
1

Towards a flexible component-based architecture

of machine learning software

Marcin Wojnarski

Warsaw University, Poland

The Principles

1. Loosely typed data representation:

one base class for all kinds of data samples;

type of data checked at run-time by down-casting.

2. One base class for all data processing algorithms, of any type.

3. Each algorithm implemented as a component.

It can execute itself, without external control, because it knows

where to find data to be processed.

4. Components are linked together into a Data Processing Chain

– the „backbone” of the experiment to be executed. Execution is

started by calling one method on the chain head. No other

involvement of the caller is needed during execution, the chain

executes itself.

5. Data passed between components sample-by-sample.

2

Architecture of WEKA in brief

Classifier:

� buildClassifier(Instances) : void

� classifyInstance(Instance) : double

� distributionForInstance(Instance) : double[]

Clusterer:

� buildClusterer(Instances) : void

� clusterInstance(Instance) : int

� distributionForInstance(Instance) : double[]

Filter:

� input(Instance), batchFinished(), getOutputFormat(), output()

� useFilter(Instances, Filter) : Instances

Loader:

� getDataSet() : Instances

� getNextInstance() : Instance

Estimator, Associator, Generator, …

Loosely typed data representation

struct Sample

{

SampleData* data;

Label* label;

Label* decision;

}

SampleData descendants:

� NumericData

� NominalData

� ImageData

� …

Label descendants:

� ClassLabel

� NumericLabel

� PositionLabel

� ListLabel

� …

3

The Component

Extremely simple interface: „get next portion of data”

class DataProcessor

{

public:

void Open();

Sample* GetNext();

void Close();

protected:

DataProcessor* source;

}

One base class for all algorithms

DataProcessor interface can handle all types of data processing:

� classification, regression, clustering, density estimation, …

� choice of a subset of attributes / samples

� transformation of attribute values (discretization, normalization, …)

� gathering of statistics (untouched samples are passed further)

� for images: rescaling, cutting subwindows, filtering, …

� loading data from disk / database / …

� generation of synthetic data

� data materialization

� random shuffling of samples, splitting into train/test sets, …

4

Data Processing Chain

Building plan of an experiment is separated from running it

DPC is like a „program” in a very high-level language

Executing DPC is very simple: „push the button”

It’s easy to make a change in DPC and run again

Load

Data
Discretize

Attribute

Statistics

Decision

Tree

Replace
Missing
Values

Experiment

Preparation of the experiment:

� allocation of objects for each step of the experiment

� setting parameters of the objects (e.g. no. of training epochs for NN)

[Loading instead of preparation]

[Saving the experiment]

Execution of the experiment:

� calculation of input data for the next object

� invoking appropriate method on the object

Saving the result of experiment (trained decision model, together

with accompanying algorithms, e.g. preprocessing)

Loading the result of experiment

(e.g. to test on new data; to embed in a committee of systems, …)

5

Experiment

Preparation of the experiment:

� allocation of objects for each step of the experiment

� setting parameters of the objects (e.g. no. of training epochs for NN)

[Loading instead of preparation]

[Saving the experiment]

Execution of the experiment:

� calculation of input data for the next object

� invoking appropriate method on the object

Saving the result of experiment (trained decision model, together

with accompanying algorithms, e.g. preprocessing)

Loading the result of experiment

(e.g. to test on new data; to embed in a committee of systems, …)

in the proposed architecture

this is the only part which

requires significant effort

to implement

DPC vs. current approach
execution of experiment

Load

Data
Discretize

Attribute

Statistics

Decision

Tree

Replace
Missing
Values

main()

Load

Data
Discretize

Attribute

Statistics

Decision

Tree

Replace
Missing
Values

main()

6

Memory management

Some experiments are memory-intensive: large data sets to be

processed, e.g. images

Trade-off: simple architecture vs. efficient memory usage

� every processing step may create another copy of the data set

� data may be efficiently stored in some problem-specific

representation � architecture becomes messy

Solution: passing samples one-by-one between processing

steps � DataProcessor has an iterator interface

Full control over memory usage: materialization can be put in

any place of Data Processing Chain

Case studies

AdaBoost cascade for object detection in images:

� don’t know in advance how many training images to generate

� large amounts of data, memory issues

Train & Test, cross-validation, classification of new data

7

Summary

Advantages of the proposed architecture:

� can handle arbitrarily large volumes of data

� easier to implement a new experiment

� easier to run a series of similar experiments

� easier to write new components (only one base class)

� easier saving/loading of experiment: plan and result

Disadvantages:

� type correctness of the experiment is checked at runtime, not

compile time

� each component must be aware of what types of data it can handle;

type of data must be checked explicitly by downcasting

� in some cases passing data sample-by-sample may be slower than

passing all samples at once

My implementation of this architecture:

currently aprox. 10 subclasses of DataProcessor

