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Abstract

The main object of study of this thesis is a class of multigraded Hilbert schemes. Given a
smooth projective toric variety X with the Cox ring S[X] we consider the Hilbert function of r
points on X in general position, i.e. h, x: Pic(X) — N given by

hy, x ([D]) = min{dimc I'(X, Ox (D)), r}.

The multigraded Hilbert scheme Hilb?[’;é] associated with S[X] and h, x has a distinguished

irreducible component Slip,. x which is the closure of the locus of points corresponding to radical
ideals that are saturated. The aim of this dissertation is to find necessary or sufficient conditions
for a point of Hilbg’i’;g] to belong to Slip,, x. This problem is motivated by the border apolarity
lemma established by Buczyriska and Buczyniski.

Our main focus is on the case X = P". We present three necessary conditions for [I] €

Hilbgr[g:] to be in Slip, pn. The first of them is obtained by bounding the degrees of minimal

generators of saturated ideals J C S[P"] with [J] € Hilb

hT,[PTL
S[Pn]*

the computation of the Hilbert polynomial of a power of a radical ideal J with [J] € Hilb

The second criterion is based on
hT,]P”L
S[Pn]
establishing the bound on the degree from which it agrees with the Hilbert function. The proof

and

of the third necessary condition uses deformation theory and flag multigraded Hilbert schemes.
hr,IPQ
S[P2?]
We consider a morphism with connected fibers f: X — Y between smooth projective toric
hr,X
S[X]
that there is a natural morphism Hilbg}% — Hilbg’f’;} and that it maps Slip, x onto Slip,.y. We
also prove another necessary condition in the case that X is the product of k > 2 projective

We also present a sufficient condition for [I] € Hilb to be in Slip, p2.

varieties. We obtain a necessary condition for [I] € Hilb to be in Slip, x. Namely, we show

spaces.

We illustrate the criteria with examples. In particular, we describe all ideals which correspond
to points of Slip, p2 for all 7 < 6. Furthermore, we apply our techniques to obtain some results
on wild polynomials.

Keywords: multigraded Hilbert schemes, saturated ideals of points, smooth projective toric
varieties, secant varieties, border rank.
AMS MSC 2020 classification: 14C05, 14M25, 14NO07.



Streszczenie

Glownym obiektem badan niniejszej rozprawy jest klasa schematéw Hilberta z wielogradacjg.
Dla gtadkiej rzutowej rozmaitosci torycznej X z pierscieniem Coxa S[X], rozwazamy funkcje
Hilberta r punktéw w polozeniu ogélnym na X, tzn. h, x: Pic(X) — N zadana przez

hy.x ([D]) = min{dimc I'(X, Ox (D)), r}.

Schemat Hilberta z wielogradacja Hilb?&{]

dowa nieprzywiedlna Slip,. y, ktéra jest domknigciem zbioru punktéw odpowiadajacych idealom

stowarzyszony z S[X] i h, x ma wyrézniona skla-

radykalnym i nasyconym. Celem tej rozprawy jest znalezienie kryteriéw koniecznych lub wystar-

h"V‘,X
bsrx]
pochodzi z lematu o brzegowej abiegunowosci udowodnionego przez Buczynska i Buczyniskiego.

czajacych do tego by punkt Hil nalezal do Slip, x. Motywacja do badania tego problemu

Glowny nacisk ktadziemy na przypadek X = P"™. Prezentujemy trzy warunki konieczne
do tego by punkt [I] € Hilbg?g:} nalezal do Slip, pn. Pierwszy z nich jest uzyskany poprzez
ograniczenie stopni minimalnych generatoréow idealéw nasyconych J C S[P"] takich, ze [J] €

o1y P pn
Hilb S[I[f”]‘

Drugie kryterium bazuje na obliczeniu wielomianu Hilberta potegi idealu radykalnego
J takiego, ze [J] € Hilbgr[g:] oraz uzyskaniu ograniczenia na stopienn od ktorego zgadza sie
on z funkcja Hilberta. Dowdd trzeciego kryterium wykorzystuje teorie deformacji i flagowe

schematy Hilberta z wielogradacja. Prezentujemy réwniez warunek wystarczajacy do tego aby

h
[1] € Hilbgjz,) nalezal do Slip, .

Rozwazamy morfizm o spéjnych widknach f: X — Y pomiedzy gltadkimi rzutowymi ro-

zmaitosciami torycznymi. Uzyskujemy warunek konieczny do tego aby [I] € HilbgT[’;;}
h

do Slip, x. Mianowicie pokazujemy, ze istnieje naturalny morfizm HileT[’;g] — Hilbgf[’;], ktory

nalezal

odwzorowuje Slip, x na Slip, y. Dowodzimy réwniez innego warunku koniecznego w przypadku
gdy X jest produktem k > 2 przestrzeni rzutowych.

Kryteria ilustrujemy przyktadami. W szczegdlnodci, opisujemy wszystkie idealy, ktore odpo-
wiadaja punktom Slip,. p2 dla wszystkich r < 6. Co wigcej, wykorzystujemy nasze metody do
uzyskania pewnych wynikéw o dzikich wielomianach.

Stowa kluczowe: schematy Hilberta z wielogradacjg, nasycone idealy punktéow, gtadkie
rzutowe rozmaitosci toryczne, rozmaitosci siecznych, ranga brzegowa.
Klasyfikacja tematyczna AMS 2020: 14C05, 14M25, 14NO7.
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Chapter 1

Introduction

In real life, it is often the case, that certain objects naturally appear together but from human
perspective one of them is more interesting than other ones. In such situations, a need arises
to separate the part that we care about from the part that is redundant or less attractive from
our point of view. In many cases the distinction is pretty clear. However, there are also subtle
examples. One of them is the farmland. Here the crops and the weeds grow together and
distinguishing between them requires both attention and certain knowledge.

The main topic of this thesis is about

identifying the "good" inside the set of "all"

in the setting that is described below.

Problems of similar nature appear commonly in mathematics. For a basic example, consider
a finite-dimensional real vector space V, the set Endg (V') of all linear endomorphisms of V' and
its subset Autr(V') consisting of invertible maps. Given an element ¢ € Endgr (V') we can check
whether it belongs to Autr(V') by computing its determinant.

Another easy to state problem is provided by univariate polynomials with real coefficients. We
might be interested in understanding which of them have a real root. There is an easy sufficient
condition. Namely, if the degree of the polynomial is odd, then it has a real root. However, there
are also more subtle criteria like Sturm’s theorem [58, §5.2] which gives the number of distinct
real roots of a given polynomial in a given interval.

The main motivational example for this thesis in the realm of algebraic geometry is the Hilbert
scheme of r points in the projective n-space over the complex numbers C. Before explaining this
example in more detail, we outline the main results about the Hilbert schemes concentrating on
Hilbert schemes of points. The Hilbert scheme Hilb(P™) is a scheme parametrizing all closed
subschemes of P". It was constructed by Grothendieck [44]. It has a decomposition into the
disjoint union Hilb(P") = [[p Hilbp(P") where P is the Hilbert polynomial of a closed subscheme
of P and Hilbp(P™) parametrizes all closed subschemes of P with Hilbert polynomial P. More
generally, one may consider Hilb(X) or Hilbp(X) for a projective scheme X C PV over C. In
1966 Hartshorne [47] proved that Hilbp(P™) is connected for every Hilbert polynomial P. If the
Hilbert polynomial P is constant and equal to r for some positive integer r, we write Hilb, (P™)
instead of Hilbp(P™). In 1968 Fogarty [36] showed that Hilb,(X) is smooth and irreducible if
X is an irreducible smooth surface. On the other hand, for all n > 3 the scheme Hilb,(P") is
reducible for all » > 0. This was established by larrobino [54] in 1972. The question, whether
Hilb(X) is reduced was also addressed. Mumford [69] showed in 1962 that Hilbp(P3) is not



reduced for some polynomial P of degree 1. Jelisiejew [61] showed in 2020 that Hilb,(P™) is in
general non-reduced.

We return to the description of our main motivational example of identifying "good" from
"all". For fixed positive integers r and n, the closure of the locus of all points of Hilb,(P™)
corresponding to r-tuples of points in P is an irreducible component of Hilb,(P™). We call this
component the smoothable component and we denote it by Hilbs™ (P™). By the above-mentioned
result of Tarrobino, in general, Hilb,(P") is not equal to Hilbs™ (P™). Thus, if we care only about
the set of r-tuples of points of the projective space P" together with their limits, we need to
have methods of identifying whether a given point of the Hilbert scheme #ilb,(P™) belongs to
Hilby™(P™). This problem was studied by Cartwright, Erman, Velasco and Viray [20]. Similar
problem for Gorenstein subschemes was considered by Casnati, Jelisiejew and Notari [21]| and
Jelisiejew [59].

In this thesis we concentrate on an analogous problem in the setting of multigraded Hilbert
schemes "of points in general position". Multigraded Hilbert schemes were introduced by Haiman
and Sturmfels [46] in 2004. Let S be a polynomial ring over C, graded by an abelian group A.
Given a numerical function h: A — N, there is a corresponding multigraded Hilbert scheme
Hilbg parametrizing homogeneous ideals I of S such that S/I has Hilbert function h.

It is important to emphasize, that even when S is a standard Z-graded polynomial ring and
h is the Hilbert function of a closed subscheme of a projective space, this leads to an object
different than the classical Hilbert scheme, which is specified by Hilbert polynomial. In the case
of multigraded Hilbert schemes we care about the Hilbert function in all degrees, while in the
case of the usual Hilbert scheme we are interested only in the Hilbert function in large degrees.

The concept of a multigraded Hilbert scheme is a common generalization of various notions

of Hilbert schemes:
1. Hilb,(A™)—the Hilbert scheme of r points in affine n-space;

2. Hilbp(P")—the Hilbert scheme parametrizing closed subschemes of P with Hilbert poly-

nomial P;

3. the so-called toric Hilbert schemes whose special cases where studied by Peeva and Still-
man |[71].

We present some known results about general multigraded Hilbert schemes Hilbg. Maclagan
and Smith [65] showed in 2010 that if S is a polynomial ring in two variables, then Hilb%
is smooth and irreducible (for any grading of S in any abelian group A and for any Hilbert
function h: A — N). Beside this, little is known about general multigraded Hilbert scheme.
People usually study one of the three particular cases described above. It turns out that there
exists a non-connected toric Hilbert scheme. In 2005 Santos [76] gave such an example for a
polynomial ring in 26 variables graded by Z5. This is in sharp contrast with the Hartshorne’s
result [47] concerning Hilbp (P").

It is worth comparing the above-mentioned facts about the Hilbert scheme Hilb,(P™) with
the results on the multigraded Hilbert schemes. The Hilbert scheme #Hilb, (P™) is nicely-behaved,
i.e. smooth and irreducible, for n = 2 [36]. On the other hand, the multigraded Hilbert scheme
Hilbg is smooth and irreducible when the polynomial ring S has two variables which in some
sense corresponds to the case of the projective line. Similarly, Hilb,(IP?) is in general reducible
[54], while Hilbg can already be reducible for a polynomial ring in three variables. In fact, the



class of multigraded Hilbert schemes discussed in this thesis provides natural examples of such
behavior.

We introduce our main object of study in the case of projective space. Let n be a positive
integer and S = Clay, ..., a,] be the homogeneous coordinate ring of P". Let r be a positive
integer and h,,: Z — N be the Hilbert function of r points in general position in P":

hyn(a) = min{dimc S,, 7}.

Let Sip,.,, denote the locus of all points of Hilbgf’" corresponding to radical ideals. Let Slip, ,
be the closure of Sip, ,, in Hilbgf'". The acronyms Sip and Slip introduced in [15] stand for the
"set of ideals of points" and the "scheme of limits of ideals of points", respectively. The subset
Slip,.,, is an irreducible component [15, Prop. 3.13|. Points of Hilbgr’" that belong to Slip,.,, are
the "good" points inside the set of "all" points from the scheme Hilbg“". This is a consequence
of the border apolarity lemma which we discuss below.

The main goal of this thesis is to establish sufficient and necessary conditions for a
closed point in Hilbgr’" to be in the irreducible component Slip, ,,.

We also consider analogous problem for a smooth projective toric variety X. We study the
multigraded Hilbert scheme associated with the Cox ring S[X] of X and the Hilbert function
hyx: Pic(X) — N of r points in general position in X, i.e.

hr x([D]) = min{dim¢ S[X](p), 7}

See Section 4.1 for relevant definitions. Again, there is a distinguished irreducible component

Slip,, x of Hilb’;T[’;a that is the closure of the locus of all radical ideals that are saturated with
h

respect to the irrelevant ideal of X. We want to find criteria that identify points in Hile’E’;g] that
belong to Slip, x.

Significance of the considered problem

It is necessary to explain how does the irreducible component Slip, ,, fit into the above philosophy
of identifying "good" from "all". This is based on the border apolarity lemma introduced by
Buczyniska and Buczyiniski [15]. This result shows that there is a connection between border rank
of a homogeneous polynomial and the multigraded Hilbert scheme Hilbg""". Our discussion here
is informal. The precise statement of the border apolarity, as well as the formal definitions of
the border rank and secant varieties appear in Chapter 2. Suppose that F' is a homogeneous
polynomial of degree d in the polynomial ring S* = Cl[xy, ..., z,|. Here, S* is the graded dual of
the polynomial ring S = Clay, . . ., ay], see Subsection 2.4.1 for more details. We say that F' has

rank r if r is the smallest integer such that we have F' =Y., E? for some linear forms ¢; € S7.
We also consider the border rank of F' which is the smallest integer r such that [F] € PS} is in
the closure of the set of all polynomials with rank at most r. Calculating the border rank of a
given polynomial is a classical problem in algebraic geometry and is strongly related to studies
of secant varieties of the Veronese variety. The border apolarity lemma says that F' has border
rank at most r for a positive integer  if and only if there exists a point [I] € Slip,.,, such that I

is apolar to F'. Thus,



points from Slip, ,, are the "good" points among "all" points of Hilbg’””

since they serve as witnesses of small border rank.

As a result, the more conditions (both sufficient and necessary) for a point in Hilbgf‘” to be in
the irreducible component Slip,. ,, we have at our disposal, the greater the scope of applicability
of the border apolarity lemma.

One potential application of border apolarity is in studying homogeneous polynomials, called
wild polynomials, whose border rank is smaller than the smoothable rank (see Section 2.4 for
definitions of these ranks). These polynomials are known to exist (see [12| and [53]). They appear
naturally in the context of the border apolarity lemma. Indeed, by definition, it is precisely
for these polynomials that the apolarity for smoothable rank (depending on the smoothable
component Hilbs™(P™) of the Hilbert scheme Hilb,(P")) fails to compute the border rank. For
them, it is necessary to consider the multigraded Hilbert scheme Hﬂbgf’" and its irreducible
component Slip,. .

A crucial motivation for studying Slip,. x for more general toric varieties than P" is the prob-
lem of computing the border rank of matrix multiplication tensors. This is a vitally important
problem for complexity theory, however it is very complicated. For instance the border rank of
matrix multiplication tensor for 3 x 3 matrices is unknown. See [23| for recent progress on that
problem.

Structure of the thesis and main results

In Chapter 2 we present the relevant background from commutative algebra and scheme theory.

In particular, we formally define the multigraded Hilbert schemes by their functors of points.

We also study the flag multigraded Hilbert schemes and basic notions of deformation theory.
Chapter 3 contains the main results of the thesis in the case of projective space. We present

three necessary conditions for a point [I] € Hilbgf’" to be in the irreducible component Slip,.,,.

Moreover, we prove a sufficient condition for a point [I] € Hilbgf“2 to be in Slip,. . We illustrate
these criteria with simple examples. Furthermore, we end the chapter with the complete descrip-
tion of points from Slip, 5 for all 7 < 6. The complexity of these examples is perhaps surprising,
especially in view of the fact that the usual Hilbert scheme Hilb,(P?) is smooth and irreducible.

We now summarize the main results presented in Chapter 3. We simplify the statements
of some of the more technical theorems by considering their special cases, or omitting some
parts of the conclusions. Given a polynomial ring S = Clao, ..., ay], we denote by m the ideal
(o, ...y 0).

Proposition 3.1 provides a necessary condition for [I] € Hilbg“” to be in Slip,.,,. It is based
on bounding from the above, the degree in which all saturated ideals corresponding to points of
Hilbg"’" are generated.

Proposition 1.1 (Proposition 3.1). Let r and n be positive integers and I C S = Clay, .. ., ay)
be a homogeneous ideal such that S/I has Hilbert function hy,. Let e = min{a € Z | hyn(a) = r}
and d > e + 2. If the inequality dim¢ Homg (I +m<, S/(I + md))o < rn holds, then the point [I]
does not belong to Slip, ,,.

Theorem 3.5 shows that if the point [I] belongs to Slip,.,,, then the Hilbert function of S/I*
for any positive integer k is bounded from below by 7 - dim¢ Si_1 for all large enough degrees
(depending on k). This result is obtained by calculating the Hilbert polynomials of powers of



a radical ideal corresponding to a point of Hilb];f’" and establishing a bound from which they
agree with the Hilbert functions.

Theorem 1.2 (Theorem 3.5). Let r and n be positive integers and I C S = Clay,...,an] be a
homogeneous ideal such that S/I has Hilbert function hy.,. Let e = min{a € Z | hy,,(a) =r}. If
the point [I] belongs to Slip,.,,, then Hgpx(d) > 7 - dimc Sk—1 holds for every positive integer k
and for every d > ke + k.

Theorem 3.13 presents a sufficient condition for [I] € Hilb’gf’2 to be in the irreducible com-
ponent Slip,,. We show that if the Hilbert function of S/(I : m*) differs from h,.2 only in
one degree, then the point [I] belongs to Slip, 5. The proof is obtained by showing that [/]
belongs to an irreducible subset of Hilbg"’2 which intersects Slip, , at a smooth point of Hilbgr’2.

Furthermore, we comment why natural generalizations of this criterion for P with n > 2 fail.

Theorem 1.3 (Theorem 3.13). Let r be a positive integer and S = Clag, a1, az] be a polynomial
ring. Consider a closed point [I] of the multigraded Hilbert scheme Hilbgr’g. If (I :m™®)y # 1,
holds for a unique integer d, then we have [I] € Slip, 5.

Theorem 3.42 is the most technically involved result in this thesis. It is stated in a general
setup in which the proof follows by a short argument using deformation theory. Then we discuss
some conditions which imply the assumptions of Theorem 3.42. Finally, we present two appli-
cations of this theorem, Theorems 3.66 and 3.75. These are the versions of the theorem that we
use in the rest of the thesis.

Theorem 1.4 (Theorem 3.42). Let r and n be positive integers, S = Clay,...,a,] be a poly-
nomial ring and [I] € Hilb}gf‘" be a closed point. Assume that we have I # (I : m*°) and let d
be such that Iy is not equal to (I : m™)g. Let J = méN (I :m>®) and K = m?NI. When the
following hold:

1. the natural map Homg(J, S/J)o — Homg(K,S/J)o is surjective;
2. [J] € HilbY is a smooth point where h is the Hilbert function of S/J;
3. the natural map Homg (K, S/K)o — Homg (K, S/J)o is surjective,
there is no point [I'] € Slip,,, with I ; = I>q. In particular, we have [I] ¢ Slip,.,,.

As an application of Theorem 1.4 we obtain the following result.

Theorem 1.5 (Theorem 3.66). Let [I] € Hilbg"" be a closed point corresponding to an ideal I

such that S/T has Hilbert function hy.1. There exists [I'] € Slip,.,, with I, o = I, _, if and only
if there is an inclusion ((I: m™)?),_o C I, 5.

We end Chapter 3 with the complete set-theoretic description of Slip, 5 for all r < 6. To give
some insight into the complexity of this problem we present here a short discussion. For all » < 3,
the scheme Hilbgr’2 is irreducible (see Propositions 3.38, 3.39 and 3.40). However, Corollary 3.79
shows that Hilbg‘l’2 is reducible. In fact, it has two irreducible components. Here, the description
of Slipy o follows easily from Theorem 3.66. In the next case, r = 5, the scheme Hilbgf”2 still
has only two irreducible components but the description of Slip; 5 obtained in Proposition 3.89

requires some further observations. Finally, Hilbgﬁ’2 has four irreducible components. We use all



four criteria mentioned above, to obtain the description of Slipg 5 (see Proposition 3.104). Still,
the proof is of significant complexity. Since there was no prior systematic study of the component

Slip, x, it was not clear what to expect. By analogy to Fogarty’s result [36] on smoothness of

Hilb, (P?), we expected that Hilbgr[[’g] should not be too complicated. However, it seems that the
proper analogue is rather Hilb,(P?), where little is known about the smoothable component.
Chapter 4 is concerned with the case of a smooth, projective toric variety X. Here again, one
may consider the multigraded Hilbert scheme Hilb}SLT[’;g] where S[X] is the Cox ring of X and h, x is
the Hilbert function of r points in general position on X. Again, there is an irreducible component
Slip, x which is defined analogously to Slip, , considered above. Theorem 4.15 describes a
relation between Slip, x and Slip, y» where f: X — Y is a map of smooth projective toric
varieties with f,Ox =2 Oy. The proof is based on the possibility of lifting f to a homomorphism

of Cox rings of X and Y. This is discussed in Subsection 4.1.3.

Theorem 1.6 (Theorem 4.15). Let f: X — Y be a morphism between smooth projective toric

varieties with f,Ox = Oy . Let r be a positive integer and [I] € Hilbg’[";g]

f#: S[Y] — S[X] be a lift of f as in Definition 4.2. If the point [I] belongs to Slip, x then we
have

be a closed point. Let

[(F)"1(1)] € Slip,.y -

Theorem 4.25 presents another necessary condition for [I] € Hilb}slr[’;;] to be in the irreducible
component Slip, x, when X is the product of k > 2 projective spaces. The proof of the theorem

is based on simple properties of Hilbert functions of saturated ideals of points in X.

Theorem 1.7 (Theorem 4.25). Let k > 2 and ny,...,ny be positive integers. Let X = P™ X

- x P and for all i € {1,...,k} let B(X;) C S[X] be the extension of the irrelevant ideal
of P under the natural inclusion S[P"| — S[X]. If the point [I] belongs to Slip, x for some
positive integer r, then

dime Homgx] (I + B(Z0)2 S[X)/ (1 + B(zi)Q))o > r(ng 4+ ng)

holds for alli € {1,...,k}.

In Chapter 5 we present some applications of border apolarity lemma to secant varieties.
In Section 5.1 we study polynomials whose border rank is smaller than the smoothable rank
(see Section 2.4 for relevant definitions). This is in accordance with the initial motivation for
developing criteria for points of Hilbgr’" to belong to the irreducible component Slip,.,,.

Results from Sections 5.2, 5.3 and 5.4 are contained in [40]. They are about identifying (in
special cases) points in the cactus variety that are not in the secant variety. Here, we use the
border apolarity lemma without actually needing any insight into the irreducible component
Slip,.,. The problem of distinguishing the secant variety from the cactus variety is another
illustration of identifying "good" inside the set of "all". Secant varieties are classical objects of
study but their equations are in general unknown. Moreover, various classes of known equations
have been shown to actually vanish on a larger variety—the cactus variety. See [11], [39] and
62, §10.2].

Open problems

We end this chapter with a short list of natural directions of further investigation.



Given a smooth projective toric variety X and a positive integer r, we may divide closed
points of Hilbgr[’;((] into four sets depending on whether [I] is in the closure of the locus of all
saturated ideals and whether the subscheme of X defined by I is smoothable. The irreducible
component Slip, x consists of points that are in the closure of the locus of all saturated ideals
and that define smoothable subschemes. However, the following natural problem remains open.

Problem 1.8. Is there a projective toric variety X and a positive integer r such that there exists

[1] € Hilbg \ Slip,, - which satisfies conditions:

1. [I] is in the closure of the locus of all saturated ideals;
2. the subscheme of X defined by [ is smoothable?

If the answer to the above question is negative, this could allow us to split the problem
of describing Slip, x into two. One of them, which has been studied longer, is describing the
smoothable component of the usual Hilbert scheme. The other problem would be studying the
closure of the locus of all saturated ideals inside Hilbgr[’;g].

By pr

Another problem is related to the geometry of Hilb S[Pn)-

Problem 1.9. Is Hilbg’iﬁ] ever non-reduced?

We also want to discuss the criterion based on the flag condition for secant varieties |24,
Prop. 2.3|. It seems that a natural analogue for Slip,. x should hold. Namely, we expect that if
the point [I] belongs to Slip, y then there is a flag of ideals I, = I C I,_; C --- C Iy = S such
that [I;] is in Slipy, x for every k.

One natural question, especially in view of Problem 1.8 is the following.

Problem 1.10. Let X be a smooth projective toric variety and r be a positive integer. Assume

that [I] € Hilbgr[‘;a is in the closure of the locus of all saturated ideals. Is there a flag of ideals

I,=1C1I,_; C---ClIy= S such that for all k& the point [I}] € Hilbgr[’;;] is in the closure of the
locus of all saturated ideals?

A final general problem that is worth studying is as follows.

Problem 1.11. Is there a homogeneous ideal in three variables whose border rank is strictly
smaller than the smoothable rank?

It is known that if F' is such a polynomial then we have br(F) > deg(F) + 1 (see [11,
Prop. 2.5]). We show in Proposition 5.5 that the inequality br(F') > deg(F') + 2 holds.

There are also some natural problems related more closely to our methods. They are less
general and thus, not as important. However, we would like to discuss them shortly.

Criterion from Theorem 1.4 is stated in a general version and we describe two situations
where its assumptions are fulfilled: Theorems 3.66 and 3.75. It seems that there might be more
general setups where Theorem 1.4 could be applied. We intend to investigate this in the future.

In a similar spirit, the description of Slipg 5 is quite lengthy and involved. It is a natural
question, whether the methods used there could be abstracted to work in more general situations.



Chapter 2

Background material

In this chapter we collect some definitions and results that are used in the rest of the thesis.
Section 2.1 deals with commutative algebra. Material from Subsections 2.1.1 and 2.1.2 is standard
but it was hard to find a reference for some of the results discussed there. We present the proofs
for the sake of completeness. Subsections 2.1.3, 2.1.4 and 2.1.5 contain some results that are used
in Chapter 3. These subsections are based on [67]. In Subsection 2.2.1 we present some general
results related to scheme theory. Subsections 2.2.2 and 2.2.3 are concerned with multigraded
Hilbert schemes and Subsection 2.2.4 recalls the notion of a flag multigraded Hilbert scheme.
Section 2.3 deals with deformation theory. We present basic definitions and results that are
used in the subsequent chapters. Section 2.4 is devoted to various notions of ranks and related
apolarity lemmas.

Notation

Throughout this chapter k is a fixed algebraically closed field. Unless stated otherwise, all
polynomial rings over k that are considered have the standard Z-grading. Therefore, Z-graded
modules over these rings are simply called graded modules.

2.1 Commutative algebra

In this section we present some results from commutative algebra that are needed for the proofs
of the main results.

In Subsection 2.1.1 we study locally free modules of finite rank since these appear in the
definition of the functor of points of a multigraded Hilbert scheme. Since these schemes are the
main object of our investigation we feel that it is appropriate to recall the notion explicitly.

Subsection 2.1.2 deals with saturated ideals. We present a few results that are mainly used
in Chapter 3.

In Subsection 2.1.3 we study the Hilbert function of a power of a radical ideal defining a
zero-dimensional subscheme of a projective space. The obtained results are key in the proof of
Theorem 3.5.

Subsection 2.1.4 is concerned with the computation of the dimension of the vector space
Homp(a,7/a)so for a monomial ideal a # T in the homogeneous coordinate ring T of projec-
tive line such that dimg 7'/a is finite. This is related to the tangent space to an appropriate
multigraded Hilbert scheme. This observation is used in the proof of Theorem 3.13.



In Subsection 2.1.5 we study the Ext groups Ext%(k, M) and Ext%(M,k) where S is a poly-
nomial ring and M is a finitely generated graded S-module. These results are used in Chapter 3.

For the sake of completeness, we give detailed proofs even though some of the results might
be well known. On the other hand, we only refer to the basic properties of Gréobner bases and
local cohomology as we need them. We believe that the theory of Grobner bases is already well
established, and in any case there are many excellent introductions to the topic, e.g. [27] and
[31]. The theory of local cohomology is only used as a tool in one of the proofs so it seems to be
more natural to just cite the relevant result from [57].

Subsections 2.1.3, 2.1.4 and 2.1.5 are based on [67].

2.1.1 Locally free modules
We recall the definition of a locally free module and study some simple properties of such modules.

Definition 2.1. Given a ring R, we say that a module M is locally free of finite rank if, for
every prime ideal p of R, there is an element f € R\ p such that My is a finite free Ry-module.

Observe that an R-module M is locally free of finite rank if and only if the corresponding
quasicoherent sheaf M on Spec R is locally free of finite rank. We prove algebraically some
properties of locally free modules of finite rank. These results are intuitively clear from the
interpretation in terms of sheaves of Ogpec g-modules.

Lemma 2.2. Let M be an R-module and let p be a prime ideal of R. If f € R\ is such that My
is a free Rp-module of rank r, then M, is a free Ry-module of rank r. In particular, if f' € R\ p
is such that My is a free Ry -module of rank r', then we have r =1’

Proof. We may rewrite M, as
My = M @g Ry = M ®p (Ry)pr,
where the latter isomorphism comes from [6, Prop. 11 §1.2|. This can be further transformed as
M @g (Rf)pry = M ©r (Rf @R,y (Rp)pr,) = My @R, (Rp)pry = (My)or, = (Rp)or, = By

where the last isomorphism follows from [6, Prop. 11 §1.2| since localization commutes with
direct sums. O

Definition 2.3. We say that an R-module M is locally free of rank r if, given any prime ideal
p of R, there is an element f € R\ p such that My is a free Ry-module of rank 7.

It follows from Lemma 2.2 that an R-module M can be locally free of rank r for a unique
integer r. Moreover, if R is a Noetherian ring, Spec R is connected (equivalently, if R has no
non-trivial idempotents) and M is locally free of finite rank, then M is locally free of rank r for
some integer r by [48, Ex. I1.5.8].

We study how the locally free condition behaves in short exact sequences.

Lemma 2.4. Let R be a Noetherian ring and let M C N C R be R-submodules. Assume that
RY/N s a locally free R-module of rank a for a positive integer a. For a positive integer b, the
following conditions are equivalent:

(i) R%/M s a locally free R-module of rank b;



(i) N/M is a locally free R-module of rank b — a.

Proof. Localization is exact, so it is enough to show that R%/M is a locally free R-module of
finite rank if and only if N/M is a locally free R-module of finite rank. An R-module U is a
locally free R-module of finite rank if and only if U is a flat R-module of finite presentation (see
[6, Prop. 3 §4.4]). Moreover, since R is a Noetherian ring, it is also equivalent to U being a flat
R-module of finite type.

We have an exact sequence of R-modules

0— N/M — R*/M — R*/N — 0. (2.5)

Since R?/M is an R-module of finite type, it is a Noetherian module. Thus, N/M is an R-module
of finite type.

The R-module R?/N is flat by assumption. Hence, using the Tor exact sequence coming
from short exact sequence (2.5), we obtain that N/M is R-flat if and only if R?/M is R-flat. [

2.1.2 Saturation and homogeneous saturated ideals in polynomial ring

Let S = klo] := k[ag, a1,...,a,] be a polynomial ring. By m we denote the irrelevant ideal
(g, 1, ..., ap). Given an ideal I in S, we write I for the saturation of I with respect to m.

In the proof of Lemma 2.6 we use the notion of local cohomology. See [57, Ch. 7] for its basic
properties. Recall that H (—) are the right derived functors of the functor

Cin(=): Mod(S) — Mod(5)

defined by
(M) = {m e M | m%m = 0 for some d € Z¢}.

There is a close connection between the zeroth local cohomology group HO(S/I) and the satu-
ration I of I. Namely, I is the kernel of the natural map S — (S/I)/H2(S/I). Therefore, we
are able to use the general results about local cohomology to prove the following lemma. Note
that we are interested only in the zeroth local cohomology group.

Lemma 2.6. Let R — T be a flat homomorphism of k-algebras. Let I C Rla] = @ ,(Sq @k R)
be a homogeneous ideal saturated with respect to m Qg R. The ideal I Qp'T C S @i T is saturated
with respect to m Q1.

Proof. The saturation of [ is the kernel of the natural map
S@x R— ((S®x R)/I)/Hyg, r((S®x R)/I).

The ideal I is assumed to be saturated. Thus, H?

m

®kR((S ®x R)/I) is the zero module. Since T
is a flat R-algebra, we have

7 (8 @2 1)/ 05 1)) = (Ho,p((S ©c R)/T)) @5 T =0

by [57, Prop. 7.15|. It follows that I @ g T is saturated with respect to m ® 7. ]

Lemma 2.7 states, that if an initial ideal in (/) of a homogeneous ideal I is saturated, then
I is saturated. This is a typical situation. The process of taking the initial ideal usually worsens
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the properties of the corresponding quotient algebra. As a key example, for a homogeneous ideal
I C S we have an inequality of Betti numbers

Bi;i (S/T) < Bij (S/inc (1))

for all 4, j € Z>o, see [50, Cor. 3.3.3|. Therefore, if S/in.(I) has some nice property, then often
S/I has the same property. Compare the following lemma to [50, Cor. 3.3.5].

Lemma 2.7. Let I be an ideal in S and let < be a monomial order. We have in<(I) C inc ().
In particular, if I is a homogeneous ideal and in<(I) is a saturated ideal, then I is a saturated
1deal.

Proof. Let f € T. There is an integer [ with alf € I for all i = 0,1,...,n. Therefore, ! - in(f)
belongs to in.(I) for all : = 0,1,...,n. Consequently, we have in(f) € in(I).

Now assume that I is a homogeneous ideal such that in-([) is a saturated ideal. There is a
chain of inclusions

inc(f) Cinc(I) Cinc(I) = inc(1).

It follows that there is an equality in<(I) = in-(I). Thus, I and I have the same Hilbert
function. As a result, we get I = I. O

We frequently use the following observation.

Lemma 2.8. Let M be a graded S-module and let I be a homogeneous ideal of S with I = TNm?
for a positive integer d. Assume that Mg is the zero vector space and that there is a positive
integer r with m” - M = 0. We have Homg(M, S/I)y = 0.

Proof. Pick ¢ € Homg(M,S/I)p and x € M, for some e > d. We have m" - p(z) = 0. Therefore,
in the quotient algebra S/I, the element () is represented by an element from I, = I.. Thus,
it is zero. O

Next we study some properties of Hilbert functions of saturated ideals.
Lemma 2.9. Let I # S be a homogeneous saturated ideal of S.
(i) There ezists a linear form f € Sy that is a nonzerodivisor on S/I;
(i) The inequality Hg/r(d +1) — Hg/r(d) > 0 holds for all integers d;
(i4) If Hg/1(d) = Hgyr(d—1) holds for a positive integer d, then we have Hgr(d+1) = Hg/r(d).
Proof.

(i) Let p1,...,pr be the associated primes of S/I. It is enough to show that Ule(pi)l is
not equal to S;. Suppose that the equality Ule(pi)l = 57 holds. Since k is infinite we
have (p;)1 = S for some i and therefore, m is an associated prime of S/I. This gives a
contradiction with the assumption that I is saturated.

(i) If f € S; is a nonzerodivisor on S/I, then the map (S/I)q EN (S/I)g41 is injective for
every d.
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(iii) Let f € S1 be a nonzerodivisor on S/I. Suppose that Hg/;(d) = Hg/;(d — 1) holds. The
multiplication map (S/I)4-1 ER (S/I)q is an isomorphism of k-vector spaces. We claim

that also (S/1)q ER (S/I)4+1 is an isomorphism. It is injective since f is a nonzerodivisor
on S/I. Let g € (S/I)44+1. We have g = > 7" ; a;h; for some h; € (S/I)q4. By assumptions,
there are ko,...,kn, € (S/I)4—1 with h; = fk; for all i = 0,1,...,n. It follows that
g = f(O_, ki) is in the image of the map (S/I)q ER (S/1)gs1- O

The following corollary of a theorem by Bayer and Stillman enables us to deform a saturated
ideal to a saturated ideal with special properties—a Borel-fixed ideal. Consider the action of
GL;,+1(k) on the set of ideals of S given by a linear change of coordinates. Given an ideal I C S
and a monomial order <, there is a non-empty open subset U C GL,1(k) such that the ideal
inc(g - I) is independent of the choice of g € U [31, Thm. 15.18|. We call this ideal the generic
initial ideal of I with respect to <.

Corollary 2.10. Suppose that I # S is a homogeneous saturated ideal of S. The generic initial
ideal I' of I with respect to the grevlex order with cg > -+ > ay, is a saturated ideal.

Proof. Since I is a saturated ideal we have depth(S/I) > 1 by Lemma 2.9(i). Thus, the inequality
depth S/I' > 1 is a consequence of [50, Cor. 4.3.18]. It follows that I’ is saturated. O

The following lemma gives a useful property of saturated Borel-fixed ideals.

Lemma 2.11. Let T = K[, ..., an—1]. If I C S is a saturated Borel-fized ideal then there exists
an ideal a CT witha-S =1.

Proof. Let G be the set of all minimal monomial generators of I. It is enough to show that there
is no element [[" ;o € G with a, > 0. Assume that we have [[!" ;o € G with a,, > 0.

We claim that the element
j—1 n
a; Zk:j ag
| | ot |- ag
1=0

belongs to I for every 0 < j < n. This follows from |68, Prop. 2.3] if chark = 0 and from [51,
Prop. 1.2] if chark > 0. Therefore, H?;()l o belongs to I = I since we have

n—1
ZZ:J- ag a;
o . H o | €1
1=0

for all j € {0,...,n}. This shows that g is not a minimal monomial generator and gives a
contradiction. O

The following observation is a special case of Macaulay’s theorem [10, Thm. 4.2.10].

Lemma 2.12. Let T' = k[ag, a1] and a C T be a homogeneous ideal. The inequality
HT/a(d) - HT/u(d + 1) >0

holds for every d with ag # 0.

Proof. If a4 is non-zero, then we have Hy/q(d) < dimy Ty—1 = d. It follows from [10, Thm. 4.2.10]
that there is an inequality Hy/q(d + 1) < Hyyq(d). O
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As a consequence of the above observation we obtain some bounds on the number of minimal
homogeneous generators of a homogeneous saturated ideal I C S = k|ag, a1, as].

Lemma 2.13. Let I C S = k[ag, a1, as] be a homogeneous saturated ideal. Let m be a positive
integer with I, # 0 and let f be the Hilbert function of S/I. For every d > m we have

Bra+1(S/T) < 2f(d) — f(d+1) — f(d—1).

Proof. Let I' be the generic initial ideal (see [31, §15.9]) of T with respect to the grevlex order
with ag > a1 > ag. By Corollary 2.10 the ideal I’ is saturated. Moreover, 31 4(S/I") > B1..(S/I)
holds for every a by [50, Cor. 3.3.3]. Therefore, it is enough to prove the lemma for a saturated
Borel-fixed ideal I'. Let a = I’ Nk[ap, a1] and let g be the Hilbert function of k[ag, a1]/a. We
have I’ = a- S by Lemma 2.11, so we get f(a) — f(a — 1) = g(a) for every a € Z.

Let d > m be such that there is an inequality 51 q1+1(S/I') = B1,4+1(klaw, a1]/a) > 2f(d) —
f(d+1)— f(d —1). Since ag is non-zero, it follows from Lemma 2.12 that we have 2f(d) —
fld+1)— f(d—1)=g(d) —g(d+1) > 0. Let G be the set of all minimal monomial generators
of a and let G’ be obtained from G by deleting s = g(d) — g(d + 1) + 1 minimal monomial
generators of degree d + 1. Let a’ be the ideal of k|, 1] generated by monomials from G’ and
let R =k[ag, aq]/a’. We have af, = ag # 0, but

Hp(d+1) — Hr(d) = g(d+ 1) + s — g(d) = 1.

This contradicts Lemma 2.12. O

2.1.3 Hilbert function of a power of an ideal of points

We keep the notation of Subsection 2.1.2. In particular, S = k[ay, ..., a,] is a polynomial ring.
The main result of this subsection is Proposition 2.19. Let I be a radical homogeneous ideal in
S such that S/I has constant Hilbert polynomial. In the proposition we compute the Hilbert
polynomial of S/I* (for a positive integer k) and bound the degree from which it agrees with
the Hilbert function of S/I*. This result is crucial in the proof of Theorem 3.5.

We begin with studying the following condition on homogeneous ideals J of S:

there exists a positive integer d with Sy C J. ()

Condition () is equivalent to the condition that J contains a power of the irrelevant ideal
m = (ag,aq,...,0p). It can be restated geometrically. Namely, a homogeneous ideal J in the
polynomial ring S satisfies condition (%) if and only if the corresponding closed subset of the
projective space Proj S is the empty set. See [77, Lem. 1.1] for a proof of this equivalence.

We collect some useful properties of condition (x) in the following lemma. They are probably
all well-known. Nevertheless, we could not find a reference for all of them so we present a simple
proof.

We stress that in the following lemma, the lower index of I, does not indicate the degree s
part of the homogeneous ideal I, as it usually does in the rest of the thesis.

Lemma 2.14. Let m > 2 be an integer and J, K, I, ..., L, be homogeneous ideals of S.

(i) We have JNK = JNK;
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(ii) J + K satisfies condition (%) if and only if \/J + VK satisfies condition (x);

(iii) If I; + I, satisfies condition (x) for alli = 1,2,...,m — 1, then Iils---Ip,—1 + L, and

LNnlan---N1y_1+ Ly, satisfy condition (*);

() If I,1s,..., Iy are homogeneous ideals such that I; + I; satisfies condition () for all

1 <1< j<m, then the equality I11s--- I, =11 N Io N ---N I, holds.

Proof.

(i)

(iii)

(iv)

Let f € JN K. By definition of saturation, there are integers k1 and ko with afl fed
and af2f € K for all i = 0,1,...,n. Therefore, we get a?ax{kl’kQ}f € JN K for all
i=0,1,...,n. Since f was arbitrary, we obtain J N K C JN K. On the other hand, we
have JN K C JN K since J N K is contained in both J and K.

An ideal of S satisfies condition (x) if and only if its radical satisfies condition (x). There-

fore, it is enough to observe that we have

VITE = VI+VE.

This follows from the definition of a radical of an ideal, and is well-known [2, Ex. 1.13 v)].

By [2, Ex. 1.13 iii)| and induction we have

\/11[2---Im_1=\/Ilﬂfgﬂ-“ﬂfm_lzvflr\l Ln---N\In_1.

Thus, by part (ii) it is enough to show that /I N /Io N -+ N /T,—1 + /I, satisfies
condition (*). By assumptions there is an integer d with ozg €lj+1,foralli=0,1,...,n
and for all j =1,2,...,m — 1. Tt follows that there are elements s;; € \/I; and t;; € VI
satisfying agl = sj; +t; foralli = 0,1,...,n and for all j = 1,2,...,m — 1. Multiplying
these identities for all j € {1,2,...,m — 1} and fixed i, we obtain

m—1 m—1 m—1 m—1
d(m—1
ai(m ) — H (sij + tij) = H Sij + H (Sij + tij) o H Sij | - (2.15)
j=1 j=1 j=1 J=1

We have

m—1
HS@‘E\/E\/E"' Imflg\/IEIm Igﬂ-"ﬂ Imfl
j=1

and H;ﬂ;l(slj +tij) — H;n;ll sij € V/In,. Hence, by Equation (2.15) «; belongs to

\/\/fm LN--N\ITm14\In

for alli = 0,1,...,n. It follows that /Ty N\/ToN -+ -N+/T,,—1 + /I, satisfies condition (x).

We prove it by induction on m starting with m = 2. The inclusion I1 - I C I1; N1y is a
consequence of I7 - Is C I1 N I5. In order to establish the opposite inclusion, observe that
for some positive integer d we have

Sq - (11 N Ig) - (Il + .[2)(_[1 ﬂfg) cChL- I,
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by the assumption that I; + I3 satisfies condition (x). The inclusion I3 NIy C I - I3 follows.
Thus, I N I is a subset of I - I5.

Let k > 3 and assume that part (iv) holds for all integers m smaller than k. From part (i)
we get IlﬂIQQ-HQIk:Ilﬂlgﬂ"'ﬂfk_lﬂfk.

Applying the inductive hypothesis for m = k — 1 we conclude that we have

Ilﬂlgﬂ"'ﬂfk:Ilﬂ[gﬂ-'~ﬁfk_1ﬂTk:Ilfg~--Ik_1ﬂTk.

The ideal I1 1y - - - Iy 1 + I}, satisfies condition (*) by part (iii). Therefore, from part (i) and
inductive hypothesis for m = 2, we get

hnbbnN---NIly=05Lily---I_4 ﬂTk: (11]2'”Ik_1)ﬂfk =Ly I,
as claimed. O

The following lemma shows that if two ideals have the same saturation, then their k-th powers
for any positive integer k also have the same saturation.

Lemma 2.16. Let I and J be homogeneous ideals of S and k be a positive integer.

(i) There is an integer do such that for all integers di,...,dy > dy the map ®f:1 Iy, —
I§1+~-~+dk induced by multiplication is surjective;

(ii) If the equality I = J holds, then we have Ik = Jk.
Proof.

(i) Consider a minimal set of homogeneous generators of I. We can take dy to be the maximum
of degrees of elements of this set. This can be expressed in terms of Betti numbers as

do = max{j | B1,;(S/I) # 0}.

(ii) Let dy = max{j | p1,;(S/I) # 0} and eg = max{j | B1;(S/J) # 0}. Let rg be an integer
with Ispy = 727«0 and I>ry = 727«0. Let sg = max{do,eo,ro}. For all dy,...,dp > sy we
have

k _ Tk _ T _ 7k
Livtotd, = Layvordy, = Jartotdy, = Jiy oty

where the first and last equality follow from part (i). We get I*¥ = J*. O

Using the above algebraic results we compute the Hilbert polynomial of a power of a homo-
geneous radical ideal which defines a closed, zero-dimensional subscheme of projective space.

Lemma 2.17. Let I C S be a homogeneous radical ideal such that the Hilbert polynomial of the
quotient algebra S/I is constant, equal to r for some positive integer r. For a positive integer k,
the Hilbert polynomial of S/I* is constant equal to r - dimy Sg_;.

Proof. Let Py,...,P, be the (distinct) points of the support of ProjS/I C P™. Define p; to
be the homogeneous prime ideal of S defining F;. We have I = p;N---Np, and p; +p; = m
for all 1 < i < j < m. Therefore, by Lemma 2.14(iv), we get I = J, where J is the product
p1---p,. Hence I* = JF holds by Lemma 2.16(ii). As a result, it suffices to show that the Hilbert
polynomial of S/J* is 7-dimy Sk_1. Let K = p¥n---Np¥. Observe that pf—HJ? satisfies condition
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(%) for every 1 < i < j < m by Lemma 2.14(ii). Therefore, we have K = J* by Lemma 2.14(iv).
Thus, it is enough to consider the Hilbert polynomial of S/K. As a set, Proj S/K is the disjoint
union of r points P, ..., P,. Consequently, it is enough to show that the degree of Proj S/pé€ is
dimy Si_1 for every ¢ = 1,...,r. This is clear, since up to a linear change of variables p; is the

ideal (aq,...,ap). O

The following example shows that the assumption in Lemma 2.17 that [ is reduced cannot
be weakened to the assumption that I is saturated.

Example 2.18. Let I = (a3, apa1,a?) € S = klag, a1, a9]. It is a saturated ideal and the
corresponding subscheme Proj S/I C P? is zero-dimensional of degree 3. However, Proj S/I? has
degree 10.

In Lemma 2.17 we have calculated the Hilbert polynomial of S/I* for a homogeneous radical
ideal I defining a zero-dimensional closed subscheme of a projective space and a positive integer k.
Now we provide an upper bound on the least degree, from which the Hilbert function of S/I*
agrees with the Hilbert polynomial of S/I*. The proof uses the notion of regularity. We recall its
definition in terms of Betti numbers. For a finitely generated graded S-module M, its regularity
reg M is defined to be reg M = max{j — i | §; ;(M) # 0}.

Proposition 2.19. Let r and k be positive integers and I C S be a homogeneous radical ideal
with the Hilbert polynomial of the quotient algebra S/I equal to r. Define e = min{a € Z |
Hgr(a) =r}. We have Hgx(d) = r - dimg Sk—1 for every d > ke + k.

Proof. The Hilbert polynomial of S/I* is 7 - dimy Sy_; by Lemma 2.17. Therefore, we are left
with establishing the bound on the degree from which the Hilbert function agrees with the Hilbert
polynomial. This is related to the regularity. By [32, Thm. 4.2|, it is enough to show that the
inequality

ke+k—1>regS/I" (2.20)

holds. We have reg S/I = e by 32, Thm. 4.2|. Hence, from the definition of regularity in terms
of Betti numbers, we get reg I = e + 1. Thus, reg I* < ke + k is a consequence of [22, Thm. 6].
Inequality (2.20) follows. O

Unlike in Lemma 2.17, to obtain the bound on the degree from which the Hilbert function
agrees with the Hilbert polynomial, the assumption in Proposition 2.19 that I is radical could
be replaced by the weaker assumption that I is saturated. However, we need to control both the
value of the Hilbert polynomial and the degree from which the Hilbert function has this value.
Therefore, we need to restrict our attention to radical ideals.

2.1.4 Tangent space at extended ideal

In this subsection we consider polynomial ring 7' = k[ag, @1]. The main result is Proposition 2.22
which computes
dimk HOHIT(C(, T/a)>0

for a monomial ideal a # T of T such that dimy 7'/a is finite. This is later used to compute the
dimension of the tangent space to the multigraded Hilbert scheme at the point corresponding to
the extended ideal a* C k[ag, a1, as).
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If M and N are graded T-modules and M is finitely generated then the Ext groups Ext’(M, N)
are graded T-modules in a natural way (see |10, §1.5]). For a graded T-module M and an inte-
ger d, by M(d) we denote the graded T-module given by M(d)e = M., 4 for all e € Z.

Let a be a monomial ideal in 7" with dimy 7'/a = r for a positive integer . We can consider
the associated staircase diagram (see [68, §3.1]). We recall its construction. For each pair of
non-negative integers (s,t) with o} ¢ a put a 1 x 1 box with sides parallel to coordinate axis
and (s,t) as lower left corner of the box. The diagram corresponding to a is denoted by Dy. The
set of boxes of the diagram D, (or, the set of monomials outside a) is denoted by A4. There is
a canonical minimal free resolution of 7'/a (see [68, Prop. 3.1]). The set of minimal monomial
generators of a is denoted by M, and the generating set of relations (or more precisely the set
of their degrees when T is considered with the natural Z2-grading) used in that resolution is

denoted by R,.

o | X

Figure 2.1: Staircase diagram of the ideal a = (o, adau, a?).

Example 2.21. Figure 2.1 presents the staircase diagram of a = (048, a%al,a%). Filled boxes
correspond to monomials outside a (i.e. elements of A,), dots correspond to elements of M, (i.e.
minimal monomial generators of a) and asterisks correspond to elements of R, (i.e. minimal

relations between those generators).

We have #Aq = dimg T'/a = r and # Ry = #M,— 1. We identify monomials of 7" with lattice
points in Z2. Given a point u = (s,t) in Z? we write |u| for s +t. We define three functions

from integers to integers:

Aa(a) :HT/a(a) =#{ue A |ul =a},
ta(a) =B1,a(T/a) = #{u € M, | |u| = a},
pa(a) =P2,4(T/a) = #{u € Ry | [u| = a}.

The goal of this subsection is the proof of the following proposition.

Proposition 2.22. Let r be a positive integer. Given a monomial ideal a in T with dimy T /a =r

we have

dimy Homp(a, T/a)s0 = > > Aala) = D > A(a). (2.23)

ucMq a>|ul ucRq a>|u|

Observe that [34, Lem. 3.2| presents a more general formula for dimy Homy(a,7"/a)y, where
u € Z? and we consider T with the natural Z?-grading.
The proof of Proposition 2.22 is based on the following observation.

Lemma 2.24. Let a be a monomial ideal in T such that T'/a is a finite k-vector space.

(i) The natural map T — Homp(a,T) given by f +— (g — fg) is an isomorphism of graded
T-modules.

(i) We have Exth(a,T/a)so = 0.
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. . . : . b .
Proof. Since dimy T'/a is finite, a is equal to (ao ,aglo/{ ye - ags Yo, 1{3) for some positive

integers ag > a1 > -+ > as_1 and by < by < --- < bs. Set ag = by = 0.

(i) Let ¢: a — T be a homomorphism of T-modules. It is enough to show that there exists an
element f € T with ¢(g) = fg for every g € a. Define f; = o(ay’ al ‘) for all i = 0,.
For each i € {1,..., s} we have relations of the form

blfbl', i— 11— 7
o N — g@(ag 10/{ )= ag 17 (2.25)

From Equation (2.25) for i = s we deduce that ogy* " divides f;_1. It follows by induction
that o’ divides f; for all i. Thus, we have fo =y’ f for some f € T'. From Equation (2.25)
we conclude that f; is equal to o’ 0‘1 ' f for each i.

(ii) We start with showing that Ext}(a, 7)< is zero. Consider the canonical minimal graded

@T —a;—1 — b;) —>@T )—a—0

of a (see |68, Prop. 3.1|). Applying the functor Homy(—,T') to the above resolution, we

free resolution

obtain for every integer ¢ a k-linear map

Pe: @ T(CLZ' + bi)c — @T(ai—l + bi)c-
=0

=1

~

We claim that 9. is surjective for every ¢ > 0. Observe that we have ker 1. = Homr(a,T"), =
T. by part (i). Therefore, the claim is a consequence of the calculation

S S S
dimy @Tai-l—bi—i-c =(s+1(c+1)+ Z(ai,l + b;) = dimy @ To; y+b;+c + dimy Te.
1=0 i=1 i=1

Since 1) is surjective for every positive integer c, it follows that Extt(a, T)sq is zero.

Now we prove that we have Ext%p(a, T/a)sp = 0. Consider the following part of the long
exact sequence of Ext groups obtained from the short exact sequence 0 - a -7 — T'/a —
0 by applying the functor Homp(a, —):

- ExtlT(a, T)so — ExtlT(a, T/a)so — Ext%(a, a)sg —> - .

We have shown the equality Ext}(a,T)sq = 0. Moreover, Ext2(a,a)s is trivial since a
has projective dimension 1. The equality Exti(a,7/a)so = 0 follows. O

Proof of Proposition 2.22. Consider the canonical minimal free resolution of a

0= P 1(-a)® - PT(-b)"® a0
a€’Z beZ

Applying the functor Homp(—,T/a)so and using Lemma 2.24(ii) we get an exact sequence

0 — Homy(a,T/a)>0 — ) Homp(T(~)""), T /a)~o — @ Homp(T(—a)** ), T/a)sg — 0.
beZ a€Z
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This can be rewritten as

0 — Homy(a,T/a)s0 — T /0)5" — @(T/a)5" — 0.
beZ a€Z

Thus, we have

dimyg Homp(a,T/a)so = Z Z dimg(7T'/a). Z Z dimg (7T'/a)e.

u€Mq c>|ul u€Rq c>|u|
This is equivalent to Equation (2.23). O
We end this subsection with an example.

Example 2.26. Let a = (af, aday,af). Its staircase diagram is presented in Figure 2.2. For
this ideal Equation (2.23) takes the form

dimy Homy(a, T/a)s0 = (23 Aa(@)+D_ Aa(@)) = (D Aa(@)+> Aa(a)) = (2:54+0)—(3+0) = 7.

a>3 a>6 a>4 a>8

Figure 2.2: Staircase diagram of the ideal a = (a3, a3ay,a$).

2.1.5 Dimensions of Ext groups

In Lemmas 2.27 and 2.28 we present general results about finitely generated modules over poly-
nomial rings. They are used in Chapter 3.

Lemma 2.27. Let n be a positive integer and S = Kk[ao, ..., an] be a polynomial ring. Let M be
a finitely generated graded S-module. We have

n+1 ' ' n+1 41
> (~1)" dimy Extis(k, M), = Z(—1)l< . ) dimy My
=0 =0

for every e € Z.

Proof. Let P, be the Koszul resolution of k. Applying the functor Homg(—, M), we obtain a

complex
Homg (P, M).,

whose cohomology groups are Extis(]k, M), for all i = 0,...,n + 1. Therefore, by a standard
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argument (see [81, Ex. 1.6.B|) by splitting the above complex into short exact sequences we get

n+1 4 4 n+1 '
Z(—w dimy Extly(k, M), = Z(—w dimy Homg(P;, M)..
1=0 =0

n+1
Since there is an isomorphism P; =2 S (—z)( h ), we obtain the following equality

n—+1

dimy Homg(P;, M), = (
7

> dlm]k Me+i. OJ
Lemma 2.28. Let n be a positive integer and S = Kk|ay,...,a,] be a polynomial ring. Given
a finitely generated graded S-module M and an integer e € Z we have dimy Extfg(M, k)e =

ﬁi,fe(M)-

Proof. Apply the functor Homg(—,k) to a minimal graded free resolution P, of M. The Ext
groups ExtiS(M ,k) can be computed as cohomology groups of the obtained complex. Since the
i-th differential in P, maps P; into mP;_1, the differentials in the complex Homg(P,, k) are zero.
Therefore, we have dimy Extfg(M, k)e = dimy Homg(P;, k)e = Bi—e(M). O

2.2 Scheme theory and multigraded Hilbert schemes

In this section we give the definition of multigraded Hilbert schemes and study the basic prop-
erties of these schemes. In Subsection 2.2.1 we present general results from scheme theory that
are used in the proofs of the main results. Next subsection contains a formal definition of a
multigraded Hilbert scheme and its basic properties. In Subsection 2.2.3 we introduce multi-
graded Hilbert schemes "of points in general position". This is the main object of investigation
in this thesis. The final subsection concerns the flag multigraded Hilbert scheme. This scheme is
defined by its functor of points and we prove its existence using existence of multigraded Hilbert
schemes.

2.2.1 Scheme theory

The following lemma gives some conditions under which a morphism of k-schemes that is bijective
on k-valued points is a homeomorphism.

Lemma 2.29. Let f: X — Y be a closed morphism of schemes locally of finite type over k. If
f induces a bijection of k-valued points X (k) — Y (k), then f is a homeomorphism.

Proof. In both X and Y, closed points are very dense by [41, Prop. 3.35]. Since f induces a
bijection of closed points, it is dominant and hence surjective. Moreover, if we have f(p) = f(q),
then there is a chain of equalities f({p}) = {f(»)} = {f(¢)} = f({q}). As a result, the sets of
closed points of X that are contained in {p} and {q} are equal. It follows that the closures of

{p} and {q} coincide and therefore, we get p = ¢. This shows that f: X — Y is a bijective,
closed, continuous map and thus, a homeomorphism. O

In describing the intersection of irreducible components of some multigraded Hilbert schemes
we use the following lemma.
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Lemma 2.30. Let X be a scheme locally of finite type over k. Let Z1 and Zy be irreducible
closed subsets of X of dimensions di and ds, respectively. Let P € Z1 N Zy be a closed point of
the intersection and let d = dimy TpX. FEvery irreducible component W of Z1 N Zs such that

P € W satisfies dimW > dy + do — d.

Proof. By [80, Tag 0C2G|, there exists an open neighborhood U of P in X and a closed immersion
i: U — Y where Y is a smooth d-dimensional variety over k. Let W; = i(|Z1| N |U|) and
Wy = i(|Z2] N |U|), where | - | denotes the underlying topological space. These are d; and da-
dimensional irreducible closed subsets of Y, respectively. Therefore, every irreducible component
of Wi N Wj has dimension at least di + d2 — d (see 37, §8.2]). O

2.2.2 Multigraded Hilbert schemes

We denote the categories of sets, k-algebras and k-schemes by Get, k-2lg and Gcly, respectively.
In this subsection we introduce multigraded Hilbert schemes following [46]. We give the definition
in terms of the functor of points Hilbg: k-2Alg — Get and then verify that the scheme represents
the natural extension to the functor Hilb%: Gch? — Get.

Let n be a positive integer and let S = k[a] := k[ao, ..., ay,] be the polynomial ring over k.
We identify monomials of S with N**1. Let A be an abelian group and let deg: N**! — A be
a homomorphism of semigroups. We assume that A is generated by deg(«;) for all i = 0,...,n.
We consider S with the A-grading induced by deg

S = @ S, satisfying Sy - Sy C Sqto,
acA

where S, is the k-vector space spanned by monomials a® with deg(u) = a. Given a k-algebra
R, we write R[a] for S ®y R together with the A-grading given by R|a], = S, ®k R.

Definition 2.31. Given a k-algebra R and a function h: A — N, we say that a homogeneous
ideal I C R[a] is admissible for Hilbert function h if R|a],/1, is a locally free R-module of rank
h(a) for every a € A.

We define the functor Hilbg: k-2Alg — Get by
R {I C R[a] | I is an admissible ideal for Hilbert function h}

and given ¢: R — R’ we define
Hilb%(p): I — I ®r R

The following lemma confirms that the above data define a functor.

Lemma 2.32. Let R be a k-algebra and I C R[a] be an admissible ideal for Hilbert function h.
If p: R — R’ is a homomorphism of k-algebras, then I @ R’ is an ideal of R[], admissible for
Hilbert function h.

Proof. Consider the exact sequence of R-modules

0 — I — R[a] — Rla]/I — 0.
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Since R[alq/1, is a locally free R-module of finite rank it is flat (see |6, Prop. 3 §4.4]). Therefore,
by tensoring the above sequence with R’ over R we obtain an exact sequence of R’-modules

0—I®r R — R'[a] - R'[a]/(I @ R') — 0.

Since I @ R is an R’-submodule of R'[a] stable under multiplication by any monomial, it
is an ideal. We show that R'[a],/(l, ®r R') is a locally free R'-module of rank h(a) for every
a € A. Let q € SpecR' and let p = = !(q). Given a € A, there is an element f € R\ p
with (Rlala/1a)f = R?(a). Let ¢ = ¢(f). We have g € R'\ q and we show that there is an
isomorphism (R'[a]e/(I. ®r R’ ))g = (R/g)h(a). Indeed, this is a consequence of the following
chain of isomorphisms

(Rlada/(Ta ®r R)), = (Rlada/Ia) ®r R'), = (Rle]a/1.) @R By =

=~ ~ phla ~ a
> (Rlalo/1a); @, Ry = R} ©r, Ry = ()", O

The following existence statement is the foundation of the theory of multigraded Hilbert
schemes.

Theorem 2.33 ([46, Thm. 1.1]). Let S = k|ay, . .., ay] be a polynomial ring graded by an abelian
group A. Let h: A — N be a numerical function. There exists a quasiprojective k-scheme Hilbg
representing the functor Hilbg: k-2Alg — Set.

Moreover, under additional assumptions on the grading deg: N**1 — A, the scheme Hilbg
is projective.

Definition 2.34. Let S = k[ay, ..., a,] be a polynomial ring and A be an abelian group. The
grading of S given by a semigroup homomorphism deg: N**! — A is called positive if So = k.

In the cases that are studied in this thesis, the grading is positive.
Example 2.35.

(a) The homogeneous coordinate ring S[P"] = k[ap, . .., a,] of projective space P" is Z-graded
by deg(a;) = 1. This grading is positive.

(b) More generally, let X be a smooth projective toric variety over the field of complex numbers.
Its Cox ring S[X] is a Pic(X)-graded polynomial ring and S[X]o = I'(X,Ox) = C. See
Chapter 4 for more about smooth projective toric varieties and their Cox rings.

The main consequence of the assumption that S is positively graded, is the following result.

Theorem 2.36 ([46, Cor. 1.2.]). Let S = Kk[ao, . .., ap] be a polynomial ring graded by an abelian
group A. If the grading is positive then for every function h: A — N, the multigraded Hilbert
scheme Hilbg 1s projective over k.

Moreover, there is also an algebraic consequence of this restriction on the grading.

Theorem 2.37 (|68, Thm. 8.6]). Let S = k|ao, ..., an] be a polynomial ring graded by an abelian
group A. The following conditions are equivalent:

1. So=k;
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2. S, is a finite-dimensional k-vector space for every a € A.

Now we discuss the extension of the functor Hilbg to the category &chy”. The definition

comes from [68, §18.5]. Then we check that the extended functor is indeed the functor of points
of Hilb%.

Definition 2.38. Let X be a k-scheme and h: A — N be a function. We say that a closed
subscheme Z C A}‘{H is an admissible family for the function h if for every affine open subscheme
Spec R C X, the pullback of the ideal sheaf of Z to A%H corresponds to an ideal of R[a] that is
admissible for the function h.

As is often the case, this condition can be checked on any affine open covering.

Lemma 2.39. Let h: A — N be a function. Let X be a k-scheme with an affine open covering
X = UjeJ U; with U; = Spec R;. Let Z C A}H be a closed subscheme such that the pullback of
its ideal sheaf to A%erl is an admissible ideal of Rj[a] for the function h for every j € J. The
subscheme Z is an admissible family over X for the function h.

Proof. Let V' = Spec R be an affine open subscheme of X and let I be the ideal in R[a] cor-
responding to the pullback of the ideal sheaf of Z. The ideal I is an admissible ideal for the
function A if and only if for each a in A, the degree a part of R[a]/I is a locally free sheaf of

rank A(a). This can be checked on any affine open covering of A’;{rl. Given a point P € A}L{H
there is an affine open subscheme U = SpecT' C V N Uj for some j € J that is a distinguished
open subscheme of U; and such that P is in A’T‘H. It is enough to show that the pullback of the
ideal sheaf of Z to Agﬂ“ corresponds to an admissible ideal. Since this is true for the pullback
to A%_rl, the claim follows from Lemma 2.32. O

We define the natural extension of the multigraded Hilbert scheme functor to the category

GCF)H? , opposite of the category of k-schemes. For now we denote this functor by Hilbg.
Given a k-scheme X, let

Hilb%(X) = {admissible families Z C A" for the function h}

and for a morphism f: X — Y of k-schemes let

Hilb%(f): Z +— (f x idynt1)"H(2).
The following lemma checks that this functor is well-defined.

Lemma 2.40. Let f: X — Y be a morphism of k-schemes. If Z C A’{,‘H 1s an admissible family
over 'Y, then the scheme theoretic inverse image

(f x idgnt1)"1(Z) C A

s an admissible family over X.

Proof. To simplify notation, let Z’ = (f x idyn+1)~(Z). We may choose affine open subschemes
SpecT C X and Spec R C Y with f(SpecT) C Spec R. By Lemma 2.39, it is enough to show
that the pullback of Z’ to Agﬂ“, denoted by Z/., corresponds to an admissible ideal of T'[a]. Let
Zr denote the pullback of Z to A%H. We have the following diagrams with all inner squares
pullback diagrams:
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A%—Fl XA%+1 ZR ZR 7 Z& A > Z
L l Lo l l
AR AR At AR ART — AP

1 1 1 \ 1 1

SpecT — SpecR — Y SpecT — X —— Y.

Since Z is an admissible ideal over Y, Zg corresponds to an admissible ideal of R[a]. Thus,
AT AnH Zp corresponds to an admissible ideal of T[] by Lemma 2.32. Since the bottom
arrows from SpecT to Y in both diagrams are the same, so are the middle arrows A;ﬂ“ — Agﬁ“.
Therefore, we have Z/, = A?H X pntt ZRr as a closed subscheme of A?‘H which finishes the

proof. O
As expected, the multigraded Hilbert scheme represents this extended functor.

Lemma 2.41. Let S = Kk[ao, ..., an] be a polynomial ring graded by an abelian group A. Let

h: A — N be a function. The functor Hilbg: Gt,bﬂzp — Bet defined above is the functor of points
of the multigraded Hilbert scheme Hﬂbg.

Proof. Let hHilbg be the functor of points of Hilbg. Let Y be a k-scheme and cover it by affine
open subschemes {V;, };.er. Moreover, cover each intersection V;, N'V;, by affine open subschemes
Viei,k for k € I ;,. Since data of an admissible family over Y is affine local on Y, we have an
equalizer diagram of sets

Hllbh ) — HHﬂbh D= 1111 11 Hﬂbs Vigick)-

is€l is€lizel ke[lslt

See [75, p. 225] for the definition and universal property of equalizer. Since hHﬂbg is representable,
we also have an equalizer diagram of sets

g (V) = H g (Vis) = H H H it (Visiok) -
is€l is€lirel kel

—_~—

Since Hilbg and hype are isomorphic when restricted to the category of affine k-schemes, the

middle and right terms of the above sequences are naturally isomorphic. Thus, we have an

isomorphism Hilbg(Y) — hHﬂbg (Y') by the universal property of equalizer.
We claim that this isomorphism is natural with respect to f: X — Y so that it defines a

P

natural isomorphism of functors between Hilb}S‘ and hHilbg' Indeed, we may choose an affine open

covering {Uj, },es of X refining the open covering of X by preimages of V;’s for is € I. Let
v: J — I be the corresponding map of indexing sets, such that Uj, is contained in f *1(V7(ja))
for every j, € J. Furthermore, we can cover each U;, N Uj, with j,,j, € J by affine open
subsets Uj, ;i for I € Jj,j,
k€ Ly(jon(y)- We have a commutative diagram

refining the open covering of U;, N Uj, by preimages of V. (;.),(j,)x for

e P

Hﬂbh( ) — Hisel Hilbg(Vis) — Hisel Hitel er[~ ; Hﬂbg(‘/isitk)

igig

LBl () l I
Hﬂbg(X) - Hjaej Hﬂbg(Uja) = HjaeJ HjbeJ Hlejja]-b Hﬂbg‘(Ujajbl)
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and a similar one for hHﬂbg . Since the isomorphisms

P

a: Hilb%(Y) — hygap (Y) and - Hilb%(X) — hyganp (X)

are induced from the universal property of equalizer and isomorphism of restricted functors, the

e~

equality 8 o Hilbg( f) = thbg (f) o « follows from the universal property of equalizer. O

We end this subsection with two technical results. The first of them is concerned with the
fact that smoothness of [I] € Hilb% "does not depend" on I;. The following lemma makes it
precise.

Lemma 2.42. Let m < n be positive integers and let I C S[P™] = Kk[ao, ..., am] be a homoge-
neous ideal. Denote the Hilbert function of S[P™|/I by h. Let I' = I+ (a1, - - -, ) C S[P"] =
k[, ...y am, ..., an]. The point [I] € Hilbg[Pm] is a smooth point if and only if [I'] € Hilbg[w]
s a smooth point.
Proof. Let d = h(1). It follows from the inequality d < m + 1 that we can consider S[P4~!] =
k[, ..., aq-1] as a subring of S[P™]. Up to a linear change of variables in S[P™] we may assume
that we have I = I" + (ay, . .., ) for an ideal I"” C S[P?~1] such that S[P?~1]/I” has Hilbert
function h.

The scheme Hilb§pa is a Hilblpa 1-bundle over Gr(n + 1 —d, S[P"]1) and Hilb§pn is a
Hilbg[Pd_l]—bundle over Gr(m + 1 — d, S[P™];) by [20, Prop. 3.1]. Therefore,

[I] is a smooth point < [I”] is a smooth point < [I'] is a smooth point. O

We compute the fiber of a natural map of multigraded Hilbert schemes, associated with the

homogeneous coordinate ring of a projective space, given by restricting ideals to high degree.

Lemma 2.43. Let n be a positive integer and I be a homogeneous ideal of S = S[P"]. Let
m =min{a € Z | I, # 0} and g be the Hilbert function of S/I. Let d > m be a positive integer
and define h: Z — 7 by

dim S, fora<d
h(a) =
g(a) fora>d.

There is a natural map : Hilby — Hilb% given on closed points by [J] + [J Nm]. Let K] be
a closed point of Hilb% with Hgz(a) = g(a) for every a = m+ 1. The fiber of m over [K] is the
Grassmannian

Gr(dimg S,, — g(m), Kp).

Proof. The point [K] € Hilb% gives a natural morphism
Speck = Spec k([K]) — Hilb% .
Its functor of points k-2lg — Get is given by
R — {K ®k R}.
The scheme theoretic fiber over [K] is the fiber product
Hilb?, X Hilbs Spec k([K]).
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Therefore, its functor of points k-2llg — Get is the fiber product of the corresponding functors,
i.e. it is given by

R+ {J € Hilb4(R) | JN (m @k R)? = K ® R}.

Since all schemes considered in this proof are of finite type over Speck, they can be recovered
from their functors of points restricted to the subcategory of finitely generated k-algebras. In
what follows we restrict to this subcategory.

The ideal K ®y R is saturated with respect to m®y R by Lemma 2.6. Therefore, by definition
of m and the assumption that Hy /F(a) = g(a) holds for every a > m+ 1, the functor of points of
the fiber is naturally isomorphic to the functor from the category of finitely generated k-algebras
to the category of sets defined by

Rw— {Jn C K, RCS,, @ R |Jm is an R-submodule of K,, @ R and
(Sm @k R)/Jm is a locally free R-module of rank g(m)}.

By Lemma 2.4, this functor coincides with the following functor:

R+ {Jym C Ky ®k R |J, is an R-submodule of K, ®y R and (K, ® R)/Jp is a locally

free R-module of rank g(m) + dimy K,,, — dimg Sy, }.

This is the functor of points of Gr(dimy Sy, — g(m), Kpn). O

2.2.3 Multigraded Hilbert schemes of points in general position and Slip

In this subsection we introduce the main object of study of this thesis in the case of projective
space. We define the multigraded Hilbert scheme Hilbgr[ﬁfn}
projective n-space. The more general definition for a smooth projective toric variety appears

in Subsection 4.1.5. For positive integers r and n, the scheme Hilbg’hgln] has a distinguished

of r points in general position on

irreducible component called Slip,.,, which plays a key role in the border apolarity lemma—
Proposition 2.92.

Fix a positive integer n and let S = S[P"| := kla] = k[ap, ..., a,] be the homogeneous
coordinate ring of P" with its standard Z-grading given by deg(a;) =1 for all i = 0,...,n. Let
r be a positive integer and let h;.,, = h,pn: Z — N be given by

hyn(a) = min{r, dimy S }.

This is the Hilbert function of r points in P™ in general position. We study the multigraded
Hilbert scheme Hilb?’".

This scheme has a natural morphism into the Hilbert scheme #ilb,(P™) parametrizing zero-
dimensional, length r subschemes of the projective n-space. We describe this in some details.

We start with the following observation.

Lemma 2.44 (|46, Lem. 4.1]). Let f,: Z — N be defined by

dimy S, = dimg k|, ..., an)q  fora <,
fr,n(a) =

r fora>r.
The Hilbert scheme Hilb, (P™) is isomorphic to Hilbf;r’" where on closed points, the isomorphism
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identifies [I] € Hilbl™ with [Proj(S/I)] € Hilb,(P™).

Consider a morphism of functors Hilb’;f’" — Hilb’;r’" defined for a k-algebra R by

S®kRQI|—>Iﬂ(m®kR)T,

where m = («, ..., qy,) is the irrelevant ideal of S. Using the identification from Lemma 2.44
this gives a morphism of schemes ¢, ,: Hilbg”’ — Hilb,(P™) that on closed points sends an
ideal to the subscheme defined by this ideal. Unless stated otherwise, we identify Hilb, (P"™) with
HilbJ".

Following [15] we define Sip,.,, to be the set of all closed points of Hilbg"[ﬁfn}
saturated ideals of r distinct points. The next result is fundamental. Its proof for k = C appears

corresponding to

in [15, Prop. 3.13| for an arbitrary smooth projective toric variety.

Proposition 2.45. For any two positive integers v and n, the closure of Sip,.,, in Hilbg’"" s an
wrreducible component.

Proof. Let % C Hilb,(P™) xP™ be the universal family over Hilb,(P™) and let w: % — Hilb,(P™)
denote the natural morphism.

Let U be the locus of all points in Hilb, (P™) corresponding to smooth subschemes of P" and let
V be the locus of all points in Hilb,(P™) corresponding to subschemes with Hilbert function hy.,.
We claim that U and V are open. For a non-negative integer d, let V; C Hilb,(P") be the locus of
all points corresponding to subschemes R C P" such that dimy H°(P", Zg(d)) < dimg Sq— hyn(d)
where Zp is the ideal sheaf of R. The subset V; is open by [48, Thm. I11.12.8|. Furthermore,
Vg equals Hilb,.(P™) for all d > r by Gotzmann’s regularity theorem [10, Thm. 4.3.2| and [32,
Thm. 4.2]. Therefore, V = (;,Z§ Va is open.

Let W C % be the locus of all points x such that the fiber of 7 over 7(x) is smooth. This is
an open subset of % by [45, Thm. 12.1.6]. Therefore, its image U under 7 is open since 7 is flat
and locally of finite presentation and thus, open by [41, Thm. 14.33].

It follows that Sip,., = ¢, (U NV) is open. Furthermore, it is homeomorphic to U NV
by Lemma 2.29. In particular, it is irreducible since U NV is a non-empty open subset of
the smoothable component of Hilb,(P"). It follows that the closure of Sip, , is an irreducible

component of Hilbgf’” . O

Definition 2.46. For any two positive integers r and n, the irreducible component Sip, ,, of

Hilbgf’” is denoted by Slip,.,,.

We end this subsection with a remark about a relation between the irreducible component
Slip,.,, and the smoothable component Hilb;™(P") of the Hilbert scheme Hilb, (P").

Remark 2.47. Let ¢, pn = @pp: Hilbgr’" — Hilb,(P™) be defined on closed points by

1] [Proj S/I].

Since both schemes are projective, it is a closed map. It sends Sip,,, onto an open subset of
the locus of all reduced subschemes. It follows that we have ¢, (Slip,.,,) = Hilb;™(P") set-
theoretically. In particular, if Hilb,(P™) is irreducible then for every closed point [I] € Hilbgr’"
there is a point [I'] € Slip,,, with I = I’. As a special case, if I is saturated, Hilb.(P") is

irreducible and [[] is a point of Hilbgr’” then [I] belongs to Slip,.,,.
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2.2.4 Flag multigraded Hilbert schemes

Let S = k|ao, ..., a,] be a polynomial ring. Assume that S is graded by an abelian group A.
Let fi1, f2: A — N be numerical functions. There are multigraded Hilbert schemes Hilbg1 and
Hilb?. The goal of this subsection is the construction of the scheme Hilb?’f ? parametrizing
pairs (K, J) of homogeneous ideals such that we have K C J and the algebras S/K and S/J
have Hilbert functions f; and fo, respectively. The idea is to show that the condition that K
is contained in J defines a closed subscheme of the product Hilbg1 X Hilb?. The rest of this
subsection makes this intuition precise.

Let Hilbé1 and Hilbf;? be the functors of points of Hilbé1 and Hﬂb?, respectively. We start

with defining the functor Hilb£ /2 : k-2lg — GSet that HilbZ /> should represent. It is a subfunc-
tor of the product functor Hilbé1 X Hilb?. Given R € k-lg, let

Hilb"2(R) = {(K,J) € Hilb{ (R) x Hilb2(R) | K C J}.

We can now state the main result of this subsection.

Proposition 2.48. Let S = k|ay,...,ay] be a polynomial ring graded by an abelian group A.
Let f1, fo: A — N be numerical functions. The functor Hilbgl’fQ: k-2Alg — Set is represented by

a closed subscheme of Hilb? X Hilb?. In particular, it is a projective scheme if the grading of S

18 positive.

Before proving Proposition 2.48, we recall some results related to representable functors. See
[33, Cha. VI| or [41, Cha. 8| for good introductions to this topic.

Definition 2.49. A functor F': k-Alg — Get is a sheaf in the Zariski topology if for every
k-algebra R and for every open covering Spec R = |JU; by distinguished open subschemes

U; = Spec Ry, we have an equalizer sequence

F(R) — HF(Rfi) = HF(Rfifj)'
i ij
If a functor F': k-lg — Get is represented by a k-scheme, then F' is a sheaf in the Zariski
topology [33, Thm. VI-14].
Following [46] we introduce the following notion.

Definition 2.50. Let R be a k-algebra and let C be a condition on R-algebras. We say that the
condition C is closed if there exists an ideal a C R such that an R-algebra ¢: R — T satisfies
condition C if and only if ¢(a) is zero.

Let F': k-2lg — Get be a sheaf in the Zariski topology and assume that it is a subfunctor of
the functor of points hx of a k-scheme X. Given a k-algebra R and an element A € hx(R) we
say that an R-algebra ¢: R — T satisfies condition Vi ) if hx(¢)(X) € hx(T) belongs to F(T').

In the following remark we show that the ideal a from the definition of a closed condition is
uniquely determined by the condition.

Remark 2.51. Let R be a k-algebra and let C be a closed condition on R-algebras. The ideal
a C R such that R-algebra ¢: R — T satisfies condition C if and only if ¢(a) is zero is uniquely
determined by C. Indeed, if b has analogous property then considering R-algebras R — R/a and
R — R/b we conclude that we have a = b.
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In order to show that Hilbgl’f 2 is represented by a closed subscheme of Hilbg1 X Hilbg2 we use

the following result.

Proposition 2.52 (|46, Prop. 2.9]). Let F': k-2lg — Get be a sheaf in the Zariski topology and
assume that it is a subfunctor of the functor of points hx of a k-scheme X. Assume that for
every k-algebra R and for every A € hx(R) the condition Vi on R-algebras is closed. The
functor F is represented by a closed subscheme of X.

Being a closed condition can be checked affine locally. Lemma 2.53 makes this precise.

Lemma 2.53. Let F': k-2lg — Get be a sheaf in the Zariski topology and assume that it is a
subfunctor of the functor of points hx of a k-scheme X.

Let R be a k-algebra and X\ be an element of hx (R). Suppose that there is a covering Spec R =
Uicr Spec Ry, of Spec R by distinguished affine open subsets. Let ;i = hx(7;)(A\) where 7;: R —
Ry, 1s the localization map. If the condition VR,, A\ on Ry, -algebras is closed for everyi € I, then
the condition Vg x on R-algebras is closed.

Proof. Let Ty : Ry, — Rg,q, be the localization map for every 4,i" € I. For alli € I, let a; C Ry,
be the ideal such that an Rg,-algebra ¢: Ry, — U satisfies condition Vg, if and only if ¥(a;)
is zero. By Remark 2.51 we have a;Rg,,, = ayRg,q, since both ideals show that the condition
VRgigi/ Jhx () () 18 closed.

It follows that there is an ideal a C R with aRy, = a; for all i € I. We claim that an R-algebra
¢: R — T satisfies condition Vg y if and only if ¢(a) = 0 holds.

Let h; = ¢(g;) for all i € I and o3: T — Ty, 04 Th, — Th,n, be the localization maps.
Since F' is a sheaf in the Zariski topology, hx (¢)(X) belongs to F(T) if and only if we have

hx(a'i o (ﬁ)(A) € F(Thz) (254)
for every i € I and
F(o) (hx (00 6)V)) = Flos) (hx(os 0 6)V)) (2.55)

for every 4,4’ € I.

First we show that Equation (2.55) always holds. Indeed, F'is a subfunctor of hx. As a result,
we can replace F'(o;;/) by hx (0;) and F(oy;) by hx(oi;). Since we have oy 00;0¢0 = 0,001 00
the claimed equality follows from the fact that hAx is a functor.

Therefore, we need to show that Equation (2.54) is satisfied if and only if ¢(a) is zero. For
every ¢ € I, there is an induced map ¢;: Ry, — T}, with ¢; o 7; = 0; 0 ¢. Thus, there is a chain
of equalities hx (00 ¢)(\) = hx(¢;) o hx(7i)(A) = hx(¢;)(A;). It follows that Equation (2.54) is
satisfied if and only if ¢;(a;) = 0 holds for every i € I.

We have

¢pla) =0 0;0¢(a)=0foralliec I < ¢;om(a)=0foralliecl < ¢i(a;) =0foralliecl.

This implies that Equation (2.54) is satisfied if and only if ¢(a) is zero and thus, finishes the
proof. O

We start with checking that the functor Hilbgl’f ? is a sheaf in the Zariski topology. In fact,
it is convenient to prove this in slightly greater generality. Let D C A and define the subfunctor
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HilbZ? of the product functor Hilb{ x HilbZ by

Hilb! *(R) = {(K, J) € Hilbf} (R) x HilbZ (R) | K,  J, for every a € D}.

Lemma 2.56. The functor Hilbglg2 is a sheaf in the Zariski topology. In particular, Hilbg}’f2
1s a sheaf in the Zariski topology.

Proof. Let R be a k-algebra. Consider a covering of Spec R with distinguished affine open
subschemes {Spec Ry, }icr. We need to show that we have an equalizer sequence

Hilb{*(R) — [JHibE P (Re,) = ] HibE P (Ryg,)-
icl iilel

For all i,i" € I, let 7;: Ry, — Rg,q, and 7;: R — Ry, be the localization maps. Let (Kj,.J;) €
Hilbgng(Rgi) for all 4 € I be such that

HiIbL 2 (73ar) (K, J;) = HilbG 2 () (K, )

holds for all 4,7" € I. We need to show that there exists a unique element (K,.J) € Hilbélg2 (R)
with Hilbglg2 (i)(K,J) = (K, J;) for every i € I.

Since Hilb 1g2 is a subfunctor of the representable functor Hllbf !X Hﬂb?, it follows that there
is a unique element (K,.J) € Hilb4 (R) x Hilb? (R) with Hﬂbf '(3)(K) = K; and Hilb2 () (J) =
J; for all i € I. We are left with showing that K, is contained in J, for every a € D.

Let m be the natural map @, p Ko = P,cp(Rla]/J)q and denote kerm — @, K, by 6.
We claim that 6 is an isomorphism. Indeed, 6,4, is an isomorphism for all 7+ € I since we have

(Ki)a € (Ji)a for every a € D. Subschemes Spec Ry, cover Spec R. It follows that 6, is an
isomorphism for all p € Spec R and thus, 6 is an isomorphism. O

Now we can give a proof of the existence of flag multigraded Hilbert schemes.

Proof of Proposition 2.48. The functor Hilbgl’f ? is a sheaf in the Zariski topology by Lemma 2.56.
Therefore, by Proposition 2.52, it is enough to show that the following holds. Let R be a k-
algebra and (K, J) € Hilbél(R) X Hilbg2 (R). There exists an ideal a C R such that K @ T is
contained in J @ T for an R-algebra ¢: R — T if and only if ¢(a) is zero.

We start with the following reduction. Given a € A consider the functor Hllbélj{f 2} We show
that there exists an ideal b, C R such that K, @z T is contained in J, ® g T for an R-algebra
¢: R — T if and only if ¢(b,) is zero. Then we take a =) 4 ba.

Moreover, by Lemma 2.53 by replacing R by its localization, we may assume that (R[a]/J),
is a free R-module. Let (R[a]/J)q = @f2(a)R eq k- Let m: K, — (R[a]/J)q be the natural map.
Let C be the condition on R-algebras such that ¢: R — T satisfies condition C if and only if

T @p idy is the zero map. We need to show that condition C is closed. Let (bg;)icr, be a set
fz( )

of generators of K, as an R-module. Let 7(b,;) = ~1 Cajik€ak. The map m ®pg idr is the
zero map if and only if ¢(cq;%) = 0 holds for every i 6 I, and k € {1,..., fa(a)}. The ideal
ba = (Ca,ik)icta ke{l,....f2(a)} Shows that condition C is closed. O
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2.3 Deformation theory

In this section we recall some definitions and results from deformation theory. Subsection 2.3.1
introduces a small amount of general theory that we need. Our main reference is [35].

In Subsection 2.3.2 we study the tangent-obstruction theory of multigraded Hilbert schemes
and flag multigraded Hilbert schemes.

2.3.1 Definitions and basic results

Let 2rt/k be the category of local Artin k-algebras with residue field k. Observe that every
morphism of k-algebras from 2rt/k is a local morphism of local rings.

The main objects of study of deformation theory are deformation functors. We consider the
class of deformation functors coming from k-points of k-schemes.

Definition 2.57. Let X be a k-scheme and hx: &chy” — Get be its functor of points. Let
x € hx(Speck). We have the corresponding deformation functor

Dx ,: Art/k — Get

defined by Dx »(A) = {\ € hx(Spec A) | hX(ijf)()\) = x}, where m4: A — A/my is the natural
map to the residue field of A and ﬂﬁ is the corresponding map of affine schemes. A morphism
of deformation functors Dx , — Dy, is a natural transformation of functors.

A morphism of k-schemes determines morphisms of deformation functors.

Example 2.58. Let f: X — Y be a morphism of k-schemes and let z € X and y = f(z) be
k-points. The natural transformation hx — hy of functors of points corresponding to f, induces
a morphism of deformation functors Dx ; — Dy.

Suppose we have a k-scheme X and a k-point € X. A key question is whether given a
surjection m: B — A of algebras in 2rt/k and an element of A € Dx ;(A) we can lift it to an
element of Dx ,(B). The simplest situation is when the kernel of 7 is killed by the maximal
ideal of B.

Definition 2.59. A small extension is a short exact sequence
0+M-—-B—-A—=0

where A and B are in rt/k and we have mp - M = 0. Here mp is the maximal ideal of B.

Definition 2.60. A deformation functor Dx , has a tangent-obstruction theory if there are finite-
dimensional k-vector spaces Ty , (called the tangent space) and Obx , (called the obstruction
space) such that:

1. For all small extensions 0 — M — B — A — 0 there exists an exact sequence of sets
bp—
Tx. ®x M — Dx.(B) — Dx.(A) 22224 Obx , @ M;

(Exactness at Dy ;(A) means that an element of Dx ,(A) lifts to Dx ,(B) if and only if
its image in Obx , ®xM is zero. Exactness at Dx ,(B) means that there is a transitive
action of Tx , ®x M on each fiber of Dx ,(B) = Dx »(A)).
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2. If A =k then the sequence becomes
0 — Txo ® M — Dx2(B) = Dx.o(k) 2525 Oby , @3 M;

3. Suppose we have a commutative diagram whose rows are small extensions

0 » M B A 0
\L@]\/l ¢B \LSDA
0 M’ » B’ > A > 0.

There is a commutative diagram

bps
Tx,® M —— Dx,(B) —— Dx..(A) 2224 Obx, oM
J/idTX,z ®k4‘01\4 lDX,m(QDB) lDX,Z((pA) lidObX,z ®k§0M

b / /
Tx.o @ M/ —— Dy o(B) —— Dx..(A") ZE=4" Oby , @, M’

The tangent space T x . is uniquely determined and agrees with the usual definition of tangent
space to scheme X at point x.

Proposition 2.61 (|35, Prop. 6.1.23]). If Dx , is a deformation functor with tangent obstruction
theory (Tx z,Obx ), then Tx , = Dx »(k[e]/(€?)) is the tangent space to X at x.

On the other hand, the obstruction space Obx , is not uniquely determined by the deforma-
tion functor Dy ,. In fact, given a tangent-obstruction theory (T ;, Oby ) and an injective
k-linear map ¢: Obx , — Ob’X@ to a k-vector space Ob’X’x7 there is a tangent-obstruction theory
for Dx , with obstruction space Ob’X@ and obstruction map objg 4= (t®kidp) o obp_4 for a
small extension 0 > M — B — A — 0.

We need the following notion of a map of tangent-obstruction theories.

Definition 2.62. Let n: Dx, — Dy, be a morphism of deformation functors with tangent-
obstruction theories (Tx 5, Obx ) and (Ty,, Oby,,), respectively. A map of tangent-obstruction
theories is a pair of linear maps T),: Tx, — Ty, and Ob,: Obx , — Oby,, such that for every
small extension 0 - M — B — A — 0 there is a commutative diagram

Txao® M —— Dyxo(B) —— Dyo(A) 2224 Oby, @M
lT" Srida ln( B) in(A) lObn @ idas (2.63)
Ty, @ M — Dy, (B) —— Dy ,(A) 2224 Oby, @M.

The commutativity of the left square means that n(B) is equivariant with respect to the natural
actions of Tx , ® M and Ty, ® M.

Proposition 2.61 showed that the tangent space of a deformation functor is uniquely defined.
Similarly, for a natural transformation of deformation functors n: Dx ; — Dy, if we set T, =
n(k[e]/()?), then the left square of diagram (2.63) commutes.

The main result from deformation theory that we use is the smoothness criterion (see [35,
Rmk. 6.3.2]). In order to state it, we recall the definition of a smooth morphism of deformation
functors.
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Definition 2.64. Let f: X — Y be a morphism of k-schemes locally of finite type. Let x and y =
f(x) be k-points. A morphism of deformation functors Dx , — Dy, is called smooth if for every
small extension 0 -+ M — B — A — 0, the natural map Dx (B) — Dy,y(B) xp, (1) Dx2(A)

is surjective.

Theorem 2.65 ([35, Rmk. 6.3.2]). Let f: X — Y be a morphism of k-schemes locally of finite
type. Let x andy = f(x) be k-points. The morphism f is smooth at x if and only if the morphism
of deformation functors Dx , — Dy, is smooth.

We use the following special cases of Theorem 2.65.

Corollary 2.66. Let f: X — Y be a morphism of k-schemes locally of finite type. Let x and
y = f(z) be k-points.

(i) The point x is a smooth point of X if and only if Dx »(B) — Dx (A) is surjective for
every small extension 0 > M — B — A — 0.

(11) Assume that deformation functors Dx , and Dy, have tangent-obstruction theories. Let
n: Dx » — Dy, be the morphism of deformation functors defined by f. If there is a map of
tangent-obstruction theories (Ty, Ob,) which is surjective on tangent spaces and injective
on obstruction spaces, then the morphism f is smooth at x.

Proof.
(i) This follows from the fact that if we have Y = Speck then Dy (A) is a singleton for every
A e Aet/k.
(ii) This follows from chasing the diagram (2.63). O

We end this subsection with two lemmas from deformation theory that are used in Chapter 3.

Lemma 2.67. Assume that f: X — Y is a morphism of k-schemes locally of finite type. Let
x and y = f(z) be closed points. Assume that functors Dx , and Dy, have tangent-obstruction
theories with obstruction spaces Oby , and Oby,,, respectively. If y is a smooth point and f
induces a map of obstruction theories which is injective on obstruction spaces then x is a smooth

point.

Proof. By Corollary 2.66(i) it is enough to show that for every small extension 0 -+ M — B —
A — 0, the map Dx (B) — Dx »(A) is surjective. Consider the commutative diagram of sets

| l J

Dy7y(B) e Dy,y(A) e Obyyy QM

whose rows are the exact sequences from Definition 2.60. Since y is a smooth point, the lower
left map is surjective and thus, the lower right map takes every element of Dy, (A) to 0. By
assumption the map on obstruction spaces is injective. It follows that every element of Dx ,(A)
is mapped to 0 by the upper right map. Hence the upper left map is surjective, as claimed. O

33



Before presenting the final lemma of this subsection, we introduce some notation. Let
g: X — X" and ¢": X — X” be morphisms of k-schemes locally of finite type. Let z € X,
' = ¢'(x) and 2" = ¢"(x) be k-points.

Assume that there are tangent-obstruction theories for Dx ,» with obstruction space Obx ./
and for Dy» ,» with obstruction space Obx ;. Assume that there is a k-vector space L and
k-linear maps o/: Obys,» — L and o': Obx» z» — L such that there is a tangent-obstruction
theory for Dx , with obstruction space Obx , given by the pullback

Obxw L) ObXH’IH

Pk

Ob X'z L) L.
Moreover, assume that 3’ and 3” determine maps of tangent-obstruction theories.

Lemma 2.68. Assume that ' is a smooth point of X'. There is a tangent-obstruction theory
for Dx , with obstruction space ker o”’. Moreover, the canonical injection

L: ker Oé// — ObX”;ﬁ”

mduces a map of tangent-obstruction theories.

Proof. By the universal property of fiber product, there is a map 7: ker o/’ — Obx , with
Boy =1 (2.69)

and
oy =0. (2.70)

Let n': Dx 4y — Dxs 4 and n”: Dx g — Dx# 5 be the natural transformations induced by ¢’
and ¢”, respectively. Given a small extension 0 — M — B — A — 0, we denote the obstruction
map Dx »(A) = Obx , ®M by obx z.5—4. We do similarly with Dx/ ,» and Dx» .

Step 1: Definition of obstruction maps

Fix a small extension 0 — M — B — A — 0. We construct a map Dx (A) — kero” @ M.

Consider the commutative diagram:

bx,z;B— '®i
Dxo(A) 222228 Oby , oM Z29% Oby, @M

lﬁ”@idM lo/@idM

ker o’ @ M % ObX//@// QM an@ﬂ} L® M.
We have
(/8/ @ ldM) © ObX,x;B—>A = ObX’,m’;B—>A © TII(A) = 07 (271>

where the first equality follows from the fact that 5’ defines a map of tangent-obstruction theories
and the second is a consequence of smoothness of 2’ (see Corollary 2.66(i)).

It follows that the image of (8” ® idar) © 0bx z:B— 4 is contained in ker o’ ® M. Thus, there
is a map obp_,4: Dx (A) — ker o/’ ® M with

(t®@idpr) o obpa = (8" @idar) 0 0bx 45— A- (2.72)
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Step 2: Factorization of obstruction maps
We claim that

(v ®ida) 0 obp—sa = 0bx 4:B—A (2.73)

holds for every small extension 0 - M — B — A — 0. By assumptions we have a pullback
diagram

' ®id
Obx, ®M 22 Ob v/ @M
lﬂ”@id]ﬁ la’@id]w
ObX//,x// QM % L ® M.

It remains a pullback in the category Get of sets. Therefore, in order to show Equation (2.73) it
is enough to observe that there are equalities

(2.69

(8" ®idar) o (7 @idar) 0 0bpsa = (1@ idar) o obgsa

(8" ®@idar) 0 0bx 2:B—4

and ) -
(-70)0(2)(

(B ®idpr) o (y®idpr) ocobpsa = B ®idar) © 0bx 23— A-

Step 3: Verification of axiom 1 of tangent-obstruction theory

We verify that for every small extension 0 = M — B — A — 0 an element A € Dx ;(A)
lifts to Dx ,(B) if and only if 0obp_, 4(A) is zero.

The map vy ® idys is injective. Therefore, by Equation (2.73) we get obp_4(A) = 0 if and
only if we have obx ;. 5—a(A) = 0. This is equivalent to the existence of a lift of A since the map
obx +:B—A is a part of the data of tangent-obstruction theory of Dy ..

Step 4: Verification of axiom 3 of tangent-obstruction theory

Let
0 M B A 0
o es [ea
0 M’ B’ A 0

be a commutative diagram whose rows are small extensions. We need to verify that the following
equality holds

(idker o ®@ar) 0 0bp_s4 = 0bprs a7 0 Dx 2(p4).

Since (v ® idyy) is injective it is enough to observe that we have

(v @idp) o (idker o @par) 0 0bga = (idoby , @par) o (v @idar) 0 0bp 4

(2.73) .
=" (idoby,, ®pr) 0 0bx 454 = 0bx o5 A1 © Dx 2(pa)

2.73 .
G (y @ idprr) 0 0bgr s © Dxa()-

The third equality follows from the fact that the maps obx ;;p—4 and obx ,.p'— 4’ are part of
the data of a tangent-obstruction theory.
Step 5: Map of tangent-obstruction theories
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Finally, we verify that ¢: kera” — Obxw» ,» defines a map of tangent-obstruction theories.
Let 0 > M — B — A — 0 be a small extension. We have

2.72
(L 02y 1dM) oobpa ( = ) (6” ® 1dM) © 0bX,ac;B—>A = ObX//,QE”;B*)A © 77”(14)

where the second equality follows from the fact that 8” induces a map of tangent-obstruction
theories. O

2.3.2 Tangent-obstruction theory of multigraded Hilbert schemes

Let S = k|ap, a1, ...,a,] be a polynomial ring graded by an abelian group A. Let h: A — N
be a numerical function. In this subsection we study a tangent-obstruction theory of Hilbg.

Remark 2.74. Suppose that 0 > M — B — A — 0 is a small extension and J is an element
of D 11 (A). A homogeneous ideal J' C S ®g B is a lift of J if and only if:

1. (S & B)/J is B-flat;
2. there is an isomorphism J og A J.

Indeed, since B is an Artin local ring, it follows from [80, Lemma 051G| that condition 1 implies
that (S, ®x B)/J', is a free B-module for every a € A. Thus, it is locally free of rank h(a) since
((Sqe ®x B)/J',) ®p A is a locally free A-module of rank h(a).

Theorem 2.75. Let [J] be a closed point of Hilbg, The deformation functor DHilbg 1] has a
tangent-obstruction theory with tangent space THilbg v = Homg(J,S/J)o and obstruction space

Obyyis () = Extk(J,S/J)o.

Proof. For tangent space, see [46, Prop. 1.6]. We only sketch the construction of obstruction
maps. For details, we refer to [35, Thm. 6.4.5] where the ungraded case is considered.
Let 0 = M — B -+ A — 0 be a small extension. Let J € Dy [J](A). We study the lifts
Consider the following commutative diagram with exact row and columns:

0 0

~ ~

J@a M J

«

~ ~

0 —m = Sy M ——— - SxB — S A —0

) .

(SexA)/J) ©a M (S @ A)/ T

0 0

By a diagram chase, we have a short exact sequence of S ®; B-modules

0— ((S®kA)/j) ®a M — ker 3/ima — J — 0.
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Furthermore, M - (ker ) is contained in im a.. Thus, the above short exact sequence is a sequence
of S ®k A-modules. Finally, since m4 M is zero, we have

(S@kA)/J) @4 M= ((S®xA)/J) @ak) @k M =S/ J @y M.

Therefore, we have associated with .J € DHﬂbg 1s](A) a short exact sequence of S @k A-modules

0— S/J @ M — ker /ima — J — 0. (2.76)

We can consider the corresponding class ob € Ext}g&k A(J,8/J @y M). Since all morphisms were
of degree 0, in fact ob is an element of Ext}q@)kA(J, S/J @k M)o.
Lifts of J € DHﬂbg I J}(A) to J' € DHubg I J](B) are in one-to-one correspondence with split-

tings &: J — ker B/im « of the short exact sequence (2.76) which are homogeneous of degree 0.
Finally, we have natural isomorphisms:

Exthg, 4(J,S/J ®x M)o = Exth(J @4k, S/J @ M)o = Ext(J,S/.J)o @i M. (2.77)
OJ

We also use the following description of tangent-obstruction theory for flag multigraded
Hilbert schemes.

Theorem 2.78. Let k: A — N be another numerical function. Let [K C J| be a closed point of
Hilbg’h and assume that the natural map

HomS(K, S/K)Q — HomS(K, S/J)o

is surjective. There is a tangent-obstruction theory for the deformation functor Dy, k.n (K CJ]
S K =

with tangent and obstruction spaces given by pullbacks

Tr, Obn, 1
THilbg’h,[KgJ] —— Homg(K,S/K)o ObHilbg’h,[KgJ] — EXtS(K, S/K)o
[ | o |
Homg(J, S/J)g —— Homg(K,S/J)o Exty(J,S/J)g — Exts(K,S/J)o.

Moreover, the maps Tr,,Oby,, Tr, and Ob,, induce maps of tangent-obstruction theories.

Proof. Proof is analogous to the proof of [60, Thm 4.10|. Therefore, we only sketch the proof.
For tangent space, observe that the bijection from [46, Prop. 1.6]

THﬂbg,[J] = DHnbg,[J] (k[e]/(€%)) ¢ Homg(J, S/J)o
is given explicitly by
Homg(J,S/J)o 3 ¢ — J = {a+ey | z € J,y € S such that y+J = p(x)} € DHilbg[J](ﬂ([a]/(aQ))}.

See also [49, Prop. 2.3] for the proof of the analogous result in the ungraded case.
Therefore, an element of DHﬂbI;,hJ KCJ) (k[e]/(£?)) is a pair of homomorphisms

¢ € Homg(J,S/J)o and ¢ € Homg(K, S/K)g
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corresponding to ideals J, K C kle]/(e2) ® S. However, we need to consider only those pairs
(p, 1) for which there is an inclusion KCJ. Therefore, given x € K and y € S with y + K =
Y(x) we want to have p(zr) = y + J. This means precisely, that the images of ¢ and v in
Homg (K, S/J)y agree.

Now we proceed to the construction of obstruction maps. Let 0 - M — B —+ A — 0 be a
small extension and let (K,J) € DHﬂbg,h (A). There are obstructions ob; € Ext}(J,S/J)o @x M

for lifting J to an element J' € Dy, (B) and obx € Extg(K,S/K)o ®x M for lifting K to
K" € Dy (B).
Let
0— S/K @ M 2 ker B/ im B — K — 0 (2.79)

and
0— S/J @k M — ker B;/im By — J — 0

be the extensions defining obx and ob;, respectively (see the proof of Theorem 2.75). The images
of oby and oby in Ext}(K,S/J)o @k M = Ext}q@)kA(K, S/J @k M)o agree since they coincide
with the class of the extension

0—S/J &k M — ker B /imay — K — 0.

Therefore, we have a well defined map obgp_ 4: DHilbg,h(A) — ObHilblg,h7[Kg J

is given by the pullback as in the statement. If (K,.J) € D (A) extends to

]®kM where
ObHilbg’h,[KgJ}
(K", J') € DHﬂblg,h
and obg are zero.

Hilb"
(B) then in particular J and K lift to J’ and K’. Thus, the obstructions ob

Conversely, assume that we have ob; = 0 and obg = 0. There are J € DHﬂb;SL (B) and
K € DHﬂb’g (B) lifting J and K , respectively. However, there is no reason to expect that K’ is

contained in J'.
Let f: K" — (S®gB)/J' be the natural map. We describe how we can modify K if necessary
so that f becomes zero. Consider the following commutative diagram:

K @x M S @ M S/K @, M
J @ M > S @ M S/J @k M
K’ y S @y B y (S @y B)/K'
J' » S @y B (S @y B)/J’
b
K » Sy A y (S @k A)/K

<
n
&
~
N
™
&
~
=
~
<



By a diagram chase, we have foa = 0 = bo f. Therefore, f is induced by a map f': K —
S/J R M.

We have a commutative diagram:

Homgg, 4(K,S/K @, M)y — Homgg,a(K,S/J @ M)

E E

HomS(K, S/K)() Qx M — HomS(K, S/J)() R M.

By assumptions, the lower horizontal map is surjective. Therefore, so is the upper horizontal
map. Thus, there is a map g: K — S/K ®i M homogeneous of degree 0 such that it maps to f’
under the upper horizontal map.

The ideal K’ is defined by a splitting &g : K — ker Bk /imag of the short exact se-
quence (2.79). The map {x — tx © g: K — ker Bk /imag is another splitting of the short
exact sequence (2.79) so it defines a lift K" € Dk k] (B) of K. It can be checked by a
diagram chase that the natural map K’ — (S ®k B)/j’ is zero. Thus K” C J' is a lift of
KCJ. O

Let S have the standard Z-grading. Let f be the Hilbert function of S/I where I is a
homogeneous ideal of S. Let d be a positive integer and g: Z — Z be defined by

g(a):{f(a) fora>d

dimy S,  otherwise.

Lemma 2.80. Let m: Hilbg — Hilb?, be the natural map given on closed points by [I] — [INmI).
Let [I] € Hilbg be a closed point. Letn: DHilbé,[[] — DHilb%’[Immd} be the morphism of deformation
functors determined by w. The natural maps

Homg (I, S/I)o — Homg(I Nm<, S/T)g = Homg(I Nm<, S/T nm?),

and
Exti(I,S/1)o — Exty(Inm?, S/T)g = ExtL(I nm? S/T nm%),

from exact sequence of Ext groups, define a morphism of tangent-obstruction theories as defined
in Theorem 2.75.

Proof. Observe that both isomorphisms in the statement follow from the fact that I N m? has
minimal generators of degree at least d, so the degree 0 parts of the Ext groups do not depend
on (S/I)~4. The claimed description of the map on tangent spaces follows from the bijection

Ty HilbL < Dy, s ([l /(%))

from [46, Prop. 1.6] which has been recalled at the beginning of the proof of Theorem 2.78.
Now we concentrate on obstruction spaces. Let 0 — M — B — A — 0 be a small extension,
Ie DHilbg,[I](A) and I>q € Dyipg, (1rma) (A) be its image under n(A).
Let
0—S/I®xM —kerf/ima—1—0
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and
0— S/Isq @k M — ker 8'/ima’ — fzd —0

be as in Equation (2.76).
Let oby € Exti(I,S/1)o @k M and objqne € Exty(INm?, S/(INm?))g @k M be obstructions

corresponding to I and I>4, respectively. As in the proof of Theorem 2.78 we consider the

extension
0— S/IT@x M —kerf//ima — I>4 — 0. (2.81)

We see, that the images of 0b; and objqna in Exty(I Nm?, S/T)g @y M agree since they coincide
with the class of the extension given by Equation (2.81). Therefore, if we consider DHﬂng J[Inmd]
with obstruction space Exts(I Nm?, S/I)g via the isomorphism Ext} (I nm?, S/I)y = Exty (I N
m?, S/I N m?)y, then the natural map of Ext groups as in the statement induces a map of
obstruction theories. O

2.4 Ranks and apolarity lemmas

In this section we recall various notions of rank and corresponding versions of apolarity lemma.
Moreover, we define secant and cactus varieties. The apolarity lemma for border rank from [15]
reflects a connection between ideals in Slip,.,, and the condition that a homogeneous polynomial
in n+ 1 variables has border rank at most 7. This is the main motivation to study the irreducible
component Slip,.,,. Observe that the connection from [15] works for more general toric varieties.

We present the theory of ranks of homogeneous subspaces instead of the more standard
version of ranks of homogeneous polynomials. This is due to the fact that we need the general
version in Chapter 5.

2.4.1 Apolarity action

Let n be a positive integer and S = klao, . .., ay] be a polynomial ring. Let S* = kg [xo, . . ., Tp)
be the graded dual ring, where the index dp refers to the divided power structure of S*. As a
Z-graded k-vector space the ring S* is given by

S* = €P Homy (S, k)

a€L

and the ring structure is the divided power structure. See [56, Appendix A] for basic properties
of divided power ring S*. For all u = (ug, ..., u,) € N**! we define

For an integer a € Z, the vector space S, has a monomial basis, i.e.

S, = @ ka

ueN"+1 Ju|=a
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where |u| denotes S°7_ u;. Let {z[% | u € N1 |u| = a} be the dual basis of S}. We define the
multiplication in S* on divided power monomials by

(u + V)‘ :L'[u+v]

v . .[v] —
. v ulv!

)

where w! = wq! - - - wy,! for all w € N"T1. We extend it by linearity to define a k-algebra structure
on S*.
There is a natural action of S on S* denoted by . given on homogeneous elements 6 € S,
and F' € S; by
(0LF) (&) = F(6E) for every £ € Sp_q.

Using the monomial bases, the action of S on §* can be written in the form

. {x["_“] ifvg >ug for k=0,...,n
ot =

0 otherwise.
If k has characteristic zero then we have z[Vl = ‘f,—‘,' and S* is a polynomial ring.

Let d be a positive integer and W C SZ ; be a vector subspace. Using the action of S on S*,
we can associate with W a k-algebra Apolar(WV).

Definition 2.82. Let d be a positive integer and W C SZ ; be a non-zero linear subspace. The
annihilator of W is the ideal

Ann(W)={0 € S| 6.f =0 for every f € W}.

The apolar algebra of W is Apolar(W) = S/ Ann(W). If we have W = (f) for some f € 5%,
we write Ann(f) and Apolar(f) instead of Ann((f)) and Apolar((f)).

Annihilator Ann(W) of W C SZ, plays a key role in apolarity lemmas which connect the
properties of Ann(1/') and various notions of ranks of W.

2.4.2 (Border) rank, smoothable rank and (border) cactus rank

We keep the notation of Subsection 2.4.1. Let d be a positive integer. We recall various notions
of rank of a subspace V' of Sj. It is important to realize that the process of generalizing the
definition of rank was not as straight-forward as it may seem from the short presentation that
we give.

We start with introducing the rank of V. If V' = (F) is one-dimensional, this is a classical
notion that goes back to works of Sylvester. The general case was studied among others by
Terracini |79] and Bronowski [§].

Definition 2.83. Let d be a positive integer and V' C S} be a non-zero linear subspace. We
define rank of V to be

(V) =min{r € Z | PV C (L[ld}, ..., LIy for some L; € St}

where (—) denotes the projective linear span.
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It is interesting to describe, for a positive integer k, the locus of all points [V] € Gr(k, S))
with rank at most r. However, a more natural geometric object is the Zariski closure of this
locus. Recall that vg: PSf — PS}; given by [L] + [L!9] is the Veronese embedding.

Definition 2.84. Let d, k and r be positive integers. The r-th Grassmann secant variety is

Ork (Vd(IP’Sf)) ={[V] € Gr(k,S})) | r(V) <r}.
If k =1, we write o, (vq(PS})) instead of oy,1 (va(PST)) and call it the r-th secant variety.

With Grassmann secant varieties already defined, it is natural to introduce another variant
of rank.

Definition 2.85. Let d and k be positive integers and V' C S} be a k-dimensional linear
subspace. The border rank of V is defined to be

br(V) =min{r € Z | [V] € o, (va(PST))}.

The ranks and borders ranks of monomials have been studied in [64]. See also [63], [11] and
[39] for some results concerning equations of secant varieties.
The definition of rank of [V] € Gr(k, S}) can be restated as follows

r(V) =min{r € Z | there exists a smooth zero-dimensional subscheme
R C PSY of length r with PV C (v4(R))}.

One can consider different variants of this definition. The condition that R is smooth could
be replaced by the condition that it is a limit of smooth schemes or it can be even skipped
completely. These lead to the notions of smoothable rank and cactus rank. Let Hilb{™(PST) be
the smoothable component, i.e. the closure of the locus of all points of Hilb,(PST) corresponding
to smooth subschemes.

Definition 2.86. Let d and k be positive integers and [V] € Gr(k, S}). The smoothable rank of
V' is defined to be

st(V) = min{r € Z | PV C (vgq(R)) for some [R] € Hilb;™(PST)}.

We are interested only in the smoothable rank of a non-zero homogeneous polynomial ' € S7;.
We have br(F) < sr(F). Following [12] we make a definition capturing the cases where the
inequality is strict.

Definition 2.87. Let d be a positive integer. A non-zero polynomial F' € S is wild if we have
br(F) < sr(F).

Considering the whole Hilbert scheme #Hilb,(PS7) instead of its smoothable component leads
to the definition of cactus rank.

Definition 2.88. Let d and k be positive integers and [V] € Gr(k, S}). The cactus rank of V' is
defined to be

cr(V) =min{r € Z | PV C (v4(R)) for some [R] € Hilb,(PS])}.
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Similarly, as in the case of rank, we can consider the Zariski closure in Gr(k, S}) of those [V]
which have cactus rank at most r.

Definition 2.89. Let d, k and r be positive integers. The r-th Grassmann cactus variety is

tirk (va(PST)) = {[V] € Gr(k, S5) [ er(V) < r}.

If k =1, we write &, (vq(PS})) instead of k,,1 (va(PST)) and call it the r-th cactus variety.

Cactus varieties have been introduced in [11]. The name might be slightly confusing since in
general cactus varieties are not irreducible. An example when the cactus variety is reducible is
presented in [40, Thm. 1.4, 1.5]. The cactus rank has been studied for instance in [74| and [4].

Finally, we define the border cactus rank in a way analogous to the definition of border rank.

Definition 2.90. Let d and k be positive integers and V' C S be a k-dimensional linear
subspace. The border cactus rank of V is defined to be

ber(V) = min{r € Z | [V] € & (va(PST))}.

2.4.3 Apolarity lemmas

The ranks of a subspace V' C S can be computed by apolarity lemmas. We state only the
versions of apolarity lemma that we use. We start with the one related to the cactus rank.

Proposition 2.91 (Cactus apolarity lemma). Let d be a positive integer and V C S be a non-
zero subspace. For a positive integer r we have cr(V) < r if and only if there is a saturated,
homogeneous ideal I C Ann(V') such that S/I has Hilbert polynomial r.

For a proof, see |78, Thm. 4.7].

Next, we deal with the border rank. The version for a polynomial F' € S is a special case
of a recent result by Buczyniska and Buczynski [15]. It is the main motivation for studying the
irreducible component Slip,. ,, of the multigraded Hilbert scheme Hilbg"". The following version
for subspaces is presented in [40, Prop. 2.3| and follows from the proof of [13, Thm. 1.3].

Proposition 2.92 (Border apolarity lemma). Let d be a positive integer and V- C S be a
non-zero subspace. For a positive integer r we have br(V) < r if and only if there exists a
homogeneous ideal I C Ann(V') such that [I] belongs to Slip,.,, C Hilbgf’".

Finally, we present a weak version of apolarity lemma for border cactus rank. Following [40]
we introduce the following definition.

Definition 2.93. For positive integers r and n, a function h: Z — Z is called an (r,n + 1)-
standard Hilbert function if it satisfies the following conditions:

(i) the inequality h(d) < h(d + 1) holds for all d € Z;
(ii) if there is an equality h(d) = h(d + 1) for some d > 0, then we have h(e) = r for all e > d;
(iii) the inequality 0 < h(d) < hy,(d) holds for all d € Z.

Proposition 2.94 (Weak border cactus apolarity lemma). Let d be a positive integer and V C S}
be a non-zero subspace. If we have ber(V) < r for some positive integer r, then there exists a
homogeneous ideal I C Ann(V') such that S/I has an (r,n + 1)-standard Hilbert function.

See [13, Thm. 1.1] for a proof.
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Chapter 3
Criteria for projective space

In this chapter we present conditions for a point [I] in the multigraded Hilbert scheme Hilbgﬁn]

to be in the irreducible component Slip,. ,,.

Section 3.1 contains a necessary condition based on bounding the degrees of minimal gener-
ators of saturated ideals with Hilbert function h,. .

The criterion from Section 3.2 is based on the properties of the Hilbert function of a power
of a radical ideal with Hilbert function h, , that were established in Proposition 2.19.

In Section 3.3 we show that the locus of all points of Hﬂbé corresponding to saturated ideals is
smooth and irreducible when n = 2 and f is the Hilbert function of a zero-dimensional subscheme
of P2. We also show that in Hilb,(IP?) the locus of all points corresponding to subschemes with
fixed Hilbert function is irreducible. In characteristic 0 this has been shown by Gotzmann [42].

In Section 3.4 we present a sufficient condition for [/] as above to be in Slip,. ,, for n = 2.

Sections 3.5 and 3.7 contain some examples. In particular, in Section 3.7 we present the full
set-theoretic description of Slip, 5 for all r € {4,5,6}.

Section 3.6 presents a necessary condition (Theorem 3.42). This criterion has three technical
assumptions, one is based on smoothness of the Hilbert scheme at a prescribed point while
two are about surjectivity of some maps of spaces of homomorphisms. In Subsections 3.6.1,
3.6.2 and 3.6.3 we study some cases in which the assumptions of Theorem 3.42 are fulfilled. In
Subsections 3.6.4 and 3.6.5 we present some nice applications of Theorem 3.42.

The main results of this chapter are criteria for [I] € Hilbgr[ﬁlfn} to be in Slip,.,,:

e Proposition 3.1 which is an example of a small tangent space argument;
e Theorem 3.5 which shows that if [/] is in Slip,. ,, then Hg /1 is large enough in large degrees;

e Theorem 3.13 which is a sufficient condition in the case n = 2. It states that if the Hilbert
function of S/I differs from h, 2 in exactly one degree then [I] belongs to Slip,. ,;

e Theorem 3.42 and its applications Theorems 3.66 and 3.75.

Notation

Throughout this chapter, r and n are positive integers and S = S[P"] = k[ag,...,ay] is a
polynomial ring over a fixed algebraically closed field k. Recall that h,.,: Z — Z is defined by

hyn(a) = min{dimy S,, r}.
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3.1 Criterion based on degrees of minimal generators

Our first criterion is obtained by bounding the degrees of minimal generators of saturated ideals
of points. The proof is an illustration of a small tangent space method: if the dimension of the
tangent space to a k-scheme X at a point z is smaller than the dimension of an irreducible closed
subset Y, then we have = ¢ Y. See [55] for a classical application of this argument.

Proposition 3.1. Let I C S be a homogeneous ideal such that S/I has Hilbert function hy.,. Let
e=min{a € Z | hyn(a) =1} and d > e+2. If the inequality dimy Homg (I +m?, S/(I+md))0 <
rn holds, then we have [I] ¢ Slip,.,,.

Proof. Define g: Z — Z by

hyn(a) ifa<d
g(a) = .
0 otherwise.

Let 7: Hilbgf’" — Hilb%, be the morphism defined on closed points by [J] — [J +m?]. We show
that
if J and J' are saturated ideals and 7([J]) = 7 ([J']), then we have J = J'. (3.2)

It is enough to show that every saturated ideal J of S such that S/J has Hilbert function
hyr is generated in degrees at most d — 1. Since J is saturated, we have depthS/J > 1 by
Lemma 2.9(i). The quotient algebra S/J has Krull dimension 1. It follows that S/J is Cohen-
Macaulay. Furthermore, by the Auslander-Buchsbaum Theorem [70, Thm. 15.3] the projective
dimension of S/J is n. Therefore, we get reg(S/J) = e from [32, Thm. 4.2]. Consequently,
B1,0(S/J) is zero for all @ > e 4+ 2. Thus, J is generated in degrees at most e +1 < d — 1.

The irreducible component Slip,.,, has dimension rn. Therefore, by (3.2) the irreducible
closed subset 7(Slip,,,) is also of dimension rn. Consequently, if [I] belongs to Slip,.,, then we
have

rn < dimy Typy e Hilb% = dimy Homg (I +m?, S/(I +m?)),,

where the equality follows from Theorem 2.75. O

Example 3.3. Let S = k[ap, a1, as] and consider I = (ad, aga?, adas, aparaz, agas, af). The
point [I] is in Hilbgﬁ’2 and we claim that it is not in Slipg. Let J = I + (o, o1, 2)°. We have

dimg Homg(J,S/J)p = 8 < 12.

The claim follows from Proposition 3.1.

3.2 Criterion based on a power of ideal

The criterion presented in this section is based on Proposition 2.19. There we computed the
Hilbert polynomial of a power of a homogeneous radical ideal defining a zero-dimensional sub-
scheme of projective space. Moreover, we bounded the degree from which this Hilbert polynomial
agrees with Hilbert function. In Theorem 3.5, using the semicontinuity of the dimensions of the

fibers of a sheaf of modules (see [48, Ex. I1.5.8|), we obtain a criterion for [I] € Hilbgr’” to be in

Slip,..,-
In Subsection 2.2.3 we introduced subsets Sip,.,, and Slip,. ,, of the multigraded Hilbert scheme

Hilbgr’". Here we generalize this for some functions h: Z — Z more general than h, .
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Definition 3.4. Assume that h: Z — Z is the Hilbert function of a zero-dimensional closed
subscheme of P". We denote by Sipy,,, the locus of all closed points of Hilbg corresponding to
radical ideals. Moreover, let Slip, ,, be the closure of Sipy, ,, in Hilb%.

The following theorem provides a necessary condition for a closed point of Hilbg to be in
Slipy, ,, where h: Z — Z is as in Definition 3.4.

Theorem 3.5. Let h: Z — 7Z be the Hilbert function of a zero-dimensional length r closed
subscheme of P™. Define e = min{a € Z | h(a) = r} and let [I] € Hilb% be a closed point. If the
point [I] belongs to Slipy, ,,, then Hg)p (d) > r - dimg Sk_1 holds for every positive integer k and
for every d > ke + k.

Proof. Let _# be the universal ideal sheaf on Hilbg x A"t Consider the quotient & of
OHilbg xAnt+l = OHilbg [, - . ., )]

by 7 k and let 2 be the pushforward of & under the projection morphism 7: Hilbg x AP —
Hilb% . The sheaf 2 = @, 2 is a quasi-coherent sheaf on Hilb" with 2,; a coherent sheaf
for every d € Z. Therefore, for every d € Z, the rank function ¢g: Hilbg — Z given by
pa(@) = dimye)(La)z R0y, ,
that for a closed point P = [K] € Hilb%k we have ¢q4(P) = Hg)per(d).

This can be checked affine locally, so we can replace Hﬂbg by an affine open subset U = Spec A
containing [K]. Let J be the ideal in Alao, ..., ;] defining the restriction of ¢ to 7= *(U). Let
[K] in U correspond to the maximal ideal n of A. In what follows, we consider k with A-

k(z) is upper semicontinuous (see [48, Ex. I1.5.8]). We claim

module structure given by A — A,/nA, = k. By the definition of universal ideal sheaf we have
(Alag, ..., an]/J) @4k =2 S/K. Therefore, from the universal property of kernel, there is an
induced map J ®4 k — K fitting into the commutative diagram

Josk — S —— S/(J®4k) —— 0

; |

0 K S » S/K 0

whose rows are exact. It follows from snake lemma that the map J ®4 k — K is surjective.
Hence also the map J* @4 k — K% is surjective. The snake lemma applied to the diagram

JP o4k — 8 —— S/(JF@4k) —— 0

|

0 K* S y S/KF ———— 0

v

implies that the dotted arrow induced by the universal property of cokernel is injective. Since it
is clearly surjective, it is an isomorphism. Thus we have

pa([K]) = dimy (S/(J* ®@ak)), = dimy(S/K*)q = Hg, e (d)

and the claim of the theorem follows from Proposition 2.19. O
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Example 3.6. Let S = k[ayg, a1, 2] and consider the ideal
/ 2 2 9 4 4 6
I' = (oo, apad, ajas, aparag, ag, oty A5 ).

The point [I'] is in Hilbgfs’2 and we claim that it is not in Slipg 5. We have Hg,(2(9) = 17 < 18.
Thus, the claim follows from Theorem 3.5.

Observe that dimy Homg(I’ +m?, S/(I’ +m?)) > 12 holds for all d > 4, so the criterion from
Proposition 3.1 cannot be applied to deduce that [I'] does not belong to Slipg 5.

Consider again the ideal I = (ag, ozooz%, a%ag, aga o, aooz%, a?) from Example 3.3. We have
Hg/2(d) > 18 for all d > 6. Hence we cannot use the criterion from Theorem 3.5 (with k = 2)
to deduce that [I] is not in Slipg 5. We summarize this in the following table.

’ Ideal ‘ Proposition 3.1 ‘ Theorem 3.5 ‘
3 2 2 4 .6) C k N 9
(O[()’ O[OO[l, 040012, O[OO[]_a27 a0a27 al) = [O[O, alv 042] .
2 2 2 1 i 5
(agar, apat, ajos, cparaz, ab, apds, as) C klag, ar, ag) ? v

Table 3.1: Examples of points that are not in the irreducible component Slip.

Here, for both ideals, the corresponding point of Hilbg&2 is outside the irreducible component
Slipg 5. The check mark (v') indicates that a given criterion shows that a given point is not in
Slipg 5. The question mark (?) shows that a given criterion is inconclusive.

3.3 Smoothness and irreducibility of the locus of saturated ideals
of points in projective plane

Let f: Z — 7Z be the Hilbert function of a zero-dimensional subscheme of P? of length r. Let
V¢ be the locally closed subset of Hilb,(IP?) whose points correspond to the subschemes of P?
with Hilbert function f. If the field k has characteristic 0 then Vy with the reduced structure is
smooth and irreducible [42].

In this section we show that in fact V} is irreducible for any characteristic of k. Furthermore,
let By C Hﬂbé be the open subset whose points correspond to saturated ideals. We show that
Ey is irreducible and smooth.

In this section we consider polynomial rings S = k[ag, a1, . .., a,] and T = k[ag, a1, . . ., ap—1]
for a positive integer n. We eventually restrict our attention to the case n = 2, but we do not
make this assumption when the proofs work more generally.

We need the following result on the behavior of Ext groups under flat base change.

Lemma 3.7. Let R — S be a flat ring homomorphism with R a Noetherian ring. For every
finitely generated R-module M and any R-module N, the natural map

Exth(M,N)®p S — Exty(M @ S, N ®@p S)
s an isomorphism for all integers 1.

Proof. Since R is Noetherian and M is a finitely generated R-module, there exists a projective
resolution P, of M by finitely generated free R-modules. The R-module S is flat. Hence we
obtain a projective resolution Py ® g S of M Qg S.
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Finally, since M is finitely presented and S is a flat R-module, the natural map
Homp(Ps, N) @ S — Homg(Ps @ S, N ®pr S)

is an isomorphism of chain complexes of S-modules by [31, Prop. 2.10|. Therefore, we have
natural isomorphisms of S-modules

Ext%(M,N)®g S = H'(Hompg(Ps, N)) ®p S = H' (Homp(Ps, N) ®f 5)
= H'(Homg(Ps ®g S, N ®r 5)) = Exty(M ®@r S, N ®g 9). O

The following lemma gives a condition under which £y C Hilbé is smooth. Observe that this
condition is satisfied for n = 2 since Hilb,(P?) is smooth.

Lemma 3.8. Let f be the Hilbert function of a zero-dimensional subscheme of P™ of length r.
Let By C Hilbg be the open subset whose points correspond to saturated ideals. If [ProjS/I] is
a smooth point of Hilb,(P") for every point [I] € Ey such that I is a saturated Borel-fized ideal,
then Ey is smooth.

Proof. Let [J] € Hilbé be a closed point such that J is a saturated ideal. Let J’ be the generic
initial ideal (see [31, §15.9]) of J with respect to the grevlex order with ag > a3 > -+ > ay,. It
is enough to show that [J'] € Hilbé is a smooth point.

The ideal J’ is saturated by Corollary 2.10. Moreover, it is Borel-fixed by [31, Thm. 15.20].
Thus, [Proj S/J’] is a smooth point of Hilb,(P™) by assumptions.

Therefore, by Lemma 2.67, it is enough to show that the natural map of deformation func-
tors DHilbg,[Jf
tangent-obstruction theories that is injective on obstruction spaces. By Lemmas 2.44 and 2.80

= Digity, (pn),[Proj 5707 induced by the map Hilbé — Hilb,(P™) admits a map of

there is a map of tangent-obstruction theories which on obstruction spaces is the natural map
Exts(J',S/J Yo — Exts(J nm", S/J)g

from the exact sequence of Ext groups. It suffices to show that

Exts(J'/J nm",S/J e — Exti(J,S/J)o (3.9)

is the zero map. Since J’ is a saturated and Borel-fixed ideal, it is an extended ideal from
the polynomial ring T' = klay,...,a,—1] by Lemma 2.11. Therefore, by Lemma 3.7 we get
Exty(J',S/J") = Exth(a,T/a) @r S where a is the contracted ideal 7 N J'. In particular,
multiplication by ay, is injective on Ext}(J’,S/J’). On the other hand, since multiplication by
ol is zero on J'/J' Nm", it is zero on Exty(J'/J Nm",S/J') as well. It follows that the map

from Equation (3.9) is the zero map. O
Finally we present the main results of this section.

Proposition 3.10. Let S = k[ag, a1, 2] and T = k[ag, a1]. Let f be the Hilbert function of
a zero-dimensional length r subscheme of P?. Let E; be the open subset of Hilbé whose points
correspond to saturated ideals. The subscheme Ey is smooth and irreducible.

Proof. Smoothness of E follows from Lemma 3.8 since the Hilbert scheme Hilb, (P?) is smooth
for every positive integer 7.
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Now we show that E is connected. Since it is also smooth this would finish the proof. Given
a point [I| € Ey we may connect it to the point [I'] corresponding to the generic initial ideal I" of
I with respect to the grevlex order with ag > a1 > . The ideal I’ is saturated by Corollary 2.10
and it is Borel-fixed by [31, Thm. 15.20]. Therefore, it is enough to find a connected subset of
E; that contains all points corresponding to Borel-fixed saturated ideals.

Let g: Z — Z be given by g(a) = f(a) — f(a — 1) for every a € Z. We have a natural
map Hilb], — Hilbé. The scheme Hilb. is irreducible by [65]. Therefore, its image Z in Hilbé
is irreducible. By construction, Z is contained in Ey. Furthermore, it contains all saturated
Borel-fixed ideals by Lemma 2.11. O

Proposition 3.11. Let S = k[ap, a1, a0]. Let f be the Hilbert function of a zero-dimensional
length r subscheme of P2. Let Vi be the locally closed subset of Hilb,(P?) whose points correspond
to the subschemes with Hilbert function f. The subset V; is irreducible.

Proof. As before, let Ey be the open subset of Hilbé whose points correspond to the saturated
ideals. The natural map Hilbé — Hilb,(P") induces a map Ey — V; which is bijective on k-
points. Therefore, Vy is homeomorphic with Ey by Lemma 2.29. It follows from Proposition 3.10
that Vy is irreducible. O

3.4 Sufficient condition for projective plane

In this section we assume that n = 2 so S = S[P?] = k[ag, a1, as] is the homogeneous coordinate
ring of projective plane. We show that a closed points [I] € Hilbg’”’2 for which S/T has Hilbert
function differing from ;.2 in only one degree is in Slip,. 5.

For ease of reference we write this condition more precisely. We consider functions f: Z — 7Z
that satisfy the following condition:

hyo(a) ifa#e

3.12
d ifa=e. ( )

there exist e,d € Z~o with f(a) = {

The main result of this section is the following theorem which gives a sufficient condition for a
closed point [I] € Hilbly™* to be in Slip, .

Theorem 3.13. Let [I] be a closed point of the multigraded Hilbert scheme Hilef’Q. If the Hilbert
function of S/I satisfies condition (3.12), then we have [I] € Slip,. 5.

Before proving Theorem 3.13 we need a few lemmas. The first one enables us to consider a
more restrictive condition (3.15) instead of condition (3.12).

Lemma 3.14. Let [I] € Hilbgr’Q. If the Hilbert function f of S/I satisfies condition (3.12) for
some integers d and e then we have [I] € Slip, 5 unless the following holds:

f satisfies condition (3.12) and dimyg S.—1 < d < r < dimy Se. (3.15)

Proof. Assume that [I] is a point of Hilbgr’2 that does not belong to Slip, 5 and the Hilbert
function of S/T satisfies condition (3.12) for some integers d and e.

Suppose that d equals r. We have f = h; 2, so [I] is in Slip, o by Remark 2.47 since Hilb, (P2)
is irreducible. Thus, by Lemma 2.9(ii), we may assume that d < r holds. Moreover, if there
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is an inequality dimy Se < 7, then [I] is in Slip, , since in that case [I] = [I N m**!] is the
unique closed point of the fiber over o, p2([1]) of the natural map ¢, p2: Hilbgr’2 — Hilb,(P?)
from Remark 2.47. Therefore, we may assume that the inequality r < dimy S, holds. We claim
that it is enough to consider the case that we have f(e — 1) = h,2(e — 1) = dimy Se—1. Indeed,
otherwise we get f(e — 1) = hy2(e — 1) = r and this contradicts Lemma 2.9(ii) since we have
fle) = d <r = f(e —1). Using Lemma 2.9(ii) we obtain dimy Se_; < d and moreover by
Lemma 2.9(iii) this inequality is strict, since we have r = f(e + 1) > d. O

For a fixed positive integer r, let

Q, ={f:Z — Z |f satisfies condition (3.15) and there exists [/] € Hilbgr’2 such that
S/T has Hilbert function f}.

By virtue of the following lemma, in order to obtain a proof of Theorem 3.13, it is enough to
find a point [If] € Slip,. 5, for every f € Q, that satisfies the properties:
1. the Hilbert function of S/1; is f;

2. [Iy] is a smooth point of Hilbgf’Q.

Lemma 3.16. Let f € Q, for some positive integer r. The locus of all closed points [I] of
Hilbgf’2 such that S/T has Hilbert function f is irreducible.

Proof. Denote this locus by Uy. Let Vy C Hilb, (P?) be the locally closed subset whose closed
points correspond to the closed subschemes of P? with Hilbert function f. By definition, U 7 s
the set of all closed points of the preimage of V; under the map

o2t Hilbe? = Hil, (P?).

The locus V7 is irreducible by Proposition 3.11. Furthermore, we have h,.2(a) = f(a) = dimy S,
for every a < e and hy(a) = f(a) for every a > e. Therefore, Uy is irreducible by [81, 11.4.C]
and Lemmas 2.43 and 2.44. O

Fix a positive integer r and a function f € €., or equivalently, a pair of integers d and e
corresponding to f. To simplify the notation let s := dimy S._1 and we define A; = aéaf_i for
all 0 <i<e, B; :agoﬁ“_i forall0 <i<e+1and C; = aéaﬁ“‘i forall0 <i<e+2to
make it easier to distinguish between the generators of different degrees. We define the ideals

Jf = (A67 Aefb ceey Ad—s, Bd—s—l; Bd—s—?a s 7B'I‘—da C’r—d—17 CT—d—Qv sy CU) (317)

and

If :(Aea e A A 100, Ap s g, Agsa, Ag_ s,

(3.18)
Bd—s—la e 7BT—d7 Cr—d—17 ot CO)

Note that there are equalities A;o; = B; but we have written I in the form as above since
it is more convenient in the proof of the following lemma.

Lemma 3.19. The Hilbert function of S/I is hyo and the Hilbert function of S/Iy is f. More-
over, Jy is the saturation of Iy.
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Proof. Let T = kl[ag,1]. We start with showing that Jy is a saturated ideal and that the
Hilbert function of S/J; is f. Indeed, Jy is an extension of the ideal af = Jy NT in T so it
is saturated with respect to ag and thus, is saturated with respect to m. Moreover, we have
Hgyj,(a) = 3 p_o Hryq,(b) and the latter sum can be computed from the staircase diagram
of a f-

It follows from the generators of Iy and Jy displayed above, that the saturation of Iy contains
Jg¢. Therefore, Jy is the saturation of Iy since Jy is saturated. The quotient algebra S/.J; has
Hilbert function f. Furthermore, we have (Jf)se = (If)se and (Jf)<e = (If)<e = 0. Therefore,
it follows from Equations (3.17) and (3.18) that the Hilbert function of S/If is h, . O

We now find a saturated ideal Ky such that the initial ideal of Ky with respect to an appro-
priate monomial order is Iy. Let

Kf = (Aea v 7Ar757 Arfsflala Ar7571a2 + Br—d—h R Ad—sala Ad—sOQ =+ BOa

(3.20)
Bd*S*lv A 7BT'7d7 CT‘*d*l? MR CO)'

Lemma 3.21. The initial ideal of Ky with respect to the lex order > with ag > a1 > g is Iy.
In particular, S/Ky has Hilbert function hy.s.

Proof. All S-polynomials of the generators displayed in Equation (3.20) belong to the ideal b :=
(Ce+2, ...,Cp). Let ¢ :== (Ae,... Ar—s,Br—s—1,...,Br—q, Cr—g_1, ... Co) We have b C ¢ C Kf.
It follows that the set of generators from Equation (3.20) satisfies the Biichberger criterion (see
[27, Thm. 6 in Ch. 2 §6]). Hence it is a Grébner basis. In particular, the initial ideal in<(Ky) is
It so S/K; has Hilbert function h,2 by Lemma 3.19. O

Next, we verify that K is a saturated ideal.
Lemma 3.22. The ideal Ky is saturated. In particular, we have [If] € Slip, 5.

Proof. Let > be the lex order with as > a7 > . From Lemmas 2.7, 3.19 and 3.21 we obtain

inc(Ky) Cinc(Ky) = Iy = Jy. (3.23)

Suppose that Ky # K. We have Iy = inc(Ky) € inc(Ky) C Js. Since Iy and Jy differ only
in degree e, it follows that there is an element g € S, N ff such that in-(g) does not belong
to the set of monomial generators of I of degree e. However, in.(g) is an element of (J¢). by
Equation (3.23). Therefore, by the choice of the monomial order and Equation (3.17) we get
g =>4 saiA; for some a; € k. We assumed that in(g) is not in I;. Thus, by Equation
(3.18), we have a; # 0 for some i € {d —s,...,r —s — 1}. Furthermore, we may assume that a;
is zero for all i =7 — s, ..., e by Equation (3.20). Multiplying g by a3 and using the generators
of Ky given in Equation (3.20) we obtain

r—s—1 r—s—1
g/ = —a%g + Z aja(Ajag + Biys—q) = Z a;Biys_qao € ?f
i=d—s i=d—s

We claim that it is not possible. By Equation (3.23), it is enough to show that no monomial of
the form Bjay for some j € {0,...,7 —d — 1} is in Jy. This is clear since monomials of degree
e+ 2 in Jy that are divisible by as are also divisible by agfd.
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Since K is saturated, it follows from Remark 2.47 that [Ky] belongs to Slip, 5. Therefore,
[If] is in Slip,. 5 by Lemma 3.21. O

Finally, we show that [I;] is a smooth point of Hilbg’"’Q. It is enough to show that we have
dimy Homs (I, S/I7)o = dimg Ty, Hilbg? < dim Slip,., = 2r,

where the first equality follows from Theorem 2.75. Lemmas 3.24, 3.26, 3.27 and 3.33 are devoted
to this calculation.

Lemma 3.24. We have dimg Homg(J¢/I7,S/1f)o = (r —d)*.

Proof. Since J;/I; is isomorphic to k(—e)® =% we have
dimy Homg(Jy /I, J¢ /1) = (r — d)? dimy Homg(k(—e),k(—e))o
= (r — d)* dimy Homg(k,k)o = (r — d)*.

It follows from equalities (Jf: o) = J¢ and g - J¢/If = 0 that Homg(Jy/If,S/Jf)o is zero.
Therefore, we get

dimy Homg(J;/1,S/If)o = dimy Homg(J; /I, J¢ /1) = (r — d)?
from the long exact sequence obtained by applying Homg(J¢ /I, —)o to the short exact sequence

0—>Jf/ff—>S/If—>S/Jf—)0. (325)
]

Lemma 3.26. We have dimy Ext§(J/1f,S/1f)o = (r — d)>.

Proof. We claim that dimy Ext%(J;/Is, Js/If)o = 0 holds for all i € {1,2}. It is enough to
show that dimy Ext4(k,k)o is zero since we have Extly(J¢/Ir, Jp/1f)o = (Extfg(k,k)o)@(r_d)Q.
Therefore, the claim follows from Lemma 2.28.

Applying the functor Homg(J¢/I¢, —)o to the short exact sequence (3.25) we obtain

dimy EXtAlg(Jf/If, S/If)() = dimy Ethlg(Jf/[f, S/Jf)()

We have Exty(J; /I, S/ Jp)o = (Exth(k,S/Jp)e)®T = so it is enough to compute the dimension
of Ext§(k, S/Js)e as a k-vector space.
Applying the functor Homg(—, S/J¢). to the Koszul resolution of k we obtain the following

complex:
(675} —Q1 (7)) 0
(65} — Q9 0 (7))
(65) 0 —Qp a1 [Ozg —Q1 ao]
(8/Jp)e = (/I (S/Tp)ks (S/Tf)ets.

We need to show that the cohomology at (S/J f)?_fl is an (r — d)-dimensional k-vector space.
We denote the map (S/Jy)e — (S/Jf)?_i’l by dy and the map (S/Jf)?_i’l — (S/Jf)?_i’2 by d;. Let

ho,h1,ha € Set1 be such that dy(hg, h1, h2) is zero, where h; is the class of h; in the quotient
ring S/Jy. Let ho = ashb (o, a1, ) + hy(ag, a1). We have (—aihg + aohi, ae(—ho + aghty) +
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aohly, ao(—h1 + aqhb) + aihi) C Jy. The ideal Jy is monomial. Therefore, since (Jf: ag) is
equal to Jy and hj does not depend on as, we get (hg — aphy, h1 — ahfy) C Jg¢. Thus, there is
an equality (ho, iy, ha) = (0,0, %) + do(hh). We claim that (0,0, 1) is in ker d; for every degree
e + 1 homogeneous polynomial hf € k[ag, aq]. Indeed, we have aphf,aqh! € Jy as there is an
equality (J¢)et2 Nklao, aq] = klag, aq]e2. We get

dimy EXté(]k, S/Jf)e = dimy ]k[ag, 041]6_:,_1/(Jf N k[ao, al])e—f—l = (T’ - d) L]

Lemma 3.27. We have dimy Homg(J¢, S/I¢)o = 2r.

Proof. Observe that Ext}(Jr, J;/If)o = (Exty(Jr,k)—e)®"~D is zero by Lemma 2.28. Indeed,
since (Jf)e—1 is zero so is B1e(Jf) = B2,.e(S/Jf).

Therefore, applying the functor Homg(J¢, —)o to the short exact sequence (3.25) we obtain
a short exact sequence

0— HomS(Jf, Jf/If)o — Homg(Jf, S/If)o — Homs(Jf, S/Jf)o — 0. (3.28)
Since (Jf)<e—1 is zero we have

dimy Homg(J¢, J¢/1¢)o = (r — d) - dimy Homg (Jf,]k(—e))o = (r—d) - dimy(Jy)e

, (3.29)
= (r — d)(dimg Se — d).

Finally, let ay = Jy NT, where T is the polynomial ring klag, a1]. The equality Jy = a; - S
implies that we have

dimy, Homg (Jf, S/ Jf)o = Y _ dimy Homy (az, T/ay);. (3.30)

i<0

Since Spec(T/as) corresponds to a point of the Hilbert scheme Hilb,(A?) which is smooth and
2r-dimensional we get

> " dimy Homyp(ag, T/ag); = 2r — Y _ dimy Homy (ay,T/ay); (3.31)

1<0 >0

by [49, Prop. 2.3]. By Equation (3.17) the minimal generators of ay appear in degrees e,e + 1
and e 4+ 2. Furthermore, HT/af (e + 2) is zero. Therefore, by Proposition 2.22 we have

S dimy Homy (ag, T/ay): = Buo(T/ay)- Haya, (e+1) = (e1—d-+s)-(r—d) = (dimg S.—d)(r—d).
i (3.32)
The exact sequence (3.28) and Equations (3.29), (3.30), (3.31) and (3.32) imply the equality

dimy Homg (J¢, S/1f)o = 2r. O
Lemma 3.33. We have dimy Homg (I, S/If)o < 2r.

Proof. From the long exact sequence obtained by applying the functor Homg(—, S/If)o to the
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short exact sequence 0 — Iy — Jy — Jy/I; — 0 we get

dimy Homg (17, S/1)o < dimy Homg(Jy, S/If)o + dimy Extg(J;/If, S/11)o
— dimy Homg(J¢ /15, S/1¢)o.

Using Lemmas 3.24, 3.26 and 3.27 we conclude that the inequality dimy Homg(I¢,S/If)o < 2r
holds. O

We summarize the above considerations to obtain a proof of Theorem 3.13.

Proof of Theorem 3.13. Let f be the Hilbert function of S/I. By Lemma 3.14 we may assume
that f satisfies condition (3.15), i.e. that f belongs to €2,. Let Us be the locus of those closed
points [I'] of Hﬂbg“2 for which S/I” has Hilbert function f. We show that Uy is contained in
Slip, 5. Locus Uy is irreducible by Lemma 3.16. We claim that it is enough to find a point
[1"] € Slip, o NUy with dimy T} Hilbg’”’2 = 2r. Indeed, then by Lemma 2.30 every irreducible
component of the intersection Uy N Slip,. 5 passing through [I”] has dimension at least dim Uy +
dim Slip,. 5 —2r = dim Uy. It follows that Uy is a subset of Slip,. 5.

We claim that we may take I” = Iy as defined by Equation (3.18). We have [I] € UyNSlip, 5
by Lemmas 3.19 and 3.22. Moreover, [I7]| is a smooth point of Hilbgr’2 by Lemma 3.33 and
Theorem 2.75. O

We illustrate Theorem 3.13 with the following example.

Example 3.34. Let S = k[ag, a1,az] be a polynomial ring and J = (aga1, adag, apad, af).
The point [J] is in Hilbgs’2 and we claim that it is in Slip5,. The Hilbert function of S/.J is
(1,3,4,5,5,...) so it satisfies condition (3.12). Thus, the claim follows from Theorem 3.13.

3.4.1 The analogue of the sufficient condition does not hold in general for
projective space

For fixed positive integers r and n, condition (3.12) can be generalized as follows:

hyn(a) ifa#e

3.35
d if a =ce. ( )

there exist e,d € Z~o with f(a) = {

For all n > 3 and r large enough, the Hilbert scheme #ilb,(P") is reducible (see [54]).
Therefore, it cannot be expected that a naive analogue of Theorem 3.13 holds in P". The
following remark gives a counterexample.

Remark 3.36. Assume that k has characteristic zero. By [21, Thm. B and Thm. 6.17], there
are non-smoothable closed subschemes of A% corresponding to Gorenstein local algebras with
(local) Hilbert function (1,6,6,1). See also [59, Thm. 1.1] for a description of the corresponding
irreducible component of the Gorenstein locus of the Hilbert scheme. By embedding AS in PS as
a complement of a hyperplane we conclude that there are non-smoothable closed subschemes of
PS with Hilbert function

(1,7,13,14,14 .. .).

Let R be such a subscheme and I = I(R) be its homogeneous ideal. Choose a 14-dimensional

subspace V of Iy and construct an ideal J = V @ I>3. The point [J] is in Hilbgl[fhfl and the
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Hilbert function of S[P%]/J satisfies condition (3.35) (with 7 = 14 and n = 6). However, [J] does
not belong to Slipy4 6.

The above remark may suggest, that existence of more irreducible components of Hilb, (P")
is the only obstacle. The following example shows that the Hilbert function of S/T may satisfy
condition (3.35) for some [I] € Hilbg’ﬁpﬁb] that is not in the closure of the locus of all points

corresponding to saturated ideals.

Remark 3.37. Consider the ideal
1= (043041,04004%,040042,040&3,06101276!1043,043) € S[Pg] = k[am .- -,043]-

The point [[] is in Hilbg?f;},] and the Hilbert function of S/T satisfies condition (3.35) with r = 6

and n = 3. Suppose that [I] is in the closure of the locus of all points corresponding to saturated

ideals. Since, Hilbg(P?) is irreducible (see [20, Thm. 1.1]) it follows that [I] is in Slipg 3. This
contradicts Theorem 3.5 since we have Hg/r2(6) =23 < r(n+1) = 24.

3.5 Points on projective space—examples, part 1

3.5.1 Initial cases

Proposition 3.38. Let r and n be positive integers. We have Hilbgr[fphl = P" and Hilbgl[ﬁm"n] = P,
In particular, Slip,.; and Slip, ,, are equal to Hilbgﬁgl] and Hilbgl[fpz], respectively.

Proof. We have hy1 = fr1 and hi, = f1,, where f,, for all positive integers r" and n’ is as

in Lemma 2.44. It follows that there are isomorphisms Hilbgr[]z;l] =~ Hilb,(P') and Hilbgl[fp’;] =

Hilb (P"). The scheme Hilb,(P!) is isomorphic to P” (see [35, pp. 111-112]) and the scheme
Hilby (P™) is isomorphic to P" (see [35, Ex. 7.3.1]). O

h2,n

S[Pn) is a P2-bundle over

Proposition 3.39. Let n be a positive integer. The scheme Hilb

Gr(n — 1, S[P"];).

In particular, we have Hilbg%‘PﬁL] = Slipy , -

Proof. Tt follows from |20, Prop. 3.1] that the Hilbert scheme Hilbgﬁﬁl] is a Hilbgz[ﬁ;l}—bundle over
Gr(n — 1, S[P"];). Furthermore, Hilbg?l’},,ll] is isomorphic to P? by Proposition 3.38. O

3,n

Proposition 3.40. Letn be a positive integer. The scheme Hilbg[w]

we have Slipy ,, = Hilbgis, .

1s irreducible. In particular,

Proof. By [20, Prop. 3.1] we may restrict to the case that we have n =1 or n = 2. In the first
case, the claim follows from Proposition 3.38.

Assume that n equals 2. Let [I] be a closed point of Hilbg?;z,]. If I is saturated, then [I] is in
Slipg o by Remark 2.47. On the other hand, if 1 is not equal to I, then S/T has Hilbert function
hs1 by Lemma 2.9(ii), (iii). Therefore, we have [I] € Slip; 5 by Theorem 3.13. O
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3.5.2 Example of a singular point in the interior of Slip for projective plane

Since Hilb,(P?) is smooth and Slip, 5 is related to Hilb,(P?) by the natural morphism

Prp2: Hilb"2, — Hilb, (P?)

s [PQ}
from Remark 2.47, it could be expected that the only singular points of Hilb TUP?Q] in Slip, 5 are
the points that lie in another irreducible component. We apply Theorem 3.13 to give an example
of a singular point in the interior of Slipg .

We start with introducing some notation. Let Og be the set of all functions f: Z — Z such
that f is the Hilbert function of a saturated homogeneous ideal of S defining a zero-dimensional
closed subscheme of P? of length 8. Given f € Og, let V be the locally closed subset of Hilb, (IP2)
defined by those closed points that correspond to subschemes of P? with Hilbert function f. These
sets with varying f € ©g form a stratification of Hilb,(P?) by locally closed irreducible subsets
(see Proposition 3.11). Let Uy be the set-theoretic inverse image of V; under ¢, p2. In particular,
Slipg 5 is the closure of Up, ,. Also, we say that f < g for some f,g: Z — Z if for every a € Z we
have f(a) < g(a). This gives a partial order on Og.

Let fi1, fo: Z — 7 be given by

dimy S, fora < 2
dimy S, fora <3

5 fora =2
fila) =<7 fora=3 and fiy(a) =
7 fora =3
8 fora >3
8 for a >3

or, in brief form, f; = (1,3,6,7,8,8,...) and fo =(1,3,5,7,8,8,...).

Proposition 3.41. Let J = (a3, afag, afad, a1a3,a3). The point [J] € Hilbg&2 is a singular
point that belongs to the irreducible component Slipg o and no other.

Proof. Let I = (a3as, apa?+a1a3,af, a1a3,a3). The Hilbert function of S/T is f; so [I] belongs
to Slipg 5 by Theorem 3.13. Hence also its initial ideal with respect to lex order (ag > a1 > ag),
ie. I' = (apaf,afag,af,a103,03), is in Slipg,. Since we have dimy Ty Hllb [PZ] =16 =
dim Slipg 5, it follows that every irreducible closed subset of Hlle[PQ] passing through [I'] is
contained in Slipg 5. In particular [J] belongs to Slipg, since [I'] and [J] lie in Uy, which is
irreducible by Lemma 2.43.

We have dimyg T; Hilb

Hilbge?,

does not belong to U, ,UUy, UUy, then [J] is not in {n} since Uy, is open in Hlle[Pz} \(Uns ,UUy, )
as fo is the greatest element of ©g\{hg 2, f1}. Therefore, Z = {n} is contained in Uy, Uy, UUy,USlipg 5.
As shown above, we have Uy, U Uy, C Slipg 5. The equality Z = Slipg 5 follows. O

hsg,2
S[P2]

containing [J]. We show that Z is equal to Slipg 5. Let 1 be the generic point of Z. If n

= 17 > dimSlipgy. Let Z be an irreducible component of

3.6 Criterion based on smoothness

hrn

In this section we give another criterion for a closed point [I] € Hilbg™" to be in Slip, ,,. The

criterion is based on smoothness of a point in a certain related multlgraded Hilbert scheme. It
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is first stated in a general form (Theorem 3.42) but later we impose additional assumptions to
guarantee that conditions 1-3 from the theorem are fulfilled.

Subsections 3.6.1-3.6.3 are concerned with describing some situations in which assumptions 1-
3 are fulfilled (each subsection deals with one assumption). The main results of these subsections
are:

e Proposition 3.46 which implies condition 1 of Theorem 3.42
e Proposition 3.54 which implies condition 2 of Theorem 3.42
e Lemma 3.57 which implies condition 3 of Theorem 3.42.

Moreover, in Subsections 3.6.4 and 3.6.5 we present two applications of Theorem 3.42: Theo-
rems 3.66 and 3.75. In the proof of the first of them we use Proposition 3.46 and Lemma 3.57. The
proof of the second result, i.e. Theorem 3.75 is based on Propositions 3.46, 3.54 and Lemma 3.57.

Notation

In this section [I] € Hilbgf’" is a closed point corresponding to an ideal that is not saturated. By
d we denote a positive integer with I # Iy. We define J = T Nm? and K = I N m<.
Now we present the main result of this section.

Theorem 3.42. When the following hold:
1. the natural map Homg(J, S/J)o — Homg(K,S/J)o is surjective;
2. [J] € Hilb% is a smooth point where h is the Hilbert function of S/.J;
3. the natural map Homg(K,S/K)o — Homg (K, S/J)o is surjective,
there is no [I'] € Slip,.,, with I ; = I>q. In particular, we have [I] ¢ Slip,.,.

Proof. Let k be the Hilbert function of S/K. Consider the multigraded flag Hilbert scheme
Hilb" (see Subsection 2.2.4) and natural morphisms 7y,: Hilbs" — Hilb% and m,: Hilb%" —
Hilb.

We first show that 7y induces isomorphism on tangent spaces Txc j Hilb’gih — T Hilb’g.
This map on tangent spaces is the upper horizontal map in the pullback diagram

Tgec Hilbl" —— Homg(K, S/K)o

! |

Homg(J,S/J)o —— Homg(K,S/J)o

in which the right vertical and the lower horizontal maps are natural maps of Hom groups
(see Theorem 2.78). By assumption 1, the lower horizontal map is surjective. Moreover,
Homg(J/K,S/J)o is zero by Lemma 2.8 since we have J = J>q and m” - J/K = 0. There-
fore, the lower horizontal map is bijective. Thus, so is the upper horizontal map since the
diagram is a pullback.

Now we show that the natural transformation D — DHilblg (K] of deformation

Hilb%" [KCJ]
functors induced by 7, admits a map of tangent-obstruction theories which is injective on ob-

struction spaces. By Theorem 2.75, there are tangent-obstruction theories for DHﬂbg ] and
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DHﬂb;é (] With obstruction spaces Exty(J,S/J)o and Exty (K, S/K)g, respectively. Moreover,

by Theorem 2.78 there is a tangent-obstruction theory for D with obstruction space

Hilb%" [KCJ]
given by the pullback diagram

Obyec HilbE" — Ext} (K, S/K)q

Js |
Exty(J,S/J)g — Ext(K,S/J)o,
where the lower horizontal and the right vertical maps are maps from long exact sequences of

Ext groups. Furthermore, o and § induce maps of tangent-obstruction theories. Here we have
used assumption 3. Since [J] € Hilbg is a smooth point, we can use Lemma 2.68, to change the

Hilb" [k ) 5O that DHilb’gh,[KgJ]
tangent-obstruction theories which is injective on obstruction spaces.

tangent-obstruction theory of D — DHﬂbg K] admits a map of

It follows from Corollary 2.66 that the map 7 is étale at [K C J]. In particular, there
is an open subset U of Hilbg’h containing [K C J] that is mapped onto an open subset V' of
Hilb% containing [K]. If there is a point [I] € Slip,.,, with I>4 = I ;, then there is a saturated
ideal I" with [I"] € Hﬂbg"" and [I"” N"m?) € V. Therefore, there is an ideal [J”] € Hilb% with
I"Nm? C J”. This gives a contradiction since we have I” = J” and I/ C J7. O

Remark 3.43. It seems that assumption 2 of the above theorem is both the most restrictive
and potentially the hardest to check in practice. On the other hand, if we have n = 2 and

d=min{a € Z |1, # I,}

then condition 2 always holds (see Proposition 3.10) since the usual Hilbert scheme Hilb,(P?) is
smooth. Furthermore, for d = max{a € Z | I, # I,} condition 3 is satisfied (see Lemma 3.57).
Even in the case of P? and d = max{a € Z | I, # I,} it is not clear, in how general setups
can we expect condition 2 of Theorem 3.42 to hold. We present one specific situation when this
holds in Proposition 3.54.

In the following subsections we study some situations in which conditions 1-3 of Theorem 3.42
hold.

3.6.1 About condition 1

The main result of this subsection is Proposition 3.46 which describes a situation in which
condition 1 of Theorem 3.42 holds.

We keep the notation of Theorem 3.42. Let R = S/T and pick a linear form L € S that is a
nonzerodivisor on R. This is possible by Lemma 2.9(i). By a linear change of variables, we may
and do assume that we have L = «y.

We start with the following simple observation.

Lemma 3.44. Let b be a homogeneous ideal of S that is generated in degrees at most d for a
positive integer d. Let a = % C R. If we have dimy ag = dimy agy1 then the equality
a' —a

Ay = QO ag

holds for every a’ > a > d.
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Proof. Let v: R — R be the multiplication by ag. This induces an injective map a, — aq41 for
every integer a. It is enough to show that for all @ > d this map is surjective. We prove this by
induction. The case a = d follows from the assumption that we have dimy ag = dimy agz41. Let
ap > d and suppose that there is an equality a,, = apag,—1. Let g € ag,+1. Since b is generated
in degrees at most d we obtain

n
g= Zaifi for some f; € ag,.
i=0
By induction there are h; € aq,—1 with f; = aph; for all ¢ = 0,1,...,n. Therefore, we get

9= ao(D g aihi). O

The following lemma is used in the proof of Proposition 3.46 to extend a homomorphism
¢ € Homg(K,S/J)o to an element 1) € Homg(J, S/J)o under some additional assumptions.

Lemma 3.45. Let d = max{a € Z | I, # I,}. Letb C S be a homogeneous ideal that is generated
in degrees at most d. Let a = % - S/T = R. Assume that we have dimg ag = dimg ag11.

Let F € Jg and assume that it is of the form F = fg for some homogeneous f € b and g € 1.
Let ¢ € Homg(K,S/J)o. There is h € (S/J)q with o(aF) = aph.

Proof. Observe that agF belongs to Iqy1 = K41, so @(aoF) is a well-defined element of Ry .
Let a = deg(f). We have

afo(aoF) = afp(anfg) = fe(agtg).

Hence afp(apF) is in agyq+1. Therefore, by Lemma 3.44 there is h € ag € Rq = (S/J)q with

ago(agF) = agﬂh. Since «y is a nonzerodivisor on R, the equality ¢(apF') = aph follows. [

Now we can present the main result of this subsection.

Proposition 3.46. Let d = max{a € Z | I, # I,}. Let b C S be a homogeneous ideal that
18 generated in degrees at most d. Let a = b%f C S/T = R. Assume that we have dimy ag =
dimk Ad+1-

Let Fy,...,Fs € Jg be elements whose classes form a basis of Jg/Kq4. Assume that for all
i € {1,...,s} the polynomial F; equals f;g; for some homogeneous f; € b and g; € I. Let
¢ € Homg(K,S/J)o. There exists » € Homg(J, S/ J)o with Y|k = ¢. Thus, condition 1 from
Theorem 8.42 is fulfilled.

Proof. Let {p1,...,p:} be a minimal set of homogeneous generators of .J containing {F1,. .., Fs}.
We may and do assume that p; belongs to K if p; ¢ {F1,...,Fs}. By Lemma 3.45, there are
h; € (S/J)d with

aph; = p(apF;) for all i € {1,2,...,s}. (3.47)

We define ¢ on generators {p1,...,p:} of J by

e(pi) ifpi € K
V(pi) = . .
h; if p; = F; for some j € {1,2,...,s}.

We claim that ¢ is a well-defined element of Homg(.J, S/J)o. Indeed, let
{pl)"'7pt} - {Fla”'uFSst-i-l)"'aQt}
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and assume that G;, H; € S are such that we have

ZGFJr Z H,Q; = 0.

i=s+1

We need to show that the following holds

> Gap(F) Z Hip(Q ZGh + Z Hip(Q
i=1

i=s+1 i=s+1

Since « is a nonzerodivisor on R, it is enough to observe that there is a chain of equalities

OCO(ZGh + Z H;p Qz) 347 ZGZ(P O40F + ap Z Hz‘P Qz

i=s+1 1=s+1

<a0<ZGF+ZHQ)> 0(0) = 0. O

1=s+1

3.6.2 About condition 2

In this subsection we show in Proposition 3.54 that if n equals 2 and under some additional
assumptions, condition 2 from Theorem 3.42 is fulfilled.

In the notation of Theorem 3.42, assume that d is equal to min{a € Z | I, # I,}. We claim
that we have d = min{a € Z | I, # 0} and therefore, that J is equal to I. Let d’ = min{a €
Z | I, # 0}. If I, is zero, then there is an equality I, = I, so we get d’ < d. On the other
hand, if we have d’ < d, then Iy = Iy is non-zero. Thus, Hg/r(a) = HS/T(“) = r holds for every
a > d' by Lemma 2.9(ii) and the definition of h,,. We obtain Isy = I>4 which contradicts the
definition of d and proves the claim.

The smoothness of Hilb,(IP?) and its consequence, Proposition 3.10, play a key role in our
approach to condition 2 of Theorem 3.42. However, Proposition 3.46 requires d = max{a € Z |
1, # I,} while Proposition 3.10 corresponds to the case d = min{a € Z | I, # I,}, when we have
[J] = [I N m?) = [I]. Therefore, we would like to show that, under some additional assumptions,
the condition that [T Nm?] is a smooth point of Hilb% holds also for d = max{a € Z | T, # I, }.
This is achieved in Proposition 3.54.

Lemma 3.48. Let I C S = k[ap, a1, a2 be a homogeneous ideal. We have
dimy, Ext?(k, S/I)a = B1.a+3(S/I)

for every a > 0.

Proof. Consider the short exact sequence
0—-I—S—S/I—0.

Applying the functor Homg(k, —), to the above short exact sequence we obtain the exact se-
quence

- = Bxt3(k, S), — Exti(k,S/1), — BExtd(k, 1), — Ext¥(k,8), — - . (3.49)
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We claim that Ext%(k,S), = 0 holds for all i € {2,3}.

Consider the Koszul complex

(6] -1 —Q9 0
—Q1 (675} 0 —Q
o) 0 Q) (e%1 oy a1 Q2
0— S(—3) ——= 5(—2)%3 S(—1)®3 Q S —0. (3.50)

The Ext groups Extfg (k,S), for all i € {2,3} can be computed as the cohomology groups at 5?32
and Sgy3 of the complex

Qg —a1 a9 O
1 —Q2 0 (6 7))
(6] 0 —Qy o1 [012 —Q] Oéo]
3 3
0— S, SCG;—l 529+2 Sa+3 —0

obtained from the Koszul complex (3.50) by applying the functor Homg(—, S),. These groups
are trivial.
Thus, we have
dimy, Ext?(k, S/I), = dimy Ext}(k, I),

by exact sequence (3.49). Applying the functor Homg(—, S/I), to the Koszul complex (3.50) we
get that Ext?(k, I), is the cokernel of the map

e L oy

The equality dimy Ext?(k, I), = B1.4+3(S/I) follows. O

Lemma 3.51. Let f be the Hilbert function of a zero-dimensional length r subscheme of P™. Let
T be a saturated ideal of S with [I] € Hilbé. Let m = min{a € Z | I, # 0} and let d > m be
a positive integer. Let h be the Hilbert function of S/T Nwme. If [I] is a smooth point and the
natural map Homg (I Nm?®, S/T)g — Homg(I Nme*tt, S/T)q is bijective for every m < a < d, then
[T Nm?) € Hilb% is a smooth point. Moreover, we have dimy T 7Amal HilbY = dim W where W C
Hilbg is the locally closed subset whose closed points correspond to ideals defining subschemes of
P™ with Hilbert function f.

Proof. For all integers m < a < d let g, be the Hilbert function of S/IT Nm®. In particular, we
have g, = f and gq = h. Let W, be the locally closed subset of Hilbg" whose closed points
correspond to ideals defining subschemes of P with Hilbert function f. In particular, Wy is
equal to W. Forallm <a < d—1let m,: Hilb%“ — Hilbkgg’l+1 be the natural map given on closed
points by [I’] = [I’'Mm%*1]. The map m, induces a homeomorphism W, = W, 1 by Lemma 2.29.
We assumed that the natural map Homg(I Nm?, S/T)g — Homg(I Nmt! S/T) is bijective
for every m < a < d — 1. Therefore, by Lemma 2.80 the map 7, induces an isomorphism of
tangent spaces
T 7 HiIbE = Tz o) Hilbg ! (3.52)

for every m < a <d-— 1.
Now we show that [T N m? € Hilb% is a smooth point. Observe that W,, C Hilbé is open
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and [INm™] = [I] € Hilbg is a smooth point by assumption. Therefore, we have
dimy, T7, o) Hilbs = dimy Ty Hilb, = dim Wi, = dim Wy = dim W/ (3.53)

where the first equality follows from Equation (3.52), the second from the fact that [I] is a
smooth point and W,,, C Hilbé is open and the third equality follows from the homeomorphism
Wy = Wy. Equation (3.53) implies that [TNm?] is a smooth point of Hilb% since [TNm?] belongs
to W. O

Finally, we present the main result of this subsection.

Proposition 3.54. In the notation of Theorem 3.42, assume that n equals 2. Let
m=min{a € Z | I, # I,} =min{a € Z | I, # 0}.
Let f be the Hilbert function of S/I and assume that

fla) =3f(a+1)+3f(a+2) — fla+3) = Pra+s(S/1) (3.55)

holds for every m < a < d — 1. The point [J] is smooth in Hilbg, i.e. condition 2 from
Theorem 3.42 is fulfilled. Moreover, we have dimy Homg(.J, S/.J)g = dim W where W C Hilbl% is
the locally closed subset whose closed points correspond to ideals defining subschemes of P? with
Hilbert function f.

Proof. The point [I Nm™] = [I] € Hilbg is a smooth point by Proposition 3.10. Therefore, by
Lemma 3.51 it is enough to show that the natural map

Homg (I Nm%, S/T)y — Homg(I Nm®"t, S/T), (3.56)

coming from the exact sequence of Hom groups is bijective for every m < a < d. Fix m < a <
d—1andlet Q =TNm*/INm*L Since we have m-@Q = 0 and (I: m) = I, we conclude by
Lemma 2.8 that Homg(Q, S/T)g is zero. Thus, the map from Equation (3.56) is injective.

We have @ = k(—a)® for some integer s. Therefore, by Lemma 2.27 we have

3

s(f(a) —3f(a+1)+3f(a+2)— fla+ 3)) = 3" (1) dimy Ext}s(Q, 5/T)o.

1=0

Since dimy Homg(Q, S/T) is zero, by Equation (3.55) and Lemma 3.48 we get
dimy EXt};(Q, S/T)O + dimy EXt%(Q, S/T)() =0.

Hence there is an equality Ext(Q, S/T)o = 0. Thus, the map from Equation (3.56) is surjective.
L]
3.6.3 About condition 3

Lemma 3.57. In the notation of Theorem 3.42, assume that we have d = max{a € Z | I, #
I,}. The natural map Homg(K,S/K)o — Homg (K, S/J)g is surjective, i.e. condition 3 from
Theorem 8.42 is fulfilled.

62



Proof. Tt is enough to establish that Ext} (K, J/K)g is zero. Let P, be a minimal graded free
resolution of K. The group Ext(K, J/K)y is a subquotient of Homg(P1, J/K)g so it is enough
to show that the latter group is trivial. This holds, since the minimal generators of P; are of
degree at least d + 1 and we have (J/K)>g441 = 0. O

3.6.4 Application one: subschemes contained in a line

In this subsection we consider ideals defining subschemes contained in a line. The statement
of Theorem 3.66 is a generalization of [67, Thm. 2.7| for fields of arbitrary characteristic. We
provide a proof in the setting of Theorem 3.42.

We start with a lemma. It is stated in a general version since we also use it in Subsection 3.6.5.
We introduce some notation. Let f be the Hilbert function of a zero-dimensional, length r
subscheme of ProjS. Assume that we have f # h,,. Let

e=max{a € Z | f(a) # hyn(a)}.

Let h: Z — Z be defined by
h(a) = dimy S, for a < e;
f(a) fora>e
and k: Z — 7Z be defined by
dimyg S, for a < e;
k(a) _ k Pa
hyn(a)  fora>e.
Let m: Hilblr™ — Hilb%, m,: Hilbl — Hilb,(P") and my: Hilb% — Hilb,(P") be the natural
morphisms.
Let V be the locally closed subset of Hilb,(P™) consisting of points corresponding to sub-
schemes with Hilbert function f. Let W be the set-theoretic inverse image of V' under 7 and
let W’ be the set-theoretic inverse image of V' under 7.

Lemma 3.58. If the following hold:
1. f(e) equals r —1;
2. V. C Hilb,(P") is irreducible;

3. there exists an irreducible closed (rn—1)-dimensional subset U C W' with m(Slip,.,,) "W’ C
U, set-theoretically;

4. there is an equality dimy Homg(J, S/J)g = dim W for every [J] € W C Hilb%;
5. dimy, Ext}(k, S/J)e < 1 holds for every [J] € W C Hilb%,
then we have w(Slip,.,,) "W’ = U, set-theoretically.

Proof. From assumption 1 and the fact that h,,(e) is not equal to f(e) we get hy,(e) = r. Let
N = dim V. It follows from Lemmas 2.43, 2.44, [81, 11.4.C| and assumption 2 that W and W’
are irreducible and their dimensions are dim W = N and dim W' = N + (dimy S — (r—1)—1) =
N + dimy S, — 7.

We have dim 7(Slip,,,) = rn. We claim that V' N #Hilb;™(P") is non-empty. Let [R] € V
and let I’ be the generic initial ideal of the ideal I(R) with respect to the grevlex order with
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ap > aq > - > ap. We get [Proj S/I'] € V by Corollary 2.10 and [Proj S/I’] € Hilb™(P™) by

[20, Prop. 4.15] since I’ is an extended ideal from k[ay, . .., ap—1] by Lemma 2.11. Since we have

mg o w(Slip,.,,) = Hilby™ (P") and V N Hilby™ (P") is non-empty, m(Slip,.,,) N W’ is non-empty.
Now we show that

dimg Homg(K, S/K)g < N +dimg Se —r + 1 =dim W' + 1 (3.59)

holds for every [K] € W' C Hilb¥.
Let [K] € W' and J = K Nm®. Consider the exact sequences

0 — Homg(J/K,S/J)g — Homg(J,S/J)y — Homg(K, S/J)y — Exts(J/K,S/J)y  (3.60)
and

0 — Homg (K, J/K)o — Homg(K,S/K)y — Homg(K, S/J)y — Ext(K, J/K)o. (3.61)

By assumption 1, there is an equality J/K = k(—e). It follows from Lemma 2.28 that we have

dimy Homg (K, J/ K)o = f1,¢(S/K) = dimy Se — (3.62)

and

dimy ExtL (K, J/K)o = 0. (3.63)
Thus, by Equations (3.61) and (3.63) we get

dimy Homg (K, S/ K)o = dimg Homg (K, J/ K)o + dimgx Homg (K, S/J)o. (3.64)

Moreover, Homg(J/K,S/J)g is zero by Lemma 2.8. Therefore, it follows from Equations (3.60)
and (3.64) that we have

dimy Homg(K, S/ K)o < dimy Homg(K, J/ K)o + dimy Homg(J, S/J)o + dimy Extg(k, S/J)e.

Equation (3.59) follows from Equation (3.62) and assumptions 4 and 5.
Let [K] € W' N (Slip,,,) and let Z be an irreducible component of W’ N «(Slip,.,,) passing
through [K]. By Theorem 2.75, Lemma 2.30 and Equation (3.59) we get

dim Z > dim 7 (Slip,.,,) + dim W’ — (dim W' 4+ 1) = rn — 1.

Moreover, W’ is open in W’ since W is locally closed. Therefore, the generic point of Z belongs to
W’. As aresult, Z is contained in U by assumption 3 and in fact there is an equality Z = U since
we have dim Z > rn—1 = dimU. Since U is closed in W’ we get U = W' nZ C W' Nr(Slip,,,)
and therefore, W' N W(Slipnn) is equal to U by assumption 3. O

Lemma 3.65. Let J be a homogeneous ideal of S such that S/J has Hilbert function hy;. We
have

dimy Ext(k, S/J)q = 0

foralll<a<r—2and
dimy Ext(k, S/ J),_o = 1.
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Proof. Up to a linear change of variables, we may and do assume that J is equal to
(0407 -y Op_2, 97«(0(”71, an)) .

The Ext groups from the statement are the middle cohomology groups of the complex

n+1

s ntl O
(5700 2 (510751 2 (570 )
obtained from the Koszul complex. Here we have

So([f]) = ([aif])i=0,....n and 01([fili=o,...n) = ([@ifj — a;filJo<i<j<n-

Let a € {1,...,r — 3} and assume that 01([fi]i=0,....n) is zero. Observe that [a;f;] is zero for
every i € {0,...,n} and j € {0,...,n — 2}. Furthermore, multiplications by a,_1 or «, give
injective maps (S/J)q — (S/J)a+1. It follows that [f;] is zero for all j < n — 2. Moreover,
we have [ay,fn—1] = [an—1fn]. There are unique representatives f,_1 and f, of the classes
[fn—1] and [f] in S/J which are polynomials in variables a;,_1 and «a,,. From the equality
Jat2 = (o, ..., 0n—2)a+2, it follows that there is a polynomial ¢ in variables a,,—1 and v, with
gon—1 = fn1 and ga,, = f,. Hence we have do([g]) = ([fi])i=0,...n. Consequently, Extk(k,S/J),
is trivial.

Now assume that a equals r — 2. As in the previous case, we get [f;] = 0 for all i < n — 2.
Lift [f,—1] and [f,] to unique representatives which are polynomials in a,—; and «,. Now from
the equality [, fn—1] = [@n—1fn] We deduce that there is a constant ¢ with

anfn1 = an_1fn + ;.
The space
O = {(fa-1, fn) € (K[an-1,n]r—1)* | @ fa—1 — an—1fn is divisible by 6,}
is r-dimensional. It follows that we have
dimy Extl(k, S/J)y_o = 1 — dimy & ((S/J)T_Q) —r—(r—1)=1. O
Finally, we can present the criterion for ideals defining subschemes contained in a line.

Theorem 3.66. Let [I] € Hilbg"” be a closed point corresponding to an ideal I such that S/T
has Hilbert function hy1. There exists [I'] € Slip, ,, with I>,—o = IS, if and only if (72)7-_2 is
contained in I._o.

Proof. We may assume that we have n > 2 and r > 4 since otherwise both conditions are
trivially satisfied. Indeed, if we have n = 1 or r < 4 then Hilbgr’" is irreducible (see Propositions
3.38-3.40) so we may take I’ = I. On the other hand, if n equals 1 then I is saturated while if
=2 .
we have r < 3 then (I7),_2 is zero.
We use the notation of the beginning of this subsection with f = h, 1. Let U be the locus of

those points [K| from W' that satisfy

(Fz)r—Q C K, o.
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In this notation, we need to prove that we have 7(Slip, ) N W' = U, set-theoretically.

We start with showing that 7(Slip,,,) N W’ is a subset of U. Let [I"] € Hilbg"’" satisfy
[I" Nm"2] € W\ U. We use Theorem 3.42 with d = r — 2 and I = I” to show that [I” Nm" 2]
does not belong to m(Slip,,,). By Lemma 3.57 condition 3 of Theorem 3.42 holds. Let b =

(I"1) € S and a = [’JIFT? C S/I". The ideal a is the zero ideal. In particular, there are
equalities dimy a, o = dimga,_; = 0. Furthermore, since [I” N m""2] is not in U we have
(I")p—g = I 5 +1in{F} for some F € ((I")?),—2 = ((I"1) - I")p—3 = (b - I"),_3. Thus, by
Proposition 3.46 condition 1 of Theorem 3.42 is fulfilled. We are left with proving that [I” Nm” 2
is a smooth point of Hilbg. Note that the following proof of this fact uses only the assumption
that S/I” has Hilbert function b 1.

By Lemma 2.42 and Proposition 3.38, [I”] = [I” Nm] is a smooth point. Therefore, by

Lemma 3.51 it is enough to show that the natural map
Homg (1" Nm?, S/T")g — Homg(I” Nm®*t S/T"),

is bijective for every 1 <a<r—2. Let 1 <a<r—3and Q = (I”Nm%)/(I” Nm**1). We have

an exact sequence
0 — Homg(Q, S/T")¢ — Homg(I" Nm®, S/T")g — Homg(I" Nm®*t, S/T7)q — Ext5(Q,S/T7)o.
Since Homg(Q, S/I")g is zero by Lemma 2.8, it follows from Lemma 3.65 that we have

Homg (1" Nm%, S/I")g = Homg(I" N w1 S/T7),. (3.67)

Thus, [I” Nm"~2] € Hilb% is a smooth point by Lemma 3.51. By Theorem 3.42 we conclude that
[I” N m"~2] does not belong to 7(Slip,,,). Hence there is an inclusion

m(Slip,.,,) " W' C U.

Now we show the opposite inclusion using Lemma 3.58. Assumption 1 is satisfied. Moreover,
assumption 4 holds by Lemma 3.51 and Equation (3.67). We have shown above that 7(Slip,. ,,) N
W' is contained in U. Assumption 5 is fulfilled by Lemma 3.65. In our case, V' is homeomorphic
to a Hilbgr[ﬁ;}—bundle over Gr(n — 1,57) by [20, Prop. 3.1]. In particular, V is irreducible of
dimension 2(n — 1) + 7.

We need to show that U is irreducible of dimension rn — 1. Consider the natural map
U — V. The fiber over every closed point is irreducible of dimension (n — 1)(r — 2) — 1.
Indeed, up to a linear change of variables we may assume that we have [ProjS/I| € V with
I = (ag,...,an—2,0-(0n_1,5)). The fiber over [ProjS/I] is the set of all codimension one
subspaces of

lin{o;a® ol |ie{0,...,n—2},a+b=1r—3,a,b>0}.

It follows from [81, 11.4.C| that U is irreducible of dimension
m=1)(r—2)—142(n—1)+r=rn—1. O

We end this subsection with two examples of applications of Theorem 3.66. In the first of
them, we show that a certain point does not belong to Slip, ,,.
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Example 3.68. Let S = k[ay,...,as] be a polynomial ring and let
I" = (agay, o, agorz, a3, Ay, a103, o, 073).

The point [I”] is in Hilbgfl’3 and we claim that [I”] does not belong to Slip, 3. Indeed, we have
I" = (ap, 01,03) but o € (72)2 \ I]. Thus, the claim follows from Theorem 3.66.

Observe that we have Hg/;n)2(6) = 15 < 16. Thus, we could have deduced that [I"] is not
in Slip, 3 from Theorem 3.5. In fact, the proof of Theorem 3.66 presented in [67, Thm. 2.7] is
based on the criterion from Theorem 3.5. Here we presented another proof that fits into the
bigger picture (Theorem 3.42).

On the other hand dimy Homg (1" +m?, S/(1" +m?))o > 12 holds for every d > 3. It follows
that Proposition 3.1 cannot be used to deduce that [I”] does not belong to Slip, 3.

Consider again ideals I from Example 3.3 and I’ from Example 3.6. We have (72)4 = (72)4 =
(ad)4. Moreover, there are inclusions ()4 C I; and (a2)s C I;. Thus, Theorem 3.66 cannot be
used to deduce that [I] and [I'] are not in Slipg 5.

The following table summarizes Examples 3.3, 3.6 and 3.68.

’ Ideal \ Prop. 3.1 \ Thm. 3.5 | Thm. 3.66
7 2 7
(ad, pa?, a2az, aparag, apag, af) v ?
2 2 2 7 1
(aday, apad, adas, aparas, ag, apas, al) ? v ?
2 34
(o, af, g, aparg, g, g, A, Q) ? v

Table 3.2: Examples of points that are not in the irreducible component Slip.

The ideals in the first and second row are in k|ap, . . ., as]. The ideal from the bottom row is
in klao, ..., ag).

In the second example, we use Theorem 3.66 to show that a given point belongs to Slip,. ,,.

Example 3.69. Let S = k[ao, ..., as] be a polynomial ring and
J' = (af, agon, of, apaz, arag, apas, 0103, 03).

The point [J'] is in Hilbg‘l’3 and we claim that [J'] belongs to Slip, 3. We have J' = (ag, a1, 03)
and (72)2 C Ja. Therefore, by Theorem 3.66 there exists [K] € Slip, 3 with K>2 = J%,. Since
Ky = Jj is zero, we conclude that [J'] = [K] is in Slip, 3.

3.6.5 Application two: constant growth on projective plane

In this subsection we have S = k[ag, a1, ag]. Let [I] € Hilbg"2 and let f be the Hilbert function
of S/I. Let m = min{a € Z | I, # 0}. Assume that there exist positive integers ¢ and e > m
such that f is given by

dimy S, for a <m
fla)=qr—(e+1—a)t forac{mm+1,... e} (3.70)
T fora>e+1
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Observe that for all » > 4 the function A, is of the above form with m =1,e =r—2and t = 1.
Another example of such Hilbert function is (1,3,5,7,9,11,11,...). Here we have m = 2,e =4
and t = 2.

Thus, in this subsection we consider more general Hilbert functions of S/T than in Subsec-
tion 3.6.4 but we require that n equals 2.

The goal of this subsection is Theorem 3.75. There, we give a necessary condition for [I] to
be in Slip, 5.

In the following lemma, we show that [I Nm¢] is a smooth point. Thus, we verify condition 2
from Theorem 3.42.

Lemma 3.71. We have
B1.a(S/I) =0 for alle +2#a>m+2, (3.72)

and
Bres2(S/I) =t. (3.73)

As a result, [ N m¢] € HilbY is a smooth point where h is the Hilbert function of S/(I Nm®).
Moreover, we have dimy Homg (I Nm®, S/(IN me))o = dim W where W C Hilbl is the locally
closed subset whose closed points correspond to the ideals defining subschemes of P? with Hilbert
function f.

Proof. Recall that the Hilbert function f of S/ satisfies Equation (3.70). Let e+2 # a > m+2.
By Lemma 2.13 we obtain $1,(S/I) < 2f(a — 1) — f(a) — f(a —2) = 0. Similarly, we get
Bresa(S/T) < 2f(e+1) = fle+2) — fe) =t

We show that we have (1 ¢42(S/1) > t. Since I is saturated, dimy Homg(k, S/I) is zero.
Therefore, by Lemma 2.27 we get

— dimy Extk(k, S/T)e_1 + dimy Ext%(k, S/T)._1 — dimy Ext3(k, S/T)._1
=Hg7(e —1) —3Hg1(e) + 3Hg7(e + 1) — Hg7(e + 2)
=(r—2t)=3(r—t)+3r—r=t.

It follows from Lemma 3.48 that 31 ¢+2(S/T) > t holds.

Having calculated the Betti numbers, we proceed to proving the second part of the lemma.
By Proposition 3.54 it is enough to show that there is an equality

Hgp(a) = 3Hgz(a+ 1) + 3Hg5(a+2) — Hg/p(a +3) = B1,a43(S/1) (3.74)
for every a € {m,m +1,...,e — 1}. By direct calculation, the left-hand side of Equation (3.74)
equals zero for all a € {m,...,e — 2} and equals ¢t for a = e — 1. The same is true for the
right-hand side by Equations (3.72) and (3.73). O

We present the main result of this subsection.

Theorem 3.75. In the notation of Theorem 3.42 assume additionally that n equals 2. Let
m =min{a € Z | I, # 0} and e = max{a € Z | I, # I,}. Assume that e > m holds and that
there exists a positive integer t such that S/I has Hilbert function f as in Equation (3.70).

(i) There exists 0 € Sy with I, C (6)e;
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(it) Let 0 be as in part (i). If we have Io = Io + (0 - I). then there is no [I'] € Slip, 5 with
I/Ze = I>c. In particular, [I] does not belong to Slip,. 5;

(ii1) If t equals 1 and 0 € Sy is as in part (i), then there exists [I'] € Slip, 5 with IS, = I>¢ if
and only if (6 - I)e is contained in I..

Proof.

(i) By Lemma 2.9(i) there is an element L € S; that is a nonzerodivisor on S/I. Moreover,
we can take for L any general linear form. Let 7= S/(L) and

a=(I+(L)/(L)CT.

We have Hg7(a) — Hg(a — 1) = Hrjq(a) for any positive integer a. In particular,
Ay, is non-zero. Therefore, we have t = Hp/q(m + 1) < Hpjo(m) < m, where the first
inequality follows from Lemma 2.12 and the second from the fact that a,, is non-zero. We
get t = Hpjq(e +1) = Hpj(e) < e. Hence a has maximal growth in degree e. By [5,
Lem. 1.4], we get that I’ = (I<.) is a saturated ideal. Moreover, 3 41(S/I) is zero by
Lemma 3.71. Thus, S/I' has Hilbert polynomial P(a) = at + (r — e — 1) by Gotzmann’s
persistence theorem [10, Thm. 4.3.3] applied to T'/(a<.). Since P is of degree 1 and its
leading coefficient is ¢ it follows from [48, Prop. 1.7.6] that the subscheme of P? defined by
I’ contains a curve of degree t. Hence there exists § € Sy with I, C (6)..

(ii) We want to use Theorem 3.42 with d = e. Assumption 3 of the theorem is fulfilled by
Lemma 3.57. Lemma 3.71 implies that assumption 2 is satisfied.

Finally, we address assumption 1. Let b = (f) and a = @ C S/I. We assumed that we
have I, = I, + (6 - I).. Therefore, by Proposition 3.46 it is enough to show that there is
an equality dimy a, = dimy a.+1. By part (i) and Equation (3.72) we get T<.11 C (0). It

follows that there is a chain of equalities

dimk Oet1 — dimk e = (dimk<9)e+1 — dimk(e)e) — (dimk Te+1 — dimk Te>
= (dimg Se—¢4+1 — dimg Se—¢) — (dimk Ser1 — HS/T(e + 1) — dimy Se + HS/T(e))
=(e+2—-t)—(e+2—1t)=0.

(iii) Assume that there exists [I'] € Slip, o with I, = I>.. We show that (6 - I) is contained
in I.. It follows from ¢ = 1 that I, is of codimension 1 in I.. Therefore, if (6 - I). is not
contained in I, then we have (0 -I). + I. = I.. Thus, we obtain a contradiction with

part (ii).
We proceed to the proof of the other implication. Let h,k, V,W and W’ be defined as in
the beginning of Subsection 3.6.4 with n = 2 and f being the Hilbert function of S/T.

Let U be the locus of those points [K] of W’ that satisfy
(0-K). C K

where # € Sy is the common divisor of K,. We need to show that U is contained in
7(Slip, o) N W' set-theoretically. We use Lemma 3.58. Assumption 1 is clear and as-
sumption 2 follows from Proposition 3.11. Assumption 4 is a consequence of Lemma 3.71.
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Part (ii) implies that we have 7 (Slip,.o) N W' C U, set-theoretically. Therefore, we need to
show that

(a) U is irreducible of dimension 2r — 1;

(b) Extk(k,S/J)e <1 holds for every [J] € W.

We start with (a). By [81, 11.4.C] the subset U is an irreducible subset of Hilb, of dimension
dimV + (dimkSe —r— (dimkSe_l —(r— 2))) =dimV +e— 1.

Indeed, the fiber over a closed point [ProjS/I'] € V of the natural map U — V is the set
of those codimension 1 subspaces of (I’). that contain (8- I’). where € S is the common
divisor of (I’).. Now, it suffices to establish the equality dim V = 2r — e.

Let By C Hilbg be the open subset whose points correspond to saturated ideals. It is
homeomorphic with V' by Lemma 2.29 applied to the natural map Hilbé — Hilb,(P?).

Let 1" = (o', af tau,...,afa" 5 as a2 Jagaf?, a5™?) C S where we have

m+1—s = dimg S,, — f(m). The algebra S/I"” has Hilbert function f and I” is saturated.
Therefore, by Proposition 3.10 and Theorem 2.75, it is enough to show that the equality

dimy Homg (1", S/I")g = 2r — e
holds. Let T' = k[, a1] and a = T'N I”. We have
dimk HomS(I”, S/I//)O = dimk HomT(a, T/a)go =2r — dimk HomT(a, T/Cl)>0,

where the last equality follows from the fact that [SpecT'/a] is a point of the smooth 27-
dimensional scheme Hilb,(A?) and [49, Prop. 2.3]. By Proposition 2.22 the dimension of
Homy(a,T/a)so can be computed from the staircase diagram of a.

Observe that a can have minimal generators only in degrees m, m+1 and e+2. Furthermore,
B2,a(T'/a) can be non-zero only for some a € {m+1,m+2,e+3}. Let A=(m+1—3s) =
Bim(T/a). We have 81 m1(T/a) = m—A, Bami1(T/a) = A=1and B2 ;m42(T/a) = m—A.
Therefore, by Proposition 2.22 we get
Homp(a,T/a)s0 = Bim(T/a)(e = m + 1) + Brm+1(T/a)(e —m)
—Bom+1(T/a)(e —m) — Bo,m42(T/a)(e —m — 1)
=Ale—m+1)+(m—-—A)e—m)—[(A=1)e—m)+ (m—A)(e—m—1)] =e.

This concludes the proof of (a).
Let [J] € W. Using Lemmas 3.48 and 3.71 we get

dimy Ext%(k, S/J). = dimy Ext%(k, S/J)e = B1,13(S/J) = 0.
Furthermore, Lemma 2.27 and Equation (3.70) (with ¢t = 1) imply that we have
— dimy Ext(k, S/J). + dimy Ext?(k, S/.J). — dimy Ext?(k, S/.J).

:HS/J(e) —3HS/J(€+1)+3HS/J(€+2) —Hs/J(€+3) =—1.
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The inequality dimy Extg(k, S/J)e < 1 follows. Thus, (b) holds. O

We end this subsection with two more examples. In the first, we use Theorem 3.75 to show
that a certain point is outside of Slipg 5.

Example 3.76. Let S = k[ag, a1, as] be a polynomial ring and let
I" = (adaq, adag, apa?, apayan, af, of).

The point [I"”] is in Hilbgﬁ’2 and we claim that [I”] does not belong to Slipgo. We have I =
(ad, apa1,a}). Thus, the Hilbert function of S/I"” is as in Equation (3.70) with r = 6,m =
2,e =3 and t = 1. We have (I")3 C (ag)3 but o € (ag - I")3 \ I§'. Tt follows from Theorem
3.75 that [I""] does not belong to Slipg 5.

On the other hand, criteria from Proposition 3.1 and Theorem 3.5 (with k& = 2) do not show
that [I"] is not in Slipg 5. Furthermore, criterion from Theorem 3.66 cannot be applied to [I"]
since we have HS/W(U # 2.

We summarize Examples 3.3, 3.6, 3.68 and 3.76 in the following table.

’ Ideal \ Prop. 3.1 | Thm. 3.5 | Thm. 3.66 | Thm. 3.75 \
2 32 7
(a3, apa?, adas, aparas, apag, af) v ? .
2 7 2 7 7
(aGay, apad, adas, aparag, ag, apas, al) ? v ? .
2 7
(oo, oF, apag, apas, arag, a1, of, ) ? v NA
2 2 2 5
(agaa, agas, apat, apoas, g, o) ? ? NA v

Table 3.3: Examples of points that are not in the irreducible component Slip.

Here ideals from first, second and fourth rows are in k|o, a1, ag], while ideal in the third row
is in the ring k[ag, a1, a2, a3]. The symbol NA means that a certain criterion cannot be applied
to a given point since the assumptions are not fulfilled. As before, the question mark means that
a given necessary condition is satisfied by the given point, i.e. the criterion is inconclusive.

In the second example, we use Theorem 3.75(iii) to deduce that a certain point belongs to

the irreducible component Slipg 5.

Example 3.77. Let S = k[ag, a1, as] and J” = (a3a1, apa?, adas, apaias, apas, o). The
point [J”] is in Hilbgs’2 and we claim that it belongs to Slipg 5. The Hilbert function of S/.J” is
of the form given by Equation (3.70) with m = 2,e = 3, t = 1 and r = 6. Furthermore, (J”)<3 is
contained in (ag)s. We have (ag - J”)3 = (adaq, adas)s C J4. Therefore, by Theorem 3.75(iii),
there exists [K] € Slipg o with K>3 = JZ5. Since K< = JZ, is zero, we conclude that [J"] = [K]
is in Slipg . - -

We summarize Examples 3.34, 3.69 and 3.77 in the following table.

’ Ideal ‘ Theorem 3.13 | Theorem 3.66 ‘ Theorem 3.75 ‘
(o, adaz, apas, af) v NA NA
(a%, Qo a%, g, Qg O3, alag, 0/21) NA v NA
(adar, apa?, adag, apaag, apas, o) NA NA v

Table 3.4: Examples of points that are in the irreducible component Slip.
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Here the ideal in the second row is in k[ay, . . . , a3] while the other two ideals are in k[ag, a1, ag].
As before, NA means that a certain criterion cannot be applied to the given ideal. Observe that
we cannot use Theorem 3.75(iii) for J since, in the notation of that theorem, we have m = e = 2.

3.7 Points on projective space—examples, part II

From Fogarty’s result [36] on Hilb,(P?) it may seem that Hilbg&il should be smooth, or at least
not too complicated. We show that this is not the case. Speculating a bit, we may say that
Fogarty’s result concerns the case of codepth two, while we work in nonsaturated setting, hence
in codepth three. Thus, the correct parallel would be Hilb,(IP?), where almost nothing is known

about the principal component.

3.7.1 4 points on projective space
In this subsection, we describe the closed points of Slip, ,, for a positive integer n.

Proposition 3.78. Let I C S[P"] be a homogeneous ideal such that S[P"]/I has Hilbert function
han. The point [I] is in Slipy ,, if and only if (72)2 is contained in Is.

Proof. Condition (72)2 C I holds trivially for [I] € Hilbgﬁg;] if I is saturated. On the other
hand, #Hilbs(P"™) is irreducible by [20, Thm. 1.1|. Thus, by Remark 2.47, it is enough to consider
ideals that are not saturated. Furthermore, by [20, Prop. 3.1], we may assume that we have
n < 3.

If n equals 1, then every closed point [I] € Hilbg‘&}l] corresponds to a saturated ideal.

If n equals 2 and [I] is a point of Hilbg‘fﬁé} with I # I, then S/T has Hilbert function hy ;.
This follows from Lemma 2.9. Therefore, by Theorem 3.66 we have

(72)2 C I < there exists [J] € Slipy o with J>3 = I>9 < [I] € Slipy 5.

The latter equivalence follows from the fact that J<i = I< is zero.

Assume that n equals 3 and [I] € Hilbgﬁg] satisfies I # I. The algebra S/T has Hilbert
function hg o or hgp. In the first case the condition (72)2 C I5 holds. We claim that [I] belongs
to Slip, 3. Indeed, we have [ProjS/I] € Hilb{™(P?) = Hilby(P?), so there exists an ideal [J] €
Slip, 3 with J = I. However, we have J; = I1 = 0 and J> = I>p = I9, so [I] = [J] is in Slip 3.

Finally, assume that [I] € Hilbg‘ﬁ;?,] is such that S/T has Hilbert function hy 1. As in the case
n = 2, by Theorem 3.66 we get

(72)2 C I < there exists [J] € Slip, 3 with J>3 = I>9 < [I] € Slipy 5. O

As a corollary, we obtain an example of a reducible multigraded Hilbert scheme.

Corollary 3.79. The scheme Hilb};‘fﬁ;] is reducible. In fact, we have [(apar, apaz, a, ad)] ¢
Slipy 9.

We stress the fact, that there is a point outside of Slipy 5 that corresponds to a monomial
ideal since it was conjectured that it is impossible.

Remark 3.80. The comment after [15, Cor. 6.3] puts forward a conjecture that conditions (i)
and (iii) of [15, Cor. 6.3] imply condition (iv). Corollary 3.79 shows that this is not true.
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3.7.2 5 points on projective plane

In this subsection, we describe the closed points of Slip 5 (see Proposition 3.89). Let S = S [P2] =

ko, a1, ag] and [I] be a closed point of Hilbg5’2. By Lemma 2.9, the Hilbert function of S/T is
one of the three: hs2,g or hs 1, where g: Z — Z is given by

dimy S, for a < 0;
gla) =< a+2 fora=1,2;
5 for a > 3;

or informally, g = (1,3,4,5,5,...).
The cases when S/T has Hilbert function hs 2 or g are easy.

Lemma 3.81. Let [I] € Hilng‘2 be a closed point such that S/T has Hilbert function hsa or g.
The point [I] is in Slip 5.

Proof. If T is saturated, then the claim follows from Remark 2.47 since Hilbs(PP?) is irreducible.
Assume that S/T has Hilbert function g. Observe that we have g(a) # hs2(a) if and only if a
equals 2. Thus, the claim follows from Theorem 3.13. O

We study those points [I] € Hilbgs’2 for which S/T has Hilbert function hs ;. We introduce
some more notation. Let h: Z — Z be given by h = (1,3,6,5,5,...) or more formally,

dimy S, for a < 2;
h(a) =
5 for a > 3.

Let m: Hilng’2 — Hilb% and 7': Hilb%h — Hilbs(P?) be the natural morphisms. Let V C
Hilb.(P?) be the closed subset whose closed points correspond to the subschemes with Hilbert
function hs ;.

Let W C Hilb% be the set-theoretic inverse image of V under 7’ and let U be the set-theoretic
inverse image of W under m. We show that these subsets are irreducible and we calculate their
dimensions. We start with V| but we state it in greater generality since we need this also in
Subsection 3.7.3.

Lemma 3.82. Let r be a positive integer. Let V be the closed subset of Hilb.(P?), whose closed
points correspond to subschemes with Hilbert function hy 1. The set V' is irreducible and (r + 2)-
dimensional.

Proof. The scheme Hilbgf’1 is irreducible, smooth and (r 4 2)-dimensional by Proposition 3.38
and [20, Prop. 3.1]. Therefore, the natural morphism Hilbgf’1 — Hilb,(P?) factors through V
(with reduced subscheme structure). It follows from Lemma 2.29 that V' is homeomorphic to

Hilbg’“’l. In particular, it is irreducible and (r + 2)-dimensional. O

Lemma 3.83. The subset U C Hilbg‘r"2 18 irreducible and 11-dimensional.

Proof. By Lemma 3.82, the locus V is irreducible and 7-dimensional. Thus, in order to show
that U is irreducible and 11-dimensional, it is enough to show that the fiber of 7’ o m over
every closed point of V' is irreducible and 4-dimensional (see [81, 11.4.C]). Choose a closed point

[Proj S/I] € V. Denote the fiber of 7’ o 7 over this point by X. We have a pullback diagram
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X ———— FI(3,5,13)

| !

GI’(l, 72) EEE— GI‘(3, 73),

where F1(3,5,I3) is the flag variety parametrizing pairs of linear subspaces Az C As of I3 with
dim A; =i for all 7 € {3,5}. The lower horizontal morphism maps lin{¢} to lin{agl, a1 ¢, asl}.
Since the fibers of the right vertical map are irreducible and of dimension 2, it follows that X is
irreducible and of dimension dim X = dim Gr(1, I) + 2 = 4. O

Let U’ be the subset of U whose closed points [I] satisfy (72)3 C Is.
Lemma 3.84. The subset U’ of U is closed.

Proof. Consider the diagram

1 hs,
Hllbs5 2

ld
F1(3, 5, Sg) *C> Gr(5, 53)
lb

Gr(1,81) —*— Gr(3,53) ,

where a maps lin(¢) to lin{agl?, a1£?, aaf?} and b,c,d are the natural maps. We have U’ =
Und (e~ (a(Gr(1,51))))), so it is closed. O

Let W' C Hﬂbg be the set-theoretic image 7(U’). It is closed by Lemma 3.84 since 7 is a
morphism of projective schemes by Theorem 2.36.

Lemma 3.85. The subset W' C Hilb% is irreducible and 9-dimensional.

Proof. Consider the natural map W/ — V. By Lemma 3.82 and [81, 11.4.C], it is enough to
show that the fibers are irreducible and 2-dimensional. Let [ProjS/I] € V. We may assume that
I is equal to (ag,05(c,a2)). We have (ad)s C I3 for every [I] € W’ that is in the fiber over

Proj S/I|. Thus, the fiber of W’ — V is Gr(2,lin{aga?, apaq s, apaid}). O
1 2

Let
Wi = {[K] € W' | dimy (K : m); = i}

for all i € {1,2}. Observe that we have W/ = W] U Wj. Indeed, let [K] € W’ and assume that
there is an equality K1 = (ag)1. We have a2 € (K: m)y by the definition of W’. On the other
hand, if dimy (K : m)o > 3 holds then (ag)s2 is contained in (K: m)y. It follows that (ap)s is a
subset of K3. This contradicts the assumption that Hg/x(3) equals 5.

Lemma 3.86. The closed subset W3 of W' is irreducible and 8-dimensional.

Proof. We have a natural map W4 — V. By Lemma 3.82 and [81, 11.4.C], it is enough to show
that its fibers are irreducible and 1-dimensional. Consider the point [Proj .S/ (o, 5(a1, a2))] € V.
Fiber over this point is

{[Kg] S GI‘(5, (Oéo)g) ‘ (ag)g - Kg and dimk((Kg): m)g = 2}.
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We have a2 € ((K3): m)y for every [K3] in the fiber. Therefore, the fiber is P! corresponding to
the choice of [¢] € P(lin{ai, ag}) with K3 = lin{ag, a%al, a%ag, aparl, apagl}. O

Let
J1 = {[H e’ | dimk(Izgi m)g = 1}

and
Loy = {[I] el | dimk(lzgi m)2 = 2}

Lemma 3.87. The closed subsets Zy and Zy are irreducible and 9-dimensional. Moreover, we
have U' = Z1 U Zy set-theoretically.

Proof. By definition we have Z; = 7r_1(VVZ-’ ) set-theoretically. Moreover, Z; is homeomorphic to

W{. We claim that the fiber of Zo — W) over every closed point is irreducible and 1-dimensional.

Indeed, the fiber over [K] is P! corresponding to the choice of a non-zero element of (K : m)s.
Therefore, Z; and Z, are irreducible and 9-dimensional by Lemmas 3.85, 3.86 and [81, 11.4.C].

O
Now we can describe the set-theoretic intersection of Slips , with U.
Lemma 3.88. Set-theoretically we have U N Slipy 5 = Z1 U Zs.

Proof. Containment U N Slips 5 € Z1 U Z2 follows from Theorem 3.66. Moreover, for every
[I] € Z1, the only ideal [J] € Hilbgs’2 with J>3 = I>3 is I. Thus, Z; is a subset of Slip; 5 by
Theorem 3.66.

We show that Zj is contained in Slips 5. Let I = (apo, o, ooz, a3 + o). We have [I] €
Hilbg“. Moreover, the Hilbert function of S/T is g. Thus, [I] belongs to Slips 5 by Lemma 3.81.
Consider the initial ideal I’ of I with respect to the grevlex order with a; < as < ag. The
ideal I’ is equal to (agou, o, oz, a3, f). The point [I'] is in Slips 5 NZ2. Furthermore, we
have dimyg Homg(I',S/I")g = 12 = dimU + 1 (see Lemma 3.83). It follows from Theorem 2.75
and Lemma 2.30 that every irreducible component of Slip; o "U passing through [I'] is at least
9-dimensional. This intersection is contained in Z; U Z9 and this is a union of two irreducible
9-dimensional subsets. Hence it suffices to show that [I’] does not belong to Z;. Consider the
projection Hilb};”2 — Gr(1, S2). The image of Z; is

{lin{e?} | £ € S0\ {0}},

i.e. it is the image of the second Veronese embedding of PS;. On the other hand, agaq € I} is
not a power of a linear form. Thus, [I'] is not in Z;. O

We summarize the above results in the following proposition which describes Slip 5.

Proposition 3.89. Let S = k[ag, a1, ] and [I] € Hilbg?*2 be a closed point. The point [I] is in
Slips o if and only if (72)3 is contained in I3.

Proof. If S/T has Hilbert function hs o or g, then [I] is in Slips 5 by Lemma 3.81. On the other

hand, in both this cases (72)3 C I3 holds since (72)3 is zero.

Assume that S/I has Hilbert function hs;. We have (T2)3 C I3 if and only if [I] belongs
to Z1 U Z (see Lemma 3.87). This is equivalent to the condition that [I] is in Slip; 5 by
Lemma 3.88. O
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3.7.3 6 points on projective plane

The main result of this subsection is the description of Slipg s (see Proposition 3.104). Let

S = k|ag, a1, a2] and let [I] € Hilbg‘s’2 be a closed point. The Hilbert function of S/T is one of
the four: he o, f,g or he,1 where f: Z — Z is given by

0 for a < 0;
fla)=4q2a+1 foracd0,1,2};
6 fora >3

(or, in a brief form, f = (1,3,5,6,6,...)) and g: Z — Z is given by

dimy S, for a <1;
gla)=<a+2 for a € {2,3};
6 fora >4

(or, g = (1,3,4,5,6,6,...)).
We start with the points [I] for which the Hilbert function of S/T is hg 2 or f.

Lemma 3.90. Let [I] € Hilbgfi’2 be a closed point such that S/I has Hilbert function hg2 or f.
The point [I] is in Slipg 5.

Proof. If I is saturated, the claim follows from Remark 2.47. Assume that the Hilbert function
of S/I is f. Observe that we have f(a) # he2(a) if and only if a equals 2. Thus, the claim
follows from Theorem 3.13. O

Next we consider points [I] corresponding to ideals such that S/T has Hilbert function g.

Lemma 3.91. Let [I] € Hilbgﬁ’2 be a closed point such that S/T has Hilbert function g. There
is a linear form 0 € Sy with I3 C (0)3. We have [I] € Slipg o if and only if (0 - I)3 is contained
m Ig.

Proof. The existence of 6 as in the statement follows from Theorem 3.75(i). Moreover, by
Theorem 3.75(iii) there exists [J] € Slipg o with J>3 = I3 if and only if (6 I)3 is a subset of I3.
We claim that necessarily we have [J] = [I].

There are equalities hg2(a) = dimy S, for every a < 2. Therefore, if [J] € Hilbgﬁ’2 satisfies
J>3 = I>3, then there is an equality J = I. O

In order to study the case when S/T has Hilbert function hg 1, we introduce some notation.
Let U, be a locally closed subset of Hilbgw, whose closed points correspond to ideals I for
which S/T has Hilbert function g. Similarly, let U be the closed subset corresponding to Hilbert
function he 1. Let h: Z — Z be given by h = (1, 3,6,10,6,6,...), or more formally,

dimy S, for a < 3;
h(a) =
6 for a > 3.

We have the natural morphisms 7: Hilbgfa’2 — HilbY and 7': Hilb% — Hilbs(P?).
We start with showing that Uy is irreducible and we compute its dimension.
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Lemma 3.92. The locus Uy is irreducible and 13-dimensional.

Proof. Consider the locally closed subset V, (with reduced subscheme structure) of Hilbg(P?)
whose closed points correspond to subschemes with Hilbert function g. This locus is irreducible
by Proposition 3.11. We claim that V; has dimension 9. Let my: Hilb%, — Hilbs(P?) be the
natural map. Let F, C Hilbfg be the open subset of points corresponding to saturated ideals. It
is smooth by Proposition 3.10. Therefore, m,: E, — Hilbs(P?) factors through V. It follows from
Lemma 2.29 that Vj, is homeomorphic to E,. Consider the point [I] € E, with I = (a3, apay, o).
We have dimy Homg(I,S/I)g = 9. Therefore, by Theorem 2.75 we have dimy Ty, Hilbg = 9.
Thus, we get dim V;, = dim E, = 9 by Proposition 3.10.

By definition, Uy is the inverse image of Vj; under 7’ ow. By [81, 11.4.C], it is enough to show
that the fiber over each point is irreducible and 4-dimensional. This follows from Lemma 2.43. [

Let U; = {[I] € U | dimg(I>4: m)s = i}. We claim that there is an equality U = Ug U Us.
Indeed, let [I] € U and denote (Is4: m) by K. We have I3 C K3 C I3. The latter inclusion is
proper since otherwise we obtain I, C Iy which contradicts the assumption that Hg /1(4) equals 6.

We claim that Uy and Us are irreducible. In order to prove this, we introduce more notation.
Let V C Hilbg(P?) be the closed subset of points corresponding to the subschemes with Hilbert
function hg 1. The set U is the set-theoretic inverse image of V under n’ om. Let W C Hilbg be
the set-theoretic inverse image of V under 7’

For an integer 0 < i < 10, let W; = {[K] € W | dimg(K: m)3 = i} and W>; = U;5,; Wj.
Observe that W>; is closed for every i. Furthermore, W5 = Wss N 7(U) and Wy U W5 =
Ws4 N w(U) are closed in Hilb/.

We show that Wy and W5 are irreducible. Moreover, we compute their dimensions. We have
natural maps W5 — V and Wy U W5 — V and we want to study their fibers over a closed point
[Proj S/I| € V.

Recall the notion of the dual ring from Subsection 2.4.1.

Lemma 3.93. Let I = (a, (a1, az)) for some 0 € k[, asle\ {0}. The fiber of 7' Hilb% —
Hilbg(P?) over [ProjS/I| is isomorphic with P*. Moreover, the points of the fiber are in the
natural correspondence with points [F'] in PS5 where S* = kgp|xo, x1, x2] is the dual ring of S.

Proof. By Lemma 2.43 this fiber is isomorphic to the Grassmannian of codimension 1 subspaces
of I;. Dually, a point of the fiber corresponds to a choice of an element [G] € P(S}/(14)") where
(I4)* is the set of all elements of S} which are annihilated by Iy = (ag)s. Therefore, we may
take [G] = [zoF] for some F € S3. O

Given F € S5 we denote by Catp(1,2;3) the catalecticant matrix (see [56, §1.1]). This is a
3 x 6-matrix of coefficients of a; F (for ¢ = 0,1,2) in the basis of S5 given by divided power
monomials.

In the notation of Lemma 3.93, the condition that a point of the fiber corresponding to
[F] € PS5 is in W (for some s € {4,5}) is equivalent to the condition that we have

dimy lin{ ooz F, g sao F), angOF,x[lg] :c[12}m2, :z:la;[;},x[;’]} =10 —s.

Moreover, a;i(zoF) = zo(a;uF") holds for all i € {0,1,2}. Therefore, the point of the fiber
corresponding to [F] € PS5 is in Wy if and only if the catalecticant matrix Catp(1,2;3) has rank
6 — s, that is either 2 or 1.
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Lemma 3.94. The locus W5 is irreducible and 10-dimensional.

Proof. The locus V is irreducible and 8-dimensional by Lemma 3.82. Since Wi is closed in Hilbg,
it is enough to show that points of the fiber of «’: Hilb% — Hilbs(P?) belonging to W5 form
an irreducible subset of dimension 2 (see [81, 11.4.C]). In fact, we claim that the locus of these
points inside PSj coincides with v3(PST). This follows from [72, Cor. 3.5] since this locus is given
by the ideal generated by the 2 x 2-minors of the generic catalecticant matrix Cat(1,2;3). O

The case of Wy is analogous.
Lemma 3.95. The locus Wy is irreducible and 13-dimensional.

Proof. The locus V is irreducible and 8-dimensional by Lemma 3.82. It is enough to show that
the closed subset W4 U W5 C Hilbg is irreducible and 13-dimensional. Thus, by [81, 11.4.C]|
it suffices to show that the fiber over every closed point is irreducible and 5-dimensional. The
fiber is given by the ideal generated by the 3 x 3-minors of the generic catalecticant matrix
Cat(1,2;3). This coincides set-theoretically with the 2-nd secant variety o2(v3(PST)) by [56,
Thm. 4.5A]. Furthermore, it is irreducible and 5-dimensional by [56, Prop. 1.23]. O

Remark 3.96. Observe that if we have chark = 0, then in fact in the proof of Lemma 3.95 the
set-theoretical equality of the fiber with o2 (v4(IPST)) can be strengthened to the equality of their
defining ideals. See [73].

Now we show that U, and Us are irreducible and we compute their dimensions.

Lemma 3.97. The subsets Uy and Us are irreducible. Moreover, we have dimU; = 13 and
dim U5 = 14.

Proof. Let i € {4,5}, [I] € U; and [K] = w([I]) € W;. The ideals I and K differ only in degree
3. Furthermore, we have dimg I3 = 4 and I3 C (K : m)s.

Therefore, the natural map Uy — W)y is bijective on closed points. Thus, Uy is irreducible
and 13-dimensional by Lemmas 2.29 and 3.95.

Let [K] € Ws. The fiber of the map Us — Wj over [K] is irreducible and 4-dimensional.
Indeed, it corresponds to the choice of a 4-dimensional subspace of the 5-dimensional linear space
(K: m)s3. Thus, W5 is irreducible and of dimension 14 by Lemma 3.94 and [81, 11.4.C]. O

Let U' = {[I] € U; | (I%)4 C I} for all i € {4,5}.
Lemma 3.98. Let [I] € U; fori =4 ori=5. There is a point [J] € Slipg o with I>4 = J>4 if

and only if [I] is in U]. In particular, we have Ug N Slipg o = U}, set-theoretically.

Proof. The first part of the lemma follows from Theorem 3.66. If [I] € U and [J] € Hilbgfs’2
satisfy I>4 = J>4 then we claim that we have I = J. Since I<o = J<g is zero it is enough to
show that the equality I3 = J3 holds. However, by the definition of Uy we get

13 = (124: m)3 = (J242 m) = Jg.

Thus, U} is contained in Slipg o, set-theoretically. ]

Let UY = {[I] € Uj | (I-(I<4))3 C I3}. We claim that we have Uf N Slipgy = UY set-
theoretically. We start with describing (I<4) for all [I] € UL.
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Lemma 3.99. Let [I] € UL. Up to a linear change of variables, we have (I<4) = (a3, apasy).

Proof. Up to a linear change of variables, we may assume that I is equal to (g, 0g(c1, a2)) for
some non-zero 0 € klog, aglg. Let [F] € PS5 be the point corresponding to the point [I>4] in the
fiber of 7' Hilb%k — Hilbg(P?) over [Proj S/I] (see Lemma 3.93).

Since [I] belongs to U we have dimg(I>4: m)s = 5 and [F] € P(kgy,[x1, 22]3). We get

dimy lin{o JF, ag F} = 1.

(3]

Therefore, we may assume by a linear change of variables in k[aq, ag] that F' equals xs .

We have
I, = Ann(lln{:}:ox2],x[14},:c[13]3:2 .TU[12].%'[22},£L'1$2 ,.TUQ]})
It follows that (a2, apa) is contained in (I<4). On the other hand, (I<4) is a subset of (ap).

Thus, if we have (a3, apa1) € (I<4) then apad is in (I<4) for some N. This is impossible since

apad) & (I<4) holds for every positive integer N. O
Let W5/ = {[I] € Ws ’ (Y )4 - ]4}.
Lemma 3.100. The subset W} is irreducible and 9-dimensional.

Proof. Consider the natural morphism W/ — V. The target is irreducible and 8-dimensional
by Lemma 3.82. By [81, 11.4.C], it is enough to show that the fibers are irreducible and 1-
dimensional. Let T = kgp[z1,z2] € S* = kgp[xo, 21, 22]. In the notation of Lemma 3.93 we now
have [F] € PTy C PS5 since we have to choose a codimension one subspace of ()4 containing
(ad)4. Therefore, the fiber inside PTy is set-theoretically given by the vanishing of 2 x 2-minors
of the generic catalecticant matrix Cat(1,2;2). Thus, it is v3(PT}) by |72, Cor. 3.5]. O

Now we show that U/ is irreducible and we compute its dimension.
Lemma 3.101. The subset U is irreducible and 11-dimensional.

Proof. Consider the natural map UY — Wi. Let [K] € W. be a closed point with (K<4) =
(a2, apaq) (see Lemma 3.99). The fiber over [K] is isomorphic to P? corresponding to a choice
of a two-dimensional subspace of lin{apa?, apa3, aparas}. Thus, U is irreducible and 11-
dimensional by Lemma 3.100 and [81, 11.4.C] O

The key technical step is the following lemma.
Lemma 3.102. The locus Ug \ U is disjoint from Slipg 5.

We defer the proof of this lemma until the end of the subsection. We use it to describe the
set-theoretic intersection Us N Slipg 5.

Lemma 3.103. We have Us N Slipg 5 = Uy set-theoretically.

Proof. Consider the point [I] € Hlle6 2 with I = (o, adaq, apa? + adas, aoalag, ozoozz, a2) We
have [I] € UZ. We claim that it also belongs to Slipg. Let J = (aparas + o3, apad + afas +
103, adar + apad, o). Tt is a saturated ideal and [J] is in Hilbg6’2. It follows that [J] is in
Slipg o by Lemma 3.90. The initial ideal of J with respect to the weight vector (3,2,1) is I.
Now we use Lemma 2.30 to conclude that Us N Slipg 5 = Ug' holds set-theoretically. Indeed,
Us N Slipg 5 is contained in Ug' by Lemmas 3.98 and 3.102. Moreover, we have [I] € Us N Slipg 5
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and dimy Homg(7,S/I)o = 15 = dim Us + 1. It follows from Theorem 2.75 and Lemma 2.30 that
the intersection contains an irreducible subset of dimension 11. Therefore, the intersection is U7
by Lemma 3.101. O

The following proposition summarizes the above considerations.

Proposition 3.104. Let [I] be a point of Hilbg6’2, It belongs to Slipg 5 if and only if one of the
following holds:

1. The ideal I vs saturated.
2. The algebra S/T has Hilbert function f = (1,3,5,6,6,...).

3. The algebra S/T has Hilbert function g = (1,3,4,5,6,6,...) and we have (0-1)3 C I3 where
0 is the common linear divisor of two quadratic generators of I.

4. The algebra S/I has Hilbert function he1 = (1,2,3,4,5,6,6,...) and there are inclusions

((I<d+1) - 1)a € 1a
ford=3 and d = 4.

Proof. The cases 1-3 follow from Lemmas 3.90 and 3.91.
Observe that if [I] is in U then we have Is = (I1)5 = I5 and therefore we get

(I*)4 = ((I<s) - Da-

Hence in case 4, if [I] belongs to Us the claim follows from Lemma 3.103.
Assume that [I] is in Uy. By Lemma 3.98 the point [I] belongs to Slipg 5 if and only if we

have

(I*)s = ((Izs) - 1)1 C L. (3.105)

We need to show that if [I] is in U}, then ((I<4) - I)s3 is a subset of I3. Let f € ((I<4)-I)3 and
i € {0,1,2}. We have o;;f € (72)4. From Equation (3.105) we get «a;f € I4. It follows that we
have f € (I>4 : m)3 = I3 where the last equality follows from the definition of Uy. O

We are left with proving Lemma 3.102. Assume that [I] is a point of U} \ UY with I =

(a0,96(a1,a2)). By Lemma 3.99 we may assume that we have (I<4) = (a%,aoal). It follows
that there is an equality

I= (W) + (o, a0a1)>4 + (a0)>5 + (66) (3.106)
where [W] € Gr(4,lin{ad, ada1, apa?, adas, aparas}) is such that lin{a3, a3as } is not contained
in W.

Assume that [I] € Slipg 5 is as in Equation (3.106) with af ¢ W. By taking the initial ideal
with respect to lex order with as > a7 > o we obtain an ideal of the form

I' = (agal,aoa%,agag,aoalag,aé,aoaé,%(al,ag)) (3.107)

such that [I'] belongs to Slipg o.
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On the other hand, if [I] € Slipg, is as in Equation (3.106) with af € W but afoq ¢ W,
then by taking the initial ideal we get a point [I'] in Slipg 5 of the form

I' = (ag, apa?, adan, agaras, apas, O (o, ag)). (3.108)

We claim that if I’ is of the form as in Equation (3.107) or (3.108) then [I] is not in Slipg .
Lemma 3.109. There is no point [I'] € Slipg 5 with I' as in Equation (3.108).

Proof. Let J = I’ + m®. Note that it does not depend on 6} so it is the same for every I’ as in
Equation (3.108). We have dimy Homg(J,S/J)o = 8. Thus, [I'] does not belong to Slipg 5 by
Proposition 3.1. O

We show that there is no point [I'] € Slipg, with I" as in Equation (3.107). First, we
introduce some more multigraded Hilbert schemes. Let hgo: Z — Z be defined by

— h f < 4;
hoa(a) = 4 o2 foras
0 fora >4

or, more briefly, by he 2 = (1,3,6,6,6,0,0,...). Define f: Z — Z by f = (1,3,5,6,6,0,0,...) or,
more formally, by

0 for a > 4.

(a) = {f(a) for a < 4;

Finally, let k: Z — Z be defined by

dimy S, fora<1;
k(a) =49 a+3 for a € {2,3,4};
0 for a > 4

or, in a brief form by k = (1,3,5,6,7,0,0,...). o
We have natural maps Hilblg’f — Hilbg — Hilbg6’2. Let Z be the set-theoretic image of
Hilbg’f in Hilbg6’2. We claim that it is irreducible and 12-dimensional.

Lemma 3.110. The set Z is wrreducible closed and 12-dimensional.

Proof. Observe that both morphisms Hilblg’? — Hﬂbz and Hilbg — Hilbg["’2 are closed by Theo-

rem 2.36. We claim that they are both injective on closed points. We start with Hﬂbg — Hilbgf’"Q.

Suppose that there are two points [I] # [I'] € Hilbé with INm3 = I'Nm3. Let J = (LoD I}) D I>3.
The algebra S/J has Hilbert function (1,3,4,6,6,0,0,...). This contradicts the Macaulay’s
bound [10, Thm. 4.2.10].

Now we show that Hilb’;’f — Hilbé is injective on closed points. Let [I’ C I"] € Hilbg’f.

We have (IL;) = (02,03) for some generators ¢; € S;. Furthermore, I’ has no minimal generator

of degree 4 since there is no homogeneous ideal J of S such that S/J has Hilbert function
(1,3,5,6,8,...) by Macaulay’s bound [10, Thm. 4.2.10]. Therefore, we have I' = (IZ3) +md. As
a result, Hilb’;’f — Hilbg is injective on closed points.

It follows from the above considerations that it suffices to show that the flag multigraded
Hilbert scheme Hilbg’f is irreducible and 12-dimensional.
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Let my,: Hilbg’f — Hilbg be the natural projection. The fiber over a closed point [K] € Hilblg
is irreducible and 6-dimensional corresponding to the choice of a 9-dimensional subspace of Sy
containing the 8-dimensional subspace K4. By [81, 11.4.C]| it is enough to show that Hﬂblg is
irreducible and 6-dimensional.

Let X be the pullback

X — 5 FI(3,4,5)

! !

Gr(1,51) — Gr(3, 5)

where the lower horizontal map takes [¢] to [lin{agl, a1/, aal}]. It is irreducible and of dimension
4. Moreover, if [I] belongs to Hilb% then the generators of T of degree 2 and 3 have a common
linear factor since we have Hg/r(4) = 7 > 6. Therefore, there is the parametrization X x
Cr(1,S;) — Hilb% given by

([0, [6S1 S V1), [0]) = (€0) + (V) + m®.
Thus, Hilb is irreducible and of dimension 6. O

Let p: Hilbg&2 — Hilbg67 be the natural map given by [I] — [I +m®]. Let

K= (a%al, apa?, a%ag, ozooqozg,ozé) +m’.
For every ideal I’ as in Equation (3.107), we have p([I']) = [K]. Thus, it is enough to show that
there is no point [J] € Slipg o with p([J]) = [K].

Lemma 3.111. If [K] is a point of p(Slipg 5), then there is an irreducible 10-dimensional subset
Z' of the set-theoretic intersection p(Slipg o) N Z. Furthermore, [K] belongs to Z'.

Proof. Let K' = (apai1,adaz) + m® and K’ = K' + (af + af). We have [K' C K"] € Hilbg’?.
Therefore, [K” Nm3 4+ m?] is in Z. However, the initial ideal of K” N m?® + m® with respect to
the lex order with ap > a1 > ag is K. Thus, [K] belongs to p(Slipg ) N Z. Moreover, we have
dimy T Hilbgﬁ’2 = dimy Homg(K, S/K )y = 14, where the first equality follows from Theorem

2.75. Therefore, the claim follows from Lemmas 2.30 and 3.110 and equalities dim p(Slipgs) =

Suppose that we have [K] € p(Slipg 5). There exists an irreducible closed subset Z” C Slipg 5
with p(Z") = Z’, where Z' is as in Lemma 3.111. Since p(Z”) is contained in Z, it follows that
Z" is disjoint from the set of saturated ideals. Moreover, p(Uy), p(Us) and p(Us) are of dimension
less than 10 (see Lemmas 3.92 and 3.97). It follows that Z” is contained in the closure of the
locus Uy where

Us = {[I] € Hilb}** | /T has Hilbert function f = (1,3,5,6,6,...)}.

Let q: Hilbf; — Hilbgﬁ’2 be the natural map. It is a closed map by Theorem 2.36 and it is
injective on closed points corresponding to saturated ideals. Thus, Z” is contained in the image
of the closure of the locus of all points of Hilbg corresponding to saturated ideals.
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It follows that there is an ideal [I"] € Hilbé that satisfies IZ, = (a1, 0oz, o) <q and 1" is
a limit of saturated ideals.

By taking an initial ideal, we get that at least one of the following ideals corresponding to
points of Hilbé is a limit of saturated ideals:

1. I'" = (060041704[)042704370[?)

2. I" = (o, adaz, af, ajas);

3. 1" = (0600417 04[)0427 aéa ailia%)

4. I = (g, 040042a Oéoa O‘%O‘%)

5. I = (Ozoal,CKDCVQ,CVD;OJlOQ)

6. I = (040011, 010042, Oé%, aoa%a Ol?)

7. " = (Ozoal, @0@27 043, 040@%7 O‘?CVQ)

8. I = (040011, 0100427 O[%, CYOO/QLa 0/11013)

9. I" = (040041, OéOCV27 043, aoa%a 04?04%)
10. I" = (o, adaz, ag, apas, alaj);
11. I = (apary, 040062, Oé%, aoa%a o1a3);
12. I" = (apar, adas, of, agad, af).

We claim that this is impossible. Cases 1-5 can be excluded since then [I” N m?] is in
Slipg » NUy but I N'm? is not of the form from Lemma 3.91. Furthermore, if I" is one of the
ideals 6-12, then we have Hg/(my2(8) = 17 < 18. Therefore, by Theorem 3.5, I" is not in the
closure of the locus of all radical ideals. Thus, it is also not in the closure of the locus of all
saturated ideals since a general saturated ideal of S such that the quotient algebra has Hilbert
function f is radical.

To summarize, we have arrived at a contradiction after assuming that [K] belongs to p(Slipg 5)-
This shows in particular, that if I is as in Equation (3.107) then [I'] is not in Slipg 5. Together
with Lemma 3.109, this finishes the proof of Lemma 3.102 and thus, of Proposition 3.104.
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Chapter 4

Criteria for smooth projective toric
varieties

In this chapter we work in the category of schemes over the complex numbers. We consider
smooth projective toric varieties and the corresponding multigraded Hilbert schemes. The main
motivation is to study the case of the product of projective spaces. However, secant varieties of
more general toric varieties have also been studied [25], [38].

In Section 4.1 we recall the basic notions of the theory of toric varieties. We mainly follow
[28]. In Section 4.2 we consider a morphism with connected fibers f: X — Y between smooth
projective toric varieties. We present a necessary condition for an ideal I in the Cox ring of X to
be in the irreducible component Slip,. x. In Sections 4.3 and 4.4 we present two particular cases
of that criterion. In Section 4.3 we assume that X is the blowing up of Y at the closure of a
torus orbit. In Section 4.4 we assume that X is a projective toric bundle over Y. In particular,
the criterion from this section is applicable to the case of the product of projective spaces. In
Section 4.5 we obtain another necessary condition in the case that X is the product of projective
spaces. Finally, in Section 4.6 we present two examples of reducible multigraded Hilbert schemes
corresponding to two points on a toric surface.

The main technical tool used in this chapter is the possibility to lift a morphism between
smooth projective toric varieties to a homomorphism of their Cox rings (see Subsection 4.1.3).
This and similar problems have been extensively studied. In particular, in [9] there are general
results that could shorten our presentation. This is true, for example for Lemmas 4.4, 4.10, 4.11
and Proposition 4.21. However, since in the generality that we require, most of those results can
be presented from scratch, we decided to do so.

4.1 Toric varieties

In Subsections 4.1.1-4.1.3 we recall some basic definitions and results related to toric varieties.
This is mainly to fix the notation. Therefore, we omit most of the proofs, referring the reader
to [28]. Our notation follows closely the one used there. In Subsection 4.1.3 we recall the main
technical tool—lifting a morphism between smooth projective toric varieties to a morphism of
their Cox rings.

Subsection 4.1.4 is concerned with morphisms f: X — Y between smooth projective toric
varieties with f,Ox =2 Oy. This property is assumed in Theorem 4.15 which is one of the main
results of this chapter.
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In Subsection 4.1.5 we finally give the definition of a multigraded Hilbert scheme of points
in general position for a smooth projective toric variety. This is the generality in which it was
introduced in [15].

Although the results from this section are stated for smooth projective toric varieties, some
of them are still true for more general toric varieties.

4.1.1 Fans and toric varieties

By a toric variety we mean a normal variety X over the field of complex numbers such that X
contains an algebraic torus T = (C*)™ as an open subset and the action of T on itself extends to
an action of T on X.

Given an algebraic torus T = (C*)", we denote by M the character lattice of T, i.e. M =
Hom(T, C*) is the set of all algebraic group homomorphisms from T to the one-dimensional torus.
We have M = 7™ and the dual lattice Homy(M,Z) is denoted by N. For every m € M the
corresponding character is x": T — C*. We denote by (, ) the natural pairing M x N — Z and
its extension to the R-vector spaces Mr = M ®7z R and Ng = N ®z R.

Toric varieties are obtained by gluing affine toric varieties corresponding to certain combina-
torial objects in the R-vector space Ng. We explain in more details how to obtain affine toric
varieties. A subset o C N is called a (rational polyhedral) cone if there is a finite set of elements
uy,...,u; € N with o = {3°F_ \ju; | A; > 0}. Since we do not consider more general cones, we
omit the phrase "rational polyhedral". A cone o C Ny is strongly convez if o does not contain a
positive-dimensional vector subspace of Ng. Given a cone ¢ C Np, we can consider the semigroup
S, = c¥' N M where ¢V is the dual cone of o, i.e. 0¥ = {m € Mg | (m,u) >0 for all u € o}.
If o is strongly convex, then the spectrum of the semigroup algebra C[S,| is an n-dimensional
affine toric variety and is denoted by U,. As shown in |28, Thm. 1.3.5], all affine toric varieties
are of this form.

Given a cone o € N, its face is the intersection of ¢ with an affine hyperplane
H,, ={ue Ny | (m,u) =0}

in N for some m € My satisfying (m,u) > 0 for every u € 0. A fan is a finite collection ¥ of
strongly convex cones in Ny satisfying conditions:

1. Each face of each cone in ¥ is an element of 3.
2. Every two cones in ¥ intersect along a common face.

Given such combinatorial data there is a toric variety Xy obtained by gluing the affine toric
varieties {U, | o € ¥} (see [28, Thm. 3.1.5]). Moreover, every toric variety with torus T comes
from the above construction for a fan in Ng where N is the lattice dual to the character lattice
of the torus (see [28, Cor. 3.1.8]). For a toric variety X we denote by Y x a fan such that we
have Xy, = X. Note that ¥ x is not uniquely determined by X since we can apply any Z-linear
automorphism of Nr to a fan ¥ and obtain the same abstract toric variety. In Sections 4.3 and
4.4 we consider a morphism of toric varieties X — Y. Starting from an arbitrary choice of a fan
Yy corresponding to Y we describe a fan ¥ x corresponding to X that is convenient to use.
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4.1.2 Picard groups and Cox rings

Given a smooth projective toric variety X and a corresponding fan > x in Ng the Picard group
Pic(X) of X can be calculated using the combinatorial data of the one-dimensional cones in ¥ x
(see |28, Thm. 4.1.3]). Let X x (1) be the set of all one-dimensional cones in Xy, i.e. cones whose
linear spans are one-dimensional real vector subspaces of Ng. The torus invariant prime divisors
on X are in bijective correspondence with elements of ¥ x(1). Given p € ¥ x(1) we denote by u,
the ray generator of p (i.e. the unique generator of the semigroup p N N) and the corresponding
divisor by D

Let e1,...,e, a Z-basis of M. The group Pic(X) is generated by classes of [D,] for all
p € Yx(1). Moreover, these generators are subject to relations

0=[div(x*)] = > (e, u,)[D,]

pEXx (1)

foralli=1,...,n

Let X be a smooth projective toric variety associated with a fan X x C Ng. There is a
corresponding polynomial ring S[X]| graded by the Picard group Pic(X). This ring is called the
Cozx ring of X. We have

S[X]=Cloy, | p€ Xx(1)] and deg(a,) = [D)).
By [28, Prop. 5.3.7] we have S[X](p) = I'(X, Ox (D)) for all [D] € Pic(X).

Remark 4.1. The construction of a Cox ring can be carried out for more general varieties, see
[1]. It does not have to be a polynomial ring. Moreover, unlike for toric varieties, the construction
requires some choices so we speak of a Cox ring of X instead of the Cox ring of X.

4.1.3 Irrelevant ideals and the quotient construction

One of the main tools in this chapter is Theorem 4.3 which states that a morphism f: X — Y
between smooth projective toric varieties can be lifted to a graded homomorphism f#: SY] —
S[X] of their Cox rings.

We start with recalling the quotient construction of a smooth projective toric variety X
presented in [28, Thm. 5.1.11]. Given a cone o € Xx we denote by o(1) the set of all 1-
dimensional faces of 0. Let S[X] = Cla, | p € £x(1)] be the Cox ring of X. For all 0 € ¥ x (1)
we define a? to be HpEEX(l)\U(l) ayp. The irrelevant ideal of X is

B(2x) = (a%)sesy C S[X].

Observe that it is enough to take generators corresponding to maximal cones of X x. We denote
the affine space Spec S[X] by X and the open subset X \ V(B(Xx)) by X.

By [28, Prop. 4.2.5] we have Pic(X) = Z* for some integer k. Therefore, Hx = Spec C[Pic(X)]
is a torus. Since S[X] is Pic(X)-graded, there is a natural action of the torus Hy on X. The
variety X is the geometric quotient by the induced action of Hx on X. We denote the open
immersion X — X by ix and the quotient XX by mx.

Definition 4.2. Suppose that f: X — Y is a morphism between smooth projective toric varieties
and let f*: Pic(Y) — Pic(X) be the pullback map. Suppose that there exists a C-algebra
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homomorphism 7#: S[Y] — S[X] such that the following conditions hold:
1. 77 (S[Y]py) is contained in S[X]+(py) for every [D] € Pic(Y);
2. the corresponding morphism f: X — Y restricts to a morphism j/"\: X - }//\';
3. we have 7y o J?: fomx.

We call 77 a lift of f.

If T# is a lift of a morphism f: X — Y between smooth projective toric varieties, we have a

commutative diagram

N
<

b

~<
—

K Ty

>
— =0

x 1.y

Observe that once conditions 1-2 from Definition 4.2 are satisfied, there is a unique morphism
f': X =Y with flforx = ﬂyof Indeed, ﬂyofis constant on H x-orbits and mx is a categorical
quotient (see [28, Thm 5.1.11]). Condition 3 says, that we have f’' = f.

The possibility of lifting a morphism f: X — Y to a homomorphism ?#: S[Y] — S[X] has
been studied in various settings. The version suitable for our needs is considered in [26]. The
case of rational maps of toric varieties using multi-valued maps of Cox rings is studied in [9].
Analogous quotient construction holds for the so called Mori dreams spaces. These are varieties
admitting a Cox ring that is a finitely generated C-algebra. Lifting of rational maps of Mori
dream spaces is discussed in [18| and the case of a regular map can be found in [52].

Now we can state the key existence theorem.

Theorem 4.3 (|26, Thm. 3.2|). Let f: X — Y be a morphism between smooth projective toric
varieties. There exists a lift ?# of f.

Let X and Y be smooth projective toric varieties corresponding to fans ¥ x C (Nx)r and
Yy C (Ny)g, respectively. Assume that f: X — Y is a toric morphism, i.e. it maps the torus
Tx of X into the torus Ty of Y and the restricted map Tx — Ty is a group homomorphism.
Such morphisms correspond to Z-linear maps ¢: Nx — Ny such that for every cone o € Yx,
there is a cone o’ € Ly satisfying ¢gr (o) C o’ (see [28, Thm. 3.3.4]). Here ¢r denotes ¢ Ry idg.
We say that ¢ is compatible with the fans X x and Xy .

In the following lemma we study the condition under which a homomorphism of graded rings
f#: S[Y] — S[X] is a lift of the given toric morphism f: X — Y.

Lemma 4.4. Let f: X — Y be a toric morphism between smooth projective toric varieties.
Let S[X] = Clay, | p € Ex(1)] and S[Y] = C[B, | p € Ey(1)] be the Cox rings of X and Y,
respectively. Let ¢: Nx — Ny be the map corresponding to f.

Assume that we are given a homomorphism of rings 7#: S[Y] — S[X] satisfying conditions
1 and 2 from Definition 4.2. The homomorphism ?# 1s a lift of f, if and only if we have

H (?# (ﬂp))<m,up> _ H aéw(m):up> (4.5)

pESyY (1) pESX (1)
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for every m € My, where 1: My — Mx is the dual map of ¢: Nx — Ny.

Proof. Let f': X — Y be the morphism induced by f. It is enough to show that f and f’ define
the same morphism U, — U, of affine toric varieties for every pair of cones ¢ € ¥x and ¢’ € Xy
satisfying ¢gr(co) Co’.

Recall that we have 37 = [Tpesy 0\ (1) B and ol = [T es (1)\o(1) @ There is an isomor-
phism C[(¢”)Y N My | = (S[Y]B;)o given by X" — [ ey (1) f,m’up> (see the proof of [28, 5.1.11])
and a similar one C[o¥ N Mx] = (S[X],7)o-

The map U, — U, induced by f corresponds to the homomorphism C[(¢’)Y N My] —
CloY N Mx] given by x™ ~— x¥(™. On the other hand, the map U, — U,  induced by f’
corresponds to the map (?Z})O: (S[Y]ﬁg)o — (S[X]45)0. Therefore, f and f’ induce the same
map U, — U, if and only if Equation (4.5) holds. Indeed, this is equivalent to the commutativity
of the diagram

m p(m)
Cl(")Y N My] =X CloV N Mx]

m (m,up) m (m,up)
X '—>Hpezyu) /3pm e l (?#A)o lX anezx(l) apm e
o./

(S[¥] )0 —— (S[X]uso.

O]

The fact that a morphism f: X — Y restricts to a morphism ]?: X — Y has the following
algebraic consequence.

Lemma 4.6. Let f: X — Y be a morphism between smooth projective toric varieties. Assume
that 7#: S[Y] — S[X] is a homomorphism of C-algebras satisfying condition 2 from Defini-
tion 4.2. If I C S[X] is a homogeneous ideal which is saturated with respect to B(Xx), then
(f#)_l(f) is saturated with respect to B(Xy ).

Proof. By assumption that f: X — Y restricts to a morphism f: X — Y we conclude that
there is an inclusion

?‘1<V(B(2y))> C V(B(Zx)). (4.7)
By [6, Prop. 3 §6.2] we have T‘I(V(B(zy))) - V(T#(B(zy))). Therefore, from Equa-
tion (4.7) we get

B(Sx) €T (B(Sy)) - SIX).

Since S[X] is a Noetherian ring, there is a positive integer k with
B(Ex)" € 7 (B(®y)) - S[X]. (4.8)

Let J = (?#)*1(1). Take an element F' of (J: B(Xy)). We need to show that F is in J, or
equivalently, that f# (F') belongs to I. Since I is saturated with respect to B(Xx), it is enough
to show that 7#(F) is an element of (I: B(Xx)*). We have

) - Byt C ) THBEY) - SIX S THE - By)) - SIX] € FH() - SIX] C 1

—_ )

where the penultimate containment follows from the choice of F' and the ultimate one is by the
definition of J. O
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4.1.4 Morphism with connected fibers

In this subsection X and Y are smooth projective toric varieties. We consider a morphism
f: X — Y such that the natural map f: Oy — f.Ox is an isomorphism. In particular,
f is dominant and therefore surjective. Furthermore, f has connected fibers [48, Cor. III.11.3].
Conversely, since the base field C has characteristic zero, for every surjective morphism f: X — Y
whose fibers are connected we have an isomorphism f,Ox = Oy [30, §1.13].

In what follows we do not assume that f is a toric morphism. However, if f happens to be a
toric morphism, then the condition f,Ox = Oy has an equivalent combinatorial reformulation
(see [29, Prop. 2.1]).

Lemma 4.9. Let f*: Pic(Y) — Pic(X) be the pullback map. The equality
dim(c S[X]f*([D}) = dim(c S[Y] D]
holds for every [D] € Pic(Y).

Proof. We have

S[X] oy = H(X, f*Oy (D)) = H(Y, f.(f*Oy(D)))
=~ HO(Y, f.Ox ® Oy(D)) = H°(Y,0y (D)) = S[Y] (-

The middle equality follows from projection formula [48, Ex. IL.5.1]. The first and the last
equality follow from [28, Prop. 5.3.7]. O

We lift f to a homomorphism ?#: S[Y] — S[X] as in Definition 4.2. The following lemma
is used in the proof of Theorem 4.15—one of the main results of this chapter.

Lemma 4.10. We have:
(i) the pullback map f*: Pic(Y) — Pic(X) is injective;

(ii) the map ?# induces an isomorphism of the C-vector spaces S[Y|p) — S[X]s«(ip}) for every
[D] € PicY.

Proof.

(i) Since f,Ox — Oy is an isomorphism, it follows from projection formula (see [48, Ex. I11.5.1])
that the map f*: Pic(Y) — Pic(X) is injective.

(ii) The pullback f*: Pic(Y) — Pic(X) is injective by part (i). Hence the corresponding map
of algebraic tori Hx = Spec C[Pic(X)] — Spec C[Pic(Y)] = Hy is dominant. Thus, it is
surjective by [28, Prop. 1.1.1].

Since f is a projective morphism with f*(’)X = (’)y, it is surjective. We claim that f is
dominant. It is enough to show that f X > Vis surjective. Let y € Y. Since f and
mx are surjective, there is a point Z with f o 7x(Z) = 7y (y). Thus, there is an element
t € Hy satisfying t - (f(/f)) = y. Using the fact that /‘Ehe map of tori is surjective and fA‘is
equivariant, we conclude that there is t’ € Hx with f(t'-Z) = 7.

This shows f is dominant and hence ?# is injective. In particular, it induces injections
S[Y]p) — S[X]p+(p)) for every [D] € Pic(Y'). These maps are surjective by Lemma 4.9. [
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Given a finite set of points {p1,...,pr} € X, we denote by I({p1,...,pr}) the unique B(Xx)-
saturated homogeneous ideal of S[X] defining this set of points as a reduced subscheme of X.

Lemma 4.11. We have (F*) " (I({p1,-...p:}) = I{F(p1), - F(pr)}).

Proof. Let R C X be the (reduced) subscheme {pi,...,pr}. Let i: R — X be the closed
immersion. Let R’ be the scheme-theoretic image of R. Since R is reduced and f is closed, R’ is
the (reduced) subscheme {f(p1),..., f(pr)}.

The scheme theoretic image R’ of R is defined by the ideal sheaf ker(Oy — f.Ox — f+«ixOR).
By assumption Oy — f,Ox is an isomorphism. Therefore, the ideal sheaf of R’ is ker(f,Ox —
f+i:OR). Moreover, f, is left-exact, so the ideal sheaf of R’ is the pushforward under f of the
ideal sheaf of R.

The ideal I({p1,...,pr}) is saturated with respect to B(Xx). Hence, the subscheme of Y

corresponding to (f#)_l(I({pl, ...»pr})) € S[Y] is R by [66, Thm. 3.5] and Lemma 4.10. By
Lemma 4.6, the ideal (?#)_I(I({pl, ...,pr})) is saturated with respect to B(Xy). Thus, we have

T UAprs o)) = TP, - F ()},

as claimed. 0

4.1.5 Multigraded Hilbert schemes

Let Y be a smooth projective toric variety with Cox ring S[Y]. A natural generalization of the
function h, pn: Z — 7Z studied in Chapters 2 and 3 is the function A,y : Pic(Y) — Z defined by

hey ([D]) = min{dim¢ H(Y, Oy (D)), r} = min{dim¢ S[Y] (D] T}

where the latter equality follows from [28, Prop. 5.3.7]. Observe that in the case of the projective
space we have implicitly used the identifications Pic(P") = Z[H] where H is a hyperplane divisor
and HO(P", Opn(dH)) = Clag, . . ., ana.

Let Hilbgr[’;} be the corresponding multigraded Hilbert scheme (see Subsection 2.2.2). We

denote by Sip,y the subset of Hilbgr[’;] whose closed points correspond to B(Xy)-saturated,
homogeneous ideals of r-tuples of disjoint points in Y. Let Slip, ;- be the closure of Sip, y in

Hilb?{’;]. By [15, Prop. 3.13] it is an irreducible component of Hilbgr[’;].

We construct a natural morphism from r-tuples of distinct points of Y in general position to
Hilbg’i’yy]. Let Y. = {(p1,...,pr) | pi # pj for all i # j} be the set of r-tuples of distinct points
of Y. This is an open subset of Y so it has a natural scheme structure.

Recall that, given a point (p1,...,p,) € Y, we denote by I({p1,...,p,}) the unique B(Xy)-
saturated homogeneous ideal defining this set of points as a reduced subscheme of Y. Let

Yien = {(p1,---,pr) € Yy | SIY]/I({p1, - .,pr}) has Hilbert function A,y }.

We use the following key observation from [14].

Theorem 4.12. The set Yy, is a dense open subset of Yy .. In particular, it has a natural

scheme structure.

Proof. The following sketch of proof is based on [14]. The subset Y, is dense in Y, by [15,

gen
Lem. 3.9]. In order to show that it is open we introduce some notation. Let %5 C Y. x Y be
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the (reduced) closed subscheme [[;_; Z; where we have

ZZ' = {(p17 cee )pT)aq | bi = Q}

Let mgis: Uais — Yy, be the projection. The family % is flat over Y, since each Z; is mapped
isomorphically to Y. . By construction, the fiber of 74 over a closed point (p1,...,p,) of Y
is the (reduced) subscheme {p;,...,p,} of Y.

It suffices to show that for every affine open subset U = Spec A of Y  the set U N Yy,
is open. Therefore, we can replace Y. by an affine open subset U = Spec A. Let Z denote
%diSLFJiIS(U)' Let Zz denote the ideal sheaf of Z and for a point u € U let Zz, denote the ideal
sheaf of the fiber Z, C Y. Pick a degree [D] € Pic(Y) of the grading group. Since Z is flat

over U, from the exact sequence
0—Zz(D)— Oy,(D) — Oz(D)—0
we get the exact sequence

0—Zz,(D)— Oy, (D)= Oz,(D) = 0.

(u)
Therefore, there is the exact sequence
0 = H(Yyu), Zz, (D)) = H°(Y, Oy (D)) @c k(u) = H(Yyu), Oz, (D)) = -+ .

We claim that the set

HO(Y, Oy (D)) @c (u)
HO (Yn(u)a IZu (D)>

U[D] = {u eU ‘ dlm,{(u) < hny([D])}

is a closed subset of U. The point u € U belongs to Up if and only if we have
dlmn(u) HO(YH(u)aIZu (D)) > dimg HO(K OY(D)) - hT,Y([D])

Therefore, Up) is closed by [48, Thm. I1I.12.8].

Observe that there is an equality Y ., NU = U \ U[D} epic(v) Up) but the union is over a
countable indexing set. Therefore, the observation that each Ujp; is closed is not sufficient to
conclude that Yy, NU is open in U.

Assume that Y is the projective n-space and let H be a divisor such that the corresponding
sheaf Oy (H) is isomorphic with Oy (1). By Gotzmann’s regularity theorem [10, Thm. 4.3.2] and
[32, Thm. 4.2] we get Ujp; = 0 unless [D] belongs to the set {[0], [H], [2H], ..., [(r —1)H]}. Thus,
in this case the union U[ D]ePic(Y) U|p) is actually a finite union. For more general toric varieties
it is harder to conclude that ;p)epic(y) Up) is closed (see [14]). O

The rest of this subsection is devoted to showing that (pi,...,p,) — [I({p1,...,pr})] defines

a morphism Y, — Hilbgr[’;}. Let %45 be as in the proof of Theorem 4.12. We denote by % the
restriction of ;s to Y, X Y. Let m: Y xY — Y  be the natural projection. Consider the

gen gen gen
exact sequence of sheaves of Oygrenxy—modules

0—- P zZ.D)» P OvpDH P Ox(D)—o (4.13)
[D]€Pic(Y) [D]€Pic(Y) [D]€Pic(Y)
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Let A = im(m.n). We verify the following claims:
1. we have W*(@[D]Gpic(y) Oyr. v (D)) = Oyr  ®c S[Y];

gen gen

2. A's a sheaf of Oy, ®c S[Y]-algebras;
3. Ajpy is a locally free sheaf of Oy, -modules of rank A,y ([D]) for every [D] € Pic(Y).

The first claim follows from [48, Prop. I11.9.3] since there is an isomorphism I'(Y, Oy (D)) =
S[Y]ip. The second claim follows from the fact that in exact sequence (4.13) the Oy, xv-
submodule B pjepic(y) Lo (D) of the sheaf of Oy xy-algebras D pjepic(y) Oy, xv (D) is in
fact a sheaf of ideals. Therefore, from left-exactness of the pushforward, it follows that the
kernel of 7,(n) is a sheaf of ideals of the sheaf Oy, = ®c S[Y].

Finally, we address the third claim. We consider two cases:
(a) hry([D]) =r;
(b) hyy([D]) <.

Observe that by definition of %, for every y € Y., we have

gen

dime H ((Ygen, X Yy, (Zr(D))y) = dime S[Y](p) — hry ([D)).

gen

Similarly, we have dim¢ HY((Y},,, x Y)y, (O%(D)),) = r for every y € Y,.,. Moreover, both

gen gen:®

Oy (D) and Iy (D) are flat over Y. Therefore, by [48, Cor. II1.12.9] the sheaves of Oy;. -

gen*
modules 7,(Z7 (D)) and m.(O (D)) are locally free of rank dimc S[Y]p) — hyy ([D]) and
respectively. In particular, this establishes claim 3 in the case (b) since then we have Ap =

Oy, @c S[¥]py.

gen

<

)

Thus, it is enough to show that if A,y ([D]) equals r then . (n) induces a surjection Oy, ®c
S[Y]ip) = m(O%(D)). This can be checked on stalks over closed points, and by Nakayama’s
lemma it is even enough to check this on fibers. Let y € Y ., correspond to the subscheme
Z CY and let Iz denote its B(Xy )-saturated ideal. Using [48, Cor. II1.12.9], it is enough to
show that natural map

SlY]ip) — L'(Y,0z(D))

is surjective for every [D] € Pic(Y') with h,.y ([D]) = r. However, the kernel of this map is (Iz)p)
and we have

r = dim@ F(Y, Oz(D)) = dim(c S[Y] [D] — dlm(c(Iz)[D]
by the choice of [D]. This finishes the proof of claims 1-3.

Lemma 4.14. There is a natural morphism ¢y : Yy, — Hilbgr[’;] which on closed points maps
{p1,....pr} to [I({p1,...,pr})].

Proof. By properties 1-3 above, A defines an admissible family over Y for the Hilbert function

gen

hyy. Thus, there is a morphism Y ., — Hilbg’i’;]. By construction, on closed points, it maps

{p1,.. . pr}, to I({p1,.--,pr}). n

4.2 Criterion based on a morphism of toric varieties

Let f: X — Y be a morphism between smooth projective toric varieties with f,Ox = Oy.
Let r be a positive integer. In this section we present a necessary condition for a closed point
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[I] € Hilb};f[’;g] to be in the irreducible component Slip, y. The most interesting case is when we
have X = P™ x .-« x P™+1 and Y = P™ X --. x P™ for some positive integers k,nq,...,ngr1

and f is the natural projection.

Theorem 4.15. Let f: X — Y be a morphism between smooth projective toric varieties with
f+Ox = Oy. Let r be a positive integer and [I] € Hilbg’[")é be a closed point. Let 7#: SY] —
S[X] be a lift of f as in Definition 4.2.

(i) ?# induces a morphism m: Hilb?[’;g] — Hilb?[’;] given on closed points by [I] — [(f#)_l(f)];

(i) The morphism 7: Hilb?[’;g] — Hﬂb?[’;} from part (i) induces a surjection Slip, x — Slip,. y-.

Proof. The existence of a lift ?# follows from Theorem 4.3.

(i) Using Lemma 4.10 we may identify (as Pic(Y)-graded rings) the ring S[Y] with the subring
D pjepicy SX] <oy of S[X]. Under this identification, we have

—
M) = 1]+ picry) = @ T«(1Dy)-
[D]ePic(Y)

It follows that if S[X]/I has Hilbert function h, x, then S[Y]/ (f#)_l(l ) has Hilbert func-
tion h,y. Thus, we have a natural transformation of functors of points

oy B, .
Hilbgry — Hilbg,

given on a C-algebra R by

o h 1 b
HﬂbS[;({} (R) > I = I|p«(pic(y)) € Hllbs[’;}(R).

Hence we have the corresponding morphism of schemes 7 : Hilbgr[’;;] — Hilbgr[’;].

(ii) We first show that 7(Slip,. x) is contained in Slip, ;- set-theoretically. If I is radical then

(f#)_l(l) is also radical. Moreover, if I is saturated with respect to B(Xx ), then (?#)_1 is
saturated with respect to B(Xy) by Lemma 4.6. It follows that we have 7 (Sip, x) C Sip,.y
set-theoretically. Therefore, 7(Slip,. x) is a subset of Slip,.y-.

Now we show that in fact 7: Slip, x — Slip, y is surjective. Recall the definition of Y,
from Subsection 4.1.5. Consider the product morphism f": X™ — Y. By Chevalley’s the-
orem [41, Thm. 10.20] the image of X.,, in Y is constructible. Moreover, f" is projective

is dense in X" by Theorem 4.12. It follows that (X7,

gen) 18 dense

N ’
and surjective and X,

in Y. Thus, there is an open subset U C Y contained in f"(Xg.,) (see [48, Ex. I1.3.18]).
Let V =UnNYy,, and W = (f")~'(V) n X},,. We have a diagram

. h"‘y s . hr,
Hilb gy, —— Hilbgy,

(wr,x)\WT (wT,Y)\vT

W frlw
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where the maps 1, x and 9,y are as in Lemma 4.14. We claim that this diagram
is commutative. Let (p1,...,pr) be a point of W. We have ¢,y o f"(p1,...,pr) =

L{f(p1),---, f(pr)})] and
7o tnx(prs.- o) = [(F) IUprs - o)) = HEF 1) - F )}

Here the last equality follows from Lemma 4.11. Thus, the diagram commutes.

By construction, f"(W) equals V, so it is dense in Y[, . Since 7 is projective, it follows

gen*
that we have

Slip,.y = Yry o fr(W) = mo . x (W) = 7 (¢ x(W)) = m(Slip, x)
set-theoretically. O

We obtain the following corollary.

Corollary 4.16. In the notation of Theorem 4.15, assume that [J] € Slip,.y- is such that there

exists a unique closed point [I] € Hilbg’t’;((] with (f#)_l(l) = J. The point [I] is in Slip, y.
Remark 4.17. The usual Hilbert scheme Hilb,(X) is usually not functorial in X. That is,
let f: X — Y be a regular non-constant morphism of algebraic varieties. A general r-tuple of
distinct points of X is mapped to an r-tuple of points of Y and this assignment induces a rational
map of the smoothable components 7: Hilb:"(X) --» Hilb:™(Y'). However, this map needs not
to extend to a regular morphism #Hilb,(X) — Hilb.(Y'), or even Hilb{™(X) — Hilb™(Y).

Let r = 2 and f: X — Y be the blowup of P? at a point (thus we are in the situation of
Theorem 4.15). There are degree 2 finite subschemes contained in the exceptional divisor, which
is contracted to a point. It is straightforward to verify that there is no continuous map that
extends 7: Hilb§™(X) --» Hilb3™(IP?) to the points representing such subschemes.

In contrast, Theorem 4.15 shows that the multigraded Hilbert scheme HilbrX

S[X]
logue of its smoothable component Slip, x behave nicely (functorially), at least under some

and the ana-

special morphisms. In some sense, the induced map Slip, y — Slip,.y is a natural resolution of
the rational map Hilbi™ (X)) --» Hilbi™(Y).

4.3 Blowup of the closure of a torus orbit

In this section we study a special case of Theorem 4.15—the blowup of a smooth projective toric
variety at the closure of a torus orbit.

Let Y be a smooth projective n-dimensional toric variety associated with a fan 3y C N®zR.
Let f: X — Y be the blowup of Y at the closure of the torus orbit V() = O(7) corresponding
to a cone 7 € My (see [28, Thm. 3.2.6]). In that case, as follows from [28, pp. 132-133], the
variety X is the toric variety associated with the fan 33 (7) € N ®z R, whose construction we
recall below. Moreover, the blowup f: X — Y corresponds to the identity map on the lattice V.
Observe that the special case, when 7 is n-dimensional (or, equivalently, when V(7) is a torus
invariant point of Y) is [28, Prop. 3.3.15].

Now we recall the construction of the fan ¥j.(7). Given a cone o € ¥y, we denote by o(1)

the set of all edges of 0. Let u, = ) u, be the sum of the ray generators of edges of 7.

pET(1)
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Let 0 € ¥y be a cone containing 7 and consider the set

(Xy )5 (1) = {Cone(A) | A C {u,}U U {u,} such that 7(1) £ A}.
peo(l)
We have
() ={o ey |7ZatuJEv)i(r).

7Co

Let Xy (1) ={p1,.- -, pn, P}, ---,p;} and 7 = Cone(p; | i = 1,...,s) for some 1 < s < n. Let
€1,...,ey be the standard basis of M and let e],..., e, be the dual basis. Since Y is smooth,
we may assume that the ray generator u,, of p; foralli =1,...,n is e;. We can express the ray
generators of p} in terms of this basis

n
up;_ = Zaijef (4.18)
i=1

for some a;; € Z. We have ¥ x (1) = Xy (1) U {p-}, where p; equals Cone(u,).
By [28, Thm. 4.1.3], the Picard group Pic(Y") is generated by the classes

[D01]7' . "[Dan [Dp’l]"' i) [Dp;]

of prime torus invariant divisors modulo the relations

n t

0 = [div(x“)] = >_(er,wy, )[Dy,) + D (e,

j=1 j=1

>[Dp;_] foralli=1,...,n. (4.19)

l.
J

It follows from Equations (4.18) and (4.19) that we have

t

Pic(Y) = @ Z[D ]

=1
and .
(D] =) —a;[Dy]

J=1

for all i = 1,...,n. We use this description to identify Pic(Y") with Z.

Similarly, we obtain
t

Pic(X) = @Z[DPQ] @ [Dp, ],

foralli=1,...,s and

foralli=s+1,...,n.
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It follows that the Cox ring of Y is S[Y] = C[1,...,Bn, 01, ..., 0;] with deg(8;) = [D,,] =
_23:1 ajje; for all @ = 1,...,n and deg(B!) = e; where eq,...,e; is the standard basis of
Z! = Pic(Y).

Similarly, the Cox ring of X is S[X] = Claq,...,an, o}, ..., a}, "] with

deg(a;) = ZQW —fiforalli=1,...,s,
t
deg(ow) = [Dp,] = — Zaijfj foralli=s+1,...,n
j=1

deg(o;) = [D, J=fiforalli=1,....¢
deg(a ) [DpT] = fi11
where fi, ..., fi;1 is the standard basis of Z!*! = Pic(X).

We lift the map f: X — Y to a map of Cox rings ?#: S[Y] — S[X] as in Definition 4.2. We
start with describing the pullback map f*: Pic(Y) — Pic(X).

Lemma 4.20. The pullback map f*: Pic(Y) — Pic(X) is given by e; — f; for alli=1,...,t

Proof. For all i = ,t, let D, N — R be the support function of the torus invariant
Cartier divisor D, on Y (see 28, Def 4.2.11]). By [28, Prop. 6.2.7], f*([D,]) is the class of the
torus invariant Cartler divisor on X corresponding to the same support function. By definition
we have

¢D, (up) —0,p;, for all p € Ty (1).

In particular, pp ,(uT) is zero since pp Y is zero on each ray generator of the cone 7. Thus, we
get f*(e;) =f; for all i =1,. O

Now we describe a lift of f: X — Y to a map f#: SY] — S[X].

Proposition 4.21. The C-algebra homomorphism ?#: S[Y] — S[X] given by

Biraj-a foralli=1,...,s
Biray foralli=s+1,...,n
Bl ol foralli=1,...,t

is a lift of f: X =Y as in Definition 4.2. In particular, if v is a positive integer and [I] belongs
to Slip, x, then [(f#)_l(l)] is in Slip, y .

Proof. By Lemma 4.20, the homomorphism f# is a map of graded rings with respect to the
homomorphism f*: Pic(Y) — Pic(X) of grading groups, i.e.

FH(SIY o) € SIX] (1))

holds for every [D] € Pic(Y).
It follows that f# defines an equivariant map f: X = Spec S[X] — SpecS[Y] = Y. Let
B(Xx) C S[X] and B(XZy) C S[Y] be the irrelevant ideals. We claim that f restricts to a map

FX\V(BEx) =X =Y =Y\ V(BZy)).



Recall that Xy (n) is the set of all maximal cones of the fan Xy. For all ¢ € Xy (n) let 57 be
the product of variables in S[Y] corresponding to rays in Xy (1) which are not rays in o(1). We
have

B(Xy) = (87)esy ()

by [28, p. 207].
We consider two types of maximal cones in Xy (n). Namely, there is an equality Xy (n) =
¥4 (n) U XY (n) with
S (n) = {o € Sy (n) | 7 Z o}

and
¥y (n)={o €Xy(n) | T C o}

For a cone o € ¥{.(n) and i € {1,...,s} we define o; = Cone <(Upeg(1)’p¢pi{up}) U {uT}>. We

have ¥x(n) = i (n) U Uaez'{,(n) Ui, {oi}. For a cone o € ¥x(n), let a” be the product of
variables of S[X] corresponding to rays from X x (1) \ o(1). There is an equality

_ o
B(Xx) = (a7)sesx(n)-
The map f: A"HH1 — AnHt g given by
L / ’on " " / /
pi=(a1,...,an,0a7,...,a;,a" ) — (a1a”,...,450" G541y ... Qp,QY, ..., a41).

Assume that f(p) is in V (B(2Zy)). We show that p belongs to V (B(Zx)).
Let o € X{.(n). We have

0=p37(F(p)) = (a")*- (8 (a1,...,an,d,...,a})) = (@)1 (a(p))

where s > k > 1 is the number of rays in 7(1) \ o(1). It follows that a°(p) is zero.
For every o € ¥§.(n) and i € {1,..., s} there are equalities

a%(p) = a; - (ﬁg(?(p))) =0.

We have shown that p is in V(B(Zx)).
By Lemma 4.4, in order to verify that ?# is a lift of f, it suffices to show that

> m(m,up.) B (mvupﬁ d /<m’upé> > <mvupi> . <m,upi> d /<m’uP§> in{m,ur)
[ (i) I o 1 =[] I 1 a
i=1 i=s+1 i=1 i=1 i=s+1 i=1

holds for every m € M. This holds since we have u, = >_7 | u,,.
The last part of the proposition follows from Theorem 4.15. [

4.4 Toric bundle

In this section we study another special case of Theorem 4.15—where X is a decomposable toric
vector bundle.

Let Y be a smooth projective toric variety defined by a fan Xy C Ng. Let n be a positive
integer and consider torus invariant divisors D; = ) peTy (1) a;pD, for all i = 0,...,n, where
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D,’s are prime torus invariant divisors of ¥ corresponding to rays of Xy and a;,’s are integers.
Let & = Oy (Do) & --- & Oy (Dy,) and let X = P(&). The variety X is a smooth projective toric
variety (see [28, Prop. 7.3.3.]). We construct a lift f#: S[Y] — S[X] of the natural projection
f: X =Y. A special case of interest is when we have Y = P¢ x P’ X = P¢ x P’ x P® and f is
the projection.

We start with describing the Cox ring of X. Let fi,..., f;n be a basis of the lattice M
and let ff,... £ be its dual basis. Consider Z" with the standard Z-basis e, ..., e} and let

e, = —ej —--- —e;. Given a ray generator u, € Ng with p € ¥y (1) we define
v, =u,+ (a1, — agp)e] + -+ + (anp — aop)e;, € Nr x R".

The cones of the fan X x € Ng x R" of X are of the form

o; = Cone(v, | p € 6(1)) + Cone(ey, . . ., eAf, coer)
together with their faces, where we have o € ¥y, i € {0,...,n} and ég‘ means that e] is omitted

([28, Prop. 7.3.3.]). Thus, the ray generators of the fan of X are

ol p €Sy} Ufed,... e},

In particular, by [28, Thm. 4.1.3] the Picard group of X is generated by the classes of torus invari-
ant divisors F), for all p € 3y (1) corresponding to v, and the classes of Ey, ..., E, corresponding
to eg,...,e;. Moreover, these generators are subject to the relations

0 = [div(x/)] = Z (fi,up)[Fp] foralli=1,...,m
pEXy (1)

and
0 = [div(x®)] = [Ei] — [Eo] + Z (aip — agp)[Fp] for all i =1,...,n.
pEXY (1)

Therefore, we have an isomorphism Pic(X) = Pic(Y) x Z given by

[F,] — ([D,),0) for all p € Sy (1)
[Ei] = (= > (aip —aop)[D,), 1) for all i = 0,...,n.
pEXY (1)

In particular, [Ep] € Pic(X) corresponds to (0,1) € Pic(Y') x Z. From these considerations, it
follows that the Cox rings of Y and X are

SY]=C[{B, | p € Zy(1)}] and S[X] = C[{a, | p € Ty (1)}, 0p, -, )]

with

deg(B,) = [D,] € Pic(Y) for all p € Xy (1),
deg(a,) = [F)] = ([D,),0) € Pic(Y) x Z for all p € £y (1) and
deg(}) = [E;] for all i = 0,...,n.

Let ¢: N x Z™ — N be the natural surjection of lattices. If 7 is a face of 0; € X x for some
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o€ Xy and i € {0,...,n}, then ¢r(7) is a face of o. Therefore, the map ¢ is compatible with
the fans of X and Y. Thus, it induces a toric morphism f: X — Y [28, Thm. 3.3.4]. We want
to lift this morphism to a homomorphism of Cox rings as in Definition 4.2. First we describe the
pullback map f*: Pic(Y) — Pic(X).

Lemma 4.22. The pullback map f*: Pic(Y) — Pic(X) maps [D),] to [F,]| for every p € Xy (1).

Proof. Let ¢p,: Ng — R be the support function corresponding to D), i.e. it is linear on each
cone of Xy and we have ¢p,(u,) = —d,y (see [28, Thm. 4.2.12]). By [28, Thm. 6.2.7] f*([D,])
is the class of the torus invariant Cartier divisor with support function

¥: Ng x R 2% N 222 R,
We have ¢ (v,) = ¢p,(uy) = —0,, and (ej) = 0. Thus, ¥ is the support function of F,. [

Now we describe a lift of f to a map T#: SIY] — S[X].

Proposition 4.23. The C-algebra homomorphism ?#: SlY] — S[X] given by 5, — «, for all
p € Xy (1) is a lift of f as in Definition 4.2. In particular, if [I] € Slip, x is a closed point, then

[(F7)71(1)) ds in Ship,.y-

Proof. By Lemma 4.22, the homomorphism f# is a homomorphism of graded rings, i.e.

T (S[Y)ioy) € SIX] -1

holds for every [D] € Pic(Y). Therefore, it induces an equivariant map f: X — Y. We claim
that it restricts to a morphism f: X — Y. The map f is defined by

(a1,...,as,00,...,an) > (a1,...,as),

where the first s = #Xy (1) coordinates of the affine space X correspond to a,’s. By Xy (m)
we denote the set of all m-dimensional cones of ¥y. Given o € Xy, let 3% = HpGEy(l)\a’(l) B,
Recall that B(Xy) is equal to (8% | 0 € Xy (m)). Similarly, we have B(Xx) = (o | 0 €
Yy(m),i € {0,...,n}). Assume that (ay,...,as) belongs to V(B(Xy)). Let ¢ € Xy (m) and
i €{0,...,n}. The equality 57(ay,...,as) = 0 implies that we have

0=d; 8%(a1,...,as) = a® (a1, ... as dap, ..., ad,).

Thus, (ai,...,as,a(,...,a,) is in V(B(Xx)).

»r'n

We have shown, that f: X — Y restricts to a map f: X Y. Therefore, there is an induced
morphism f’: X — Y. We claim that we have f = f’. By Lemma 4.4, it is enough to show that

H afom’u"> _ H afﬂ’(m)"’” . Ha;@l’(m)»e?)
PEXY (1) PEXY (1) i=0

holds for every m € M, where ¢»: M — M x Z" is dual to N x Z" — N (i.e., it is the natural
inclusion). The claimed equality follows from the definition of v,.
The last part of the proposition is implied by Theorem 4.15. [
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4.5 Product of projective spaces

Let X be the product of projective spaces X = P™ x --- x P™ for some positive integers
k> 2,nq,...,n, Proposition 4.23 gives a necessary condition for [I] € Hilbgf[fg} to be in Slip,. x.

In this section, we present another condition that must be fulfilled for [I] to be in the irreducible
component Slip,. x.
The Cox ring of X is of the form

SX]=Clo1,0,- -, Qlngs @20, s B2ngs oy Ok 0y -y Moy |-

It has a grading in Z*. In the standard basis eq,...,e; of Z* we have deg(e ;) = e; for all
i €{l,...,k} and all j € {0,...,n;}. The Cox ring of the i-th factor of X = P™ x ... x P™
is the polynomial ring Cla,. .., ®;n,] with the standard Z-grading, i.e. deg(c ;) equals 1 for
all j €{0,...,n;}. The irrelevant ideal B(%;) of P" is B(%;) = (@0, --,Qin;). The irrelevant
ideal of X is B(Zx) = B(El) tee B(Ek) = (S[X](l,l,...,l))'

We use the following lemma about Hilbert functions of quotient algebras of homogeneous
ideals in S[X].

Lemma 4.24. Let I # (1) be a ZF-graded ideal in S[X]. If I is saturated with respect to the
irrelevant ideal B(Xx), then for all i € {1,...,k} there is a homogeneous element v; € S[X]e,
such that 7; is a nonzerodiwvisor on S[X]/I. Therefore:

(i) For allu € ZF and for all i € {1,2,...,k} we have Hgx)/1(u) < Hgpx/r(u+ e;).

(ii) Let u € Zgo and assume that there is i € {1,2,...,k} with

Hgixy/1(n) = Hgx)/1(u + ;).
We have Hs[X}/](ll + ei) = Hs[X]/[(u + 26‘1)

Proof. Let pi,...,ps be the associated primes of S[X]/I. These are ZF-graded ideals. We
claim that for each i, the C-vector subspace J;_;(pj)e; € S[Xle, is a proper subspace. Indeed,
otherwise, there is j € {1,...,s} with (pj)e, = S[XJe,. Therefore, B(Xx) is contained in p;.
We obtain (I: B(Xx)) # I which contradicts the assumption that I is saturated with respect to
B(Xx). Having established the claim, we proceed to the proof of the lemma.

(i) By the above claim, for every ¢ € {1,...,k} there is a homogeneous nonzerodivisor ~;
on S[X]/I of degree e;. It follows that the map (S[X]/I)u — (S[X]/I)ute; given by
multiplication by ~; is injective.

(ii) Let [©] € (S[X]/I)u+2e;- There are Oy, ..., 0,, € S[X]ute, with
[@] = [Oéi,()@o 4+ 4+ Oéi,ni@ni]-

Using the notation of the proof of part (i), multiplication by ~v; gives an isomorphism
(S[X]/I)u = (S[X]/I)u+te;- Therefore, there are I'y,...,I'y, € S[X]y with [©;] = [%I;]
for all j € {0,...,n;}. It follows that we have [©] = ~;([a; 00 + -+ + i pn,'n,;]). Thus,
the injective map (S[X]/I)ute; = (S[X]/I)u+2e; given by multiplication by ~; is in fact
bijective. O

100



We present a necessary condition for [I] € Hilb};f[’;g] to be in the irreducible component Slip,. y.

Theorem 4.25. Let X = P™ x --- x P™ for some positive integers k > 2,n1,...,ng. For all
i€ {l,...,k} let B(X;) C S[X] be the extension of the irrelevant ideal of P under the natural
inclusion S[P"| — S[X]. If [I] is a point of Slip, x for some positive integer v, then

dime Homgx] (1 + B(%0)2 S[X)/(1 + B(zi)2))0 > r(ng 4+ ng)

holds for alli € {1,...,k}.

Proof. Assume that [I] belongs to Hilb];T[’)é where I C S[X] is an ideal saturated with respect to

B(Xx). Fix an integer ¢ € {1,...,k} and let
Ai ={u=(uy,...,ux) €ZF |u; > 0forall j € {1,...,k} and u; € {0,1}}.

Let J be the ideal of S[X] generated by

P .

ucA;

We claim that we have (J : B(Xx)>) = I. We first show how to conclude the proof using the
claim. Let g be the Hilbert function of S[X]/(I + B(¥;)?) and consider the natural map
x: Hilblrs¥ — HilbY,

(X] (X]

given on closed points by x([I]) = [I + B(X;)?]. It follows from the claim that x is injective on
points corresponding to ideals that are saturated with respect to B(Xx). Indeed, the inverse
map is [I'] = [(Byea, Tu): B(Xx)>]. Since a general closed point of Slip, x corresponds to
an ideal of S[X] that is saturated with respect to B(Xx), it follows that the image of Slip, x
under x is of dimension dim Slip, y = r(n1 + - -+ + ng). Therefore, if [I] belongs to Slip, y then
the tangent space to Hilb%[X] at x([/]) is of dimension at least r(ni + --- + ng). Application of
Theorem 2.75 finishes the proof of the theorem.

We are left with proving the claim. Let K = (J : B(Xx)®). Since there are inclusions
J C K C I, it follows that K, = Jy = I, holds for all u € A;. Let u = (uq,...,u;) € A; with
uj > r for all j # i and u; = 0. Since we have

Hgx/x(0) = Hgx)/x (0 + ;) =7,

it follows from Lemma 4.24(ii) that Hg|x]/x (1) equals r for all u = (uy, ..., ux) € ZF withu; > r
for all j € {1,2,...,k}. Therefore, we get Hgx]/x(u) < 7 for all u € 7F by Lemma 4.24(i).
Since K is contained in I and S[X]/I has Hilbert function h, x, it follows that the Hilbert
function of S[X]/K is also h, x. Thus, we have K = I as claimed. O

4.6 Small examples of reducible multigraded Hilbert schemes

In this section we show that Hilb?[')?] need not be irreducible for a smooth projective toric surface
X. We present two examples: Hirzebruch surface 74 = P(Op1 @ Opi(1)) and P' x P!. These

examples illustrate that the necessary condition described in Theorem 4.15 is in general not
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sufficient even for small values of r and dim X. In fact, as explained below, this condition is
trivially satisfied in these two cases.

Both special versions of Theorem 4.15 studied in Sections 4.3 and 4.4 apply to multigraded
Hilbert scheme Hilbgi;;% since /4 is also the blowup of P? at a torus invariant point. However,

h2,JP1 x Pl
bS [P1xP1]
into Slipy p1,p1 even though Theorem 4.15 is of no use in this case.

we present also the example of Hil to demonstrate that Theorem 4.25 gives some insight

Proposition 4.26. Let S[P! x P!] = C[ag, a1, Bo, $1] be the Cox ring of P! x P! with deg(ayg) =

h
deg(ar) = (1,0) and deg(5o) = deg(51) = (0,1). The scheme HileQ[I’;IXX;] is not irreducible. In

.17 P pl .
fact, we have [(aoal, aoﬁo, alﬁo, ﬁoﬁl)] S Hllbsz[gllxg] \Shplplx]}hl .
h
Proof. Let I = (agau, apBo, @150, 5o51). The point [I] belongs to Hilb;ﬂgfxxfgi]. We claim that it
is not in Slipy p1yp1. Let a = (ap, 1) and J = I'+a®. The C-vector space Homgpip1)(J, S[P! x
P']/.J)o has dimension 2. Thus, we get [I] ¢ Slip, p1p1 by Theorem 4.25. O

The case of the Hirzebruch surface .74 is more involved since we lack a criterion analogous
to Theorem 4.25.

Proposition 4.27. Let s = P(Op1 @ Opi(1)) be the Hirzebruch surface. The multigraded
Hilbert scheme Hllb;?[}‘;ﬁ 1s not irreducible.

Proof. We start with calculating the Cox ring of 4. Let S[P?] = C|[Bo, 1, B2] with deg(8y) =
deg(31) = deg(f2) = 1. The Hirzebruch surface 4 can be constructed as the blowup of P? at
the torus invariant point [0: 1 : 0].

The Cox ring S[78] of A is Clag, a1, a2, az] with deg(ap) = deg(az) = (1, —1), deg(a1) =
(1,0) and deg(as) = (0,1) (see Section 4.3). Moreover, by Proposition 4.21 the graded homo-
morphism of graded rings S[P?] — S[JA] given by By — agas, B1 — a1, B2 — azas is a lift of
the natural map 4 — P2. We identify S[P?] with its image in S[J4].

Let W be the locus of those points [I] of Hilbg?gj} for which the unique linear generator
of I is of the form aagas + basas for some a,b € C (or geometrically, the locus of all points
defining subschemes contained in a line passing through the center of the blowup). We claim

h
that W is irreducible and 3-dimensional. Indeed, it is a Hilb Sﬁgll]-bundle over the projective line
h
P(lin{apas, asas}). Since Hilbsﬁgll]
h
Let 7: Hilbf;?[;% — Hilb;ugf] be the natural map from Theorem 4.15. We claim that the
set-theoretic inverse image V' of W is of dimension at least 4. Let [I] € W be a closed point. We

is isomorphic to P? (see Proposition 3.38), our claim follows.

may assume that we have
I = (a3, Aa3a? + Bajasaz + Ca?)

for some A, B,C € C, not all zero. It is enough to show that the fiber over [I] is of positive
dimension. Let [a : b] € P'. We claim that

[J] = [(apas, Aa%a% + Bajasoas + C’a%, ap(aag + baz), apai)]

is a point of that fiber. We need to check two things:

1. we have J N S[P?] = I;
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2. S[]/J has Hilbert function ho ;.

We start with 1. Clearly, I is contained in J N S[P?]. Suppose that f is an element of (ag(aaq +
ba), apr)(4,0) for some positive integer d. We show that f belongs to (apas). Observe that we
have deg(ap(aag + bag)) = (2,—2) and deg(apar) = (2,—1). Since deg(f) equals (d,0), we get
that ag divides f. This shows that 1 is fulfilled.

Now we show that 2 holds. The ideal J is contained in K = (ag,Aagag + Boajasas +

Ca?). Moreover, if J(ap) and K, p) are not equal to each other then we have b = —a < 0 and
dimc (S[AA]/ K ) (q,—a) = dimc(S[H4]/J)(a,—a) — 1. Thus, it is enough to establish the following
equality:
. hg’:yf(a,b)—lzl if b= —a < 0;
dime (S[A4]/K) (ap) = 1 :
ha  (a,b) otherwise.
We can rewrite this as follows:
0 ifa+b<0Oora<0;
. 1 ifa+b=0anda>0;
dimc (S[AA]/K) (ap) = , (4.28)
1 ifa=0andb>0;
2 ifa+b>0anda>0.
Let R = Clag, ag, as] C S[7#]. We have
0 if b<0 < 0;
dime R(gy) = ot ora (4.29)
a+b+1—max{0,b} otherwise.

Indeed, the case a+b < 0 or a < 0 is clear since there are equalities deg(ay) = (1,0), deg(az) =
(1,~1) and deg(as) = (0,1). On the other hand, if we have a +b > 0 and a > 0 then R,y is
spanned by

{a§T07¢a57bas | max{0,b} < ¢ < a+b}.

There are equalities

dime (S[A#4]/K) (a5 = dime(R/(Aade3 + Bajagas + Cai))qy) = dime R(qy) — dime Rig_a ).

(4.30)

Equations (4.29) and (4.30) imply Equation (4.28) and thus, finish the proof that V' is of dimen-
sion at least 4.

If Hilbgz[(’}‘;% is irreducible, then it is of dimension dimSlipy ,; = 4. It follows that we

h . . .
have V = Hilbsz[e’;:ﬁ set-theoretically. This contradicts Theorem 4.15 since W is not equal to
.1y o p2 .
HlleQ[fF]f;] = Shp27]p2. L]
We conclude this chapter with a remark.

Remark 4.31. In this section we considered two examples of toric morphisms f: X — Y
between smooth projective toric varieties with f,Ox = Oy. Hence Theorem 4.15 applies to
these cases. However, we have Y = P! or P? (depending on example) and r» = 2. Therefore,
Hilb?{if] equals Slipy y- (see Proposition 3.39). Thus, the necessary condition from Theorem 4.15

ho x

SIX] in both cases.

is trivially satisfied. Nevertheless, we have Slipy x # Hilb
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Chapter 5

Applications of border apolarity to
secant varieties

In this chapter we present some applications of the border apolarity lemma (Proposition 2.92)
for studying secant varieties. Section 5.1 deals with existence of homogeneous wild polynomials,
i.e. polynomials whose border rank is strictly smaller than the smoothable rank. In Subsec-
tion 5.1.1 we show that there are no wild degree d polynomials in three variables of border rank
at most d 4+ 2. In Subsection 5.1.2 we prove that there is no wild quartic in four variables of
border rank at most 6. In Subsection 5.1.3 we give an example of a wild quintic in four variables
of border rank 7. In Subsection 5.1.4 we show that the known example of a wild cubic of border
rank 5 in five variables (see [12, Thm. 1.3]) is a unique such example up to a change of variables.
Results from Section 5.1 depend on the criteria developed in Chapter 3. Subsections 5.1.1, 5.1.2
and 5.1.4 are based on [67].

Sections 5.2, 5.3 and 5.4 are based on [40]. This paper uses Proposition 2.92 in a simple
form. Namely, we do not use any criteria for distinguishing Slip, ,, from Hilb?[fpf‘n]. Therefore,
these results are not directly related to the rest of the thesis. Consequently, we present them
in special versions, where the proofs are simpler. In Section 5.2 we calculate cactus and border
cactus rank of a homogeneous subspace of a divided power ring that is divisible by a large power of
a linear form. This is then used in Section 5.3 to describe the points in k14 (va(P%)) \ 014 (va(P9))
for all d > 7. Results from Section 5.3 have their analogues for xg3 (ud(IP4)) \ 08,3 (ud(IP’4)). In
Section 5.4 we state the main theorem in that direction.

5.1 Wild polynomials

In this section we assume that the base field k is the field of complex numbers C since we cite
results from papers in which this is assumed. Let n be a positive integer and S = Clay, .. ., ay)
be the polynomial ring with the standard Z-grading. We consider the dual polynomial ring
S* = Clxo, . . . , xy] with the structure of an S-module on S* given by partial differentiation. We
denote this action by J. Given a homogeneous polynomial F' € S* we denote by Ann(F') the
ideal {6 € S| 0.F = 0}.

We use the following consequence of the border apolarity lemma (Proposition 2.92).

Corollary 5.1. Let d be a positive integer and F € S}. Assume that br(F) < r < cr(F') holds
for some integer r. There exists an ideal I C Ann(F) with [I] € Slip,.,, and Iq # I4.
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Proof. By Proposition 2.92, there is an ideal [I] € Slip,.,, with I C Ann(F). If we have I =
I4, then there is an inclusion I C Ann(F) by [11, Prop. 3.4]. Thus, cr(F) < r follows from
Proposition 2.91. This is a contradiction. O

We always have br(F') < sr(F') (see [56, Lem. 5.17]). Recall that we say that F' is wild, if
the inequality is strict. Wild polynomials are more difficult to control using standard, existing
methods. Therefore, new methods need to be developed in order to study them effectively. For
example, see [3, Prop. 11] and its applications, [19, Rmk. 1.5] and [40].

We study wild homogeneous polynomials F' satisfying br(F) < deg(F') + 2. If the inequality
br(F') < deg(F) + 1 holds then F is not wild. This is established in [11, Prop. 2.5] based on a
result in [3]. Therefore, we assume that we have br(F') = deg(F') + 2.

We use the following observation.

Lemma 5.2. Letr > 2 be an integer and [I] € Hﬂbgr[]’}fn} be a closed point. If we have I, # 1.9

then S/I has Hilbert function hy. ;.

Proof. Let g be the Hilbert function of S/I. The Hilbert polynomial of S/I is . Therefore, by
Lemma 2.9(ii) we get g(r —2) < r — 1. Lemma 2.9(iii) implies that we have g(0) =1 < g(1) <
9(2) < --- < g(r—2) <r—1. It follows that g(a) = a + 1 holds for every a € {0,...,r — 2}.
Using Lemma 2.9 again we obtain the equalities g(a) = r for all @ > r — 1. Thus, g equals
Py 1. O]

5.1.1 Polynomials in three variables of small border rank

In this subsection we prove that there is no wild homogeneous polynomial F' in three variables
of border rank at most deg(F’) + 2.
We start with the following observation.

Lemma 5.3. Let d be a positive integer and let e = [%1 Let Hy—y € Clxy,x2|q—1 and Hy €
Clx1, x2]q be homogeneous polynomials. There exists an element c€e—1+& € Ann(zoHy—1+Hy)
with e 1 € (C[Oél,()ég]efl, fe S (C[Oq, 042]6 and fe 75 0.

Proof. Let T* = C[z1,22] and T = Clay, as]. We consider the restriction of the action of
S = Clag, a1, 0] on S* = Clzg, 1, z2] to an action of T on T*. If H is an element of T, we
write Anny(H) if we compute the annihilator ideal with respect to the 7" action.

Let F = xoHy—1 + Hg. We have (ap€e—1 + &) aF = x0(EeaHg—1) + (e—10Hg—1 + EeuHy).
Therefore, we need to choose £ € Annp(Hg—1). If there exists a non-zero & € Annp(Hg—1) N
Annp(Hy) we can set {,—1 = 0 and we are done.

Otherwise, let h be the Hilbert function of T/ Anng(Hy—1). The C-vector space

lin{& Hy | & € Anng(Hyg—1)e}
has dimension e + 1 — h(e). On the other hand the vector space
lin{€e—13Hg1 | -1 € Te—1}

is of dimension h(e — 1). It is enough to show that these two vector subspaces of T _ have a
non-zero intersection. It suffices to establish the inequality

e+1—he)+hle—1)>d—e+2. (5.4)
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By the definition of e we have d + 1 < 2e. We claim that h(e — 1) — h(e) is non-negative. If
Anng(Hg_1)e—1 is non-zero, then the inequality h(e — 1) — h(e) > 0 follows from Lemma 2.12.
On the other hand, if we have Anny(Hg—1)e—1 = 0 and h(e) > h(e — 1), then Annp(Hg—1), is
zero. Since T/ Annr(Hg—1) is Gorenstein, we get h(d — 1 —e) = h(e) = e + 1. This gives a
contradiction with d + 1 < 2e. These remarks imply Equation (5.4). O

Now we present the main result of this subsection.

Proposition 5.5. Let S = Clay, a1, az] be a polynomial ring with dual ring S* = Clzg, 1, z2).
Let F' € S} be a non-zero polynomial for some d € Z~q. If the border rank of F' is at most d + 2,
then we have cr(F') = sr(F) = br(F).

Proof. By |11, Prop. 2.5] we may assume that br(F) equals d + 2. Furthermore, sr(F') = cr(F')
holds since Hilb,(P?) is irreducible for every positive integer r. If we have cr(F) < d + 2, it
follows from

d+2=">br(F)<sr(F)=cr(F)<d+2

that there are equalities cr(F) = sr(F) = br(F'). Assume that we have cr(F) > d + 2. From
Corollary 5.1 we obtain that there is an ideal I C Ann(F) with [I] € Slipg,9, and Ig # Ig4.
From Lemma 5.2 we get that S/I has Hilbert function ha+2,1. We may assume that I equals
(a0, Fyy2(a1, az)). It follows from Theorem 3.66 that (af) - (o, 1, a2)? 2 is contained in I C
Ann(F). Thus, o3 is in Ann(F) and consequently, F' is of the form F = xoHy 1 + Hy with
Hy; 4 € C[xl,xg]d,1 and H, € C[;Cl,xg]d.

Let e = [%1 By Lemma 5.3, there is an element 7. = apfe—1 + & € Ann(F) with
€1 € Clan, ag)e—1 and non-zero & € Clag, age. Let J = (a,n.). We have J C Ann(F) and
S/J has Hilbert polynomial 2e < d+ 2. Moreover, J is saturated. Indeed, let > be the lex order
with as > a1 > ag and let J’ be the initial ideal of J with respect to the order >. We have
J' = (a3, M) where M belongs to {af, a?lo@, ...,a5}. In particular, J’ is saturated. Thus, so
is J by Lemma 2.7. It follows from Proposition 2.91 that we have cr(F) < d + 2. t

Remark 5.6. In [3, p. 37] in the paragraph above Remark 13, there is an example that suggests
that there could exist a wild polynomial in og(v6(P?)). Proposition 5.5 shows that there is no
such polynomial.

In the context of Proposition 5.5, there is the following natural question.

Problem 5.7. Does there exist a homogeneous polynomial F' € Clzg,x1,z2] with br(F) #
sr(F)? If it does, what is the smallest possible degree of such a polynomial?

It follows from Proposition 5.5 that if there exists a wild polynomial F' € C|xg, z1, 224, then
2+4d
we have d > 6 since otherwise oqy2(v4(P?)) is equal to p(*a")-1 by the Alexander-Hirschowitz

theorem [7, Thm. 1.2].
5.1.2 Quartics in four variables of small border rank

There are no wild cubics in four variables [12, Thm. 1.3]. In this subsection we prove that there
are no wild homogeneous quartics in four variables of border rank at most 6.

Proposition 5.8. Let S = Clay, ..., as] be a polynomial ring with dual ring S* = Clxo, ..., z3].
Let F' € S} be non-zero. If the border rank of F is at most 6, then we have cr(F') = sr(F) = br(F).
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Proof. By [11, Prop. 2.5] we may assume that br(F) equals 6. Since Hilbg(P?) is irreducible (see
[20, Thm. 1.1]), it is enough to show that we have cr(F) < 6. Assume that it does not hold.

By Corollary 5.1 there is an ideal [I] € Slipg 3 with I C Ann(F) and I # I4. It follows from
Lemma 5.2 that S/T has Hilbert function hg . We may assume that I is equal to (ag, v1)1. By
Theorem 3.66 we get (ag, a1)?> € Ann(F). Thus, we may restrict our attention to the case that
we have F' = 2¢C} + 21C2 + D with Cy, Cy € Clza,x3]3 and D € Clza, x3]4.

There is a polynomial 6 € Clag, asls satisfying 6.C; = 6.Cy = 0. By a linear change of
variables in C[ag, a3] we may assume that 6 is one of the following:

2. 0 = ddas;
3. 0= agag(ag — 043).

We study this case by case. We further simplify F' by a linear change of variables and in each
case we find a homogeneous ideal J C Ann(F') whose initial ideal with respect to the lex order
with g > a3 > a1 > «q is saturated and the Hilbert polynomial of the corresponding quotient
algebra is 6. Thus, cr(F') < 6 is a consequence of Lemma 2.7 and Proposition 2.91. In each case
the given set of generators of J is a Grobner basis. We may assume that Ann(F'); is zero by
Proposition 5.5 and [12, §3.1].

We start with case 1. Up to a linear change of variables in S* we have one of the cases:

LA F = zo(23z3 + azd) + 12223 + Q with a € C and Q € Clra, 23)4;
1.B F = xo(x323 + az:gm%) + :L'll'g + Q with a € C and Q € Clzo, z3]4;
1.C F = $01‘21‘§ + azlx% + Q with @ € Clza, x34.

Let a3 .Q = Axg + Bxs. Corresponding to the above cases, the following ideals contained in
Ann(F') show that the cactus rank of F' is at most 6:

— 2 2 2 3 A B .
LA J = (af, apai, af, gz — a3, a1, 0y — 5 0pQai3 — 5 010203);

— (2 2 2_ 1. .9 3 A A—B_ 2y
LB J = (ag, au, af, arqe, oy — 50103, a5 — Gapazaz + L a1ag);

2 2 2 A 2 B 2
1.C J = (ao,aoal,al,alag,aoaz,ag — 50p03 — €a1a3).

Now we consider case 2, namely we assume that oz%ozg_nCl = a%ag_:C’g is zero. Up to a linear
change of variables in S* and excluding possibilities already considered in case 1, we have one of
the cases:

2.A F = xo(23 + ax3) + z1(vex3 + bx3) + Q with a,b € C and Q € Clza, 73)4;
2.B F = z0(23 + arax3) + 2125 + Q with a € C and Q € Clxg, 23)4.

Let a3a3.Q = Axg + Bxs. Corresponding to the above cases, the following ideals contained
in Ann(F") show that the cactus rank of G is at most 6:

2.A If a is non-zero, take J = (a%, apQ, a%, ao o — %aoag, Qponas, a%ag — %aoag— galagag).
A

If a is zero, take J = (a3, apai, a?, apas, a1ad, adaz — gaoag — %alagag);

2 2 2 2 A 2 B 2
2.B Take J = (o, a1, af, 10, oy — 0103, 03 — G oty — ¢ Q103).
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Finally we consider case 3, that is we assume that asag(ae — a3)iC1 = asag(as — a3)iCy is
zero. Up to a linear change of variables in S* and excluding possibilities considered in case 1, we

have one of the cases:
3.A F = xo(x3 + axd) + z1(2323 + 1223 + b23) + Q with a,b € C and Q € Clra, 23)4;
3.B F = xo(23 + azdzs + axer3) + 2123 + Q with a € C and Q € Clra, 234

Let (a2ag — agag)_@ = Azo + Bxjs. Corresponding to the above cases, the following ideals
show that the cactus rank of G is at most 6:

3.A If a is non-zero, take J = (ad, apaq, a?, aa1a2+%0zoa2—aa1a3+(b—%)aoa3, QpoQr3, a3 —

2 A 2 B 2
Qo0 — Gapas — 50105).

: (A2 2 2,1 2 2 2 A 2
If a is zero, take J = (af, apou, oF, pa, s + 300G — A1 203, A5O3 — a0y — G0 —
B 2).
50610[2)7

3.B If a is zero, then we are in case 2.B. Therefore, assume that a is non-zero. Take

2 2 2 @ 2 2 , A 2
J = (040, o0, 0, 1 2, Opxax3 — lpxg — §a1a3, Qox3 — ig(vg — gO&oO&Z +

aA — 3B
T @ad)

O

5.1.3 Wild quintic in four variables of border rank 7

In Proposition 5.8 we showed that there are no wild quartics in four variables of border rank 6.

In this subsection, we give an example of a wild quintic in four variables of border rank 7.

Proposition 5.9. Let S = Clag, a1, a2, a3] be polynomial ring with graded dual ring S* =
Clzo, 1,2, 73]. Let F = zox3 + 207323 + 112322 + 1125, We have br(F) = 7 and cx(F) > 7.
Thus, F' is wild.

Proof. The Hilbert scheme Hilb7(P?) is irreducible by [20, Thm. 1.1]. Therefore, there is an
equality sr(F') = cr(F) so it is enough to show that we have br(F) = 7 < cr(F'). Furthermore,
by [11, Prop. 2.5] it suffices to show that the inequalities br(F) < 7 < cr(F) hold.

We have (ag, a1)? € Ann(F). If J is equal to (Ann(F)<3)+(a?), then [J] is in Hﬂbgf’?’ and it
follows from Theorem 3.66 that there is an ideal [J'] € Slip; 3 with (J')>5 = J>5. In particular,
we have J! = J5 C Ann(F)s so J' is contained in Ann(F'). The inequality br(F) < 7 follows
from Proposition 2.92.

Now we show that we have cr(F) > 7. Otherwise, by Proposition 2.91 there exists a ho-
mogeneous, saturated ideal X' C Ann(F) such that S/K has Hilbert polynomial 7. Since
Hg/ ann(ry(@) = hz3(a) holds for all a < 3, we have K<3 = Ann(F)<3. We get (ap,a1) =
(Ann(F)<3) C K. This is a contradiction since K; = Ann(F'); is zero.

The claims that [J] is in Hilb}g’3 and that we have (ap, @1) = (Ann(F')<3) where checked in
Macaulay?2 [43] using the following code:

S=QQ[x_0..x_3];

F=x_0*x_2"4+x_0%x_2"3*%x_3+x_1%x_2"2*x_3"2+x_1%*x_374;

Ann=inverseSystem(F) ;

AnnUpTo3 = ideal (select ((entries mingens Ann)#0, (i) -> (degree i)#0 <= 3));
J=AnnUpTo3 + ideal(x_2"7);
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hilbertSeries(J, Order=>12)

saturate (AnnUpTo3) .

]
5.1.4 Cubics in five variables of minimal border rank
In this subsection we let S = Clay, ..., a4] be a polynomial ring and S* = Clxy, ..., z4] be the

dual ring. Let C € S* be a homogeneous polynomial of degree 3. We say that C is concise if
Ann(C); is zero. It is known that there exists a wild concise cubic in S* of border rank 5 (see
[12, Thm. 1.3]) and that a concise cubic in S* of border rank 5 is wild if and only if its Hessian
is zero (see [53, Thm. 4.9]).

Using Theorem 3.66 we obtain in a simple way that up to a linear change of variables, the
cubic given in [12, Thm. 1.3| is the unique wild cubic in S* of border rank 5.

Proposition 5.10. Let S = Clayg,...,a4] be a polynomial ring with graded dual ring S* =
Clxo, ..., xz4]. Up to a linear change of variables, the cubic

zors — 1 (23 + 4)% + 2022 (5.11)

is the unique wild cubic in S* of border rank 5.

Proof. Let C' € S be a wild cubic of border rank 5. By [12, Thm. 1.3] we may assume that
C is concise. By Proposition 2.92 there is an ideal I C Ann(C) with [I] € Slips 4. If the
Hilbert function of S/T is not hs.1, then we have I3 = I3 by Lemma 5.2. Thus, cr(C) < 5 holds
by Corollary 5.1. Consequently, C' is not wild since there is an equality cr(C) = sr(C) (see
[20, Thm. 1.1]). Therefore, we may assume that I is equal to (ao, Qaq, g, F(ag,a4)) for some
F € Clas,a4]s. Since [I] belongs to Slips 4 it follows from Theorem 3.66 that (g, v, 2)? -
(g, 1, ..., a4) is a subset of Ann(C) and thus, (ag, a1, as)? is contained in Ann(C'). Hence we
have

C = 20Qo + 21Q1 + 22Q2 + C" where Qo, Q1,Q2 € Clas, z4]2 and C" € Clas, 24]3.

Moreover, Qq, @1, Q2 € C[xs,x4]2 are linearly independent since C' is concise. Therefore, after a
linear change of variables we may reduce C' to the form given in Equation (5.11). O

Remark 5.12. The annihilator ideal Ann(C') of a concise cubic C' has a minimal generator of de-
gree 3 (see [15, Thm. 5.4| for a vast generalization). Therefore, the form given in Equation (5.11)
should be compared to the form given in [16, Thm. 4.5].

5.2 (Border) cactus rank of a homogeneous subspace divisible by
a large power of a linear form

In this section we compute the cactus rank and the border cactus rank of a homogeneous subspace
of a divided power ring divisible by a large power of a linear form. This result is based on [40,
Thm. 4.2 and 4.3|. However, here we strengthen the assumptions to omit technical difficulties.
Let k be an algebraically closed field, let n be a positive integer and consider polynomial
rings S = klaq,..., o] C klag,...,a,] = T with graded dual rings S* = kgplx1,...,2,] C
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Kap[wo, ..., zn] = T*. Let d; be a positive integer and W C SZ; be a linear subspace. For a
non-negative integer ds we define

whomdz — { phomdz | f ¢ W C TS, .

where we have
deg(f)

fhom,dg _ Z Fx[d2+d1 1] €T§1+d2

for every f = Fyegp + -+ Fo € W with F; € S. We show that there are equalities
cr(Whemdzy — phep(Whemdzy = dimy S/ Ann(W)

if the inequality do > d; holds.

We start with a lemma which is based on [4, Lem. 2|.
Lemma 5.13 (|40, Lem. 3.6 and 3.8]). We have:
(i) Ann(W)rem C Ann(Whomdz) - gnd
(i3) (Ann(W)hom) o, = Ann(Whomdz)_, .
Proof. The proof of the lemma is based on the following calculation. Let

= Oéo@o + Oéo @1 + -+ ®d7

with ©; € S; and let f € W. We can rewrite I'_f"% as follows

min(d; —e,d)

I thmdQ—Z Z (0 70;) e T IIE,)
Jj=

min(di —e,d)

=Z Z O R (CTW %)

min(d; ,dl +d2—d) min(di —e,d)

d1+da—d—e
- ¥ I S CYNT M)

(5.14)

e=0 j=0
min(dy,d1+d2—d) min(d; —e,d)
_ [d1+d2—d—e]
= Z Ly Z @j _IFe+j .
e=0 7=0

(i) Let 8 = ©¢ + - —|— O4 € Ann(W), where O; is homogeneous of degree i. We show that
ohom = Oy + al 'O + - - 4+ ©,4 belongs to Ann(Who™%). We have

Ann(Whem®) = (7} Ann(fhome), (5.15)
few

Thus, it suffices to show that "™ is in Ann(f"*™%) for every f € W. If f belongs
to W, then @ is in Ann(f). We set T' = 0" in Equation (5.14). For every e =
0,...,min(dy,d; + do — d) the sum E;m% dl_e’d) ©juF.,; is zero since O.f is zero. We
get ghom | fhomadz — () a5 claimed.
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(ii) The inclusion Ann(W)h*™ C Ann(W"om42) follows from part (i). We claim that we have
(©lag=1) € Ann(f) for every f € W and © € Ann(fhomdz)_, . (5.16)

Before proving the claim, we show how to conclude the proof of part (ii). Let © €
Ann(Whomd2) _, = Tt follows from Equation (5.15) that © is in Ann(f"™42) for every
f € W. Thus, by Equation (5.16) we get

Olae=1 € ﬂ Ann(f) = Ann(W).
few
As a result © belongs to (Ann(W)"™),.

We are left with proving the claimed Equation (5.16). Pick f € W. Assume that the
inequality d < ds holds and let © = ag@o + ag_l@l + .-+ 0,4 with ©; € S; be such that
O fhomdz ig zero. We claim that (0|a,=1)f is zero. By Equation (5.14) (with T' = ©) we

have
dq min(d;—e,d

)
di+da—d—e
0= gt ST 9F.,.
=0

e=0

Since the exponents at x( are pairwise different, we get

min(di —e,d)
Z O;.F.y; =0 for every di > e > 0.
§=0

This implies that (©]q,=1)f is zero. O

We use the following result, which bounds the degree from which 7'/ Ann(W)"*™ agrees with
its Hilbert polynomial.

Lemma 5.17 ([40, Cor. 3.3]). Let W C 52, be a linear subspace. The equality
H(T/ Ann(W)hom ¢) = dimy S/ Ann(W)
holds for every e > d;.

Now we present the main result of this section. The version for polynomials instead of
arbitrary subspaces can be strengthened, see [40, Thm. 4.3]. Recall the notion of a standard
Hilbert function from Definition 2.93.

Theorem 5.18 ([40, Thm. 4.2]). Let W C SZ, be a linear subspace and r = dimy S/ Ann(W).
Let dy be a non-negative integer. We have the following:

(i) The cactus rank of W™ s at most r.

(i4) If we have dy > di, then there is no homogeneous ideal J C Ann(W"omd2) sych that
T/J has an (r — 1,n + 1)-standard Hilbert function. In particular, the border cactus rank
ber(Whemsdz) of Whomsdz equals 1.

(iii) If we have dy > dy + 1 and J C Ann(Whomd2) js q homogeneous ideal such that T/J has
an (r,n + 1)-standard Hilbert function, then the equality J = Ann(W)"™ holds.
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Proof.

(i) We have Ann(W)hom C Ann(Whomdz) by Lemma 5.13(1). The Hilbert polynomial of
T/ Ann(W)hem is dimy S/ Ann(W) = r. Moreover, the ideal Ann(W)"™ is saturated.
Hence the claim follows from Proposition 2.91.

(ii) We have H(T/Ann(W)"*™ d;) = r by Lemma 5.17. Therefore, by Lemma 5.13(ii) we
have

H(T/ Ann(Whomdz) q,) = r.,

Thus, there exists no ideal J € Ann(W"°™9) such that 7/.J has an (r — 1,1+ 1)-standard
Hilbert function. By Proposition 2.94 we get ber(Whemd2) > r which together with
part (i) implies that ber(W"om42) equals 7.

(iii) Assume that J C Ann(W"°™9) is such that T/J has an (r,n + 1)-standard Hilbert
function. By Lemmas 5.13(ii) and 5.17 we get

H(T/ Ann(W"omd2) dy) = H(T/ Ann(W)h°™ dy) = 7.

In particular, we have Jy, = (Ann(W)"*™),,. Since Ann(W)"*™ is generated in degrees
smaller or equal di + 1 < d, it follows that J; O (Ann(W)"™), holds for every d > ds.

Ideals J and Ann(W)hom have the same Hilbert polynomial. Hence we get

J = (Ann(W)hom) = Ann(W)rem, O

5.3 Distinguishing secant from cactus varieties

In this section we work over the field of complex numbers. We show that for all d > 7, the
cactus variety 14 (v4(P%)) has two irreducible components: 714 (v4(P°)) and the secant variety
o14(va(P%)). Moreover, we describe the points of 714(va(P%)) and present an algorithm that
verifies whether a point in 14 (v¢(P%)) is in 14 (v4(IP%)). These results are special cases of [40,
Thm. 1.4 and Thm. 1.6] which address the case of r14(v¢(P")) for all n > 6 and all d > 5 (]40,
Thm. 1.4]) or d > 6 (|40, Thm. 1.6]). Our presentation follows [40] with minor changes and some
simplifications due to additional assumptions.

For X = A" or P", we denote by Hilb%°"(X) the open subset of the Hilbert scheme Hilb,(X)
consisting of points corresponding to Gorenstein subschemes. Let HilbS”*™(X) denote its
smoothable component. It is a key observation, that the cactus variety ., (Vd(IP’”)) is actually
determined by the Gorenstein locus of the Hilbert scheme. More precisely, we have

rr(va(P™)) = | J{(va(R)) | [R] € Hilb&or (Pr)} (5.19)

by [11, Prop. 2.2|. Therefore, if HilbTo" (P") is irreducible then k, (v4(P")) is equal to oy (v4(P™)).
Note that a description of the cactus variety, similar to the one given by Equation (5.19), works
over an arbitrary field (see [17, Cor. 6.20]).

If we have either » < 13 or r = 14 and n < 6, the scheme HilbG°"(A") is irreducible by [21,
Thm. A]. Therefore, in that case, r,(vg(P")) is equal to oy (vg(P™)). Thus, the cactus variety
K14 (Vd(IF’G)) that we study in this section is the simplest example of a reducible cactus variety.
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We assume that we have d > 7. However, the presented results hold for all d > 6, and some of

them, even for d = 5, with more technical proofs. See [40] for this as well as the case n > 6.
We start with defining for all d > 3 an irreducible, closed subset 714 (Vd(]P6)). Consider the

following rational map ¢, which assigns to a scheme R its projective linear span (vg(R))

@ Hilb§em (PO ——--- » Gr(14, Sym? C").

Let U C Hilbﬁor (P%) be a dense open subset on which ¢ is regular. Consider the projectivized
universal bundle PS over Gr(14, Sym¢? C7), given as a set by

PS = {([P)], [p]) € Gr(14,Sym?C") x P(Sym?C") | p € P},

together with the inclusion i : PS < Gr(14, Sym? C”) x P(Sym?C7). We pull the commutative
diagram

» Gr(14,Sym? C™) x P(Sym? C")

\ —

Gr(14, Sym? C7)

back along ¢ to U, getting the commutative diagram

U x P(Sym? C")

Let Y be the closure of ¢*(PS) inside Hilb$" (P%) x P(Sym? C7). The scheme Y has two irre-
ducible components, Y7 and Y3, corresponding to two irreducible components of ’Hilbﬁ” (P%), the
schemes Hilbﬁor’smﬂw) and Hig61, respectively. For the description of irreducible components
of Hilb{P (P6) see [21].

We have

014 (Vd(IP’6)) = pry(Y7), and we define
ma(va(P®)) = pry(Ya).

By construction, if r14(vq(P%)) is reducible, then ny4(vq(P%)) and o4 (va(P?)) are its irreducible
components.
In the next lemma, we bound the dimension of 714 (va(P°)).

Lemma 5.20 ([40, Prop. 5.5]). The irreducible set m14(va(P®)) has dimension at most 89.

Proof. There is the following commutative diagram

P(Sym?C) DoUn +——— YUYy —-----ooooeo—-3 PS
x !
Hilb§er (PS) —— HilbS™"™ (P) U H 1661 —-» Gr(14, Sym? C7)

where o and 7 denote o14(v4(P%)) and 914 (v4(P%)) respectively, and x : Y3 U Yo — Hilby" (PO)
is the projection. We have dimn4(v4(P%)) < dim(Ys) = m + 13, where m equals dim Hig61
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and 13 is the dimension of the general fiber of the map x|y, : Y2 — Hige1. It follows from [59,
Thm. 1.1], that m is equal to 76 and therefore, we get dim 714 (vq(P%)) < 89. O

One of the reasons why the case of P9 is simpler than the case of P" for n > 6 is the following
lemma which follows from [59].

Lemma 5.21. Let S = Clay,...,as] be a polynomial ring and let S* = Clzy,...,x6] be its
graded dual ring. For a polynomial f = I3+ Fy + Fy + Fy € SZ3 with F; € S} consider the
conditions:

(i) Apolar(f) has (local) Hilbert function (1,6,6,1);
(ii) Apolar(F3z) has Hilbert function (1,6,6,1);
(iii) [Spec Apolar(f)] is a point of HilbCeT (AS) \ HilbT™ ™ (AS);
(iv) [Spec Apolar(Fs)] is a point of HilbGer (AS) \ HilbSm ™ (AS).
Conditions (i) and (ii) are equivalent. Conditions (iii) and (iv) are equivalent.

Proof. The equivalence of (i) and (ii) follows from [59, Rmk. 2.2] and the other equivalence is a
consequence of [59, Thm. 1.1]. O

In Lemma 5.22 we identify for all d > 7 some points in k14 (Vd(]P’6)) \ 014 (I/d(IP’G)). Later, we
show that the closure of the locus of these points is the irreducible component 714 (vq(P°)).

Lemma 5.22 (|40, Prop. 5.6]). Let T'= Clay, . . ., ag] be a polynomial ring with graded dual ring
T* = Clxo, . .., x¢|. Let (yo,y1,-..,Ys) be a C-basis of T}'. Assume that G is equal to ygf‘?’P for
some natural number d > 7 and P € Ty. Define f := Ply,—1 = F3 + >+ F1 + Fy € R* :=
Clyr,---,y6]- If [ satisfies the following conditions:

(a) Apolar(f) has (local) Hilbert function (1,6,6,1),
(b) we have [Spec Apolar(f)] & HilbS™ ™ (AS),
then [G] is a point of k14 (va(P%)) \ o14(va(P%)).

Proof. Let F! = (d —i)!F; for all i € {0,1,2,3} and let f' = Fi + F) + F| + Fj. We have

G=> uE. (5.23)

By Lemma 5.21, conditions (a) and (b) hold with f’ instead of f. There is an equality
dimc(R/ Ann(f")) = 14 by condition (a). Therefore, from Theorem 5.18(i) and Equation (5.23)
we get cr(G) < 14.

From Proposition 2.92, if [G] belongs to o14(rq(P®)) then there exists J C Ann(G) with
[J] € Slipyyprs C Hilb:};“’ﬁ. Thus, [Proj(T/J)] is in Hilb;7(P®). From Theorem 5.18(iii) it
follows that we have J = Ann(f’)"™, so we get

[Spec(R/ Ann(f"))] € HilbS™*™(AY).
This contradicts condition (b). O
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The following lemma is an analogue of [40, Lem. 5.3|.

Lemma 5.24. Let S = Clay, ..., a4] be a polynomial ring and S* = Clxy,...,xz¢] be the graded
dual ring. Define subsets

A= {f € 823 | S/ Ann(f) has local Hilbert function (1,6,6,1)}

and

B ={f e A|[SpecS/Ann(f)] ¢ HilbS*"(A%)}.
The subset A is irreducible and 84-dimensional. Furthermore, B is dense in A.

Proof. It follows from Lemma 5.21 that for a given f = F3 + Fy + Fy + Fy € SZ5 we have f € A
(respectively, f € §) if and only if Fy belongs to A (respectively, F3 is in §) Moreover, A is
open in SZ4 so there are equalities dim A = dim St, =84

We have a well defined morphism -

w0 A — HilbSer (AS) C Hilbya(AS)

that maps f to [SpecS/ Ann(f)] (see [40, Thm. 7.1] which is based on [59, Prop. 2.12]). By
definition, B is equal to 7' (H1661 \Hilbﬁfr’sm(Aﬁ)), where Hig61 is the irreducible component
of Hilbﬁ‘”(AG) other than the smoothable component. It follows that B is open, and hence dense
in A. O

Now we present the main result of this section.

Theorem 5.25 ([40, Thm. 1.1]). Let d > 7 be an integer and T* = Clzg,x1,...,x¢]. The
cactus variety rk14(va(PTT)) has two irreducible components: the secant variety o14(va(PT7))
and the other one, denoted by m14 (I/d(PTl*)), Consider the map ¢ : PI7 x PT3 — PT; given by
([yol, [P]) — [ygng]. Its image is 7714(Vd(IP’T1*)).

Proof. Let
Up = {laoxo + - - - + agze] € PIY | a; € C and ag # 0}.

Let S* = Clx1,...,z¢). Given [yo] € Uy with yo = apzo+-- -+ asxe and P € T, we can consider
Plyy=1 as an element of S*. Note that it is independent of the choice of representative yy of the
class [yo]. Indeed, it is obtained by substituting zo = 1 — 2?21 oz;. Recall the definition of the

set B from Lemma 5.24. We use the following subset of PT, T x PT3:
D = {[y), [P] € PT} x PT3 | [yo] € Up and P|,,—1 € B}.

Observe that the condition P|,,—1 € Bis independent of the choice of representatives yo and P of
[yo] and [P]. By construction and Lemma 5.24, D is irreducible and of dimension 6+dim B—1 =
89. We have dim(PTy x PT3) = 6 + 83 = 89. Thus, D is equal to PT} x PT;. The morphism v
is closed. We get

Y(PT} x PTY) = (D).

By Lemma 5.22 the set-theoretic image (D) is contained in n4(va(PT7)). Therefore,
Y(PTy x PTY) is a subset of nig(va(PTy)). Observe that 1 has finite fibers. It follows that
Y(PT} x PTY) is an 89-dimensional, irreducible closed subset of 714 (I/d(PTl* )) The latter variety

115



is irreducible and of dimension at most 89 (see Lemma 5.20). Thus, we have ¢(PT} x PTy)
ma(va(PTY)).

Having described the irreducible component of r14(vq(P®)) other than o14(v4(P%)) we can

oo

algorithmically check whether a given point [G] € k14 (va(P®)) belongs to o14(va(P9)).
We start with the following lemma which characterizes the points of £14 (va(P%)) \o14 (va(P9)).

Lemma 5.26. Let T = Cla, . .., ag] be a polynomial ring and T* = Clxy, . .., xz¢] be the graded
dual ring. Let d > 7. The point [G] € K14 (yd(IP’G)) does not belong to o4 (l/d(Pﬁ)) if and only if
there exist yo € T} and P € Ty such that G is equal to yg_3P and for any completion of yo to a
basis (Yo, - - -,ye) of T (with dual basis equal to (Bo, ..., L)) we have:

(a) Apolar(P|y,=1) has Hilbert function (1,6,6,1),
(b) [Spec Apolar(P|,,=1)] & HilbS ™ (AS).

Proof. If yo € TT and P € T3 are such that G' equals yg_3P and there exists a completion of g
to a basis (yo,...,ys) of T} for which conditions (a) and (b) hold, we get [G] ¢ o14(va(P?)) by
Lemma 5.22.

Assume that we have [G] ¢ 014 (v4(P®)). By Theorem 5.25 there exists a linear form yo € T}
with yf]l_3|G. We claim that G is not divisible by yg—z' Indeed, otherwise, from Theorem 5.18(ii)
we get ber(G) < 8, so [G] belongs to kg (vg(PP)) = og(va(P®)) C o14(rva(P®)). We showed that
G is equal to yg_gP for some P € Ty. Extend yo to a basis yo,y1,...,¥%6. Let f = Ply,=1 €
Clyi, .- -,ys). Suppose f equals F3 + Fy + Fy + Fy.

Now we prove that conditions (a) and (b) hold. Let f' = Fj + F} + F| + F} € Cly1,. .., yq)
with F/ = (d — i)!F;. By Lemma 5.21, it is enough to show that conditions (a) and (b) hold for
[ instead of f = P|y,=1. We have

By Lemma 5.13 (i) there is an inclusion
Ann(f")*™ C Ann(G).

If we have dimc ( Apolar(f’)) < 13, then cr(G) < 13 holds by Proposition 2.91, since Ann(f’)"™
is saturated and 7/ Ann(f’)"™ has Hilbert polynomial dimc (Apolar(f’)). We have [G] €
k13 (va(P)) = o13(va(P®)) C o14(v4(PY)), a contradiction.

From Theorem 5.18(ii) we obtain dimc (Apolar(f’)) < 14, and thus, dim¢ (Apolar(f’)) =
14. We claim that we have [ProjT/ Ann(f")*™] ¢ Hilbi7(P%). Indeed, otherwise, there is a
point [J] € Slipy, g with

J = Ann(f))"™ C Ann(G).

By Proposition 2.92, this contradicts the assumption that [G] does not belong to o4 (Vd(JP’G)).
We showed that we have [Proj T/ Ann(f')"™] ¢ Hilb{7 (P5) and therefore, condition (b) holds.
Hence the algebra Apolar(f’) has Hilbert function (1,6,6,1) by [59, Thm. 1.1]. Thus, condition
(a) also holds. O

We present the aforementioned algorithm.
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Theorem 5.27 ([40, Thm. 1.6]). Let T' = Clay, ..., as] be a polynomial ring with graded dual
ring T* = Clao, ...,x¢]. Given an integer d > 7 and [G) € k14(va(PTY)) C PT} the following
algorithm checks if [G] belongs to o14(va(PTY)).

Step 1 Compute the ideal a = \/((AnnG)<4_3) C T

Step 2 If ay is not 6-dimensional, then [G) is in o14(va(PTT)) and the algorithm terminates.
Otherwise, compute { K € T} | a12K = 0}. Let yo be a generator of this one-dimensional
C-vector space.

Step 3 Let e be the mazimal integer such that y§ divides G. If we have e # d — 3, then [G] is
m o14 (Vd(IP’Tl*)) and the algorithm terminates. Otherwise, let G = yf)l_?’P. Pick a basis
Y0, Y1,---,Ye of TY and compute f = P|y—1 € R* := Cly1, ..., Ys].

Step 4 Let I = Ann(f) C R. If the (local) Hilbert function of R/I is not (1,6,6,1), then [G] is
m o4 (I/d(PTI*)), and the algorithm terminates.

Step 5 Compute r = dimc Hompg (I, R/I). The point [G] is in 014 (l/d(PTl*)) if and only if we
have r > 76.

Proof. Assume that [G] does not belong to 014 (v4(IP%)). There exist a basis (yo, . . ., ys) of T} and
P € Ty asin Lemma 5.26. Let f = P|,,—1 and define f’ = F3+Fy+F|+F; € Clyi, ..., ys| where
F! equals (d — i)!F;. We have G = y([)d_3]F§ + y([)d_Z]FQ/ + y([)d_l]F{ + y([)d}Fé. By Lemma 5.13(ii),

there is an equality Ann(G)<4_3 = (Ann(f")"*™)<4_3. Moreover,

((Ann(f")"™)<q_3) = Ann(f")"om

holds since we have d — 3 > 4 > deg(f’). Therefore, we get

a= \/(AHH(G)gd—s) = \/Ann(f’)hom = (B1,---,56)s

where f1,...,86 € 11 are dual to yi,...,ys € T}. This shows that if the C-linear space
( (Ann(G)Sd,g))l is not 6-dimensional then [G] is in o14(v4(P%)). Therefore, in that case,
algorithm stops correctly at Step 2.

Assume that the algorithm did not stop at Step 2. If G is of the form as in Lemma 5.26,
then yo divides G exactly (d — 3)-times. Otherwise [G] belongs to o14(v4(P®)) and the algorithm
stops correctly at Step 3.

Assume that the algorithm did not stop at Step 3. The algorithm does not stop at Step 4 if
and only if condition (a) of Lemma 5.26 is fulfilled.

If the algorithm did not stop at Step 4, then P satisfies condition (a) from Lemma 5.26.
Hence [G] is in 014(vq(P®)) if and only if P does not satisfy condition (b). The irreducible
component Hilbiger of Hilb{?" (AS) is 76-dimensional and Hilb{P"(A®) is smooth at points in
Hilbygg \ HilbS ™ (A®) (see [59, Thm. 1.1 and Claim 3]). Thus, P does not satisfy condition (b)
from Lemma 5.26 if and only if we have

dim¢c Hompg(I, R/T) > 76,

since the left term is the dimension of the tangent space Tgpec r/ I]Hilbﬁo’" (A®) by [49, Prop. 2.3].
O

An implementation in Macaulay2 [43| of the algorithm from Theorem 5.27 is presented in
140, SAJ.
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5.4 Distinguishing Grassmann secant from Grassmann cactus va-
rieties

Let d > 5 be an integer. In this section, we state a theorem from [40] describing the irre-
ducible component 7g 3 (Vd(IP’4)) of the cactus variety kg3 (Vd(IP’4)) other than the secant variety
08,3 (yd(]P’4)). This is analogous to Theorem 5.25.

Theorem 5.28 (|40, Thm. 1.2]). Let d > 5 be an integer and T* = Clzg,x1,...,24]. The
Grassmann cactus variety kg3 (Vd(IP’Tl*)) has two irreducible components: the Grassmann secant
variety og 3 (Vd(IP’TI*)) and the other one, denoted by ng 3 (ud(IP’Tl*)). Consider the map 1 : P11 X
Gr(3,Ty) — Gr(3,T) given by ([yol, [U]) — [yd 2U]. Its image is ns,3(va(PTY)).

Theorem 5.28 can be generalized for all n > 4 (see [40, Thm. 1.5]). However, we present the
simpler version due to its similarity to Theorem 5.25.

By [20, Thm. 1.1], for all » < 8, the Hilbert scheme Hilb,(P") is reducible if and only if
we have n > 4 and r = 8. Furthermore, for all n > 4 and » = 8, a general point of the non-
smoothable irreducible component of Hilb,(P™) corresponds to a subscheme whose coordinate
ring has local Hilbert function (1,4, 3). Therefore, Theorem 5.28 describes the other irreducible
component of the Grassmann cactus variety in a minimal case when such a component exists.

As in Section 5.3, we can characterize the points of 7g3 (ud(]P’")) \ 083 (Vd(IP’”)) (see |40,
Lem. 6.9]) and obtain an algorithm analogous to the one from Theorem 5.27 (see [40, Thm 6.8|).
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