ be a k-th root of unity for some integer $k \geq 2$. Let $g, h \in \operatorname{Aut}(\mathbb{P}^2)$ be given by $g \colon (x \colon y \colon z) \mapsto (x \colon \alpha y \colon \alpha^2 z)$ and $h \colon (x \colon y \colon z) \mapsto (x \colon \alpha y \colon z)$. Prove that g, h are conjugate in $\operatorname{Bir}(\mathbb{P}^2)$. Compare the fixed locus of g and h when $k \geq 3$.

References

[Bla09b] J. Blanc, Linearisation of finite abelian subgroups of the Cremona group of the plane. Groups Geom. Dyn. 3 (2009), no. 2, 215–266.