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Abstract

The main object of study of this thesis is a class of multigraded Hilbert schemes. Given a
smooth projective toric variety X with the Cox ring S[X] we consider the Hilbert function of r
points on X in general position, i.e. hr,X : Pic(X)→ N given by

hr,X([D]) = min{dimC Γ(X,OX(D)), r}.

The multigraded Hilbert scheme Hilb
hr,X
S[X] associated with S[X] and hr,X has a distinguished

irreducible component Slipr,X which is the closure of the locus of points corresponding to radical
ideals that are saturated. The aim of this dissertation is to find necessary or sufficient conditions
for a point of Hilb

hr,X
S[X] to belong to Slipr,X . This problem is motivated by the border apolarity

lemma established by Buczyńska and Buczyński.
Our main focus is on the case X = Pn. We present three necessary conditions for [I] ∈

Hilb
hr,Pn

S[Pn] to be in Slipr,Pn . The first of them is obtained by bounding the degrees of minimal

generators of saturated ideals J ⊆ S[Pn] with [J ] ∈ Hilb
hr,Pn

S[Pn]. The second criterion is based on

the computation of the Hilbert polynomial of a power of a radical ideal J with [J ] ∈ Hilb
hr,Pn

S[Pn] and
establishing the bound on the degree from which it agrees with the Hilbert function. The proof
of the third necessary condition uses deformation theory and flag multigraded Hilbert schemes.
We also present a sufficient condition for [I] ∈ Hilb

hr,P2

S[P2]
to be in Slipr,P2 .

We consider a morphism with connected fibers f : X → Y between smooth projective toric
varieties. We obtain a necessary condition for [I] ∈ Hilb

hr,X
S[X] to be in Slipr,X . Namely, we show

that there is a natural morphism Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ] and that it maps Slipr,X onto Slipr,Y . We

also prove another necessary condition in the case that X is the product of k ≥ 2 projective
spaces.

We illustrate the criteria with examples. In particular, we describe all ideals which correspond
to points of Slipr,P2 for all r ≤ 6. Furthermore, we apply our techniques to obtain some results
on wild polynomials.

Keywords: multigraded Hilbert schemes, saturated ideals of points, smooth projective toric
varieties, secant varieties, border rank.

AMS MSC 2020 classification: 14C05, 14M25, 14N07.



Streszczenie

Głównym obiektem badań niniejszej rozprawy jest klasa schematów Hilberta z wielogradacją.
Dla gładkiej rzutowej rozmaitości torycznej X z pierścieniem Coxa S[X], rozważamy funkcję
Hilberta r punktów w położeniu ogólnym na X, tzn. hr,X : Pic(X)→ N zadaną przez

hr,X([D]) = min{dimC Γ(X,OX(D)), r}.

Schemat Hilberta z wielogradacją Hilb
hr,X
S[X] stowarzyszony z S[X] i hr,X ma wyróżnioną skła-

dową nieprzywiedlną Slipr,X , która jest domknięciem zbioru punktów odpowiadających ideałom
radykalnym i nasyconym. Celem tej rozprawy jest znalezienie kryteriów koniecznych lub wystar-
czających do tego by punkt Hilb

hr,X
S[X] należał do Slipr,X . Motywacja do badania tego problemu

pochodzi z lematu o brzegowej abiegunowości udowodnionego przez Buczyńską i Buczyńskiego.
Główny nacisk kładziemy na przypadek X = Pn. Prezentujemy trzy warunki konieczne

do tego by punkt [I] ∈ Hilb
hr,Pn

S[Pn] należał do Slipr,Pn . Pierwszy z nich jest uzyskany poprzez
ograniczenie stopni minimalnych generatorów ideałów nasyconych J ⊆ S[Pn] takich, że [J ] ∈
Hilb

hr,Pn

S[Pn]. Drugie kryterium bazuje na obliczeniu wielomianu Hilberta potęgi ideału radykalnego

J takiego, że [J ] ∈ Hilb
hr,Pn

S[Pn] oraz uzyskaniu ograniczenia na stopień od którego zgadza się
on z funkcją Hilberta. Dowód trzeciego kryterium wykorzystuje teorię deformacji i flagowe
schematy Hilberta z wielogradacją. Prezentujemy również warunek wystarczający do tego aby
[I] ∈ Hilb

hr,P2

S[P2]
należał do Slipr,P2 .

Rozważamy morfizm o spójnych włóknach f : X → Y pomiędzy gładkimi rzutowymi ro-
zmaitościami torycznymi. Uzyskujemy warunek konieczny do tego aby [I] ∈ Hilb

hr,X
S[X] należał

do Slipr,X . Mianowicie pokazujemy, że istnieje naturalny morfizm Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ], który

odwzorowuje Slipr,X na Slipr,Y . Dowodzimy również innego warunku koniecznego w przypadku
gdy X jest produktem k ≥ 2 przestrzeni rzutowych.

Kryteria ilustrujemy przykładami. W szczególności, opisujemy wszystkie ideały, które odpo-
wiadają punktom Slipr,P2 dla wszystkich r ≤ 6. Co więcej, wykorzystujemy nasze metody do
uzyskania pewnych wyników o dzikich wielomianach.

Słowa kluczowe: schematy Hilberta z wielogradacją, nasycone ideały punktów, gładkie
rzutowe rozmaitości toryczne, rozmaitości siecznych, ranga brzegowa.
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Chapter 1

Introduction

In real life, it is often the case, that certain objects naturally appear together but from human
perspective one of them is more interesting than other ones. In such situations, a need arises
to separate the part that we care about from the part that is redundant or less attractive from
our point of view. In many cases the distinction is pretty clear. However, there are also subtle
examples. One of them is the farmland. Here the crops and the weeds grow together and
distinguishing between them requires both attention and certain knowledge.

The main topic of this thesis is about

identifying the "good" inside the set of "all"

in the setting that is described below.
Problems of similar nature appear commonly in mathematics. For a basic example, consider

a finite-dimensional real vector space V , the set EndR(V ) of all linear endomorphisms of V and
its subset AutR(V ) consisting of invertible maps. Given an element ϕ ∈ EndR(V ) we can check
whether it belongs to AutR(V ) by computing its determinant.

Another easy to state problem is provided by univariate polynomials with real coefficients. We
might be interested in understanding which of them have a real root. There is an easy sufficient
condition. Namely, if the degree of the polynomial is odd, then it has a real root. However, there
are also more subtle criteria like Sturm’s theorem [58, §5.2] which gives the number of distinct
real roots of a given polynomial in a given interval.

The main motivational example for this thesis in the realm of algebraic geometry is the Hilbert
scheme of r points in the projective n-space over the complex numbers C. Before explaining this
example in more detail, we outline the main results about the Hilbert schemes concentrating on
Hilbert schemes of points. The Hilbert scheme Hilb(Pn) is a scheme parametrizing all closed
subschemes of Pn. It was constructed by Grothendieck [44]. It has a decomposition into the
disjoint unionHilb(Pn) =

∐
P HilbP (Pn) where P is the Hilbert polynomial of a closed subscheme

of Pn and HilbP (Pn) parametrizes all closed subschemes of Pn with Hilbert polynomial P . More
generally, one may consider Hilb(X) or HilbP (X) for a projective scheme X ⊆ PN over C. In
1966 Hartshorne [47] proved that HilbP (Pn) is connected for every Hilbert polynomial P . If the
Hilbert polynomial P is constant and equal to r for some positive integer r, we write Hilbr(Pn)

instead of HilbP (Pn). In 1968 Fogarty [36] showed that Hilbr(X) is smooth and irreducible if
X is an irreducible smooth surface. On the other hand, for all n ≥ 3 the scheme Hilbr(Pn) is
reducible for all r � 0. This was established by Iarrobino [54] in 1972. The question, whether
Hilb(X) is reduced was also addressed. Mumford [69] showed in 1962 that HilbP (P3) is not
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reduced for some polynomial P of degree 1. Jelisiejew [61] showed in 2020 that Hilbr(Pn) is in
general non-reduced.

We return to the description of our main motivational example of identifying "good" from
"all". For fixed positive integers r and n, the closure of the locus of all points of Hilbr(Pn)

corresponding to r-tuples of points in Pn is an irreducible component of Hilbr(Pn). We call this
component the smoothable component and we denote it by Hilbsmr (Pn). By the above-mentioned
result of Iarrobino, in general, Hilbr(Pn) is not equal to Hilbsmr (Pn). Thus, if we care only about
the set of r-tuples of points of the projective space Pn together with their limits, we need to
have methods of identifying whether a given point of the Hilbert scheme Hilbr(Pn) belongs to
Hilbsmr (Pn). This problem was studied by Cartwright, Erman, Velasco and Viray [20]. Similar
problem for Gorenstein subschemes was considered by Casnati, Jelisiejew and Notari [21] and
Jelisiejew [59].

In this thesis we concentrate on an analogous problem in the setting of multigraded Hilbert
schemes "of points in general position". Multigraded Hilbert schemes were introduced by Haiman
and Sturmfels [46] in 2004. Let S be a polynomial ring over C, graded by an abelian group A.
Given a numerical function h : A → N, there is a corresponding multigraded Hilbert scheme
HilbhS parametrizing homogeneous ideals I of S such that S/I has Hilbert function h.

It is important to emphasize, that even when S is a standard Z-graded polynomial ring and
h is the Hilbert function of a closed subscheme of a projective space, this leads to an object
different than the classical Hilbert scheme, which is specified by Hilbert polynomial. In the case
of multigraded Hilbert schemes we care about the Hilbert function in all degrees, while in the
case of the usual Hilbert scheme we are interested only in the Hilbert function in large degrees.

The concept of a multigraded Hilbert scheme is a common generalization of various notions
of Hilbert schemes:

1. Hilbr(An)—the Hilbert scheme of r points in affine n-space;

2. HilbP (Pn)—the Hilbert scheme parametrizing closed subschemes of Pn with Hilbert poly-
nomial P ;

3. the so-called toric Hilbert schemes whose special cases where studied by Peeva and Still-
man [71].

We present some known results about general multigraded Hilbert schemes HilbhS . Maclagan
and Smith [65] showed in 2010 that if S is a polynomial ring in two variables, then HilbhS
is smooth and irreducible (for any grading of S in any abelian group A and for any Hilbert
function h : A → N). Beside this, little is known about general multigraded Hilbert scheme.
People usually study one of the three particular cases described above. It turns out that there
exists a non-connected toric Hilbert scheme. In 2005 Santos [76] gave such an example for a
polynomial ring in 26 variables graded by Z6. This is in sharp contrast with the Hartshorne’s
result [47] concerning HilbP (Pn).

It is worth comparing the above-mentioned facts about the Hilbert scheme Hilbr(Pn) with
the results on the multigraded Hilbert schemes. The Hilbert scheme Hilbr(Pn) is nicely-behaved,
i.e. smooth and irreducible, for n = 2 [36]. On the other hand, the multigraded Hilbert scheme
HilbhS is smooth and irreducible when the polynomial ring S has two variables which in some
sense corresponds to the case of the projective line. Similarly, Hilbr(P3) is in general reducible
[54], while HilbhS can already be reducible for a polynomial ring in three variables. In fact, the
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class of multigraded Hilbert schemes discussed in this thesis provides natural examples of such
behavior.

We introduce our main object of study in the case of projective space. Let n be a positive
integer and S = C[α0, . . . , αn] be the homogeneous coordinate ring of Pn. Let r be a positive
integer and hr,n : Z→ N be the Hilbert function of r points in general position in Pn:

hr,n(a) = min{dimC Sa, r}.

Let Sipr,n denote the locus of all points of Hilb
hr,n
S corresponding to radical ideals. Let Slipr,n

be the closure of Sipr,n in Hilb
hr,n
S . The acronyms Sip and Slip introduced in [15] stand for the

"set of ideals of points" and the "scheme of limits of ideals of points", respectively. The subset
Slipr,n is an irreducible component [15, Prop. 3.13]. Points of Hilb

hr,n
S that belong to Slipr,n are

the "good" points inside the set of "all" points from the scheme Hilb
hr,n
S . This is a consequence

of the border apolarity lemma which we discuss below.

The main goal of this thesis is to establish sufficient and necessary conditions for a
closed point in Hilb

hr,n
S to be in the irreducible component Slipr,n.

We also consider analogous problem for a smooth projective toric variety X. We study the
multigraded Hilbert scheme associated with the Cox ring S[X] of X and the Hilbert function
hr,X : Pic(X)→ N of r points in general position in X, i.e.

hr,X([D]) = min{dimC S[X][D], r}.

See Section 4.1 for relevant definitions. Again, there is a distinguished irreducible component
Slipr,X of Hilb

hr,X
S[X] that is the closure of the locus of all radical ideals that are saturated with

respect to the irrelevant ideal of X. We want to find criteria that identify points in Hilb
hr,X
S[X] that

belong to Slipr,X .

Significance of the considered problem

It is necessary to explain how does the irreducible component Slipr,n fit into the above philosophy
of identifying "good" from "all". This is based on the border apolarity lemma introduced by
Buczyńska and Buczyński [15]. This result shows that there is a connection between border rank
of a homogeneous polynomial and the multigraded Hilbert scheme Hilb

hr,n
S . Our discussion here

is informal. The precise statement of the border apolarity, as well as the formal definitions of
the border rank and secant varieties appear in Chapter 2. Suppose that F is a homogeneous
polynomial of degree d in the polynomial ring S∗ = C[x0, . . . , xn]. Here, S∗ is the graded dual of
the polynomial ring S = C[α0, . . . , αn], see Subsection 2.4.1 for more details. We say that F has
rank r if r is the smallest integer such that we have F =

∑r
i=1 `

d
i for some linear forms `i ∈ S∗1 .

We also consider the border rank of F which is the smallest integer r such that [F ] ∈ PS∗d is in
the closure of the set of all polynomials with rank at most r. Calculating the border rank of a
given polynomial is a classical problem in algebraic geometry and is strongly related to studies
of secant varieties of the Veronese variety. The border apolarity lemma says that F has border
rank at most r for a positive integer r if and only if there exists a point [I] ∈ Slipr,n such that I
is apolar to F . Thus,
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points from Slipr,n are the "good" points among "all" points of Hilb
hr,n
S

since they serve as witnesses of small border rank.

As a result, the more conditions (both sufficient and necessary) for a point in Hilb
hr,n
S to be in

the irreducible component Slipr,n we have at our disposal, the greater the scope of applicability
of the border apolarity lemma.

One potential application of border apolarity is in studying homogeneous polynomials, called
wild polynomials, whose border rank is smaller than the smoothable rank (see Section 2.4 for
definitions of these ranks). These polynomials are known to exist (see [12] and [53]). They appear
naturally in the context of the border apolarity lemma. Indeed, by definition, it is precisely
for these polynomials that the apolarity for smoothable rank (depending on the smoothable
component Hilbsmr (Pn) of the Hilbert scheme Hilbr(Pn)) fails to compute the border rank. For
them, it is necessary to consider the multigraded Hilbert scheme Hilb

hr,n
S and its irreducible

component Slipr,n.
A crucial motivation for studying Slipr,X for more general toric varieties than Pn is the prob-

lem of computing the border rank of matrix multiplication tensors. This is a vitally important
problem for complexity theory, however it is very complicated. For instance the border rank of
matrix multiplication tensor for 3× 3 matrices is unknown. See [23] for recent progress on that
problem.

Structure of the thesis and main results

In Chapter 2 we present the relevant background from commutative algebra and scheme theory.
In particular, we formally define the multigraded Hilbert schemes by their functors of points.
We also study the flag multigraded Hilbert schemes and basic notions of deformation theory.

Chapter 3 contains the main results of the thesis in the case of projective space. We present
three necessary conditions for a point [I] ∈ Hilb

hr,n
S to be in the irreducible component Slipr,n.

Moreover, we prove a sufficient condition for a point [I] ∈ Hilb
hr,2
S to be in Slipr,2. We illustrate

these criteria with simple examples. Furthermore, we end the chapter with the complete descrip-
tion of points from Slipr,2 for all r ≤ 6. The complexity of these examples is perhaps surprising,
especially in view of the fact that the usual Hilbert scheme Hilbr(P2) is smooth and irreducible.

We now summarize the main results presented in Chapter 3. We simplify the statements
of some of the more technical theorems by considering their special cases, or omitting some
parts of the conclusions. Given a polynomial ring S = C[α0, . . . , αn], we denote by m the ideal
(α0, . . . , αn).

Proposition 3.1 provides a necessary condition for [I] ∈ Hilb
hr,n
S to be in Slipr,n. It is based

on bounding from the above, the degree in which all saturated ideals corresponding to points of
Hilb

hr,n
S are generated.

Proposition 1.1 (Proposition 3.1). Let r and n be positive integers and I ⊆ S = C[α0, . . . , αn]

be a homogeneous ideal such that S/I has Hilbert function hr,n. Let e = min{a ∈ Z | hr,n(a) = r}
and d ≥ e+ 2. If the inequality dimC HomS

(
I + md, S/(I + md)

)
0
< rn holds, then the point [I]

does not belong to Slipr,n.

Theorem 3.5 shows that if the point [I] belongs to Slipr,n, then the Hilbert function of S/Ik

for any positive integer k is bounded from below by r · dimC Sk−1 for all large enough degrees
(depending on k). This result is obtained by calculating the Hilbert polynomials of powers of
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a radical ideal corresponding to a point of Hilb
hr,n
S and establishing a bound from which they

agree with the Hilbert functions.

Theorem 1.2 (Theorem 3.5). Let r and n be positive integers and I ⊆ S = C[α0, . . . , αn] be a
homogeneous ideal such that S/I has Hilbert function hr,n. Let e = min{a ∈ Z | hr,n(a) = r}. If
the point [I] belongs to Slipr,n, then HS/Ik(d) ≥ r · dimC Sk−1 holds for every positive integer k
and for every d ≥ ke+ k.

Theorem 3.13 presents a sufficient condition for [I] ∈ Hilb
hr,2
S to be in the irreducible com-

ponent Slipr,2. We show that if the Hilbert function of S/(I : m∞) differs from hr,2 only in
one degree, then the point [I] belongs to Slipr,2. The proof is obtained by showing that [I]

belongs to an irreducible subset of Hilb
hr,2
S which intersects Slipr,2 at a smooth point of Hilb

hr,2
S .

Furthermore, we comment why natural generalizations of this criterion for Pn with n > 2 fail.

Theorem 1.3 (Theorem 3.13). Let r be a positive integer and S = C[α0, α1, α2] be a polynomial
ring. Consider a closed point [I] of the multigraded Hilbert scheme Hilb

hr,2
S . If (I : m∞)d 6= Id

holds for a unique integer d, then we have [I] ∈ Slipr,2.

Theorem 3.42 is the most technically involved result in this thesis. It is stated in a general
setup in which the proof follows by a short argument using deformation theory. Then we discuss
some conditions which imply the assumptions of Theorem 3.42. Finally, we present two appli-
cations of this theorem, Theorems 3.66 and 3.75. These are the versions of the theorem that we
use in the rest of the thesis.

Theorem 1.4 (Theorem 3.42). Let r and n be positive integers, S = C[α0, . . . , αn] be a poly-
nomial ring and [I] ∈ Hilb

hr,n
S be a closed point. Assume that we have I 6= (I : m∞) and let d

be such that Id is not equal to (I : m∞)d. Let J = md ∩ (I : m∞) and K = md ∩ I. When the
following hold:

1. the natural map HomS(J, S/J)0 → HomS(K,S/J)0 is surjective;

2. [J ] ∈ HilbhS is a smooth point where h is the Hilbert function of S/J ;

3. the natural map HomS(K,S/K)0 → HomS(K,S/J)0 is surjective,

there is no point [I ′] ∈ Slipr,n with I ′≥d = I≥d. In particular, we have [I] /∈ Slipr,n.

As an application of Theorem 1.4 we obtain the following result.

Theorem 1.5 (Theorem 3.66). Let [I] ∈ Hilb
hr,n
S be a closed point corresponding to an ideal I

such that S/I has Hilbert function hr,1. There exists [I ′] ∈ Slipr,n with I≥r−2 = I ′≥r−2 if and only
if there is an inclusion ((I : m∞)2)r−2 ⊆ Ir−2.

We end Chapter 3 with the complete set-theoretic description of Slipr,2 for all r ≤ 6. To give
some insight into the complexity of this problem we present here a short discussion. For all r ≤ 3,
the scheme Hilb

hr,2
S is irreducible (see Propositions 3.38, 3.39 and 3.40). However, Corollary 3.79

shows that Hilb
h4,2

S is reducible. In fact, it has two irreducible components. Here, the description
of Slip4,2 follows easily from Theorem 3.66. In the next case, r = 5, the scheme Hilb

h5,2

S still
has only two irreducible components but the description of Slip5,2 obtained in Proposition 3.89
requires some further observations. Finally, Hilb

h6,2

S has four irreducible components. We use all
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four criteria mentioned above, to obtain the description of Slip6,2 (see Proposition 3.104). Still,
the proof is of significant complexity. Since there was no prior systematic study of the component
Slipr,X , it was not clear what to expect. By analogy to Fogarty’s result [36] on smoothness of

Hilbr(P2), we expected that Hilb
hr,P2

S[P2]
should not be too complicated. However, it seems that the

proper analogue is rather Hilbr(P3), where little is known about the smoothable component.
Chapter 4 is concerned with the case of a smooth, projective toric variety X. Here again, one

may consider the multigraded Hilbert scheme Hilb
hr,X
S[X] where S[X] is the Cox ring ofX and hr,X is

the Hilbert function of r points in general position onX. Again, there is an irreducible component
Slipr,X which is defined analogously to Slipr,n considered above. Theorem 4.15 describes a
relation between Slipr,X and Slipr,Y where f : X → Y is a map of smooth projective toric
varieties with f∗OX ∼= OY . The proof is based on the possibility of lifting f to a homomorphism
of Cox rings of X and Y . This is discussed in Subsection 4.1.3.

Theorem 1.6 (Theorem 4.15). Let f : X → Y be a morphism between smooth projective toric
varieties with f∗OX ∼= OY . Let r be a positive integer and [I] ∈ Hilb

hr,X
S[X] be a closed point. Let

f
#

: S[Y ] → S[X] be a lift of f as in Definition 4.2. If the point [I] belongs to Slipr,X then we
have

[(f
#

)−1(I)] ∈ Slipr,Y .

Theorem 4.25 presents another necessary condition for [I] ∈ Hilb
hr,X
S[X] to be in the irreducible

component Slipr,X , when X is the product of k ≥ 2 projective spaces. The proof of the theorem
is based on simple properties of Hilbert functions of saturated ideals of points in X.

Theorem 1.7 (Theorem 4.25). Let k ≥ 2 and n1, . . . , nk be positive integers. Let X = Pn1 ×
· · · × Pnk and for all i ∈ {1, . . . , k} let B(Σi) ⊆ S[X] be the extension of the irrelevant ideal
of Pni under the natural inclusion S[Pni ] → S[X]. If the point [I] belongs to Slipr,X for some
positive integer r, then

dimC HomS[X]

(
I +B(Σi)

2, S[X]/
(
I +B(Σi)

2
))

0
≥ r(n1 + · · ·+ nk)

holds for all i ∈ {1, . . . , k}.

In Chapter 5 we present some applications of border apolarity lemma to secant varieties.
In Section 5.1 we study polynomials whose border rank is smaller than the smoothable rank
(see Section 2.4 for relevant definitions). This is in accordance with the initial motivation for
developing criteria for points of Hilb

hr,n
S to belong to the irreducible component Slipr,n.

Results from Sections 5.2, 5.3 and 5.4 are contained in [40]. They are about identifying (in
special cases) points in the cactus variety that are not in the secant variety. Here, we use the
border apolarity lemma without actually needing any insight into the irreducible component
Slipr,n. The problem of distinguishing the secant variety from the cactus variety is another
illustration of identifying "good" inside the set of "all". Secant varieties are classical objects of
study but their equations are in general unknown. Moreover, various classes of known equations
have been shown to actually vanish on a larger variety—the cactus variety. See [11], [39] and
[62, §10.2].

Open problems

We end this chapter with a short list of natural directions of further investigation.
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Given a smooth projective toric variety X and a positive integer r, we may divide closed
points of Hilb

hr,X
S[X] into four sets depending on whether [I] is in the closure of the locus of all

saturated ideals and whether the subscheme of X defined by I is smoothable. The irreducible
component Slipr,X consists of points that are in the closure of the locus of all saturated ideals
and that define smoothable subschemes. However, the following natural problem remains open.

Problem 1.8. Is there a projective toric variety X and a positive integer r such that there exists
[I] ∈ Hilb

hr,X
S[X] \ Slipr,X which satisfies conditions:

1. [I] is in the closure of the locus of all saturated ideals;

2. the subscheme of X defined by I is smoothable?

If the answer to the above question is negative, this could allow us to split the problem
of describing Slipr,X into two. One of them, which has been studied longer, is describing the
smoothable component of the usual Hilbert scheme. The other problem would be studying the
closure of the locus of all saturated ideals inside Hilb

hr,X
S[X].

Another problem is related to the geometry of Hilb
hr,Pn

S[Pn].

Problem 1.9. Is Hilb
hr,Pn

S[Pn] ever non-reduced?

We also want to discuss the criterion based on the flag condition for secant varieties [24,
Prop. 2.3]. It seems that a natural analogue for Slipr,X should hold. Namely, we expect that if
the point [I] belongs to Slipr,X then there is a flag of ideals Ir = I ⊆ Ir−1 ⊆ · · · ⊆ I0 = S such
that [Ik] is in Slipk,X for every k.

One natural question, especially in view of Problem 1.8 is the following.

Problem 1.10. Let X be a smooth projective toric variety and r be a positive integer. Assume
that [I] ∈ Hilb

hr,X
S[X] is in the closure of the locus of all saturated ideals. Is there a flag of ideals

Ir = I ⊆ Ir−1 ⊆ · · · ⊆ I0 = S such that for all k the point [Ik] ∈ Hilb
hr,X
S[X] is in the closure of the

locus of all saturated ideals?

A final general problem that is worth studying is as follows.

Problem 1.11. Is there a homogeneous ideal in three variables whose border rank is strictly
smaller than the smoothable rank?

It is known that if F is such a polynomial then we have br(F ) > deg(F ) + 1 (see [11,
Prop. 2.5]). We show in Proposition 5.5 that the inequality br(F ) > deg(F ) + 2 holds.

There are also some natural problems related more closely to our methods. They are less
general and thus, not as important. However, we would like to discuss them shortly.

Criterion from Theorem 1.4 is stated in a general version and we describe two situations
where its assumptions are fulfilled: Theorems 3.66 and 3.75. It seems that there might be more
general setups where Theorem 1.4 could be applied. We intend to investigate this in the future.

In a similar spirit, the description of Slip6,2 is quite lengthy and involved. It is a natural
question, whether the methods used there could be abstracted to work in more general situations.
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Chapter 2

Background material

In this chapter we collect some definitions and results that are used in the rest of the thesis.
Section 2.1 deals with commutative algebra. Material from Subsections 2.1.1 and 2.1.2 is standard
but it was hard to find a reference for some of the results discussed there. We present the proofs
for the sake of completeness. Subsections 2.1.3, 2.1.4 and 2.1.5 contain some results that are used
in Chapter 3. These subsections are based on [67]. In Subsection 2.2.1 we present some general
results related to scheme theory. Subsections 2.2.2 and 2.2.3 are concerned with multigraded
Hilbert schemes and Subsection 2.2.4 recalls the notion of a flag multigraded Hilbert scheme.
Section 2.3 deals with deformation theory. We present basic definitions and results that are
used in the subsequent chapters. Section 2.4 is devoted to various notions of ranks and related
apolarity lemmas.

Notation

Throughout this chapter k is a fixed algebraically closed field. Unless stated otherwise, all
polynomial rings over k that are considered have the standard Z-grading. Therefore, Z-graded
modules over these rings are simply called graded modules.

2.1 Commutative algebra

In this section we present some results from commutative algebra that are needed for the proofs
of the main results.

In Subsection 2.1.1 we study locally free modules of finite rank since these appear in the
definition of the functor of points of a multigraded Hilbert scheme. Since these schemes are the
main object of our investigation we feel that it is appropriate to recall the notion explicitly.

Subsection 2.1.2 deals with saturated ideals. We present a few results that are mainly used
in Chapter 3.

In Subsection 2.1.3 we study the Hilbert function of a power of a radical ideal defining a
zero-dimensional subscheme of a projective space. The obtained results are key in the proof of
Theorem 3.5.

Subsection 2.1.4 is concerned with the computation of the dimension of the vector space
HomT (a, T/a)>0 for a monomial ideal a 6= T in the homogeneous coordinate ring T of projec-
tive line such that dimk T/a is finite. This is related to the tangent space to an appropriate
multigraded Hilbert scheme. This observation is used in the proof of Theorem 3.13.
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In Subsection 2.1.5 we study the Ext groups ExtiS(k,M) and ExtiS(M,k) where S is a poly-
nomial ring andM is a finitely generated graded S-module. These results are used in Chapter 3.

For the sake of completeness, we give detailed proofs even though some of the results might
be well known. On the other hand, we only refer to the basic properties of Gröbner bases and
local cohomology as we need them. We believe that the theory of Gröbner bases is already well
established, and in any case there are many excellent introductions to the topic, e.g. [27] and
[31]. The theory of local cohomology is only used as a tool in one of the proofs so it seems to be
more natural to just cite the relevant result from [57].

Subsections 2.1.3, 2.1.4 and 2.1.5 are based on [67].

2.1.1 Locally free modules

We recall the definition of a locally free module and study some simple properties of such modules.

Definition 2.1. Given a ring R, we say that a module M is locally free of finite rank if, for
every prime ideal p of R, there is an element f ∈ R \ p such that Mf is a finite free Rf -module.

Observe that an R-module M is locally free of finite rank if and only if the corresponding
quasicoherent sheaf M̃ on SpecR is locally free of finite rank. We prove algebraically some
properties of locally free modules of finite rank. These results are intuitively clear from the
interpretation in terms of sheaves of OSpecR-modules.

Lemma 2.2. Let M be an R-module and let p be a prime ideal of R. If f ∈ R\p is such that Mf

is a free Rf -module of rank r, then Mp is a free Rp-module of rank r. In particular, if f ′ ∈ R \ p
is such that Mf ′ is a free Rf ′-module of rank r′, then we have r = r′.

Proof. We may rewrite Mp as

Mp
∼= M ⊗R Rp

∼= M ⊗R (Rf )pRf

where the latter isomorphism comes from [6, Prop. 11 §1.2]. This can be further transformed as

M ⊗R (Rf )pRf
∼= M ⊗R (Rf ⊗Rf (Rf )pRf ) ∼= Mf ⊗Rf (Rf )pRf

∼= (Mf )pRf
∼= (Rrf )pRf

∼= Rrp

where the last isomorphism follows from [6, Prop. 11 §1.2] since localization commutes with
direct sums.

Definition 2.3. We say that an R-module M is locally free of rank r if, given any prime ideal
p of R, there is an element f ∈ R \ p such that Mf is a free Rf -module of rank r.

It follows from Lemma 2.2 that an R-module M can be locally free of rank r for a unique
integer r. Moreover, if R is a Noetherian ring, SpecR is connected (equivalently, if R has no
non-trivial idempotents) and M is locally free of finite rank, then M is locally free of rank r for
some integer r by [48, Ex. II.5.8].

We study how the locally free condition behaves in short exact sequences.

Lemma 2.4. Let R be a Noetherian ring and let M ⊆ N ⊆ Rd be R-submodules. Assume that
Rd/N is a locally free R-module of rank a for a positive integer a. For a positive integer b, the
following conditions are equivalent:

(i) Rd/M is a locally free R-module of rank b;
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(ii) N/M is a locally free R-module of rank b− a.

Proof. Localization is exact, so it is enough to show that Rd/M is a locally free R-module of
finite rank if and only if N/M is a locally free R-module of finite rank. An R-module U is a
locally free R-module of finite rank if and only if U is a flat R-module of finite presentation (see
[6, Prop. 3 §4.4]). Moreover, since R is a Noetherian ring, it is also equivalent to U being a flat
R-module of finite type.

We have an exact sequence of R-modules

0→ N/M → Rd/M → Rd/N → 0. (2.5)

Since Rd/M is an R-module of finite type, it is a Noetherian module. Thus, N/M is an R-module
of finite type.

The R-module Rd/N is flat by assumption. Hence, using the Tor exact sequence coming
from short exact sequence (2.5), we obtain that N/M is R-flat if and only if Rd/M is R-flat.

2.1.2 Saturation and homogeneous saturated ideals in polynomial ring

Let S = k[α] := k[α0, α1, . . . , αn] be a polynomial ring. By m we denote the irrelevant ideal
(α0, α1, . . . , αn). Given an ideal I in S, we write I for the saturation of I with respect to m.

In the proof of Lemma 2.6 we use the notion of local cohomology. See [57, Ch. 7] for its basic
properties. Recall that H i

m(−) are the right derived functors of the functor

Γm(−) : Mod(S)→Mod(S)

defined by
Γm(M) = {m ∈M | mdm = 0 for some d ∈ Z>0}.

There is a close connection between the zeroth local cohomology group H0
m(S/I) and the satu-

ration I of I. Namely, I is the kernel of the natural map S → (S/I)/H0
m(S/I). Therefore, we

are able to use the general results about local cohomology to prove the following lemma. Note
that we are interested only in the zeroth local cohomology group.

Lemma 2.6. Let R → T be a flat homomorphism of k-algebras. Let I ⊆ R[α] =
⊕

d(Sd ⊗k R)

be a homogeneous ideal saturated with respect to m⊗kR. The ideal I ⊗R T ⊆ S⊗k T is saturated
with respect to m⊗k T .

Proof. The saturation of I is the kernel of the natural map

S ⊗k R→
(
(S ⊗k R)/I

)
/H0

m⊗kR

(
(S ⊗k R)/I

)
.

The ideal I is assumed to be saturated. Thus, H0
m⊗kR

(
(S ⊗k R)/I

)
is the zero module. Since T

is a flat R-algebra, we have

H0
m⊗kT

(
(S ⊗k T )/(I ⊗R T )

) ∼= (H0
m⊗kR

(
(S ⊗k R)/I

))
⊗R T = 0

by [57, Prop. 7.15]. It follows that I ⊗R T is saturated with respect to m⊗k T .

Lemma 2.7 states, that if an initial ideal in<(I) of a homogeneous ideal I is saturated, then
I is saturated. This is a typical situation. The process of taking the initial ideal usually worsens
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the properties of the corresponding quotient algebra. As a key example, for a homogeneous ideal
I ⊆ S we have an inequality of Betti numbers

βij(S/I) ≤ βij
(
S/ in<(I)

)
for all i, j ∈ Z≥0, see [50, Cor. 3.3.3]. Therefore, if S/ in<(I) has some nice property, then often
S/I has the same property. Compare the following lemma to [50, Cor. 3.3.5].

Lemma 2.7. Let I be an ideal in S and let < be a monomial order. We have in<(I) ⊆ in<(I).
In particular, if I is a homogeneous ideal and in<(I) is a saturated ideal, then I is a saturated
ideal.

Proof. Let f ∈ I. There is an integer l with αlif ∈ I for all i = 0, 1, . . . , n. Therefore, αli · in<(f)

belongs to in<(I) for all i = 0, 1, . . . , n. Consequently, we have in<(f) ∈ in<(I).
Now assume that I is a homogeneous ideal such that in<(I) is a saturated ideal. There is a

chain of inclusions
in<(I) ⊆ in<(I) ⊆ in<(I) = in<(I).

It follows that there is an equality in<(I) = in<(I). Thus, I and I have the same Hilbert
function. As a result, we get I = I.

We frequently use the following observation.

Lemma 2.8. Let M be a graded S-module and let I be a homogeneous ideal of S with I = I∩md

for a positive integer d. Assume that M<d is the zero vector space and that there is a positive
integer r with mr ·M = 0. We have HomS(M,S/I)0 = 0.

Proof. Pick ϕ ∈ HomS(M,S/I)0 and x ∈Me for some e ≥ d. We have mr ·ϕ(x) = 0. Therefore,
in the quotient algebra S/I, the element ϕ(x) is represented by an element from Ie = Ie. Thus,
it is zero.

Next we study some properties of Hilbert functions of saturated ideals.

Lemma 2.9. Let I 6= S be a homogeneous saturated ideal of S.

(i) There exists a linear form f ∈ S1 that is a nonzerodivisor on S/I;

(ii) The inequality HS/I(d+ 1)−HS/I(d) ≥ 0 holds for all integers d;

(iii) If HS/I(d) = HS/I(d−1) holds for a positive integer d, then we have HS/I(d+1) = HS/I(d).

Proof.

(i) Let p1, . . . , pk be the associated primes of S/I. It is enough to show that
⋃k
i=1(pi)1 is

not equal to S1. Suppose that the equality
⋃k
i=1(pi)1 = S1 holds. Since k is infinite we

have (pi)1 = S1 for some i and therefore, m is an associated prime of S/I. This gives a
contradiction with the assumption that I is saturated.

(ii) If f ∈ S1 is a nonzerodivisor on S/I, then the map (S/I)d
·f−→ (S/I)d+1 is injective for

every d.
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(iii) Let f ∈ S1 be a nonzerodivisor on S/I. Suppose that HS/I(d) = HS/I(d − 1) holds. The

multiplication map (S/I)d−1
·f−→ (S/I)d is an isomorphism of k-vector spaces. We claim

that also (S/I)d
·f−→ (S/I)d+1 is an isomorphism. It is injective since f is a nonzerodivisor

on S/I. Let g ∈ (S/I)d+1. We have g =
∑n

i=0 αihi for some hi ∈ (S/I)d. By assumptions,
there are k0, . . . , kn ∈ (S/I)d−1 with hi = fki for all i = 0, 1, . . . , n. It follows that
g = f(

∑n
i=0 αiki) is in the image of the map (S/I)d

·f−→ (S/I)d+1.

The following corollary of a theorem by Bayer and Stillman enables us to deform a saturated
ideal to a saturated ideal with special properties—a Borel-fixed ideal. Consider the action of
GLn+1(k) on the set of ideals of S given by a linear change of coordinates. Given an ideal I ⊆ S
and a monomial order <, there is a non-empty open subset U ⊆ GLn+1(k) such that the ideal
in<(g · I) is independent of the choice of g ∈ U [31, Thm. 15.18]. We call this ideal the generic
initial ideal of I with respect to <.

Corollary 2.10. Suppose that I 6= S is a homogeneous saturated ideal of S. The generic initial
ideal I ′ of I with respect to the grevlex order with α0 > · · · > αn is a saturated ideal.

Proof. Since I is a saturated ideal we have depth(S/I) ≥ 1 by Lemma 2.9(i). Thus, the inequality
depthS/I ′ ≥ 1 is a consequence of [50, Cor. 4.3.18]. It follows that I ′ is saturated.

The following lemma gives a useful property of saturated Borel-fixed ideals.

Lemma 2.11. Let T = k[α0, . . . , αn−1]. If I ⊆ S is a saturated Borel-fixed ideal then there exists
an ideal a ⊆ T with a · S = I.

Proof. Let G be the set of all minimal monomial generators of I. It is enough to show that there
is no element

∏n
i=0 α

ai
i ∈ G with an > 0. Assume that we have

∏n
i=0 α

ai
i ∈ G with an > 0.

We claim that the element (
j−1∏
i=0

αaii

)
· α

∑n
k=j ak

j

belongs to I for every 0 ≤ j ≤ n. This follows from [68, Prop. 2.3] if char k = 0 and from [51,
Prop. 1.2] if char k > 0. Therefore,

∏n−1
i=0 α

ai
i belongs to I = I since we have

α
∑n
k=j ak

j ·

(
n−1∏
i=0

αaii

)
∈ I

for all j ∈ {0, . . . , n}. This shows that g is not a minimal monomial generator and gives a
contradiction.

The following observation is a special case of Macaulay’s theorem [10, Thm. 4.2.10].

Lemma 2.12. Let T = k[α0, α1] and a ⊆ T be a homogeneous ideal. The inequality

HT/a(d)−HT/a(d+ 1) ≥ 0

holds for every d with ad 6= 0.

Proof. If ad is non-zero, then we haveHT/a(d) ≤ dimk Td−1 = d. It follows from [10, Thm. 4.2.10]
that there is an inequality HT/a(d+ 1) ≤ HT/a(d).
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As a consequence of the above observation we obtain some bounds on the number of minimal
homogeneous generators of a homogeneous saturated ideal I ⊆ S = k[α0, α1, α2].

Lemma 2.13. Let I ⊆ S = k[α0, α1, α2] be a homogeneous saturated ideal. Let m be a positive
integer with Im 6= 0 and let f be the Hilbert function of S/I. For every d ≥ m we have

β1,d+1(S/I) ≤ 2f(d)− f(d+ 1)− f(d− 1).

Proof. Let I ′ be the generic initial ideal (see [31, §15.9]) of I with respect to the grevlex order
with α0 > α1 > α2. By Corollary 2.10 the ideal I ′ is saturated. Moreover, β1,a(S/I

′) ≥ β1,a(S/I)

holds for every a by [50, Cor. 3.3.3]. Therefore, it is enough to prove the lemma for a saturated
Borel-fixed ideal I ′. Let a = I ′ ∩ k[α0, α1] and let g be the Hilbert function of k[α0, α1]/a. We
have I ′ = a · S by Lemma 2.11, so we get f(a)− f(a− 1) = g(a) for every a ∈ Z.

Let d ≥ m be such that there is an inequality β1,d+1(S/I ′) = β1,d+1(k[α0, α1]/a) > 2f(d) −
f(d + 1) − f(d − 1). Since ad is non-zero, it follows from Lemma 2.12 that we have 2f(d) −
f(d+ 1)− f(d− 1) = g(d)− g(d+ 1) ≥ 0. Let G be the set of all minimal monomial generators
of a and let G′ be obtained from G by deleting s = g(d) − g(d + 1) + 1 minimal monomial
generators of degree d+ 1. Let a′ be the ideal of k[α0, α1] generated by monomials from G′ and
let R = k[α0, α1]/a′. We have a′d = ad 6= 0, but

HR(d+ 1)−HR(d) = g(d+ 1) + s− g(d) = 1.

This contradicts Lemma 2.12.

2.1.3 Hilbert function of a power of an ideal of points

We keep the notation of Subsection 2.1.2. In particular, S = k[α0, . . . , αn] is a polynomial ring.
The main result of this subsection is Proposition 2.19. Let I be a radical homogeneous ideal in
S such that S/I has constant Hilbert polynomial. In the proposition we compute the Hilbert
polynomial of S/Ik (for a positive integer k) and bound the degree from which it agrees with
the Hilbert function of S/Ik. This result is crucial in the proof of Theorem 3.5.

We begin with studying the following condition on homogeneous ideals J of S:

there exists a positive integer d with Sd ⊆ J. (∗)

Condition (∗) is equivalent to the condition that J contains a power of the irrelevant ideal
m = (α0, α1, . . . , αn). It can be restated geometrically. Namely, a homogeneous ideal J in the
polynomial ring S satisfies condition (∗) if and only if the corresponding closed subset of the
projective space ProjS is the empty set. See [77, Lem. 1.1] for a proof of this equivalence.

We collect some useful properties of condition (∗) in the following lemma. They are probably
all well-known. Nevertheless, we could not find a reference for all of them so we present a simple
proof.

We stress that in the following lemma, the lower index of Is does not indicate the degree s
part of the homogeneous ideal I, as it usually does in the rest of the thesis.

Lemma 2.14. Let m ≥ 2 be an integer and J,K, I1, . . . , Im be homogeneous ideals of S.

(i) We have J ∩K = J ∩K;
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(ii) J +K satisfies condition (∗) if and only if
√
J +
√
K satisfies condition (∗);

(iii) If Ii + Im satisfies condition (∗) for all i = 1, 2, . . . ,m − 1, then I1I2 · · · Im−1 + Im and
I1 ∩ I2 ∩ · · · ∩ Im−1 + Im satisfy condition (∗);

(iv) If I1, I2, . . . , Im are homogeneous ideals such that Ii + Ij satisfies condition (∗) for all
1 ≤ i < j ≤ m, then the equality I1I2 · · · Im = I1 ∩ I2 ∩ · · · ∩ Im holds.

Proof.

(i) Let f ∈ J ∩ K. By definition of saturation, there are integers k1 and k2 with αk1
i f ∈ J

and αk2
i f ∈ K for all i = 0, 1, . . . , n. Therefore, we get αmax{k1,k2}

i f ∈ J ∩ K for all
i = 0, 1, . . . , n. Since f was arbitrary, we obtain J ∩K ⊆ J ∩K. On the other hand, we
have J ∩K ⊆ J ∩K since J ∩K is contained in both J and K.

(ii) An ideal of S satisfies condition (∗) if and only if its radical satisfies condition (∗). There-
fore, it is enough to observe that we have

√
J +K =

√√
J +
√
K.

This follows from the definition of a radical of an ideal, and is well-known [2, Ex. 1.13 v)].

(iii) By [2, Ex. 1.13 iii)] and induction we have√
I1I2 · · · Im−1 =

√
I1 ∩ I2 ∩ · · · ∩ Im−1 =

√
I1 ∩

√
I2 ∩ · · · ∩

√
Im−1.

Thus, by part (ii) it is enough to show that
√
I1 ∩

√
I2 ∩ · · · ∩

√
Im−1 +

√
Im satisfies

condition (∗). By assumptions there is an integer d with αdi ∈ Ij + Im for all i = 0, 1, . . . , n

and for all j = 1, 2, . . . ,m− 1. It follows that there are elements sij ∈
√
Ij and tij ∈

√
Im

satisfying αdi = sij + tij for all i = 0, 1, . . . , n and for all j = 1, 2, . . . ,m − 1. Multiplying
these identities for all j ∈ {1, 2, . . . ,m− 1} and fixed i, we obtain

α
d(m−1)
i =

m−1∏
j=1

(sij + tij) =
m−1∏
j=1

sij +

m−1∏
j=1

(sij + tij)−
m−1∏
j=1

sij

 . (2.15)

We have
m−1∏
j=1

sij ∈
√
I1

√
I2 · · ·

√
Im−1 ⊆

√
I1 ∩

√
I2 ∩ · · · ∩

√
Im−1

and
∏m−1
j=1 (sij + tij)−

∏m−1
j=1 sij ∈

√
Im. Hence, by Equation (2.15) αi belongs to√√

I1 ∩
√
I2 ∩ · · · ∩

√
Im−1 +

√
Im

for all i = 0, 1, . . . , n. It follows that
√
I1∩
√
I2∩· · ·∩

√
Im−1 +

√
Im satisfies condition (∗).

(iv) We prove it by induction on m starting with m = 2. The inclusion I1 · I2 ⊆ I1 ∩ I2 is a
consequence of I1 · I2 ⊆ I1 ∩ I2. In order to establish the opposite inclusion, observe that
for some positive integer d we have

Sd · (I1 ∩ I2) ⊆ (I1 + I2)(I1 ∩ I2) ⊆ I1 · I2

14



by the assumption that I1 +I2 satisfies condition (∗). The inclusion I1∩I2 ⊆ I1 · I2 follows.
Thus, I1 ∩ I2 is a subset of I1 · I2.

Let k ≥ 3 and assume that part (iv) holds for all integers m smaller than k. From part (i)
we get I1 ∩ I2 ∩ · · · ∩ Ik = I1 ∩ I2 ∩ · · · ∩ Ik−1 ∩ Ik.

Applying the inductive hypothesis for m = k − 1 we conclude that we have

I1 ∩ I2 ∩ · · · ∩ Ik = I1 ∩ I2 ∩ · · · ∩ Ik−1 ∩ Ik = I1I2 · · · Ik−1 ∩ Ik.

The ideal I1I2 · · · Ik−1 + Ik satisfies condition (∗) by part (iii). Therefore, from part (i) and
inductive hypothesis for m = 2, we get

I1 ∩ I2 ∩ · · · ∩ Ik = I1I2 · · · Ik−1 ∩ Ik = (I1I2 · · · Ik−1) ∩ Ik = I1I2 · · · Ik,

as claimed.

The following lemma shows that if two ideals have the same saturation, then their k-th powers
for any positive integer k also have the same saturation.

Lemma 2.16. Let I and J be homogeneous ideals of S and k be a positive integer.

(i) There is an integer d0 such that for all integers d1, . . . , dk ≥ d0 the map
⊗k

i=1 Idi →
Ikd1+···+dk induced by multiplication is surjective;

(ii) If the equality I = J holds, then we have Ik = Jk.

Proof.

(i) Consider a minimal set of homogeneous generators of I. We can take d0 to be the maximum
of degrees of elements of this set. This can be expressed in terms of Betti numbers as
d0 = max{j | β1,j(S/I) 6= 0}.

(ii) Let d0 = max{j | β1,j(S/I) 6= 0} and e0 = max{j | β1,j(S/J) 6= 0}. Let r0 be an integer
with I≥r0 = I≥r0 and J≥r0 = J≥r0 . Let s0 = max{d0, e0, r0}. For all d1, . . . , dk ≥ s0 we
have

Ikd1+···+dk = I
k
d1+···+dk = J

k
d1+···+dk = Jkd1+···+dk

where the first and last equality follow from part (i). We get Ik = Jk.

Using the above algebraic results we compute the Hilbert polynomial of a power of a homo-
geneous radical ideal which defines a closed, zero-dimensional subscheme of projective space.

Lemma 2.17. Let I ⊆ S be a homogeneous radical ideal such that the Hilbert polynomial of the
quotient algebra S/I is constant, equal to r for some positive integer r. For a positive integer k,
the Hilbert polynomial of S/Ik is constant equal to r · dimk Sk−1.

Proof. Let P1, . . . , Pr be the (distinct) points of the support of ProjS/I ⊆ Pn. Define pi to
be the homogeneous prime ideal of S defining Pi. We have I = p1 ∩ · · · ∩ pr and pi + pj = m

for all 1 ≤ i < j ≤ m. Therefore, by Lemma 2.14(iv), we get I = J , where J is the product
p1 · · · pr. Hence Ik = Jk holds by Lemma 2.16(ii). As a result, it suffices to show that the Hilbert
polynomial of S/Jk is r ·dimk Sk−1. Let K = pk1∩· · ·∩pkr . Observe that pki +pkj satisfies condition
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(∗) for every 1 ≤ i < j ≤ m by Lemma 2.14(ii). Therefore, we have K = Jk by Lemma 2.14(iv).
Thus, it is enough to consider the Hilbert polynomial of S/K. As a set, ProjS/K is the disjoint
union of r points P1, . . . , Pr. Consequently, it is enough to show that the degree of ProjS/pki is
dimk Sk−1 for every i = 1, . . . , r. This is clear, since up to a linear change of variables pi is the
ideal (α1, . . . , αn).

The following example shows that the assumption in Lemma 2.17 that I is reduced cannot
be weakened to the assumption that I is saturated.

Example 2.18. Let I = (α2
0, α0α1, α

2
1) ⊆ S = k[α0, α1, α2]. It is a saturated ideal and the

corresponding subscheme ProjS/I ⊆ P2 is zero-dimensional of degree 3. However, ProjS/I2 has
degree 10.

In Lemma 2.17 we have calculated the Hilbert polynomial of S/Ik for a homogeneous radical
ideal I defining a zero-dimensional closed subscheme of a projective space and a positive integer k.
Now we provide an upper bound on the least degree, from which the Hilbert function of S/Ik

agrees with the Hilbert polynomial of S/Ik. The proof uses the notion of regularity. We recall its
definition in terms of Betti numbers. For a finitely generated graded S-module M , its regularity
regM is defined to be regM = max{j − i | βi,j(M) 6= 0}.

Proposition 2.19. Let r and k be positive integers and I ⊆ S be a homogeneous radical ideal
with the Hilbert polynomial of the quotient algebra S/I equal to r. Define e = min{a ∈ Z |
HS/I(a) = r}. We have HS/Ik(d) = r · dimk Sk−1 for every d ≥ ke+ k.

Proof. The Hilbert polynomial of S/Ik is r · dimk Sk−1 by Lemma 2.17. Therefore, we are left
with establishing the bound on the degree from which the Hilbert function agrees with the Hilbert
polynomial. This is related to the regularity. By [32, Thm. 4.2], it is enough to show that the
inequality

ke+ k − 1 ≥ regS/Ik (2.20)

holds. We have regS/I = e by [32, Thm. 4.2]. Hence, from the definition of regularity in terms
of Betti numbers, we get reg I = e+ 1. Thus, reg Ik ≤ ke+ k is a consequence of [22, Thm. 6].
Inequality (2.20) follows.

Unlike in Lemma 2.17, to obtain the bound on the degree from which the Hilbert function
agrees with the Hilbert polynomial, the assumption in Proposition 2.19 that I is radical could
be replaced by the weaker assumption that I is saturated. However, we need to control both the
value of the Hilbert polynomial and the degree from which the Hilbert function has this value.
Therefore, we need to restrict our attention to radical ideals.

2.1.4 Tangent space at extended ideal

In this subsection we consider polynomial ring T = k[α0, α1]. The main result is Proposition 2.22
which computes

dimk HomT (a, T/a)>0

for a monomial ideal a 6= T of T such that dimk T/a is finite. This is later used to compute the
dimension of the tangent space to the multigraded Hilbert scheme at the point corresponding to
the extended ideal aex ⊆ k[α0, α1, α2].
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IfM andN are graded T -modules andM is finitely generated then the Ext groups ExtiT (M,N)

are graded T -modules in a natural way (see [10, §1.5]). For a graded T -module M and an inte-
ger d, by M(d) we denote the graded T -module given by M(d)e = Me+d for all e ∈ Z.

Let a be a monomial ideal in T with dimk T/a = r for a positive integer r. We can consider
the associated staircase diagram (see [68, §3.1]). We recall its construction. For each pair of
non-negative integers (s, t) with αs0αt1 /∈ a put a 1× 1 box with sides parallel to coordinate axis
and (s, t) as lower left corner of the box. The diagram corresponding to a is denoted by Da. The
set of boxes of the diagram Da (or, the set of monomials outside a) is denoted by Λa. There is
a canonical minimal free resolution of T/a (see [68, Prop. 3.1]). The set of minimal monomial
generators of a is denoted by Ma and the generating set of relations (or more precisely the set
of their degrees when T is considered with the natural Z2-grading) used in that resolution is
denoted by Ra.

∗
∗

Figure 2.1: Staircase diagram of the ideal a = (α3
0, α

2
0α1, α

2
1).

Example 2.21. Figure 2.1 presents the staircase diagram of a = (α3
0, α

2
0α1, α

2
1). Filled boxes

correspond to monomials outside a (i.e. elements of Λa), dots correspond to elements of Ma (i.e.
minimal monomial generators of a) and asterisks correspond to elements of Ra (i.e. minimal
relations between those generators).

We have #Λa = dimk T/a = r and #Ra = #Ma−1. We identify monomials of T with lattice
points in Z2. Given a point u = (s, t) in Z2 we write |u| for s + t. We define three functions
from integers to integers:

λa(a) =HT/a(a) = #{u ∈ Λa | |u| = a},
µa(a) =β1,a(T/a) = #{u ∈Ma | |u| = a},
ρa(a) =β2,a(T/a) = #{u ∈ Ra | |u| = a}.

The goal of this subsection is the proof of the following proposition.

Proposition 2.22. Let r be a positive integer. Given a monomial ideal a in T with dimk T/a = r

we have
dimk HomT (a, T/a)>0 =

∑
u∈Ma

∑
a>|u|

λa(a)−
∑
u∈Ra

∑
a>|u|

λa(a). (2.23)

Observe that [34, Lem. 3.2] presents a more general formula for dimk HomT (a, T/a)u where
u ∈ Z2 and we consider T with the natural Z2-grading.

The proof of Proposition 2.22 is based on the following observation.

Lemma 2.24. Let a be a monomial ideal in T such that T/a is a finite k-vector space.

(i) The natural map T → HomT (a, T ) given by f 7→ (g 7→ fg) is an isomorphism of graded
T -modules.

(ii) We have Ext1
T (a, T/a)>0 = 0.
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Proof. Since dimk T/a is finite, a is equal to (αa0
0 , α

a1
0 α

b1
1 , . . . , α

as−1

0 α
bs−1

1 , αbs1 ) for some positive
integers a0 > a1 > · · · > as−1 and b1 < b2 < · · · < bs. Set as = b0 = 0.

(i) Let ϕ : a→ T be a homomorphism of T -modules. It is enough to show that there exists an
element f ∈ T with ϕ(g) = fg for every g ∈ a. Define fi = ϕ(αai0 α

bi
1 ) for all i = 0, . . . , s.

For each i ∈ {1, . . . , s} we have relations of the form

α
bi−bi−1

1 fi−1 = ϕ(α
ai−1

0 αbi1 ) = α
ai−1−ai
0 fi. (2.25)

From Equation (2.25) for i = s we deduce that αas−1

0 divides fs−1. It follows by induction
that αai0 divides fi for all i. Thus, we have f0 = αa0

0 f for some f ∈ T . From Equation (2.25)
we conclude that fi is equal to αai0 α

bi
1 f for each i.

(ii) We start with showing that Ext1
T (a, T )>0 is zero. Consider the canonical minimal graded

free resolution
s⊕
i=1

T (−ai−1 − bi)→
s⊕
i=0

T (−ai − bi)→ a→ 0

of a (see [68, Prop. 3.1]). Applying the functor HomT (−, T ) to the above resolution, we
obtain for every integer c a k-linear map

ψc :
s⊕
i=0

T (ai + bi)c →
s⊕
i=1

T (ai−1 + bi)c.

We claim that ψc is surjective for every c > 0. Observe that we have kerψc ∼= HomT (a, T )c ∼=
Tc by part (i). Therefore, the claim is a consequence of the calculation

dimk

s⊕
i=0

Tai+bi+c = (s+ 1)(c+ 1) +
s∑
i=1

(ai−1 + bi) = dimk

s⊕
i=1

Tai−1+bi+c + dimk Tc.

Since ψc is surjective for every positive integer c, it follows that Ext1
T (a, T )>0 is zero.

Now we prove that we have Ext1
T (a, T/a)>0 = 0. Consider the following part of the long

exact sequence of Ext groups obtained from the short exact sequence 0→ a→ T → T/a→
0 by applying the functor HomT (a,−):

· · · → Ext1
T (a, T )>0 → Ext1

T (a, T/a)>0 → Ext2
T (a, a)>0 → · · · .

We have shown the equality Ext1
T (a, T )>0 = 0. Moreover, Ext2

T (a, a)>0 is trivial since a

has projective dimension 1. The equality Ext1
T (a, T/a)>0 = 0 follows.

Proof of Proposition 2.22. Consider the canonical minimal free resolution of a

0→
⊕
a∈Z

T (−a)ρa(a) →
⊕
b∈Z

T (−b)µa(b) → a→ 0.

Applying the functor HomT (−, T/a)>0 and using Lemma 2.24(ii) we get an exact sequence

0→ HomT (a, T/a)>0 →
⊕
b∈Z

HomT (T (−b)µa(b), T/a)>0 →
⊕
a∈Z

HomT (T (−a)ρa(a), T/a)>0 → 0.
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This can be rewritten as

0→ HomT (a, T/a)>0 →
⊕
b∈Z

(T/a)
µa(b)

>b →
⊕
a∈Z

(T/a)
ρa(a)

>a → 0.

Thus, we have

dimk HomT (a, T/a)>0 =
∑
u∈Ma

∑
c>|u|

dimk(T/a)c −
∑
u∈Ra

∑
c>|u|

dimk(T/a)c.

This is equivalent to Equation (2.23).

We end this subsection with an example.

Example 2.26. Let a = (α3
0, α

2
0α1, α

6
1). Its staircase diagram is presented in Figure 2.2. For

this ideal Equation (2.23) takes the form

dimk HomT (a, T/a)>0 =
(
2·
∑
a>3

λa(a)+
∑
a>6

λa(a)
)
−
(∑
a>4

λa(a)+
∑
a>8

λa(a)
)

= (2·5+0)−(3+0) = 7.

∗

∗

Figure 2.2: Staircase diagram of the ideal a = (α3
0, α

2
0α1, α

6
1).

2.1.5 Dimensions of Ext groups

In Lemmas 2.27 and 2.28 we present general results about finitely generated modules over poly-
nomial rings. They are used in Chapter 3.

Lemma 2.27. Let n be a positive integer and S = k[α0, . . . , αn] be a polynomial ring. Let M be
a finitely generated graded S-module. We have

n+1∑
i=0

(−1)i dimk ExtiS(k,M)e =

n+1∑
i=0

(−1)i
(
n+ 1

i

)
dimkMe+i

for every e ∈ Z.

Proof. Let P• be the Koszul resolution of k. Applying the functor HomS(−,M)e we obtain a
complex

HomS(P•,M)e,

whose cohomology groups are ExtiS(k,M)e for all i = 0, . . . , n + 1. Therefore, by a standard
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argument (see [81, Ex. 1.6.B]) by splitting the above complex into short exact sequences we get

n+1∑
i=0

(−1)i dimk ExtiS(k,M)e =
n+1∑
i=0

(−1)i dimk HomS(Pi,M)e.

Since there is an isomorphism Pi ∼= S(−i)(
n+1
i ), we obtain the following equality

dimk HomS(Pi,M)e =

(
n+ 1

i

)
dimkMe+i.

Lemma 2.28. Let n be a positive integer and S = k[α0, . . . , αn] be a polynomial ring. Given
a finitely generated graded S-module M and an integer e ∈ Z we have dimk ExtiS(M, k)e =

βi,−e(M).

Proof. Apply the functor HomS(−,k) to a minimal graded free resolution P• of M . The Ext
groups ExtiS(M, k) can be computed as cohomology groups of the obtained complex. Since the
i-th differential in P• maps Pi into mPi−1, the differentials in the complex HomS(P•,k) are zero.
Therefore, we have dimk ExtiS(M, k)e = dimk HomS(Pi, k)e = βi,−e(M).

2.2 Scheme theory and multigraded Hilbert schemes

In this section we give the definition of multigraded Hilbert schemes and study the basic prop-
erties of these schemes. In Subsection 2.2.1 we present general results from scheme theory that
are used in the proofs of the main results. Next subsection contains a formal definition of a
multigraded Hilbert scheme and its basic properties. In Subsection 2.2.3 we introduce multi-
graded Hilbert schemes "of points in general position". This is the main object of investigation
in this thesis. The final subsection concerns the flag multigraded Hilbert scheme. This scheme is
defined by its functor of points and we prove its existence using existence of multigraded Hilbert
schemes.

2.2.1 Scheme theory

The following lemma gives some conditions under which a morphism of k-schemes that is bijective
on k-valued points is a homeomorphism.

Lemma 2.29. Let f : X → Y be a closed morphism of schemes locally of finite type over k. If
f induces a bijection of k-valued points X(k)→ Y (k), then f is a homeomorphism.

Proof. In both X and Y , closed points are very dense by [41, Prop. 3.35]. Since f induces a
bijection of closed points, it is dominant and hence surjective. Moreover, if we have f(p) = f(q),
then there is a chain of equalities f({p}) = {f(p)} = {f(q)} = f({q}). As a result, the sets of
closed points of X that are contained in {p} and {q} are equal. It follows that the closures of
{p} and {q} coincide and therefore, we get p = q. This shows that f : X → Y is a bijective,
closed, continuous map and thus, a homeomorphism.

In describing the intersection of irreducible components of some multigraded Hilbert schemes
we use the following lemma.
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Lemma 2.30. Let X be a scheme locally of finite type over k. Let Z1 and Z2 be irreducible
closed subsets of X of dimensions d1 and d2, respectively. Let P ∈ Z1 ∩ Z2 be a closed point of
the intersection and let d = dimkTPX. Every irreducible component W of Z1 ∩ Z2 such that
P ∈W satisfies dimW ≥ d1 + d2 − d.

Proof. By [80, Tag 0C2G], there exists an open neighborhood U of P inX and a closed immersion
i : U → Y where Y is a smooth d-dimensional variety over k. Let W1 = i(|Z1| ∩ |U |) and
W2 = i(|Z2| ∩ |U |), where | · | denotes the underlying topological space. These are d1 and d2-
dimensional irreducible closed subsets of Y , respectively. Therefore, every irreducible component
of W1 ∩W2 has dimension at least d1 + d2 − d (see [37, §8.2]).

2.2.2 Multigraded Hilbert schemes

We denote the categories of sets, k-algebras and k-schemes by Set, k-Alg and Schk, respectively.
In this subsection we introduce multigraded Hilbert schemes following [46]. We give the definition
in terms of the functor of points HilbhS : k-Alg→ Set and then verify that the scheme represents
the natural extension to the functor HilbhS : Schopk → Set.

Let n be a positive integer and let S = k[α] := k[α0, . . . , αn] be the polynomial ring over k.
We identify monomials of S with Nn+1. Let A be an abelian group and let deg : Nn+1 → A be
a homomorphism of semigroups. We assume that A is generated by deg(αi) for all i = 0, . . . , n.
We consider S with the A-grading induced by deg

S =
⊕
a∈A

Sa satisfying Sa · Sb ⊆ Sa+b,

where Sa is the k-vector space spanned by monomials αu with deg(u) = a. Given a k-algebra
R, we write R[α] for S ⊗k R together with the A-grading given by R[α]a = Sa ⊗k R.

Definition 2.31. Given a k-algebra R and a function h : A → N, we say that a homogeneous
ideal I ⊆ R[α] is admissible for Hilbert function h if R[α]a/Ia is a locally free R-module of rank
h(a) for every a ∈ A.

We define the functor HilbhS : k-Alg→ Set by

R 7→ {I ⊆ R[α] | I is an admissible ideal for Hilbert function h}

and given ϕ : R→ R′ we define
HilbhS(ϕ) : I 7→ I ⊗R R′.

The following lemma confirms that the above data define a functor.

Lemma 2.32. Let R be a k-algebra and I ⊆ R[α] be an admissible ideal for Hilbert function h.
If ϕ : R→ R′ is a homomorphism of k-algebras, then I ⊗RR′ is an ideal of R′[α], admissible for
Hilbert function h.

Proof. Consider the exact sequence of R-modules

0→ I → R[α]→ R[α]/I → 0.
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Since R[α]a/Ia is a locally free R-module of finite rank it is flat (see [6, Prop. 3 §4.4]). Therefore,
by tensoring the above sequence with R′ over R we obtain an exact sequence of R′-modules

0→ I ⊗R R′ → R′[α]→ R′[α]/(I ⊗R R′)→ 0.

Since I ⊗R R′ is an R′-submodule of R′[α] stable under multiplication by any monomial, it
is an ideal. We show that R′[α]a/(Ia ⊗R R′) is a locally free R′-module of rank h(a) for every
a ∈ A. Let q ∈ SpecR′ and let p = ϕ−1(q). Given a ∈ A, there is an element f ∈ R \ p
with (R[α]a/Ia)f ∼= R

h(a)
f . Let g = ϕ(f). We have g ∈ R′ \ q and we show that there is an

isomorphism
(
R′[α]a/(Ia ⊗R R′)

)
g
∼= (R′g)

h(a). Indeed, this is a consequence of the following
chain of isomorphisms(

R′[α]a/(Ia ⊗R R′)
)
g
∼=
(
(R[α]a/Ia)⊗R R′

)
g
∼= (R[α]a/Ia)⊗R R′g ∼=

∼= (R[α]a/Ia)f ⊗Rf R
′
g
∼= R

h(a)
f ⊗Rf R

′
g
∼= (R′g)

h(a).

The following existence statement is the foundation of the theory of multigraded Hilbert
schemes.

Theorem 2.33 ([46, Thm. 1.1]). Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian
group A. Let h : A→ N be a numerical function. There exists a quasiprojective k-scheme HilbhS
representing the functor HilbhS : k-Alg→ Set.

Moreover, under additional assumptions on the grading deg : Nn+1 → A, the scheme HilbhS
is projective.

Definition 2.34. Let S = k[α0, . . . , αn] be a polynomial ring and A be an abelian group. The
grading of S given by a semigroup homomorphism deg : Nn+1 → A is called positive if S0 = k.

In the cases that are studied in this thesis, the grading is positive.

Example 2.35.

(a) The homogeneous coordinate ring S[Pn] = k[α0, . . . , αn] of projective space Pn is Z-graded
by deg(αi) = 1. This grading is positive.

(b) More generally, letX be a smooth projective toric variety over the field of complex numbers.
Its Cox ring S[X] is a Pic(X)-graded polynomial ring and S[X]0 = Γ(X,OX) = C. See
Chapter 4 for more about smooth projective toric varieties and their Cox rings.

The main consequence of the assumption that S is positively graded, is the following result.

Theorem 2.36 ([46, Cor. 1.2.]). Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian
group A. If the grading is positive then for every function h : A → N, the multigraded Hilbert
scheme HilbhS is projective over k.

Moreover, there is also an algebraic consequence of this restriction on the grading.

Theorem 2.37 ([68, Thm. 8.6]). Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian
group A. The following conditions are equivalent:

1. S0 = k;
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2. Sa is a finite-dimensional k-vector space for every a ∈ A.

Now we discuss the extension of the functor HilbhS to the category Schopk . The definition
comes from [68, §18.5]. Then we check that the extended functor is indeed the functor of points
of HilbhS .

Definition 2.38. Let X be a k-scheme and h : A → N be a function. We say that a closed
subscheme Z ⊆ An+1

X is an admissible family for the function h if for every affine open subscheme
SpecR ⊆ X, the pullback of the ideal sheaf of Z to An+1

R corresponds to an ideal of R[α] that is
admissible for the function h.

As is often the case, this condition can be checked on any affine open covering.

Lemma 2.39. Let h : A→ N be a function. Let X be a k-scheme with an affine open covering
X =

⋃
j∈J Uj with Uj = SpecRj. Let Z ⊆ An+1

X be a closed subscheme such that the pullback of
its ideal sheaf to An+1

Rj
is an admissible ideal of Rj [α] for the function h for every j ∈ J . The

subscheme Z is an admissible family over X for the function h.

Proof. Let V = SpecR be an affine open subscheme of X and let I be the ideal in R[α] cor-
responding to the pullback of the ideal sheaf of Z. The ideal I is an admissible ideal for the
function h if and only if for each a in A, the degree a part of R̃[α]/I is a locally free sheaf of
rank h(a). This can be checked on any affine open covering of An+1

R . Given a point P ∈ An+1
R

there is an affine open subscheme U = SpecT ⊆ V ∩ Uj for some j ∈ J that is a distinguished
open subscheme of Uj and such that P is in An+1

T . It is enough to show that the pullback of the
ideal sheaf of Z to An+1

T corresponds to an admissible ideal. Since this is true for the pullback
to An+1

Rj
, the claim follows from Lemma 2.32.

We define the natural extension of the multigraded Hilbert scheme functor to the category

Schopk , opposite of the category of k-schemes. For now we denote this functor by H̃ilbhS .
Given a k-scheme X, let

H̃ilbhS(X) = {admissible families Z ⊆ An+1
X for the function h}

and for a morphism f : X → Y of k-schemes let

H̃ilbhS(f) : Z 7→ (f × idAn+1)−1(Z).

The following lemma checks that this functor is well-defined.

Lemma 2.40. Let f : X → Y be a morphism of k-schemes. If Z ⊆ An+1
Y is an admissible family

over Y , then the scheme theoretic inverse image

(f × idAn+1)−1(Z) ⊆ An+1
X

is an admissible family over X.

Proof. To simplify notation, let Z ′ = (f × idAn+1)−1(Z). We may choose affine open subschemes
SpecT ⊆ X and SpecR ⊆ Y with f(SpecT ) ⊆ SpecR. By Lemma 2.39, it is enough to show
that the pullback of Z ′ to An+1

T , denoted by Z ′T , corresponds to an admissible ideal of T [α]. Let
ZR denote the pullback of Z to An+1

R . We have the following diagrams with all inner squares
pullback diagrams:
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An+1
T ×An+1

R
ZR ZR Z

An+1
T An+1

R An+1
Y

SpecT SpecR Y

Z ′T Z ′ Z

An+1
T An+1

X An+1
Y

SpecT X Y.

Since Z is an admissible ideal over Y , ZR corresponds to an admissible ideal of R[α]. Thus,
An+1
T ×An+1

R
ZR corresponds to an admissible ideal of T [α] by Lemma 2.32. Since the bottom

arrows from SpecT to Y in both diagrams are the same, so are the middle arrows An+1
T → An+1

Y .
Therefore, we have Z ′T = An+1

T ×An+1
R

ZR as a closed subscheme of An+1
T which finishes the

proof.

As expected, the multigraded Hilbert scheme represents this extended functor.

Lemma 2.41. Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian group A. Let

h : A→ N be a function. The functor H̃ilbhS : Schopk → Set defined above is the functor of points
of the multigraded Hilbert scheme HilbhS.

Proof. Let hHilbhS
be the functor of points of HilbhS . Let Y be a k-scheme and cover it by affine

open subschemes {Vis}is∈I . Moreover, cover each intersection Vis ∩Vit by affine open subschemes
Visitk for k ∈ Iisit . Since data of an admissible family over Y is affine local on Y , we have an
equalizer diagram of sets

H̃ilbhS(Y )→
∏
is∈I

H̃ilbhS(Vis)⇒
∏
is∈I

∏
it∈I

∏
k∈Iisit

H̃ilbhS(Visitk).

See [75, p. 225] for the definition and universal property of equalizer. Since hHilbhS
is representable,

we also have an equalizer diagram of sets

hHilbhS
(Y )→

∏
is∈I

hHilbhS
(Vis)⇒

∏
is∈I

∏
it∈I

∏
k∈Iisit

hHilbhS
(Visitk).

Since H̃ilbhS and hHilbhS
are isomorphic when restricted to the category of affine k-schemes, the

middle and right terms of the above sequences are naturally isomorphic. Thus, we have an

isomorphism H̃ilbhS(Y )→ hHilbhS
(Y ) by the universal property of equalizer.

We claim that this isomorphism is natural with respect to f : X → Y so that it defines a

natural isomorphism of functors between H̃ilbhS and hHilbhS
. Indeed, we may choose an affine open

covering {Uja}ja∈J of X refining the open covering of X by preimages of Vis ’s for is ∈ I. Let
γ : J → I be the corresponding map of indexing sets, such that Uja is contained in f−1(Vγ(ja))

for every ja ∈ J . Furthermore, we can cover each Uja ∩ Ujb with ja, jb ∈ J by affine open
subsets Ujajbl for l ∈ Jjajb refining the open covering of Uja ∩Ujb by preimages of Vγ(ja)γ(jb)k for
k ∈ Iγ(ja)γ(jb). We have a commutative diagram

H̃ilbhS(Y )
∏
is∈I H̃ilbhS(Vis)

∏
is∈I

∏
it∈I

∏
k∈Iisit

H̃ilbhS(Visitk)

H̃ilbhS(X)
∏
ja∈J H̃ilbhS(Uja)

∏
ja∈J

∏
jb∈J

∏
l∈Jjajb

H̃ilbhS(Ujajbl)

H̃ilbhS(f)
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and a similar one for hHilbhS
. Since the isomorphisms

α : H̃ilbhS(Y )→ hHilbhS
(Y ) and β : H̃ilbhS(X)→ hHilbhS

(X)

are induced from the universal property of equalizer and isomorphism of restricted functors, the

equality β ◦ H̃ilbhS(f) = hHilbhS
(f) ◦ α follows from the universal property of equalizer.

We end this subsection with two technical results. The first of them is concerned with the
fact that smoothness of [I] ∈ HilbhS "does not depend" on I1. The following lemma makes it
precise.

Lemma 2.42. Let m ≤ n be positive integers and let I ⊆ S[Pm] = k[α0, . . . , αm] be a homoge-
neous ideal. Denote the Hilbert function of S[Pm]/I by h. Let I ′ = I+(αm+1, . . . , αn) ⊆ S[Pn] =

k[α0, . . . , αm, . . . , αn]. The point [I] ∈ HilbhS[Pm] is a smooth point if and only if [I ′] ∈ HilbhS[Pn]

is a smooth point.

Proof. Let d = h(1). It follows from the inequality d ≤ m + 1 that we can consider S[Pd−1] =

k[α0, . . . , αd−1] as a subring of S[Pm]. Up to a linear change of variables in S[Pm] we may assume
that we have I = I ′′ + (αd, . . . , αm) for an ideal I ′′ ⊆ S[Pd−1] such that S[Pd−1]/I ′′ has Hilbert
function h.

The scheme HilbhS[Pn] is a HilbhS[Pd−1]-bundle over Gr(n + 1 − d, S[Pn]1) and HilbhS[Pm] is a
HilbhS[Pd−1]-bundle over Gr(m+ 1− d, S[Pm]1) by [20, Prop. 3.1]. Therefore,

[I] is a smooth point ⇔ [I ′′] is a smooth point ⇔ [I ′] is a smooth point.

We compute the fiber of a natural map of multigraded Hilbert schemes, associated with the
homogeneous coordinate ring of a projective space, given by restricting ideals to high degree.

Lemma 2.43. Let n be a positive integer and I be a homogeneous ideal of S = S[Pn]. Let
m = min{a ∈ Z | Ia 6= 0} and g be the Hilbert function of S/I. Let d > m be a positive integer
and define h : Z→ Z by

h(a) =

{
dimk Sa for a < d

g(a) for a ≥ d.

There is a natural map π : HilbgS → HilbhS given on closed points by [J ] 7→ [J ∩ md]. Let [K] be
a closed point of HilbhS with HS/K(a) = g(a) for every a ≥ m+ 1. The fiber of π over [K] is the
Grassmannian

Gr(dimk Sm − g(m),Km).

Proof. The point [K] ∈ HilbhS gives a natural morphism

Speck = Spec k([K])→ HilbhS .

Its functor of points k-Alg→ Set is given by

R 7→ {K ⊗k R}.

The scheme theoretic fiber over [K] is the fiber product

HilbgS ×HilbhS
Spec k([K]).
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Therefore, its functor of points k-Alg → Set is the fiber product of the corresponding functors,
i.e. it is given by

R 7→ {J ∈ HilbgS(R) | J ∩ (m⊗k R)d = K ⊗k R}.

Since all schemes considered in this proof are of finite type over Speck, they can be recovered
from their functors of points restricted to the subcategory of finitely generated k-algebras. In
what follows we restrict to this subcategory.

The ideal K⊗kR is saturated with respect to m⊗kR by Lemma 2.6. Therefore, by definition
of m and the assumption that HS/K(a) = g(a) holds for every a ≥ m+1, the functor of points of
the fiber is naturally isomorphic to the functor from the category of finitely generated k-algebras
to the category of sets defined by

R 7→ {Jm ⊆ Km ⊗k R ⊆ Sm ⊗k R |Jm is an R-submodule of Km ⊗k R and

(Sm ⊗k R)/Jm is a locally free R-module of rank g(m)}.

By Lemma 2.4, this functor coincides with the following functor:

R 7→ {Jm ⊆ Km ⊗k R |Jm is an R-submodule of Km ⊗k R and (Km ⊗k R)/Jm is a locally

free R-module of rank g(m) + dimkKm − dimk Sm}.

This is the functor of points of Gr(dimk Sm − g(m),Km).

2.2.3 Multigraded Hilbert schemes of points in general position and Slip

In this subsection we introduce the main object of study of this thesis in the case of projective
space. We define the multigraded Hilbert scheme Hilb

hr,n
S[Pn] of r points in general position on

projective n-space. The more general definition for a smooth projective toric variety appears
in Subsection 4.1.5. For positive integers r and n, the scheme Hilb

hr,n
S[Pn] has a distinguished

irreducible component called Slipr,n which plays a key role in the border apolarity lemma—
Proposition 2.92.

Fix a positive integer n and let S = S[Pn] := k[α] = k[α0, . . . , αn] be the homogeneous
coordinate ring of Pn with its standard Z-grading given by deg(αi) = 1 for all i = 0, . . . , n. Let
r be a positive integer and let hr,n = hr,Pn : Z→ N be given by

hr,n(a) = min{r, dimk Sa}.

This is the Hilbert function of r points in Pn in general position. We study the multigraded
Hilbert scheme Hilb

hr,n
S .

This scheme has a natural morphism into the Hilbert scheme Hilbr(Pn) parametrizing zero-
dimensional, length r subschemes of the projective n-space. We describe this in some details.
We start with the following observation.

Lemma 2.44 ([46, Lem. 4.1]). Let fr,n : Z→ N be defined by

fr,n(a) =

{
dimk Sa = dimk k[α0, . . . , αn]a for a < r,

r for a ≥ r.

The Hilbert scheme Hilbr(Pn) is isomorphic to Hilb
fr,n
S where on closed points, the isomorphism
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identifies [I] ∈ Hilb
fr,n
S with [Proj(S/I)] ∈ Hilbr(Pn).

Consider a morphism of functors Hilb
hr,n
S → Hilb

fr,n
S defined for a k-algebra R by

S ⊗k R ⊇ I 7→ I ∩ (m⊗k R)r,

where m = (α0, . . . , αn) is the irrelevant ideal of S. Using the identification from Lemma 2.44
this gives a morphism of schemes ϕr,n : Hilb

hr,n
S → Hilbr(Pn) that on closed points sends an

ideal to the subscheme defined by this ideal. Unless stated otherwise, we identify Hilbr(Pn) with
Hilb

fr,n
S .
Following [15] we define Sipr,n to be the set of all closed points of Hilb

hr,n
S[Pn] corresponding to

saturated ideals of r distinct points. The next result is fundamental. Its proof for k = C appears
in [15, Prop. 3.13] for an arbitrary smooth projective toric variety.

Proposition 2.45. For any two positive integers r and n, the closure of Sipr,n in Hilb
hr,n
S is an

irreducible component.

Proof. Let U ⊆ Hilbr(Pn)×Pn be the universal family overHilbr(Pn) and let π : U → Hilbr(Pn)

denote the natural morphism.
Let U be the locus of all points inHilbr(Pn) corresponding to smooth subschemes of Pn and let

V be the locus of all points in Hilbr(Pn) corresponding to subschemes with Hilbert function hr,n.
We claim that U and V are open. For a non-negative integer d, let Vd ⊆ Hilbr(Pn) be the locus of
all points corresponding to subschemes R ⊆ Pn such that dimkH

0(Pn, IR(d)) ≤ dimk Sd−hr,n(d)

where IR is the ideal sheaf of R. The subset Vd is open by [48, Thm. III.12.8]. Furthermore,
Vd equals Hilbr(Pn) for all d ≥ r by Gotzmann’s regularity theorem [10, Thm. 4.3.2] and [32,
Thm. 4.2]. Therefore, V =

⋂r−1
d=0 Vd is open.

Let W ⊆ U be the locus of all points x such that the fiber of π over π(x) is smooth. This is
an open subset of U by [45, Thm. 12.1.6]. Therefore, its image U under π is open since π is flat
and locally of finite presentation and thus, open by [41, Thm. 14.33].

It follows that Sipr,n = ϕ−1
r,n(U ∩ V ) is open. Furthermore, it is homeomorphic to U ∩ V

by Lemma 2.29. In particular, it is irreducible since U ∩ V is a non-empty open subset of
the smoothable component of Hilbr(Pn). It follows that the closure of Sipr,n is an irreducible
component of Hilb

hr,n
S .

Definition 2.46. For any two positive integers r and n, the irreducible component Sipr,n of
Hilb

hr,n
S is denoted by Slipr,n.

We end this subsection with a remark about a relation between the irreducible component
Slipr,n and the smoothable component Hilbsmr (Pn) of the Hilbert scheme Hilbr(Pn).

Remark 2.47. Let ϕr,Pn = ϕr,n : Hilb
hr,n
S → Hilbr(Pn) be defined on closed points by

[I] 7→ [ProjS/I].

Since both schemes are projective, it is a closed map. It sends Sipr,n onto an open subset of
the locus of all reduced subschemes. It follows that we have ϕr,n(Slipr,n) = Hilbsmr (Pn) set-
theoretically. In particular, if Hilbr(Pn) is irreducible then for every closed point [I] ∈ Hilb

hr,n
S

there is a point [I ′] ∈ Slipr,n with I = I ′. As a special case, if I is saturated, Hilbr(Pn) is
irreducible and [I] is a point of Hilb

hr,n
S then [I] belongs to Slipr,n.
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2.2.4 Flag multigraded Hilbert schemes

Let S = k[α0, . . . , αn] be a polynomial ring. Assume that S is graded by an abelian group A.
Let f1, f2 : A → N be numerical functions. There are multigraded Hilbert schemes Hilbf1

S and
Hilbf2

S . The goal of this subsection is the construction of the scheme Hilbf1,f2

S parametrizing
pairs (K,J) of homogeneous ideals such that we have K ⊆ J and the algebras S/K and S/J

have Hilbert functions f1 and f2, respectively. The idea is to show that the condition that K
is contained in J defines a closed subscheme of the product Hilbf1

S ×Hilbf2

S . The rest of this
subsection makes this intuition precise.

Let Hilbf1

S and Hilbf2

S be the functors of points of Hilbf1

S and Hilbf2

S , respectively. We start

with defining the functor Hilbf1,f2

S : k-Alg→ Set that Hilbf1,f2

S should represent. It is a subfunc-

tor of the product functor Hilbf1

S ×Hilbf2

S . Given R ∈ k-Alg, let

Hilbf1,f2

S (R) = {(K,J) ∈ Hilbf1

S (R)×Hilbf2

S (R) | K ⊆ J}.

We can now state the main result of this subsection.

Proposition 2.48. Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian group A.
Let f1, f2 : A→ N be numerical functions. The functor Hilbf1,f2

S : k-Alg→ Set is represented by

a closed subscheme of Hilbf1

S ×Hilbf2

S . In particular, it is a projective scheme if the grading of S
is positive.

Before proving Proposition 2.48, we recall some results related to representable functors. See
[33, Cha. VI] or [41, Cha. 8] for good introductions to this topic.

Definition 2.49. A functor F : k-Alg → Set is a sheaf in the Zariski topology if for every
k-algebra R and for every open covering SpecR =

⋃
Ui by distinguished open subschemes

Ui = SpecRfi we have an equalizer sequence

F (R)→
∏
i

F (Rfi)⇒
∏
i,j

F (Rfifj ).

If a functor F : k-Alg → Set is represented by a k-scheme, then F is a sheaf in the Zariski
topology [33, Thm. VI-14].

Following [46] we introduce the following notion.

Definition 2.50. Let R be a k-algebra and let C be a condition on R-algebras. We say that the
condition C is closed if there exists an ideal a ⊆ R such that an R-algebra φ : R → T satisfies
condition C if and only if φ(a) is zero.

Let F : k-Alg→ Set be a sheaf in the Zariski topology and assume that it is a subfunctor of
the functor of points hX of a k-scheme X. Given a k-algebra R and an element λ ∈ hX(R) we
say that an R-algebra φ : R→ T satisfies condition VR,λ if hX(φ)(λ) ∈ hX(T ) belongs to F (T ).

In the following remark we show that the ideal a from the definition of a closed condition is
uniquely determined by the condition.

Remark 2.51. Let R be a k-algebra and let C be a closed condition on R-algebras. The ideal
a ⊆ R such that R-algebra φ : R→ T satisfies condition C if and only if φ(a) is zero is uniquely
determined by C. Indeed, if b has analogous property then considering R-algebras R→ R/a and
R→ R/b we conclude that we have a = b.

28



In order to show that Hilbf1,f2

S is represented by a closed subscheme of Hilbf1

S ×Hilbf2

S we use
the following result.

Proposition 2.52 ([46, Prop. 2.9]). Let F : k-Alg→ Set be a sheaf in the Zariski topology and
assume that it is a subfunctor of the functor of points hX of a k-scheme X. Assume that for
every k-algebra R and for every λ ∈ hX(R) the condition VR,λ on R-algebras is closed. The
functor F is represented by a closed subscheme of X.

Being a closed condition can be checked affine locally. Lemma 2.53 makes this precise.

Lemma 2.53. Let F : k-Alg → Set be a sheaf in the Zariski topology and assume that it is a
subfunctor of the functor of points hX of a k-scheme X.

Let R be a k-algebra and λ be an element of hX(R). Suppose that there is a covering SpecR =⋃
i∈I SpecRgi of SpecR by distinguished affine open subsets. Let λi = hX(τi)(λ) where τi : R→

Rgi is the localization map. If the condition VRgi ,λi on Rgi-algebras is closed for every i ∈ I, then
the condition VR,λ on R-algebras is closed.

Proof. Let τii′ : Rgi → Rgigi′ be the localization map for every i, i′ ∈ I. For all i ∈ I, let ai ⊆ Rgi
be the ideal such that an Rgi-algebra ψ : Rgi → U satisfies condition VRgi ,λi if and only if ψ(ai)

is zero. By Remark 2.51 we have aiRgigi′ = ai′Rgigi′ since both ideals show that the condition
VRgigi′ ,hX(τii′ )(λi)

is closed.
It follows that there is an ideal a ⊆ R with aRgi = ai for all i ∈ I. We claim that an R-algebra

φ : R→ T satisfies condition VR,λ if and only if φ(a) = 0 holds.
Let hi = φ(gi) for all i ∈ I and σi : T → Thi , σii′ : Thi → Thihi′ be the localization maps.

Since F is a sheaf in the Zariski topology, hX(φ)(λ) belongs to F (T ) if and only if we have

hX(σi ◦ φ)(λ) ∈ F (Thi) (2.54)

for every i ∈ I and

F (σii′)
(
hX(σi ◦ φ)(λ)

)
= F (σi′i)

(
hX(σi′ ◦ φ)(λ)

)
(2.55)

for every i, i′ ∈ I.
First we show that Equation (2.55) always holds. Indeed, F is a subfunctor of hX . As a result,

we can replace F (σii′) by hX(σii′) and F (σi′i) by hX(σi′i). Since we have σii′ ◦σi◦φ = σi′i◦σi′ ◦φ
the claimed equality follows from the fact that hX is a functor.

Therefore, we need to show that Equation (2.54) is satisfied if and only if φ(a) is zero. For
every i ∈ I, there is an induced map φi : Rgi → Thi with φi ◦ τi = σi ◦ φ. Thus, there is a chain
of equalities hX(σi ◦ φ)(λ) = hX(φi) ◦ hX(τi)(λ) = hX(φi)(λi). It follows that Equation (2.54) is
satisfied if and only if φi(ai) = 0 holds for every i ∈ I.

We have

φ(a) = 0⇔ σi ◦ φ(a) = 0 for all i ∈ I ⇔ φi ◦ τi(a) = 0 for all i ∈ I ⇔ φi(ai) = 0 for all i ∈ I.

This implies that Equation (2.54) is satisfied if and only if φ(a) is zero and thus, finishes the
proof.

We start with checking that the functor Hilbf1,f2

S is a sheaf in the Zariski topology. In fact,
it is convenient to prove this in slightly greater generality. Let D ⊆ A and define the subfunctor
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Hilbf1,f2

S,D of the product functor Hilbf1

S ×Hilbf2

S by

Hilbf1,f2

S,D (R) = {(K,J) ∈ Hilbf1

S (R)×Hilbf2

S (R) | Ka ⊆ Ja for every a ∈ D}.

Lemma 2.56. The functor Hilbf1,f2

S,D is a sheaf in the Zariski topology. In particular, Hilbf1,f2

S

is a sheaf in the Zariski topology.

Proof. Let R be a k-algebra. Consider a covering of SpecR with distinguished affine open
subschemes {SpecRgi}i∈I . We need to show that we have an equalizer sequence

Hilbf1,f2

S,D (R)→
∏
i∈I

Hilbf1,f2

S,D (Rgi)⇒
∏
i,i′∈I

Hilbf1,f2

S,D (Rgigi′ ).

For all i, i′ ∈ I, let τii′ : Rgi → Rgigi′ and τi : R → Rgi be the localization maps. Let (Ki, Ji) ∈
Hilbf1,f2

S,D (Rgi) for all i ∈ I be such that

Hilbf1,f2

S,D (τii′)(Ki, Ji) = Hilbf1,f2

S,D (τi′i)(Ki′ , Ji′)

holds for all i, i′ ∈ I. We need to show that there exists a unique element (K,J) ∈ Hilbf1,f2

S,D (R)

with Hilbf1,f2

S,D (τi)(K,J) = (Ki, Ji) for every i ∈ I.

Since Hilbf1,f2

S,D is a subfunctor of the representable functor Hilbf1

S ×Hilbf2

S , it follows that there

is a unique element (K,J) ∈ Hilbf1

S (R)×Hilbf2

S (R) with Hilbf1

S (τi)(K) = Ki and Hilbf2

S (τi)(J) =

Ji for all i ∈ I. We are left with showing that Ka is contained in Ja for every a ∈ D.
Let π be the natural map

⊕
a∈DKa →

⊕
a∈D(R[α]/J)a and denote kerπ →

⊕
a∈DKa by θ.

We claim that θ is an isomorphism. Indeed, θgi is an isomorphism for all i ∈ I since we have
(Ki)a ⊆ (Ji)a for every a ∈ D. Subschemes SpecRgi cover SpecR. It follows that θp is an
isomorphism for all p ∈ SpecR and thus, θ is an isomorphism.

Now we can give a proof of the existence of flag multigraded Hilbert schemes.

Proof of Proposition 2.48. The functor Hilbf1,f2

S is a sheaf in the Zariski topology by Lemma 2.56.
Therefore, by Proposition 2.52, it is enough to show that the following holds. Let R be a k-
algebra and (K,J) ∈ Hilbf1

S (R) × Hilbf2

S (R). There exists an ideal a ⊆ R such that K ⊗R T is
contained in J ⊗R T for an R-algebra φ : R→ T if and only if φ(a) is zero.

We start with the following reduction. Given a ∈ A consider the functor Hilbf1,f2

S,{a}. We show
that there exists an ideal ba ⊆ R such that Ka ⊗R T is contained in Ja ⊗R T for an R-algebra
φ : R→ T if and only if φ(ba) is zero. Then we take a =

∑
a∈A ba.

Moreover, by Lemma 2.53 by replacing R by its localization, we may assume that (R[α]/J)a
is a free R-module. Let (R[α]/J)a = ⊕f2(a)

k=1 R · ea,k. Let π : Ka → (R[α]/J)a be the natural map.
Let C be the condition on R-algebras such that φ : R → T satisfies condition C if and only if
π ⊗R idT is the zero map. We need to show that condition C is closed. Let (ba,i)i∈Ia be a set
of generators of Ka as an R-module. Let π(ba,i) =

∑f2(a)
k=1 ca,i,kea,k. The map π ⊗R idT is the

zero map if and only if φ(ca,i,k) = 0 holds for every i ∈ Ia and k ∈ {1, . . . , f2(a)}. The ideal
ba = (ca,i,k)i∈Ia,k∈{1,...,f2(a)} shows that condition C is closed.
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2.3 Deformation theory

In this section we recall some definitions and results from deformation theory. Subsection 2.3.1
introduces a small amount of general theory that we need. Our main reference is [35].

In Subsection 2.3.2 we study the tangent-obstruction theory of multigraded Hilbert schemes
and flag multigraded Hilbert schemes.

2.3.1 Definitions and basic results

Let Art/k be the category of local Artin k-algebras with residue field k. Observe that every
morphism of k-algebras from Art/k is a local morphism of local rings.

The main objects of study of deformation theory are deformation functors. We consider the
class of deformation functors coming from k-points of k-schemes.

Definition 2.57. Let X be a k-scheme and hX : Schopk → Set be its functor of points. Let
x ∈ hX(Speck). We have the corresponding deformation functor

DX,x : Art/k→ Set

defined by DX,x(A) = {λ ∈ hX(SpecA) | hX(π#
A )(λ) = x}, where πA : A→ A/mA is the natural

map to the residue field of A and π#
A is the corresponding map of affine schemes. A morphism

of deformation functors DX,x → DY,y is a natural transformation of functors.

A morphism of k-schemes determines morphisms of deformation functors.

Example 2.58. Let f : X → Y be a morphism of k-schemes and let x ∈ X and y = f(x) be
k-points. The natural transformation hX → hY of functors of points corresponding to f , induces
a morphism of deformation functors DX,x → DY,y.

Suppose we have a k-scheme X and a k-point x ∈ X. A key question is whether given a
surjection π : B → A of algebras in Art/k and an element of λ ∈ DX,x(A) we can lift it to an
element of DX,x(B). The simplest situation is when the kernel of π is killed by the maximal
ideal of B.

Definition 2.59. A small extension is a short exact sequence

0→M → B → A→ 0

where A and B are in Art/k and we have mB ·M = 0. Here mB is the maximal ideal of B.

Definition 2.60. A deformation functorDX,x has a tangent-obstruction theory if there are finite-
dimensional k-vector spaces TX,x (called the tangent space) and ObX,x (called the obstruction
space) such that:

1. For all small extensions 0→M → B → A→ 0 there exists an exact sequence of sets

TX,x ⊗k M → DX,x(B)→ DX,x(A)
obB→A−−−−→ ObX,x⊗kM ;

(Exactness at DX,x(A) means that an element of DX,x(A) lifts to DX,x(B) if and only if
its image in ObX,x⊗kM is zero. Exactness at DX,x(B) means that there is a transitive
action of TX,x ⊗k M on each fiber of DX,x(B)→ DX,x(A)).
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2. If A = k then the sequence becomes

0→ TX,x ⊗k M → DX,x(B)→ DX,x(k)
obB→k−−−−→ ObX,x⊗kM ;

3. Suppose we have a commutative diagram whose rows are small extensions

0 M B A 0

0 M ′ B′ A′ 0.

ϕM ϕB ϕA

There is a commutative diagram

TX,x ⊗k M DX,x(B) DX,x(A) ObX,x⊗kM

TX,x ⊗k M
′ DX,x(B′) DX,x(A′) ObX,x⊗kM

′.

idTX,x
⊗kϕM DX,x(ϕB)

obB→A

DX,x(ϕA) idObX,x
⊗kϕM

obB′→A′

The tangent spaceTX,x is uniquely determined and agrees with the usual definition of tangent
space to scheme X at point x.

Proposition 2.61 ([35, Prop. 6.1.23]). If DX,x is a deformation functor with tangent obstruction
theory (TX,x,ObX,x), then TX,x = DX,x(k[ε]/(ε2)) is the tangent space to X at x.

On the other hand, the obstruction space ObX,x is not uniquely determined by the deforma-
tion functor DX,x. In fact, given a tangent-obstruction theory (TX,x,ObX,x) and an injective
k-linear map ι : ObX,x → Ob′X,x to a k-vector space Ob′X,x, there is a tangent-obstruction theory
for DX,x with obstruction space Ob′X,x and obstruction map ob′B→A = (ι⊗k idM ) ◦ obB→A for a
small extension 0→M → B → A→ 0.

We need the following notion of a map of tangent-obstruction theories.

Definition 2.62. Let η : DX,x → DY,y be a morphism of deformation functors with tangent-
obstruction theories (TX,x,ObX,x) and (TY,y,ObY,y), respectively. A map of tangent-obstruction
theories is a pair of linear maps Tη : TX,x → TY,y and Obη : ObX,x → ObY,y such that for every
small extension 0→M → B → A→ 0 there is a commutative diagram

TX,x ⊗k M DX,x(B) DX,x(A) ObX,x⊗kM

TY,y ⊗k M DY,y(B) DY,y(A) ObY,y ⊗kM.

Tη⊗kidM η(B)

obB→A

η(A) Obη ⊗k idM

obB→A

(2.63)

The commutativity of the left square means that η(B) is equivariant with respect to the natural
actions of TX,x ⊗M and TY,y ⊗M .

Proposition 2.61 showed that the tangent space of a deformation functor is uniquely defined.
Similarly, for a natural transformation of deformation functors η : DX,x → DY,y, if we set Tη =

η
(
k[ε]/(ε)2

)
, then the left square of diagram (2.63) commutes.

The main result from deformation theory that we use is the smoothness criterion (see [35,
Rmk. 6.3.2]). In order to state it, we recall the definition of a smooth morphism of deformation
functors.
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Definition 2.64. Let f : X → Y be a morphism of k-schemes locally of finite type. Let x and y =

f(x) be k-points. A morphism of deformation functors DX,x → DY,y is called smooth if for every
small extension 0→M → B → A→ 0, the natural map DX,x(B)→ DY,y(B)×DY,y(A) DX,x(A)

is surjective.

Theorem 2.65 ([35, Rmk. 6.3.2]). Let f : X → Y be a morphism of k-schemes locally of finite
type. Let x and y = f(x) be k-points. The morphism f is smooth at x if and only if the morphism
of deformation functors DX,x → DY,y is smooth.

We use the following special cases of Theorem 2.65.

Corollary 2.66. Let f : X → Y be a morphism of k-schemes locally of finite type. Let x and
y = f(x) be k-points.

(i) The point x is a smooth point of X if and only if DX,x(B) → DX,x(A) is surjective for
every small extension 0→M → B → A→ 0.

(ii) Assume that deformation functors DX,x and DY,y have tangent-obstruction theories. Let
η : DX,x → DY,y be the morphism of deformation functors defined by f . If there is a map of
tangent-obstruction theories (Tη,Obη) which is surjective on tangent spaces and injective
on obstruction spaces, then the morphism f is smooth at x.

Proof.

(i) This follows from the fact that if we have Y = Spec k then DY,y(A) is a singleton for every
A ∈ Art/k.

(ii) This follows from chasing the diagram (2.63).

We end this subsection with two lemmas from deformation theory that are used in Chapter 3.

Lemma 2.67. Assume that f : X → Y is a morphism of k-schemes locally of finite type. Let
x and y = f(x) be closed points. Assume that functors DX,x and DY,y have tangent-obstruction
theories with obstruction spaces ObX,x and ObY,y, respectively. If y is a smooth point and f

induces a map of obstruction theories which is injective on obstruction spaces then x is a smooth
point.

Proof. By Corollary 2.66(i) it is enough to show that for every small extension 0→ M → B →
A→ 0, the map DX,x(B)→ DX,x(A) is surjective. Consider the commutative diagram of sets

DX,x(B) DX,x(A) ObX,x⊗M

DY,y(B) DY,y(A) ObY,y ⊗M

whose rows are the exact sequences from Definition 2.60. Since y is a smooth point, the lower
left map is surjective and thus, the lower right map takes every element of DY,y(A) to 0. By
assumption the map on obstruction spaces is injective. It follows that every element of DX,x(A)

is mapped to 0 by the upper right map. Hence the upper left map is surjective, as claimed.
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Before presenting the final lemma of this subsection, we introduce some notation. Let
g′ : X → X ′ and g′′ : X → X ′′ be morphisms of k-schemes locally of finite type. Let x ∈ X,
x′ = g′(x) and x′′ = g′′(x) be k-points.

Assume that there are tangent-obstruction theories for DX′,x′ with obstruction space ObX′,x′

and for DX′′,x′′ with obstruction space ObX′′,x′′ . Assume that there is a k-vector space L and
k-linear maps α′ : ObX′,x′ → L and α′′ : ObX′′,x′′ → L such that there is a tangent-obstruction
theory for DX,x with obstruction space ObX,x given by the pullback

ObX,x ObX′′,x′′

ObX′,x′ L.

β′′

β′ α′′

α′

Moreover, assume that β′ and β′′ determine maps of tangent-obstruction theories.

Lemma 2.68. Assume that x′ is a smooth point of X ′. There is a tangent-obstruction theory
for DX,x with obstruction space kerα′′. Moreover, the canonical injection

ι : kerα′′ → ObX′′,x′′

induces a map of tangent-obstruction theories.

Proof. By the universal property of fiber product, there is a map γ : kerα′′ → ObX,x with

β′′ ◦ γ = ι (2.69)

and
β′ ◦ γ = 0. (2.70)

Let η′ : DX,x → DX′,x′ and η′′ : DX,x → DX′′,x′′ be the natural transformations induced by g′

and g′′, respectively. Given a small extension 0→M → B → A→ 0, we denote the obstruction
map DX,x(A)→ ObX,x⊗M by obX,x;B→A. We do similarly with DX′,x′ and DX′′,x′′ .
Step 1: Definition of obstruction maps

Fix a small extension 0→ M → B → A→ 0. We construct a map DX,x(A)→ kerα′′ ⊗M .
Consider the commutative diagram:

DX,x(A) ObX,x⊗M ObX′,x′ ⊗M

kerα′′ ⊗M ObX′′,x′′ ⊗M L⊗M.

obX,x;B→A

β′′⊗idM

β′⊗idM

α′⊗idM

ι⊗idM α′′⊗idM

We have
(β′ ⊗ idM ) ◦ obX,x;B→A = obX′,x′;B→A ◦ η′(A) = 0, (2.71)

where the first equality follows from the fact that β′ defines a map of tangent-obstruction theories
and the second is a consequence of smoothness of x′ (see Corollary 2.66(i)).

It follows that the image of (β′′ ⊗ idM ) ◦ obX,x;B→A is contained in kerα′′ ⊗M . Thus, there
is a map obB→A : DX,x(A)→ kerα′′ ⊗M with

(ι⊗ idM ) ◦ obB→A = (β′′ ⊗ idM ) ◦ obX,x;B→A. (2.72)
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Step 2: Factorization of obstruction maps
We claim that

(γ ⊗ idM ) ◦ obB→A = obX,x;B→A (2.73)

holds for every small extension 0 → M → B → A → 0. By assumptions we have a pullback
diagram

ObX,x⊗M ObX′x′ ⊗M

ObX′′,x′′ ⊗M L⊗M.

β′⊗idM

β′′⊗idM α′⊗idM

α′′⊗idM

It remains a pullback in the category Set of sets. Therefore, in order to show Equation (2.73) it
is enough to observe that there are equalities

(β′′ ⊗ idM ) ◦ (γ ⊗ idM ) ◦ obB→A
(2.69)

= (ι⊗ idM ) ◦ obB→A
(2.72)

= (β′′ ⊗ idM ) ◦ obX,x;B→A

and
(β′ ⊗ idM ) ◦ (γ ⊗ idM ) ◦ obB→A

(2.70)
= 0

(2.71)
= (β′ ⊗ idM ) ◦ obX,x;B→A.

Step 3: Verification of axiom 1 of tangent-obstruction theory
We verify that for every small extension 0 → M → B → A → 0 an element λ ∈ DX,x(A)

lifts to DX,x(B) if and only if obB→A(λ) is zero.
The map γ ⊗ idM is injective. Therefore, by Equation (2.73) we get obB→A(λ) = 0 if and

only if we have obX,x;B→A(λ) = 0. This is equivalent to the existence of a lift of λ since the map
obX,x;B→A is a part of the data of tangent-obstruction theory of DX,x.
Step 4: Verification of axiom 3 of tangent-obstruction theory

Let

0 M B A 0

0 M ′ B′ A′ 0

ϕM ϕB ϕA

be a commutative diagram whose rows are small extensions. We need to verify that the following
equality holds

(idkerα′′ ⊗ϕM ) ◦ obB→A = obB′→A′ ◦DX,x(ϕA).

Since (γ ⊗ idM ′) is injective it is enough to observe that we have

(γ ⊗ idM ′) ◦ (idkerα′′ ⊗ϕM ) ◦ obB→A = (idObX,x ⊗ϕM ) ◦ (γ ⊗ idM ) ◦ obB→A
(2.73)

= (idObX,x ⊗ϕM ) ◦ obX,x;B→A = obX,x;B′→A′ ◦DX,x(ϕA)

(2.73)
= (γ ⊗ idM ′) ◦ obB′→A′ ◦DX,x(ϕA).

The third equality follows from the fact that the maps obX,x;B→A and obX,x;B′→A′ are part of
the data of a tangent-obstruction theory.
Step 5: Map of tangent-obstruction theories

35



Finally, we verify that ι : kerα′′ → ObX′′,x′′ defines a map of tangent-obstruction theories.
Let 0→M → B → A→ 0 be a small extension. We have

(ι⊗ idM ) ◦ obB→A
(2.72)

= (β′′ ⊗ idM ) ◦ obX,x;B→A = obX′′,x′′;B→A ◦ η′′(A)

where the second equality follows from the fact that β′′ induces a map of tangent-obstruction
theories.

2.3.2 Tangent-obstruction theory of multigraded Hilbert schemes

Let S = k[α0, α1, . . . , αn] be a polynomial ring graded by an abelian group A. Let h : A → N
be a numerical function. In this subsection we study a tangent-obstruction theory of HilbhS .

Remark 2.74. Suppose that 0 → M → B → A → 0 is a small extension and J̃ is an element
of DHilbhS ,[J ](A). A homogeneous ideal J̃ ′ ⊆ S ⊗k B is a lift of J̃ if and only if:

1. (S ⊗k B)/J̃ ′ is B-flat;

2. there is an isomorphism J̃ ′ ⊗B A ∼= J̃ .

Indeed, since B is an Artin local ring, it follows from [80, Lemma 051G] that condition 1 implies
that (Sa⊗kB)/J̃ ′a is a free B-module for every a ∈ A. Thus, it is locally free of rank h(a) since
((Sa ⊗k B)/J̃ ′a)⊗B A is a locally free A-module of rank h(a).

Theorem 2.75. Let [J ] be a closed point of HilbhS. The deformation functor DHilbhS ,[J ] has a
tangent-obstruction theory with tangent space THilbhS ,[J ] = HomS(J, S/J)0 and obstruction space
ObHilbhS ,[J ] = Ext1

S(J, S/J)0.

Proof. For tangent space, see [46, Prop. 1.6]. We only sketch the construction of obstruction
maps. For details, we refer to [35, Thm. 6.4.5] where the ungraded case is considered.

Let 0 → M → B → A → 0 be a small extension. Let J̃ ∈ DHilbhS ,[J ](A). We study the lifts

of J̃ to J̃ ′ ∈ DHilbhS ,[J ](B).
Consider the following commutative diagram with exact row and columns:

0 0

J̃ ⊗AM J̃

0 S ⊗k M S ⊗k B S ⊗k A 0

(
(S ⊗k A)/J̃

)
⊗AM (S ⊗k A)/J̃

0 0 .

α

β

By a diagram chase, we have a short exact sequence of S ⊗k B-modules

0→
(
(S ⊗k A)/J̃

)
⊗AM → kerβ/ imα→ J̃ → 0.
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Furthermore,M ·(kerβ) is contained in imα. Thus, the above short exact sequence is a sequence
of S ⊗k A-modules. Finally, since mAM is zero, we have(

(S ⊗k A)/J̃
)
⊗AM ∼=

(
(S ⊗k A)/J̃

)
⊗A k)⊗k M ∼= S/J ⊗k M.

Therefore, we have associated with J̃ ∈ DHilbhS ,[J ](A) a short exact sequence of S ⊗k A-modules

0→ S/J ⊗k M → kerβ/ imα→ J̃ → 0. (2.76)

We can consider the corresponding class ob ∈ Ext1
S⊗kA

(J̃ , S/J ⊗kM). Since all morphisms were
of degree 0, in fact ob is an element of Ext1

S⊗kA
(J̃ , S/J ⊗k M)0.

Lifts of J̃ ∈ DHilbhS ,[J ](A) to J̃ ′ ∈ DHilbhS ,[J ](B) are in one-to-one correspondence with split-

tings ξ : J̃ → kerβ/ imα of the short exact sequence (2.76) which are homogeneous of degree 0.
Finally, we have natural isomorphisms:

Ext1
S⊗kA(J̃ , S/J ⊗k M)0

∼= Ext1
S(J̃ ⊗A k, S/J ⊗k M)0

∼= Ext1
S(J, S/J)0 ⊗k M. (2.77)

We also use the following description of tangent-obstruction theory for flag multigraded
Hilbert schemes.

Theorem 2.78. Let k : A→ N be another numerical function. Let [K ⊆ J ] be a closed point of
Hilbk,hS and assume that the natural map

HomS(K,S/K)0 → HomS(K,S/J)0

is surjective. There is a tangent-obstruction theory for the deformation functor D
Hilbk,hS ,[K⊆J ]

with tangent and obstruction spaces given by pullbacks

T
Hilbk,hS ,[K⊆J ]

HomS(K,S/K)0 Ob
Hilbk,hS ,[K⊆J ]

Ext1
S(K,S/K)0

HomS(J, S/J)0 HomS(K,S/J)0 Ext1
S(J, S/J)0 Ext1

S(K,S/J)0.

Tπ2

Tπ1

Obπ2

Obπ1

Moreover, the maps Tπ1 ,Obπ1, Tπ2 and Obπ2 induce maps of tangent-obstruction theories.

Proof. Proof is analogous to the proof of [60, Thm 4.10]. Therefore, we only sketch the proof.
For tangent space, observe that the bijection from [46, Prop. 1.6]

THilbhS ,[J ] = DHilbhS ,[J ](k[ε]/(ε2))↔ HomS(J, S/J)0

is given explicitly by

HomS(J, S/J)0 3 ϕ 7→ J̃ = {x+εy | x ∈ J, y ∈ S such that y+J = ϕ(x)} ∈ DHilbhS ,[J ](k[ε]/(ε2))}.

See also [49, Prop. 2.3] for the proof of the analogous result in the ungraded case.
Therefore, an element of D

Hilbk,hS ,[K⊆J ]
(k[ε]/(ε2)) is a pair of homomorphisms

ϕ ∈ HomS(J, S/J)0 and ψ ∈ HomS(K,S/K)0
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corresponding to ideals J̃ , K̃ ⊆ k[ε]/(ε2) ⊗k S. However, we need to consider only those pairs
(ϕ,ψ) for which there is an inclusion K̃ ⊆ J̃ . Therefore, given x ∈ K and y ∈ S with y + K =

ψ(x) we want to have ϕ(x) = y + J . This means precisely, that the images of ϕ and ψ in
HomS(K,S/J)0 agree.

Now we proceed to the construction of obstruction maps. Let 0 → M → B → A → 0 be a
small extension and let (K̃, J̃) ∈ D

Hilbk,hS
(A). There are obstructions obJ ∈ Ext1

S(J, S/J)0 ⊗kM

for lifting J̃ to an element J̃ ′ ∈ DHilbhS
(B) and obK ∈ Ext1

S(K,S/K)0 ⊗k M for lifting K̃ to

K̃ ′ ∈ DHilbkS
(B).

Let
0→ S/K ⊗k M

ιK−→ kerβK/ imβK → K̃ → 0 (2.79)

and
0→ S/J ⊗k M → kerβJ/ imβJ → J̃ → 0

be the extensions defining obK and obJ , respectively (see the proof of Theorem 2.75). The images
of obK and obJ in Ext1

S(K,S/J)0 ⊗k M ∼= Ext1
S⊗kA

(K̃, S/J ⊗k M)0 agree since they coincide
with the class of the extension

0→ S/J ⊗k M → kerβK/ imαJ → K̃ → 0.

Therefore, we have a well defined map obB→A : D
Hilbk,hS

(A) → Ob
Hilbk,hS ,[K⊆J ]

⊗kM where

Ob
Hilbk,hS ,[K⊆J ]

is given by the pullback as in the statement. If (K̃, J̃) ∈ D
Hilbk,hS

(A) extends to

(K̃ ′, J̃ ′) ∈ D
Hilbk,hS

(B) then in particular J̃ and K̃ lift to J̃ ′ and K̃ ′. Thus, the obstructions obJ
and obK are zero.

Conversely, assume that we have obJ = 0 and obK = 0. There are J̃ ′ ∈ DHilbhS
(B) and

K̃ ′ ∈ DHilbkS
(B) lifting J̃ and K̃, respectively. However, there is no reason to expect that K̃ ′ is

contained in J̃ ′.
Let f : K̃ ′ → (S⊗kB)/J̃ ′ be the natural map. We describe how we can modify K̃ ′ if necessary

so that f becomes zero. Consider the following commutative diagram:

K ⊗k M S ⊗k M S/K ⊗k M

J ⊗k M S ⊗k M S/J ⊗k M

K̃ ′ S ⊗k B (S ⊗k B)/K̃ ′

J̃ ′ S ⊗k B (S ⊗k B)/J̃ ′

K̃ S ⊗k A (S ⊗k A)/K̃

J̃ S ⊗k A (S ⊗k A)/J̃ .

a

b
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By a diagram chase, we have f ◦ a = 0 = b ◦ f . Therefore, f is induced by a map f ′ : K̃ →
S/J ⊗k M .

We have a commutative diagram:

HomS⊗kA(K̃, S/K ⊗k M)0 HomS⊗kA(K̃, S/J ⊗k M)0

HomS(K,S/K)0 ⊗k M HomS(K,S/J)0 ⊗k M.

∼= ∼=

By assumptions, the lower horizontal map is surjective. Therefore, so is the upper horizontal
map. Thus, there is a map g : K̃ → S/K ⊗kM homogeneous of degree 0 such that it maps to f ′

under the upper horizontal map.
The ideal K̃ ′ is defined by a splitting ξK : K̃ → kerβK/ imαK of the short exact se-

quence (2.79). The map ξK − ιK ◦ g : K̃ → kerβK/ imαK is another splitting of the short
exact sequence (2.79) so it defines a lift K̃ ′′ ∈ DHilbkS ,[K](B) of K̃. It can be checked by a

diagram chase that the natural map K̃ ′′ → (S ⊗k B)/J̃ ′ is zero. Thus K̃ ′′ ⊆ J̃ ′ is a lift of
K̃ ⊆ J̃ .

Let S have the standard Z-grading. Let f be the Hilbert function of S/I where I is a
homogeneous ideal of S. Let d be a positive integer and g : Z→ Z be defined by

g(a) =

{
f(a) for a ≥ d
dimk Sa otherwise.

Lemma 2.80. Let π : HilbfS → HilbgS be the natural map given on closed points by [I] 7→ [I∩md].
Let [I] ∈ HilbfS be a closed point. Let η : D

HilbfS ,[I]
→ DHilbgS ,[I∩md] be the morphism of deformation

functors determined by π. The natural maps

HomS(I, S/I)0 → HomS(I ∩md, S/I)0
∼=−→ HomS(I ∩md, S/I ∩md)0

and
Ext1

S(I, S/I)0 → Ext1
S(I ∩md, S/I)0

∼=−→ Ext1
S(I ∩md, S/I ∩md)0

from exact sequence of Ext groups, define a morphism of tangent-obstruction theories as defined
in Theorem 2.75.

Proof. Observe that both isomorphisms in the statement follow from the fact that I ∩ md has
minimal generators of degree at least d, so the degree 0 parts of the Ext groups do not depend
on (S/I)<d. The claimed description of the map on tangent spaces follows from the bijection

T[I] HilbfS ↔ D
HilbfS

(k[ε]/(ε2))

from [46, Prop. 1.6] which has been recalled at the beginning of the proof of Theorem 2.78.
Now we concentrate on obstruction spaces. Let 0→M → B → A→ 0 be a small extension,

Ĩ ∈ D
HilbfS ,[I]

(A) and Ĩ≥d ∈ DHilbgS ,[I∩md](A) be its image under η(A).
Let

0→ S/I ⊗k M → kerβ/ imα→ Ĩ → 0
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and
0→ S/I≥d ⊗k M → kerβ′/ imα′ → Ĩ≥d → 0

be as in Equation (2.76).
Let obI ∈ Ext1

S(I, S/I)0⊗kM and obI∩md ∈ Ext1
S(I ∩md, S/(I ∩md))0⊗kM be obstructions

corresponding to Ĩ and Ĩ≥d, respectively. As in the proof of Theorem 2.78 we consider the
extension

0→ S/I ⊗k M → kerβ′/ imα→ Ĩ≥d → 0. (2.81)

We see, that the images of obI and obI∩md in Ext1
S(I ∩md, S/I)0 ⊗kM agree since they coincide

with the class of the extension given by Equation (2.81). Therefore, if we consider DHilbgS ,[I∩md]

with obstruction space Ext1
S(I ∩md, S/I)0 via the isomorphism Ext1

S(I ∩md, S/I)0
∼= Ext1

S(I ∩
md, S/I ∩ md)0, then the natural map of Ext groups as in the statement induces a map of
obstruction theories.

2.4 Ranks and apolarity lemmas

In this section we recall various notions of rank and corresponding versions of apolarity lemma.
Moreover, we define secant and cactus varieties. The apolarity lemma for border rank from [15]
reflects a connection between ideals in Slipr,n and the condition that a homogeneous polynomial
in n+1 variables has border rank at most r. This is the main motivation to study the irreducible
component Slipr,n. Observe that the connection from [15] works for more general toric varieties.

We present the theory of ranks of homogeneous subspaces instead of the more standard
version of ranks of homogeneous polynomials. This is due to the fact that we need the general
version in Chapter 5.

2.4.1 Apolarity action

Let n be a positive integer and S = k[α0, . . . , αn] be a polynomial ring. Let S∗ = kdp[x0, . . . , xn]

be the graded dual ring, where the index dp refers to the divided power structure of S∗. As a
Z-graded k-vector space the ring S∗ is given by

S∗ =
⊕
a∈Z

Homk(Sa, k)

and the ring structure is the divided power structure. See [56, Appendix A] for basic properties
of divided power ring S∗. For all u = (u0, . . . , un) ∈ Nn+1 we define

αu =

n∏
i=0

αuii .

For an integer a ∈ Z, the vector space Sa has a monomial basis, i.e.

Sa =
⊕

u∈Nn+1,|u|=a

kαu
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where |u| denotes
∑n

i=0 ui. Let {x[u] | u ∈ Nn+1, |u| = a} be the dual basis of S∗a. We define the
multiplication in S∗ on divided power monomials by

x[u] · x[v] =
(u + v)!

u!v!
x[u+v],

where w! = w0! · · ·wn! for all w ∈ Nn+1. We extend it by linearity to define a k-algebra structure
on S∗.

There is a natural action of S on S∗ denoted by y given on homogeneous elements θ ∈ Sa
and F ∈ S∗b by

(θyF )(ξ) = F (θξ) for every ξ ∈ Sb−a.

Using the monomial bases, the action of S on S∗ can be written in the form

αuyx[v] =

{
x[v−u] if vk ≥ uk for k = 0, . . . , n

0 otherwise.

If k has characteristic zero then we have x[v] = xv

v! and S∗ is a polynomial ring.
Let d be a positive integer and W ⊆ S∗≤d be a vector subspace. Using the action of S on S∗,

we can associate with W a k-algebra Apolar(W ).

Definition 2.82. Let d be a positive integer and W ⊆ S∗≤d be a non-zero linear subspace. The
annihilator of W is the ideal

Ann(W ) = {θ ∈ S | θyf = 0 for every f ∈W}.

The apolar algebra of W is Apolar(W ) = S/Ann(W ). If we have W = 〈f〉 for some f ∈ S∗≤d,
we write Ann(f) and Apolar(f) instead of Ann(〈f〉) and Apolar(〈f〉).

Annihilator Ann(W ) of W ⊆ S∗≤d plays a key role in apolarity lemmas which connect the
properties of Ann(W ) and various notions of ranks of W .

2.4.2 (Border) rank, smoothable rank and (border) cactus rank

We keep the notation of Subsection 2.4.1. Let d be a positive integer. We recall various notions
of rank of a subspace V of S∗d . It is important to realize that the process of generalizing the
definition of rank was not as straight-forward as it may seem from the short presentation that
we give.

We start with introducing the rank of V . If V = 〈F 〉 is one-dimensional, this is a classical
notion that goes back to works of Sylvester. The general case was studied among others by
Terracini [79] and Bronowski [8].

Definition 2.83. Let d be a positive integer and V ⊆ S∗d be a non-zero linear subspace. We
define rank of V to be

r(V ) = min{r ∈ Z | PV ⊆ 〈L[d]
1 , . . . , L[d]

r 〉 for some Li ∈ S∗1},

where 〈−〉 denotes the projective linear span.
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It is interesting to describe, for a positive integer k, the locus of all points [V ] ∈ Gr(k, S∗d)

with rank at most r. However, a more natural geometric object is the Zariski closure of this
locus. Recall that νd : PS∗1 → PS∗d given by [L] 7→ [L[d]] is the Veronese embedding.

Definition 2.84. Let d, k and r be positive integers. The r-th Grassmann secant variety is

σr,k
(
νd(PS∗1)

)
= {[V ] ∈ Gr(k, S∗d) | r(V ) ≤ r}.

If k = 1, we write σr
(
νd(PS∗1)

)
instead of σr,1

(
νd(PS∗1)

)
and call it the r-th secant variety.

With Grassmann secant varieties already defined, it is natural to introduce another variant
of rank.

Definition 2.85. Let d and k be positive integers and V ⊆ S∗d be a k-dimensional linear
subspace. The border rank of V is defined to be

br(V ) = min{r ∈ Z | [V ] ∈ σr,k
(
νd(PS∗1)

)
}.

The ranks and borders ranks of monomials have been studied in [64]. See also [63], [11] and
[39] for some results concerning equations of secant varieties.

The definition of rank of [V ] ∈ Gr(k, S∗d) can be restated as follows

r(V ) = min{r ∈ Z | there exists a smooth zero-dimensional subscheme

R ⊆ PS∗1 of length r with PV ⊆ 〈νd(R)〉}.

One can consider different variants of this definition. The condition that R is smooth could
be replaced by the condition that it is a limit of smooth schemes or it can be even skipped
completely. These lead to the notions of smoothable rank and cactus rank. Let Hilbsmr (PS∗1) be
the smoothable component, i.e. the closure of the locus of all points of Hilbr(PS∗1) corresponding
to smooth subschemes.

Definition 2.86. Let d and k be positive integers and [V ] ∈ Gr(k, S∗d). The smoothable rank of
V is defined to be

sr(V ) = min{r ∈ Z | PV ⊆ 〈νd(R)〉 for some [R] ∈ Hilbsmr (PS∗1)}.

We are interested only in the smoothable rank of a non-zero homogeneous polynomial F ∈ S∗d .
We have br(F ) ≤ sr(F ). Following [12] we make a definition capturing the cases where the
inequality is strict.

Definition 2.87. Let d be a positive integer. A non-zero polynomial F ∈ S∗d is wild if we have
br(F ) < sr(F ).

Considering the whole Hilbert scheme Hilbr(PS∗1) instead of its smoothable component leads
to the definition of cactus rank.

Definition 2.88. Let d and k be positive integers and [V ] ∈ Gr(k, S∗d). The cactus rank of V is
defined to be

cr(V ) = min{r ∈ Z | PV ⊆ 〈νd(R)〉 for some [R] ∈ Hilbr(PS∗1)}.
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Similarly, as in the case of rank, we can consider the Zariski closure in Gr(k, S∗d) of those [V ]

which have cactus rank at most r.

Definition 2.89. Let d, k and r be positive integers. The r-th Grassmann cactus variety is

κr,k
(
νd(PS∗1)

)
= {[V ] ∈ Gr(k, S∗d) | cr(V ) ≤ r}.

If k = 1, we write κr
(
νd(PS∗1)

)
instead of κr,1

(
νd(PS∗1)

)
and call it the r-th cactus variety.

Cactus varieties have been introduced in [11]. The name might be slightly confusing since in
general cactus varieties are not irreducible. An example when the cactus variety is reducible is
presented in [40, Thm. 1.4, 1.5]. The cactus rank has been studied for instance in [74] and [4].

Finally, we define the border cactus rank in a way analogous to the definition of border rank.

Definition 2.90. Let d and k be positive integers and V ⊆ S∗d be a k-dimensional linear
subspace. The border cactus rank of V is defined to be

bcr(V ) = min{r ∈ Z | [V ] ∈ κr,k
(
νd(PS∗1)

)
}.

2.4.3 Apolarity lemmas

The ranks of a subspace V ⊆ S∗d can be computed by apolarity lemmas. We state only the
versions of apolarity lemma that we use. We start with the one related to the cactus rank.

Proposition 2.91 (Cactus apolarity lemma). Let d be a positive integer and V ⊆ S∗d be a non-
zero subspace. For a positive integer r we have cr(V ) ≤ r if and only if there is a saturated,
homogeneous ideal I ⊆ Ann(V ) such that S/I has Hilbert polynomial r.

For a proof, see [78, Thm. 4.7].
Next, we deal with the border rank. The version for a polynomial F ∈ S∗d is a special case

of a recent result by Buczyńska and Buczyński [15]. It is the main motivation for studying the
irreducible component Slipr,n of the multigraded Hilbert scheme Hilb

hr,n
S . The following version

for subspaces is presented in [40, Prop. 2.3] and follows from the proof of [13, Thm. 1.3].

Proposition 2.92 (Border apolarity lemma). Let d be a positive integer and V ⊆ S∗d be a
non-zero subspace. For a positive integer r we have br(V ) ≤ r if and only if there exists a
homogeneous ideal I ⊆ Ann(V ) such that [I] belongs to Slipr,n ⊆ Hilb

hr,n
S .

Finally, we present a weak version of apolarity lemma for border cactus rank. Following [40]
we introduce the following definition.

Definition 2.93. For positive integers r and n, a function h : Z → Z is called an (r, n + 1)-
standard Hilbert function if it satisfies the following conditions:

(i) the inequality h(d) ≤ h(d+ 1) holds for all d ∈ Z;

(ii) if there is an equality h(d) = h(d+ 1) for some d ≥ 0, then we have h(e) = r for all e ≥ d;

(iii) the inequality 0 ≤ h(d) ≤ hr,n(d) holds for all d ∈ Z.

Proposition 2.94 (Weak border cactus apolarity lemma). Let d be a positive integer and V ⊆ S∗d
be a non-zero subspace. If we have bcr(V ) ≤ r for some positive integer r, then there exists a
homogeneous ideal I ⊆ Ann(V ) such that S/I has an (r, n+ 1)-standard Hilbert function.

See [13, Thm. 1.1] for a proof.
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Chapter 3

Criteria for projective space

In this chapter we present conditions for a point [I] in the multigraded Hilbert scheme Hilb
hr,n
S[Pn]

to be in the irreducible component Slipr,n.
Section 3.1 contains a necessary condition based on bounding the degrees of minimal gener-

ators of saturated ideals with Hilbert function hr,n.
The criterion from Section 3.2 is based on the properties of the Hilbert function of a power

of a radical ideal with Hilbert function hr,n that were established in Proposition 2.19.
In Section 3.3 we show that the locus of all points of HilbfS corresponding to saturated ideals is

smooth and irreducible when n = 2 and f is the Hilbert function of a zero-dimensional subscheme
of P2. We also show that in Hilbr(P2) the locus of all points corresponding to subschemes with
fixed Hilbert function is irreducible. In characteristic 0 this has been shown by Gotzmann [42].

In Section 3.4 we present a sufficient condition for [I] as above to be in Slipr,n for n = 2.
Sections 3.5 and 3.7 contain some examples. In particular, in Section 3.7 we present the full

set-theoretic description of Slipr,2 for all r ∈ {4, 5, 6}.
Section 3.6 presents a necessary condition (Theorem 3.42). This criterion has three technical

assumptions, one is based on smoothness of the Hilbert scheme at a prescribed point while
two are about surjectivity of some maps of spaces of homomorphisms. In Subsections 3.6.1,
3.6.2 and 3.6.3 we study some cases in which the assumptions of Theorem 3.42 are fulfilled. In
Subsections 3.6.4 and 3.6.5 we present some nice applications of Theorem 3.42.

The main results of this chapter are criteria for [I] ∈ Hilb
hr,n
S[Pn] to be in Slipr,n:

• Proposition 3.1 which is an example of a small tangent space argument;

• Theorem 3.5 which shows that if [I] is in Slipr,n then HS/Ik is large enough in large degrees;

• Theorem 3.13 which is a sufficient condition in the case n = 2. It states that if the Hilbert
function of S/I differs from hr,2 in exactly one degree then [I] belongs to Slipr,2;

• Theorem 3.42 and its applications Theorems 3.66 and 3.75.

Notation

Throughout this chapter, r and n are positive integers and S = S[Pn] = k[α0, . . . , αn] is a
polynomial ring over a fixed algebraically closed field k. Recall that hr,n : Z→ Z is defined by

hr,n(a) = min{dimk Sa, r}.
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3.1 Criterion based on degrees of minimal generators

Our first criterion is obtained by bounding the degrees of minimal generators of saturated ideals
of points. The proof is an illustration of a small tangent space method: if the dimension of the
tangent space to a k-scheme X at a point x is smaller than the dimension of an irreducible closed
subset Y , then we have x /∈ Y . See [55] for a classical application of this argument.

Proposition 3.1. Let I ⊆ S be a homogeneous ideal such that S/I has Hilbert function hr,n. Let
e = min{a ∈ Z | hr,n(a) = r} and d ≥ e+2. If the inequality dimk HomS

(
I+md, S/(I+md)

)
0
<

rn holds, then we have [I] /∈ Slipr,n.

Proof. Define g : Z→ Z by

g(a) =

{
hr,n(a) if a < d

0 otherwise.

Let π : Hilb
hr,n
S → HilbgS be the morphism defined on closed points by [J ] 7→ [J + md]. We show

that
if J and J ′ are saturated ideals and π([J ]) = π([J ′]), then we have J = J ′. (3.2)

It is enough to show that every saturated ideal J of S such that S/J has Hilbert function
hr,n is generated in degrees at most d − 1. Since J is saturated, we have depthS/J ≥ 1 by
Lemma 2.9(i). The quotient algebra S/J has Krull dimension 1. It follows that S/J is Cohen-
Macaulay. Furthermore, by the Auslander-Buchsbaum Theorem [70, Thm. 15.3] the projective
dimension of S/J is n. Therefore, we get reg(S/J) = e from [32, Thm. 4.2]. Consequently,
β1,a(S/J) is zero for all a ≥ e+ 2. Thus, J is generated in degrees at most e+ 1 ≤ d− 1.

The irreducible component Slipr,n has dimension rn. Therefore, by (3.2) the irreducible
closed subset π(Slipr,n) is also of dimension rn. Consequently, if [I] belongs to Slipr,n then we
have

rn ≤ dimkT[I+md] HilbgS = dimk HomS

(
I + md, S/(I + md)

)
0
,

where the equality follows from Theorem 2.75.

Example 3.3. Let S = k[α0, α1, α2] and consider I = (α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1). The

point [I] is in Hilb
h6,2

S and we claim that it is not in Slip6,2. Let J = I + (α0, α1, α2)5. We have

dimk HomS(J, S/J)0 = 8 < 12.

The claim follows from Proposition 3.1.

3.2 Criterion based on a power of ideal

The criterion presented in this section is based on Proposition 2.19. There we computed the
Hilbert polynomial of a power of a homogeneous radical ideal defining a zero-dimensional sub-
scheme of projective space. Moreover, we bounded the degree from which this Hilbert polynomial
agrees with Hilbert function. In Theorem 3.5, using the semicontinuity of the dimensions of the
fibers of a sheaf of modules (see [48, Ex. II.5.8]), we obtain a criterion for [I] ∈ Hilb

hr,n
S to be in

Slipr,n.
In Subsection 2.2.3 we introduced subsets Sipr,n and Slipr,n of the multigraded Hilbert scheme

Hilb
hr,n
S . Here we generalize this for some functions h : Z→ Z more general than hr,n.
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Definition 3.4. Assume that h : Z → Z is the Hilbert function of a zero-dimensional closed
subscheme of Pn. We denote by Siph,n the locus of all closed points of HilbhS corresponding to
radical ideals. Moreover, let Sliph,n be the closure of Siph,n in HilbhS .

The following theorem provides a necessary condition for a closed point of HilbhS to be in
Sliph,n, where h : Z→ Z is as in Definition 3.4.

Theorem 3.5. Let h : Z → Z be the Hilbert function of a zero-dimensional length r closed
subscheme of Pn. Define e = min{a ∈ Z | h(a) = r} and let [I] ∈ HilbhS be a closed point. If the
point [I] belongs to Sliph,n, then HS/Ik(d) ≥ r · dimk Sk−1 holds for every positive integer k and
for every d ≥ ke+ k.

Proof. Let J be the universal ideal sheaf on HilbhS ×An+1. Consider the quotient P of

OHilbhS ×An+1
∼= OHilbhS

[α0, . . . , αn]

by J k and let Q be the pushforward of P under the projection morphism π : HilbhS ×An+1 →
HilbhS . The sheaf Q =

⊕
d Qd is a quasi-coherent sheaf on HilbhS with Qd a coherent sheaf

for every d ∈ Z. Therefore, for every d ∈ Z, the rank function ϕd : HilbhS → Z given by
ϕd(x) = dimκ(x)(Qd)x ⊗O

Hilbh
S
,x
κ(x) is upper semicontinuous (see [48, Ex. II.5.8]). We claim

that for a closed point P = [K] ∈ HilbhS we have ϕd(P ) = HS/Kk(d).
This can be checked affine locally, so we can replace HilbhS by an affine open subset U = SpecA

containing [K]. Let J be the ideal in A[α0, . . . , αn] defining the restriction of J to π−1(U). Let
[K] in U correspond to the maximal ideal n of A. In what follows, we consider k with A-
module structure given by A→ An/nAn

∼= k. By the definition of universal ideal sheaf we have
(A[α0, . . . , αn]/J) ⊗A k ∼= S/K. Therefore, from the universal property of kernel, there is an
induced map J ⊗A k→ K fitting into the commutative diagram

J ⊗A k S S/(J ⊗A k) 0

0 K S S/K 0

whose rows are exact. It follows from snake lemma that the map J ⊗A k → K is surjective.
Hence also the map Jk ⊗A k→ Kk is surjective. The snake lemma applied to the diagram

Jk ⊗A k S S/(Jk ⊗A k) 0

0 Kk S S/Kk 0

implies that the dotted arrow induced by the universal property of cokernel is injective. Since it
is clearly surjective, it is an isomorphism. Thus we have

ϕd([K]) = dimk
(
S/(Jk ⊗A k)

)
d

= dimk(S/Kk)d = HS/Kk(d)

and the claim of the theorem follows from Proposition 2.19.
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Example 3.6. Let S = k[α0, α1, α2] and consider the ideal

I ′ = (α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2).

The point [I ′] is in Hilb
h6,2

S and we claim that it is not in Slip6,2. We have HS/(I′)2(9) = 17 < 18.
Thus, the claim follows from Theorem 3.5.

Observe that dimk HomS(I ′+md, S/(I ′+md)) ≥ 12 holds for all d ≥ 4, so the criterion from
Proposition 3.1 cannot be applied to deduce that [I ′] does not belong to Slip6,2.

Consider again the ideal I = (α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) from Example 3.3. We have

HS/I2(d) ≥ 18 for all d ≥ 6. Hence we cannot use the criterion from Theorem 3.5 (with k = 2)
to deduce that [I] is not in Slip6,2. We summarize this in the following table.

Ideal Proposition 3.1 Theorem 3.5

(α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) ⊆ k[α0, α1, α2] X ?

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2) ⊆ k[α0, α1, α2] ? X

Table 3.1: Examples of points that are not in the irreducible component Slip.

Here, for both ideals, the corresponding point of Hilb
h6,2

S is outside the irreducible component
Slip6,2. The check mark (X) indicates that a given criterion shows that a given point is not in
Slip6,2. The question mark (?) shows that a given criterion is inconclusive.

3.3 Smoothness and irreducibility of the locus of saturated ideals
of points in projective plane

Let f : Z → Z be the Hilbert function of a zero-dimensional subscheme of P2 of length r. Let
Vf be the locally closed subset of Hilbr(P2) whose points correspond to the subschemes of P2

with Hilbert function f . If the field k has characteristic 0 then Vf with the reduced structure is
smooth and irreducible [42].

In this section we show that in fact Vf is irreducible for any characteristic of k. Furthermore,
let Ef ⊆ HilbfS be the open subset whose points correspond to saturated ideals. We show that
Ef is irreducible and smooth.

In this section we consider polynomial rings S = k[α0, α1, . . . , αn] and T = k[α0, α1, . . . , αn−1]

for a positive integer n. We eventually restrict our attention to the case n = 2, but we do not
make this assumption when the proofs work more generally.

We need the following result on the behavior of Ext groups under flat base change.

Lemma 3.7. Let R → S be a flat ring homomorphism with R a Noetherian ring. For every
finitely generated R-module M and any R-module N , the natural map

ExtiR(M,N)⊗R S → ExtiS(M ⊗R S,N ⊗R S)

is an isomorphism for all integers i.

Proof. Since R is Noetherian and M is a finitely generated R-module, there exists a projective
resolution P• of M by finitely generated free R-modules. The R-module S is flat. Hence we
obtain a projective resolution P• ⊗R S of M ⊗R S.
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Finally, since M is finitely presented and S is a flat R-module, the natural map

HomR(P•, N)⊗R S → HomS(P• ⊗R S,N ⊗R S)

is an isomorphism of chain complexes of S-modules by [31, Prop. 2.10]. Therefore, we have
natural isomorphisms of S-modules

ExtiR(M,N)⊗R S = H i
(

HomR(P•, N)
)
⊗R S = H i

(
HomR(P•, N)⊗R S

)
= H i

(
HomS(P• ⊗R S,N ⊗R S)

)
= ExtiS(M ⊗R S,N ⊗R S).

The following lemma gives a condition under which Ef ⊆ HilbfS is smooth. Observe that this
condition is satisfied for n = 2 since Hilbr(P2) is smooth.

Lemma 3.8. Let f be the Hilbert function of a zero-dimensional subscheme of Pn of length r.
Let Ef ⊆ HilbfS be the open subset whose points correspond to saturated ideals. If [ProjS/I] is
a smooth point of Hilbr(Pn) for every point [I] ∈ Ef such that I is a saturated Borel-fixed ideal,
then Ef is smooth.

Proof. Let [J ] ∈ HilbfS be a closed point such that J is a saturated ideal. Let J ′ be the generic
initial ideal (see [31, §15.9]) of J with respect to the grevlex order with α0 > α1 > · · · > αn. It
is enough to show that [J ′] ∈ HilbfS is a smooth point.

The ideal J ′ is saturated by Corollary 2.10. Moreover, it is Borel-fixed by [31, Thm. 15.20].
Thus, [ProjS/J ′] is a smooth point of Hilbr(Pn) by assumptions.

Therefore, by Lemma 2.67, it is enough to show that the natural map of deformation func-
tors D

HilbfS ,[J
′]
→ DHilbr(Pn),[ProjS/J ′] induced by the map HilbfS → Hilbr(Pn) admits a map of

tangent-obstruction theories that is injective on obstruction spaces. By Lemmas 2.44 and 2.80
there is a map of tangent-obstruction theories which on obstruction spaces is the natural map

Ext1
S(J ′, S/J ′)0 → Ext1

S(J ′ ∩mr, S/J ′)0

from the exact sequence of Ext groups. It suffices to show that

Ext1
S(J ′/J ′ ∩mr, S/J ′)0 → Ext1

S(J ′, S/J ′)0 (3.9)

is the zero map. Since J ′ is a saturated and Borel-fixed ideal, it is an extended ideal from
the polynomial ring T = k[α0, . . . , αn−1] by Lemma 2.11. Therefore, by Lemma 3.7 we get
Ext1

S(J ′, S/J ′) ∼= Ext1
T (a, T/a) ⊗T S where a is the contracted ideal T ∩ J ′. In particular,

multiplication by αn is injective on Ext1
S(J ′, S/J ′). On the other hand, since multiplication by

αrn is zero on J ′/J ′ ∩ mr, it is zero on Ext1
S(J ′/J ′ ∩ mr, S/J ′) as well. It follows that the map

from Equation (3.9) is the zero map.

Finally we present the main results of this section.

Proposition 3.10. Let S = k[α0, α1, α2] and T = k[α0, α1]. Let f be the Hilbert function of
a zero-dimensional length r subscheme of P2. Let Ef be the open subset of HilbfS whose points
correspond to saturated ideals. The subscheme Ef is smooth and irreducible.

Proof. Smoothness of Ef follows from Lemma 3.8 since the Hilbert scheme Hilbr(P2) is smooth
for every positive integer r.
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Now we show that Ef is connected. Since it is also smooth this would finish the proof. Given
a point [I] ∈ Ef we may connect it to the point [I ′] corresponding to the generic initial ideal I ′ of
I with respect to the grevlex order with α0 > α1 > α2. The ideal I ′ is saturated by Corollary 2.10
and it is Borel-fixed by [31, Thm. 15.20]. Therefore, it is enough to find a connected subset of
Ef that contains all points corresponding to Borel-fixed saturated ideals.

Let g : Z → Z be given by g(a) = f(a) − f(a − 1) for every a ∈ Z. We have a natural
map HilbgT → HilbfS . The scheme HilbgT is irreducible by [65]. Therefore, its image Z in HilbfS
is irreducible. By construction, Z is contained in Ef . Furthermore, it contains all saturated
Borel-fixed ideals by Lemma 2.11.

Proposition 3.11. Let S = k[α0, α1, α2]. Let f be the Hilbert function of a zero-dimensional
length r subscheme of P2. Let Vf be the locally closed subset of Hilbr(P2) whose points correspond
to the subschemes with Hilbert function f . The subset Vf is irreducible.

Proof. As before, let Ef be the open subset of HilbfS whose points correspond to the saturated
ideals. The natural map HilbfS → Hilbr(Pn) induces a map Ef → Vf which is bijective on k-
points. Therefore, Vf is homeomorphic with Ef by Lemma 2.29. It follows from Proposition 3.10
that Vf is irreducible.

3.4 Sufficient condition for projective plane

In this section we assume that n = 2 so S = S[P2] = k[α0, α1, α2] is the homogeneous coordinate
ring of projective plane. We show that a closed points [I] ∈ Hilb

hr,2
S for which S/I has Hilbert

function differing from hr,2 in only one degree is in Slipr,2.
For ease of reference we write this condition more precisely. We consider functions f : Z→ Z

that satisfy the following condition:

there exist e, d ∈ Z>0 with f(a) =

{
hr,2(a) if a 6= e

d if a = e.
(3.12)

The main result of this section is the following theorem which gives a sufficient condition for a
closed point [I] ∈ Hilb

hr,2
S to be in Slipr,2.

Theorem 3.13. Let [I] be a closed point of the multigraded Hilbert scheme Hilb
hr,2
S . If the Hilbert

function of S/I satisfies condition (3.12), then we have [I] ∈ Slipr,2.

Before proving Theorem 3.13 we need a few lemmas. The first one enables us to consider a
more restrictive condition (3.15) instead of condition (3.12).

Lemma 3.14. Let [I] ∈ Hilb
hr,2
S . If the Hilbert function f of S/I satisfies condition (3.12) for

some integers d and e then we have [I] ∈ Slipr,2 unless the following holds:

f satisfies condition (3.12) and dimk Se−1 < d < r < dimk Se. (3.15)

Proof. Assume that [I] is a point of Hilb
hr,2
S that does not belong to Slipr,2 and the Hilbert

function of S/I satisfies condition (3.12) for some integers d and e.
Suppose that d equals r. We have f = hr,2, so [I] is in Slipr,2 by Remark 2.47 since Hilbr(P2)

is irreducible. Thus, by Lemma 2.9(ii), we may assume that d < r holds. Moreover, if there
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is an inequality dimk Se ≤ r, then [I] is in Slipr,2 since in that case [I] = [I ∩ me+1] is the
unique closed point of the fiber over ϕr,P2([I]) of the natural map ϕr,P2 : Hilb

hr,2
S → Hilbr(P2)

from Remark 2.47. Therefore, we may assume that the inequality r < dimk Se holds. We claim
that it is enough to consider the case that we have f(e− 1) = hr,2(e− 1) = dimk Se−1. Indeed,
otherwise we get f(e − 1) = hr,2(e − 1) = r and this contradicts Lemma 2.9(ii) since we have
f(e) = d < r = f(e − 1). Using Lemma 2.9(ii) we obtain dimk Se−1 ≤ d and moreover by
Lemma 2.9(iii) this inequality is strict, since we have r = f(e+ 1) > d.

For a fixed positive integer r, let

Ωr = {f : Z→ Z |f satisfies condition (3.15) and there exists [I] ∈ Hilb
hr,2
S such that

S/I has Hilbert function f}.

By virtue of the following lemma, in order to obtain a proof of Theorem 3.13, it is enough to
find a point [If ] ∈ Slipr,2, for every f ∈ Ωr that satisfies the properties:

1. the Hilbert function of S/If is f ;

2. [If ] is a smooth point of Hilb
hr,2
S .

Lemma 3.16. Let f ∈ Ωr for some positive integer r. The locus of all closed points [I] of
Hilb

hr,2
S such that S/I has Hilbert function f is irreducible.

Proof. Denote this locus by Uf . Let Vf ⊆ Hilbr(P2) be the locally closed subset whose closed
points correspond to the closed subschemes of P2 with Hilbert function f . By definition, Uf is
the set of all closed points of the preimage of Vf under the map

ϕr,P2 : Hilb
hr,2
S → Hilbr(P2).

The locus Vf is irreducible by Proposition 3.11. Furthermore, we have hr,2(a) = f(a) = dimk Sa
for every a < e and hr,n(a) = f(a) for every a > e. Therefore, Uf is irreducible by [81, 11.4.C]
and Lemmas 2.43 and 2.44.

Fix a positive integer r and a function f ∈ Ωr, or equivalently, a pair of integers d and e

corresponding to f . To simplify the notation let s := dimk Se−1 and we define Ai = αi0α
e−i
1 for

all 0 ≤ i ≤ e, Bi = αi0α
e+1−i
1 for all 0 ≤ i ≤ e + 1 and Ci = αi0α

e+2−i
1 for all 0 ≤ i ≤ e + 2 to

make it easier to distinguish between the generators of different degrees. We define the ideals

Jf = (Ae, Ae−1, . . . , Ad−s, Bd−s−1, Bd−s−2, . . . , Br−d, Cr−d−1, Cr−d−2, . . . , C0) (3.17)

and

If =(Ae, . . . , Ar−s, Ar−s−1α1, Ar−s−1α2, . . . , Ad−sα1, Ad−sα2,

Bd−s−1, . . . , Br−d, Cr−d−1, . . . , C0).
(3.18)

Note that there are equalities Aiα1 = Bi but we have written If in the form as above since
it is more convenient in the proof of the following lemma.

Lemma 3.19. The Hilbert function of S/If is hr,2 and the Hilbert function of S/If is f . More-
over, Jf is the saturation of If .
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Proof. Let T = k[α0, α1]. We start with showing that Jf is a saturated ideal and that the
Hilbert function of S/Jf is f . Indeed, Jf is an extension of the ideal af = Jf ∩ T in T so it
is saturated with respect to α2 and thus, is saturated with respect to m. Moreover, we have
HS/Jf (a) =

∑a
b=0HT/af (b) and the latter sum can be computed from the staircase diagram

of af .
It follows from the generators of If and Jf displayed above, that the saturation of If contains

Jf . Therefore, Jf is the saturation of If since Jf is saturated. The quotient algebra S/Jf has
Hilbert function f . Furthermore, we have (Jf )>e = (If )>e and (Jf )<e = (If )<e = 0. Therefore,
it follows from Equations (3.17) and (3.18) that the Hilbert function of S/If is hr,2.

We now find a saturated ideal Kf such that the initial ideal of Kf with respect to an appro-
priate monomial order is If . Let

Kf = (Ae, . . . , Ar−s, Ar−s−1α1, Ar−s−1α2 +Br−d−1, . . . , Ad−sα1, Ad−sα2 +B0,

Bd−s−1, . . . , Br−d, Cr−d−1, . . . , C0).
(3.20)

Lemma 3.21. The initial ideal of Kf with respect to the lex order > with α2 > α1 > α0 is If .
In particular, S/Kf has Hilbert function hr,2.

Proof. All S-polynomials of the generators displayed in Equation (3.20) belong to the ideal b :=

(Ce+2, . . . , C0). Let c := (Ae, . . . Ar−s, Br−s−1, . . . , Br−d, Cr−d−1, . . . C0). We have b ⊆ c ⊆ Kf .
It follows that the set of generators from Equation (3.20) satisfies the Büchberger criterion (see
[27, Thm. 6 in Ch. 2 §6]). Hence it is a Gröbner basis. In particular, the initial ideal in<(Kf ) is
If so S/Kf has Hilbert function hr,2 by Lemma 3.19.

Next, we verify that Kf is a saturated ideal.

Lemma 3.22. The ideal Kf is saturated. In particular, we have [If ] ∈ Slipr,2.

Proof. Let > be the lex order with α2 > α1 > α0. From Lemmas 2.7, 3.19 and 3.21 we obtain

in<(Kf ) ⊆ in<(Kf ) = If = Jf . (3.23)

Suppose that Kf 6= Kf . We have If = in<(Kf ) ( in<(Kf ) ⊆ Jf . Since If and Jf differ only
in degree e, it follows that there is an element g ∈ Se ∩ Kf such that in<(g) does not belong
to the set of monomial generators of If of degree e. However, in<(g) is an element of (Jf )e by
Equation (3.23). Therefore, by the choice of the monomial order and Equation (3.17) we get
g =

∑e
i=d−s aiAi for some ai ∈ k. We assumed that in<(g) is not in If . Thus, by Equation

(3.18), we have ai 6= 0 for some i ∈ {d− s, . . . , r − s− 1}. Furthermore, we may assume that ai
is zero for all i = r − s, . . . , e by Equation (3.20). Multiplying g by α2

2 and using the generators
of Kf given in Equation (3.20) we obtain

g′ := −α2
2g +

r−s−1∑
i=d−s

aiα2(Aiα2 +Bi+s−d) =
r−s−1∑
i=d−s

aiBi+s−dα2 ∈ Kf .

We claim that it is not possible. By Equation (3.23), it is enough to show that no monomial of
the form Bjα2 for some j ∈ {0, . . . , r − d− 1} is in Jf . This is clear since monomials of degree
e+ 2 in Jf that are divisible by α2 are also divisible by αr−d0 .
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Since Kf is saturated, it follows from Remark 2.47 that [Kf ] belongs to Slipr,2. Therefore,
[If ] is in Slipr,2 by Lemma 3.21.

Finally, we show that [If ] is a smooth point of Hilb
hr,2
S . It is enough to show that we have

dimk HomS(If , S/If )0 = dimkT[If ] Hilb
hr,2
S ≤ dim Slipr,2 = 2r,

where the first equality follows from Theorem 2.75. Lemmas 3.24, 3.26, 3.27 and 3.33 are devoted
to this calculation.

Lemma 3.24. We have dimk HomS(Jf/If , S/If )0 = (r − d)2.

Proof. Since Jf/If is isomorphic to k(−e)⊕(r−d) we have

dimk HomS(Jf/If , Jf/If )0 = (r − d)2 dimk HomS(k(−e),k(−e))0

= (r − d)2 dimk HomS(k,k)0 = (r − d)2.

It follows from equalities (Jf : α2) = Jf and α2 · Jf/If = 0 that HomS(Jf/If , S/Jf )0 is zero.
Therefore, we get

dimk HomS(Jf/If , S/If )0 = dimk HomS(Jf/If , Jf/If )0 = (r − d)2

from the long exact sequence obtained by applying HomS(Jf/If ,−)0 to the short exact sequence

0→ Jf/If → S/If → S/Jf → 0. (3.25)

Lemma 3.26. We have dimk Ext1
S(Jf/If , S/If )0 = (r − d)2.

Proof. We claim that dimk ExtiS(Jf/If , Jf/If )0 = 0 holds for all i ∈ {1, 2}. It is enough to
show that dimk ExtiS(k,k)0 is zero since we have ExtiS(Jf/If , Jf/If )0 = (ExtiS(k,k)0)⊕(r−d)2 .
Therefore, the claim follows from Lemma 2.28.

Applying the functor HomS(Jf/If ,−)0 to the short exact sequence (3.25) we obtain

dimk Ext1
S(Jf/If , S/If )0 = dimk Ext1

S(Jf/If , S/Jf )0.

We have Ext1
S(Jf/If , S/Jf )0

∼= (Ext1
S(k, S/Jf )e)

⊕(r−d) so it is enough to compute the dimension
of Ext1

S(k, S/Jf )e as a k-vector space.
Applying the functor HomS(−, S/Jf )e to the Koszul resolution of k we obtain the following

complex:

(S/Jf )e


α0

α1

α2


−−−−→ (S/Jf )⊕3

e+1


−α1 α0 0

−α2 0 α0

0 −α2 α1


−−−−−−−−−−−−−−→ (S/Jf )⊕3

e+2

[
α2 −α1 α0

]
−−−−−−−−−−−−→ (S/Jf )e+3.

We need to show that the cohomology at (S/Jf )⊕3
e+1 is an (r − d)-dimensional k-vector space.

We denote the map (S/Jf )e → (S/Jf )⊕3
e+1 by d0 and the map (S/Jf )⊕3

e+1 → (S/Jf )⊕3
e+2 by d1. Let

h0, h1, h2 ∈ Se+1 be such that d1(h0, h1, h2) is zero, where hi is the class of hi in the quotient
ring S/Jf . Let h2 = α2h

′
2(α0, α1, α2) + h′′2(α0, α1). We have (−α1h0 + α0h1, α2(−h0 + α0h

′
2) +
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α0h
′′
2, α2(−h1 + α1h

′
2) + α1h

′′
2) ⊆ Jf . The ideal Jf is monomial. Therefore, since (Jf : α2) is

equal to Jf and h′′2 does not depend on α2, we get (h0 − α0h
′
2, h1 − α1h

′
2) ⊆ Jf . Thus, there is

an equality (h0, h1, h2) = (0, 0, h′′2) + d0(h′2). We claim that (0, 0, h′′2) is in ker d1 for every degree
e + 1 homogeneous polynomial h′′2 ∈ k[α0, α1]. Indeed, we have α0h

′′
1, α1h

′′
1 ∈ Jf as there is an

equality (Jf )e+2 ∩ k[α0, α1] = k[α0, α1]e+2. We get

dimk Ext1
S(k, S/Jf )e = dimk k[α0, α1]e+1/(Jf ∩ k[α0, α1])e+1 = (r − d).

Lemma 3.27. We have dimk HomS(Jf , S/If )0 = 2r.

Proof. Observe that Ext1
S(Jf , Jf/If )0

∼= (Ext1
S(Jf , k)−e)

⊕(r−d) is zero by Lemma 2.28. Indeed,
since (Jf )e−1 is zero so is β1,e(Jf ) = β2,e(S/Jf ).

Therefore, applying the functor HomS(Jf ,−)0 to the short exact sequence (3.25) we obtain
a short exact sequence

0→ HomS(Jf , Jf/If )0 → HomS(Jf , S/If )0 → HomS(Jf , S/Jf )0 → 0. (3.28)

Since (Jf )≤e−1 is zero we have

dimk HomS(Jf , Jf/If )0 = (r − d) · dimk HomS

(
Jf ,k(−e)

)
0

= (r − d) · dimk(Jf )e

= (r − d)(dimk Se − d).
(3.29)

Finally, let af = Jf ∩ T , where T is the polynomial ring k[α0, α1]. The equality Jf = af · S
implies that we have

dimk HomS(Jf , S/Jf )0 =
∑
i≤0

dimk HomT (af , T/af )i. (3.30)

Since Spec(T/af ) corresponds to a point of the Hilbert scheme Hilbr(A2) which is smooth and
2r-dimensional we get∑

i≤0

dimk HomT (af , T/af )i = 2r −
∑
i>0

dimk HomT (af , T/af )i (3.31)

by [49, Prop. 2.3]. By Equation (3.17) the minimal generators of af appear in degrees e, e + 1

and e+ 2. Furthermore, HT/af (e+ 2) is zero. Therefore, by Proposition 2.22 we have∑
i>0

dimk HomT (af , T/af )i = β1,e(T/af )·HT/af (e+1) = (e+1−d+s)·(r−d) = (dimk Se−d)(r−d).

(3.32)
The exact sequence (3.28) and Equations (3.29), (3.30), (3.31) and (3.32) imply the equality

dimk HomS(Jf , S/If )0 = 2r.

Lemma 3.33. We have dimk HomS(If , S/If )0 ≤ 2r.

Proof. From the long exact sequence obtained by applying the functor HomS(−, S/If )0 to the
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short exact sequence 0→ If → Jf → Jf/If → 0 we get

dimk HomS(If , S/If )0 ≤ dimk HomS(Jf , S/If )0 + dimk Ext1
S(Jf/If , S/If )0

− dimk HomS(Jf/If , S/If )0.

Using Lemmas 3.24, 3.26 and 3.27 we conclude that the inequality dimk HomS(If , S/If )0 ≤ 2r

holds.

We summarize the above considerations to obtain a proof of Theorem 3.13.

Proof of Theorem 3.13. Let f be the Hilbert function of S/I. By Lemma 3.14 we may assume
that f satisfies condition (3.15), i.e. that f belongs to Ωr. Let Uf be the locus of those closed
points [I ′] of Hilb

hr,2
S for which S/I ′ has Hilbert function f . We show that Uf is contained in

Slipr,2. Locus Uf is irreducible by Lemma 3.16. We claim that it is enough to find a point
[I ′′] ∈ Slipr,2 ∩Uf with dimkT[I′′] Hilb

hr,2
S = 2r. Indeed, then by Lemma 2.30 every irreducible

component of the intersection Uf ∩ Slipr,2 passing through [I ′′] has dimension at least dimUf +

dim Slipr,2−2r = dimUf . It follows that Uf is a subset of Slipr,2.
We claim that we may take I ′′ = If as defined by Equation (3.18). We have [If ] ∈ Uf ∩Slipr,2

by Lemmas 3.19 and 3.22. Moreover, [If ] is a smooth point of Hilb
hr,2
S by Lemma 3.33 and

Theorem 2.75.

We illustrate Theorem 3.13 with the following example.

Example 3.34. Let S = k[α0, α1, α2] be a polynomial ring and J = (α0α1, α
2
0α2, α0α

2
2, α

4
1).

The point [J ] is in Hilb
h5,2

S and we claim that it is in Slip5,2. The Hilbert function of S/J is
(1, 3, 4, 5, 5, . . .) so it satisfies condition (3.12). Thus, the claim follows from Theorem 3.13.

3.4.1 The analogue of the sufficient condition does not hold in general for
projective space

For fixed positive integers r and n, condition (3.12) can be generalized as follows:

there exist e, d ∈ Z>0 with f(a) =

{
hr,n(a) if a 6= e

d if a = e.
(3.35)

For all n ≥ 3 and r large enough, the Hilbert scheme Hilbr(Pn) is reducible (see [54]).
Therefore, it cannot be expected that a naive analogue of Theorem 3.13 holds in Pn. The
following remark gives a counterexample.

Remark 3.36. Assume that k has characteristic zero. By [21, Thm. B and Thm. 6.17], there
are non-smoothable closed subschemes of A6 corresponding to Gorenstein local algebras with
(local) Hilbert function (1, 6, 6, 1). See also [59, Thm. 1.1] for a description of the corresponding
irreducible component of the Gorenstein locus of the Hilbert scheme. By embedding A6 in P6 as
a complement of a hyperplane we conclude that there are non-smoothable closed subschemes of
P6 with Hilbert function

(1, 7, 13, 14, 14 . . .).

Let R be such a subscheme and I = I(R) be its homogeneous ideal. Choose a 14-dimensional
subspace V of I2 and construct an ideal J = V ⊕ I≥3. The point [J ] is in Hilb

h14,6

S[P6]
and the
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Hilbert function of S[P6]/J satisfies condition (3.35) (with r = 14 and n = 6). However, [J ] does
not belong to Slip14,6.

The above remark may suggest, that existence of more irreducible components of Hilbr(Pn)

is the only obstacle. The following example shows that the Hilbert function of S/I may satisfy
condition (3.35) for some [I] ∈ Hilb

hr,n
S[Pn] that is not in the closure of the locus of all points

corresponding to saturated ideals.

Remark 3.37. Consider the ideal

I = (α2
0α1, α0α

2
1, α0α2, α0α3, α1α2, α1α3, α

4
2) ∈ S[P3] = k[α0, . . . , α3].

The point [I] is in Hilb
h6,3

S[P3]
and the Hilbert function of S/I satisfies condition (3.35) with r = 6

and n = 3. Suppose that [I] is in the closure of the locus of all points corresponding to saturated
ideals. Since, Hilb6(P3) is irreducible (see [20, Thm. 1.1]) it follows that [I] is in Slip6,3. This
contradicts Theorem 3.5 since we have HS/I2(6) = 23 < r(n+ 1) = 24.

3.5 Points on projective space—examples, part I

3.5.1 Initial cases

Proposition 3.38. Let r and n be positive integers. We have Hilb
hr,1
S[P1]

∼= Pr and Hilb
h1,n

S[Pn]
∼= Pn.

In particular, Slipr,1 and Slip1,n are equal to Hilb
hr,1
S[P1]

and Hilb
h1,n

S[Pn], respectively.

Proof. We have hr,1 = fr,1 and h1,n = f1,n where fr′,n′ for all positive integers r′ and n′ is as
in Lemma 2.44. It follows that there are isomorphisms Hilb

hr,1
S[P1]

∼= Hilbr(P1) and Hilb
h1,n

S[Pn]
∼=

Hilb1(Pn). The scheme Hilbr(P1) is isomorphic to Pr (see [35, pp. 111–112]) and the scheme
Hilb1(Pn) is isomorphic to Pn (see [35, Ex. 7.3.1]).

Proposition 3.39. Let n be a positive integer. The scheme Hilb
h2,n

S[Pn] is a P2-bundle over

Gr(n− 1, S[Pn]1).

In particular, we have Hilb
h2,n

S[Pn] = Slip2,n.

Proof. It follows from [20, Prop. 3.1] that the Hilbert scheme Hilb
h2,n

S[Pn] is a Hilb
h2,1

S[P1]
-bundle over

Gr(n− 1, S[Pn]1). Furthermore, Hilb
h2,1

S[P1]
is isomorphic to P2 by Proposition 3.38.

Proposition 3.40. Let n be a positive integer. The scheme Hilb
h3,n

S[Pn] is irreducible. In particular,

we have Slip3,n = Hilb
h3,n

S[Pn].

Proof. By [20, Prop. 3.1] we may restrict to the case that we have n = 1 or n = 2. In the first
case, the claim follows from Proposition 3.38.

Assume that n equals 2. Let [I] be a closed point of Hilb
h3,2

S[P2]
. If I is saturated, then [I] is in

Slip3,2 by Remark 2.47. On the other hand, if I is not equal to I, then S/I has Hilbert function
h3,1 by Lemma 2.9(ii), (iii). Therefore, we have [I] ∈ Slip3,2 by Theorem 3.13.
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3.5.2 Example of a singular point in the interior of Slip for projective plane

Since Hilbr(P2) is smooth and Slipr,2 is related to Hilbr(P2) by the natural morphism

ϕr,P2 : Hilb
hr,2
S[P2]

→ Hilbr(P2)

from Remark 2.47, it could be expected that the only singular points of Hilb
hr,2
S[P2]

in Slipr,2 are
the points that lie in another irreducible component. We apply Theorem 3.13 to give an example
of a singular point in the interior of Slip8,2.

We start with introducing some notation. Let Θ8 be the set of all functions f : Z → Z such
that f is the Hilbert function of a saturated homogeneous ideal of S defining a zero-dimensional
closed subscheme of P2 of length 8. Given f ∈ Θ8, let Vf be the locally closed subset of Hilbr(P2)

defined by those closed points that correspond to subschemes of P2 with Hilbert function f . These
sets with varying f ∈ Θ8 form a stratification of Hilbr(P2) by locally closed irreducible subsets
(see Proposition 3.11). Let Uf be the set-theoretic inverse image of Vf under ϕr,P2 . In particular,
Slip8,2 is the closure of Uh8,2 . Also, we say that f ≤ g for some f, g : Z→ Z if for every a ∈ Z we
have f(a) ≤ g(a). This gives a partial order on Θ8.

Let f1, f2 : Z→ Z be given by

f1(a) =


dimk Sa for a < 3

7 for a = 3

8 for a > 3

and f2(a) =


dimk Sa for a < 2

5 for a = 2

7 for a = 3

8 for a > 3

or, in brief form, f1 = (1, 3, 6, 7, 8, 8, . . .) and f2 = (1, 3, 5, 7, 8, 8, . . .).

Proposition 3.41. Let J = (α3
1, α

2
1α2, α

2
1α

2
0, α1α

3
2, α

5
2). The point [J ] ∈ Hilb

h8,2

S is a singular
point that belongs to the irreducible component Slip8,2 and no other.

Proof. Let I = (α2
1α2, α0α

2
1 +α1α

2
2, α

4
1, α1α

3
2, α

5
2). The Hilbert function of S/I is f1 so [I] belongs

to Slip8,2 by Theorem 3.13. Hence also its initial ideal with respect to lex order (α0 > α1 > α2),
i.e. I ′ = (α0α

2
1, α

2
1α2, α

4
1, α1α

3
2, α

5
2), is in Slip8,2. Since we have dimkT[I′] Hilb

h8,2

S[P2]
= 16 =

dim Slip8,2, it follows that every irreducible closed subset of Hilb
h8,2

S[P2]
passing through [I ′] is

contained in Slip8,2. In particular [J ] belongs to Slip8,2 since [I ′] and [J ] lie in Uf2 which is
irreducible by Lemma 2.43.

We have dimkT[J ] Hilb
h8,2

S[P2]
= 17 > dim Slip8,2. Let Z be an irreducible component of

Hilb
h8,2

S[P2]
containing [J ]. We show that Z is equal to Slip8,2. Let η be the generic point of Z. If η

does not belong to Uh8,2∪Uf1∪Uf2 then [J ] is not in {η} since Uf2 is open in Hilb
h8,2

S[P2]
\(Uh8,2∪Uf1)

as f2 is the greatest element of Θ8\{h8,2, f1}. Therefore, Z = {η} is contained in Uf1∪Uf2∪Slip8,2.
As shown above, we have Uf1 ∪ Uf2 ⊆ Slip8,2. The equality Z = Slip8,2 follows.

3.6 Criterion based on smoothness

In this section we give another criterion for a closed point [I] ∈ Hilb
hr,n
S to be in Slipr,n. The

criterion is based on smoothness of a point in a certain related multigraded Hilbert scheme. It
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is first stated in a general form (Theorem 3.42) but later we impose additional assumptions to
guarantee that conditions 1–3 from the theorem are fulfilled.

Subsections 3.6.1–3.6.3 are concerned with describing some situations in which assumptions 1–
3 are fulfilled (each subsection deals with one assumption). The main results of these subsections
are:

• Proposition 3.46 which implies condition 1 of Theorem 3.42

• Proposition 3.54 which implies condition 2 of Theorem 3.42

• Lemma 3.57 which implies condition 3 of Theorem 3.42.

Moreover, in Subsections 3.6.4 and 3.6.5 we present two applications of Theorem 3.42: Theo-
rems 3.66 and 3.75. In the proof of the first of them we use Proposition 3.46 and Lemma 3.57. The
proof of the second result, i.e. Theorem 3.75 is based on Propositions 3.46, 3.54 and Lemma 3.57.

Notation

In this section [I] ∈ Hilb
hr,n
S is a closed point corresponding to an ideal that is not saturated. By

d we denote a positive integer with Id 6= Id. We define J = I ∩md and K = I ∩md.
Now we present the main result of this section.

Theorem 3.42. When the following hold:

1. the natural map HomS(J, S/J)0 → HomS(K,S/J)0 is surjective;

2. [J ] ∈ HilbhS is a smooth point where h is the Hilbert function of S/J ;

3. the natural map HomS(K,S/K)0 → HomS(K,S/J)0 is surjective,

there is no [I ′] ∈ Slipr,n with I ′≥d = I≥d. In particular, we have [I] /∈ Slipr,n.

Proof. Let k be the Hilbert function of S/K. Consider the multigraded flag Hilbert scheme
Hilbk,hS (see Subsection 2.2.4) and natural morphisms πk : Hilbk,hS → HilbkS and πh : Hilbk,hS →
HilbhS .

We first show that πk induces isomorphism on tangent spaces T[K⊆J ] Hilbk,hS → T[K] HilbkS .
This map on tangent spaces is the upper horizontal map in the pullback diagram

T[K⊆J ] Hilbk,hS HomS(K,S/K)0

HomS(J, S/J)0 HomS(K,S/J)0

in which the right vertical and the lower horizontal maps are natural maps of Hom groups
(see Theorem 2.78). By assumption 1, the lower horizontal map is surjective. Moreover,
HomS(J/K, S/J)0 is zero by Lemma 2.8 since we have J = J≥d and mr · J/K = 0. There-
fore, the lower horizontal map is bijective. Thus, so is the upper horizontal map since the
diagram is a pullback.

Now we show that the natural transformation D
Hilbk,hS ,[K⊆J ]

→ DHilbkS ,[K] of deformation
functors induced by πk admits a map of tangent-obstruction theories which is injective on ob-
struction spaces. By Theorem 2.75, there are tangent-obstruction theories for DHilbhS ,[J ] and
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DHilbkS ,[K] with obstruction spaces Ext1
S(J, S/J)0 and Ext1

S(K,S/K)0, respectively. Moreover,
by Theorem 2.78 there is a tangent-obstruction theory for D

Hilbk,hS ,[K⊆J ]
with obstruction space

given by the pullback diagram

Ob[K⊆J ] Hilbk,hS Ext1
S(K,S/K)0

Ext1
S(J, S/J)0 Ext1

S(K,S/J)0,

β

α

where the lower horizontal and the right vertical maps are maps from long exact sequences of
Ext groups. Furthermore, α and β induce maps of tangent-obstruction theories. Here we have
used assumption 3. Since [J ] ∈ HilbhS is a smooth point, we can use Lemma 2.68, to change the
tangent-obstruction theory of D

Hilbk,hS ,[K⊆J ]
so that D

Hilbk,hS ,[K⊆J ]
→ DHilbkS ,[K] admits a map of

tangent-obstruction theories which is injective on obstruction spaces.
It follows from Corollary 2.66 that the map πk is étale at [K ⊆ J ]. In particular, there

is an open subset U of Hilbk,hS containing [K ⊆ J ] that is mapped onto an open subset V of
HilbkS containing [K]. If there is a point [I ′] ∈ Slipr,n with I≥d = I ′≥d, then there is a saturated
ideal I ′′ with [I ′′] ∈ Hilb

hr,n
S and [I ′′ ∩ md] ∈ V . Therefore, there is an ideal [J ′′] ∈ HilbhS with

I ′′ ∩md ⊆ J ′′. This gives a contradiction since we have I ′′ = J ′′ and I ′′d ( J ′′d .

Remark 3.43. It seems that assumption 2 of the above theorem is both the most restrictive
and potentially the hardest to check in practice. On the other hand, if we have n = 2 and

d = min{a ∈ Z | Ia 6= Ia}

then condition 2 always holds (see Proposition 3.10) since the usual Hilbert scheme Hilbr(P2) is
smooth. Furthermore, for d = max{a ∈ Z | Ia 6= Ia} condition 3 is satisfied (see Lemma 3.57).
Even in the case of P2 and d = max{a ∈ Z | Ia 6= Ia} it is not clear, in how general setups
can we expect condition 2 of Theorem 3.42 to hold. We present one specific situation when this
holds in Proposition 3.54.

In the following subsections we study some situations in which conditions 1–3 of Theorem 3.42
hold.

3.6.1 About condition 1

The main result of this subsection is Proposition 3.46 which describes a situation in which
condition 1 of Theorem 3.42 holds.

We keep the notation of Theorem 3.42. Let R = S/I and pick a linear form L ∈ S1 that is a
nonzerodivisor on R. This is possible by Lemma 2.9(i). By a linear change of variables, we may
and do assume that we have L = α0.

We start with the following simple observation.

Lemma 3.44. Let b be a homogeneous ideal of S that is generated in degrees at most d for a
positive integer d. Let a = b+I

I
⊆ R. If we have dimk ad = dimk ad+1 then the equality

aa′ = αa
′−a

0 aa

holds for every a′ ≥ a ≥ d.
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Proof. Let ι : R → R be the multiplication by α0. This induces an injective map aa → aa+1 for
every integer a. It is enough to show that for all a ≥ d this map is surjective. We prove this by
induction. The case a = d follows from the assumption that we have dimk ad = dimk ad+1. Let
a0 > d and suppose that there is an equality aa0 = α0aa0−1. Let g ∈ aa0+1. Since b is generated
in degrees at most d we obtain

g =
n∑
i=0

αifi for some fi ∈ aa0 .

By induction there are hi ∈ aa0−1 with fi = α0hi for all i = 0, 1, . . . , n. Therefore, we get
g = α0(

∑n
i=0 αihi).

The following lemma is used in the proof of Proposition 3.46 to extend a homomorphism
ϕ ∈ HomS(K,S/J)0 to an element ψ ∈ HomS(J, S/J)0 under some additional assumptions.

Lemma 3.45. Let d = max{a ∈ Z | Ia 6= Ia}. Let b ⊆ S be a homogeneous ideal that is generated
in degrees at most d. Let a = b+I

I
⊆ S/I = R. Assume that we have dimk ad = dimk ad+1.

Let F ∈ Jd and assume that it is of the form F = fg for some homogeneous f ∈ b and g ∈ I.
Let ϕ ∈ HomS(K,S/J)0. There is h ∈ (S/J)d with ϕ(α0F ) = α0h.

Proof. Observe that α0F belongs to Id+1 = Kd+1, so ϕ(α0F ) is a well-defined element of Rd+1.
Let a = deg(f). We have

αa0ϕ(α0F ) = αa0ϕ(α0fg) = fϕ(αa+1
0 g).

Hence αa0ϕ(α0F ) is in ad+a+1. Therefore, by Lemma 3.44 there is h ∈ ad ⊆ Rd = (S/J)d with
αa0ϕ(α0F ) = αa+1

0 h. Since α0 is a nonzerodivisor on R, the equality ϕ(α0F ) = α0h follows.

Now we can present the main result of this subsection.

Proposition 3.46. Let d = max{a ∈ Z | Ia 6= Ia}. Let b ⊆ S be a homogeneous ideal that
is generated in degrees at most d. Let a = b+I

I
⊆ S/I = R. Assume that we have dimk ad =

dimk ad+1.
Let F1, . . . , Fs ∈ Jd be elements whose classes form a basis of Jd/Kd. Assume that for all

i ∈ {1, . . . , s} the polynomial Fi equals figi for some homogeneous fi ∈ b and gi ∈ I. Let
ϕ ∈ HomS(K,S/J)0. There exists ψ ∈ HomS(J, S/J)0 with ψ|K = ϕ. Thus, condition 1 from
Theorem 3.42 is fulfilled.

Proof. Let {p1, . . . , pt} be a minimal set of homogeneous generators of J containing {F1, . . . , Fs}.
We may and do assume that pi belongs to K if pi /∈ {F1, . . . , Fs}. By Lemma 3.45, there are
hi ∈ (S/J)d with

α0hi = ϕ(α0Fi) for all i ∈ {1, 2, . . . , s}. (3.47)

We define ψ on generators {p1, . . . , pt} of J by

ψ(pi) =

{
ϕ(pi) if pi ∈ K
hj if pi = Fj for some j ∈ {1, 2, . . . , s}.

We claim that ψ is a well-defined element of HomS(J, S/J)0. Indeed, let

{p1, . . . , pt} = {F1, . . . , Fs, Qs+1, . . . , Qt}
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and assume that Gi, Hi ∈ S are such that we have

s∑
i=1

GiFi +

t∑
i=s+1

HiQi = 0.

We need to show that the following holds

s∑
i=1

Giψ(Fi) +
t∑

i=s+1

Hiψ(Qi) =
s∑
i=1

Gihi +
t∑

i=s+1

Hiϕ(Qi) = 0.

Since α0 is a nonzerodivisor on R, it is enough to observe that there is a chain of equalities

α0

( s∑
i=1

Gihi +
t∑

i=s+1

Hiϕ(Qi)
) (3.47)

=
s∑
i=1

Giϕ(α0Fi) + α0

t∑
i=s+1

Hiϕ(Qi)

= ϕ

(
α0

( s∑
i=1

GiFi +
t∑

i=s+1

HiQi

))
= ϕ(0) = 0.

3.6.2 About condition 2

In this subsection we show in Proposition 3.54 that if n equals 2 and under some additional
assumptions, condition 2 from Theorem 3.42 is fulfilled.

In the notation of Theorem 3.42, assume that d is equal to min{a ∈ Z | Ia 6= Ia}. We claim
that we have d = min{a ∈ Z | Ia 6= 0} and therefore, that J is equal to I. Let d′ = min{a ∈
Z | Ia 6= 0}. If Ia is zero, then there is an equality Ia = Ia so we get d′ ≤ d. On the other
hand, if we have d′ < d, then Id′ = Id′ is non-zero. Thus, HS/I(a) = HS/I(a) = r holds for every
a ≥ d′ by Lemma 2.9(ii) and the definition of hr,n. We obtain I≥d′ = I≥d′ which contradicts the
definition of d and proves the claim.

The smoothness of Hilbr(P2) and its consequence, Proposition 3.10, play a key role in our
approach to condition 2 of Theorem 3.42. However, Proposition 3.46 requires d = max{a ∈ Z |
Ia 6= Ia} while Proposition 3.10 corresponds to the case d = min{a ∈ Z | Ia 6= Ia}, when we have
[J ] = [I ∩md] = [I]. Therefore, we would like to show that, under some additional assumptions,
the condition that [I ∩md] is a smooth point of HilbhS holds also for d = max{a ∈ Z | Ia 6= Ia}.
This is achieved in Proposition 3.54.

Lemma 3.48. Let I ⊆ S = k[α0, α1, α2] be a homogeneous ideal. We have

dimk Ext2
S(k, S/I)a = β1,a+3(S/I)

for every a ≥ 0.

Proof. Consider the short exact sequence

0→ I → S → S/I → 0.

Applying the functor HomS(k,−)a to the above short exact sequence we obtain the exact se-
quence

· · · → Ext2
S(k, S)a → Ext2

S(k, S/I)a → Ext3
S(k, I)a → Ext3

S(k, S)a → · · · . (3.49)
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We claim that ExtiS(k, S)a = 0 holds for all i ∈ {2, 3}.
Consider the Koszul complex

0→ S(−3)


α2

−α1

α0


−−−−−→ S(−2)⊕3


−α1 −α2 0

α0 0 −α2

0 α0 α1


−−−−−−−−−−−−−−−→ S(−1)⊕3

[
α0 α1 α2

]
−−−−−−−−−−→ S → 0. (3.50)

The Ext groups ExtiS(k, S)a for all i ∈ {2, 3} can be computed as the cohomology groups at S⊕3
a+2

and Sa+3 of the complex

0→ Sa


α0

α1

α2


−−−−→ S⊕3

a+1


−α1 α0 0

−α2 0 α0

0 −α2 α1


−−−−−−−−−−−−−−→ S⊕3

a+2

[
α2 −α1 α0

]
−−−−−−−−−−−−→ Sa+3 → 0

obtained from the Koszul complex (3.50) by applying the functor HomS(−, S)a. These groups
are trivial.

Thus, we have
dimk Ext2

S(k, S/I)a = dimk Ext3
S(k, I)a

by exact sequence (3.49). Applying the functor HomS(−, S/I)a to the Koszul complex (3.50) we
get that Ext3

S(k, I)a is the cokernel of the map

I⊕3
a+2

[
α2 −α1 α0

]
−−−−−−−−−−−−→ Ia+3.

The equality dimk Ext3
S(k, I)a = β1,a+3(S/I) follows.

Lemma 3.51. Let f be the Hilbert function of a zero-dimensional length r subscheme of Pn. Let
I be a saturated ideal of S with [I] ∈ HilbfS. Let m = min{a ∈ Z | Ia 6= 0} and let d ≥ m be
a positive integer. Let h be the Hilbert function of S/I ∩ md. If [I] is a smooth point and the
natural map HomS(I ∩ma, S/I)0 → HomS(I ∩ma+1, S/I)0 is bijective for every m ≤ a < d, then
[I ∩md] ∈ HilbhS is a smooth point. Moreover, we have dimkT[I∩md] HilbhS = dimW where W ⊆
HilbhS is the locally closed subset whose closed points correspond to ideals defining subschemes of
Pn with Hilbert function f .

Proof. For all integers m ≤ a ≤ d let ga be the Hilbert function of S/I ∩ ma. In particular, we
have gm = f and gd = h. Let Wa be the locally closed subset of HilbgaS whose closed points
correspond to ideals defining subschemes of Pn with Hilbert function f . In particular, Wd is
equal to W . For all m ≤ a ≤ d−1 let πa : HilbgaS → Hilb

ga+1

S be the natural map given on closed
points by [I ′] 7→ [I ′∩ma+1]. The map πa induces a homeomorphismWa

∼= Wa+1 by Lemma 2.29.
We assumed that the natural map HomS(I ∩ma, S/I)0 → HomS(I ∩ma+1, S/I)0 is bijective

for every m ≤ a ≤ d − 1. Therefore, by Lemma 2.80 the map πa induces an isomorphism of
tangent spaces

T[I∩ma] HilbgaS
∼= T[I∩ma+1] Hilb

ga+1

S (3.52)

for every m ≤ a ≤ d− 1.
Now we show that [I ∩ md] ∈ HilbhS is a smooth point. Observe that Wm ⊆ HilbfS is open
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and [I ∩mm] = [I] ∈ HilbfS is a smooth point by assumption. Therefore, we have

dimkT[I∩md] HilbhS = dimkT[I] HilbfS = dimWm = dimWd = dimW (3.53)

where the first equality follows from Equation (3.52), the second from the fact that [I] is a
smooth point and Wm ⊆ HilbfS is open and the third equality follows from the homeomorphism
Wm
∼= Wd. Equation (3.53) implies that [I∩md] is a smooth point of HilbhS since [I∩md] belongs

to W .

Finally, we present the main result of this subsection.

Proposition 3.54. In the notation of Theorem 3.42, assume that n equals 2. Let

m = min{a ∈ Z | Ia 6= Ia} = min{a ∈ Z | Ia 6= 0}.

Let f be the Hilbert function of S/I and assume that

f(a)− 3f(a+ 1) + 3f(a+ 2)− f(a+ 3) = β1,a+3(S/I) (3.55)

holds for every m ≤ a ≤ d − 1. The point [J ] is smooth in HilbhS, i.e. condition 2 from
Theorem 3.42 is fulfilled. Moreover, we have dimk HomS(J, S/J)0 = dimW where W ⊆ HilbhS is
the locally closed subset whose closed points correspond to ideals defining subschemes of P2 with
Hilbert function f .

Proof. The point [I ∩ mm] = [I] ∈ HilbfS is a smooth point by Proposition 3.10. Therefore, by
Lemma 3.51 it is enough to show that the natural map

HomS(I ∩ma, S/I)0 → HomS(I ∩ma+1, S/I)0 (3.56)

coming from the exact sequence of Hom groups is bijective for every m ≤ a < d. Fix m ≤ a ≤
d − 1 and let Q = I ∩ ma/I ∩ ma+1. Since we have m · Q = 0 and (I : m) = I, we conclude by
Lemma 2.8 that HomS(Q,S/I)0 is zero. Thus, the map from Equation (3.56) is injective.

We have Q = k(−a)s for some integer s. Therefore, by Lemma 2.27 we have

s
(
f(a)− 3f(a+ 1) + 3f(a+ 2)− f(a+ 3)

)
=

3∑
i=0

(−1)i dimk ExtiS(Q,S/I)0.

Since dimk HomS(Q,S/I)0 is zero, by Equation (3.55) and Lemma 3.48 we get

dimk Ext1
S(Q,S/I)0 + dimk Ext3

S(Q,S/I)0 = 0.

Hence there is an equality Ext1
S(Q,S/I)0 = 0. Thus, the map from Equation (3.56) is surjective.

3.6.3 About condition 3

Lemma 3.57. In the notation of Theorem 3.42, assume that we have d = max{a ∈ Z | Ia 6=
Ia}. The natural map HomS(K,S/K)0 → HomS(K,S/J)0 is surjective, i.e. condition 3 from
Theorem 3.42 is fulfilled.
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Proof. It is enough to establish that Ext1
S(K,J/K)0 is zero. Let P• be a minimal graded free

resolution of K. The group Ext1
S(K,J/K)0 is a subquotient of HomS(P1, J/K)0 so it is enough

to show that the latter group is trivial. This holds, since the minimal generators of P1 are of
degree at least d+ 1 and we have (J/K)≥d+1 = 0.

3.6.4 Application one: subschemes contained in a line

In this subsection we consider ideals defining subschemes contained in a line. The statement
of Theorem 3.66 is a generalization of [67, Thm. 2.7] for fields of arbitrary characteristic. We
provide a proof in the setting of Theorem 3.42.

We start with a lemma. It is stated in a general version since we also use it in Subsection 3.6.5.
We introduce some notation. Let f be the Hilbert function of a zero-dimensional, length r

subscheme of ProjS. Assume that we have f 6= hr,n. Let

e = max{a ∈ Z | f(a) 6= hr,n(a)}.

Let h : Z→ Z be defined by

h(a) =

{
dimk Sa for a < e;

f(a) for a ≥ e

and k : Z→ Z be defined by

k(a) =

{
dimk Sa for a < e;

hr,n(a) for a ≥ e.

Let π : Hilb
hr,n
S → HilbkS , πh : HilbhS → Hilbr(Pn) and πk : HilbkS → Hilbr(Pn) be the natural

morphisms.
Let V be the locally closed subset of Hilbr(Pn) consisting of points corresponding to sub-

schemes with Hilbert function f . Let W be the set-theoretic inverse image of V under πh and
let W ′ be the set-theoretic inverse image of V under πk.

Lemma 3.58. If the following hold:

1. f(e) equals r − 1;

2. V ⊆ Hilbr(Pn) is irreducible;

3. there exists an irreducible closed (rn−1)-dimensional subset U ⊆W ′ with π(Slipr,n)∩W ′ ⊆
U , set-theoretically;

4. there is an equality dimk HomS(J, S/J)0 = dimW for every [J ] ∈W ⊆ HilbhS;

5. dimk Ext1
S(k, S/J)e ≤ 1 holds for every [J ] ∈W ⊆ HilbhS,

then we have π(Slipr,n) ∩W ′ = U , set-theoretically.

Proof. From assumption 1 and the fact that hr,n(e) is not equal to f(e) we get hr,n(e) = r. Let
N = dimV . It follows from Lemmas 2.43, 2.44, [81, 11.4.C] and assumption 2 that W and W ′

are irreducible and their dimensions are dimW = N and dimW ′ = N+(dimk Se− (r−1)−1) =

N + dimk Se − r.
We have dimπ(Slipr,n) = rn. We claim that V ∩ Hilbsmr (Pn) is non-empty. Let [R] ∈ V

and let I ′ be the generic initial ideal of the ideal I(R) with respect to the grevlex order with
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α0 > α1 > · · · > αn. We get [ProjS/I ′] ∈ V by Corollary 2.10 and [ProjS/I ′] ∈ Hilbsmr (Pn) by
[20, Prop. 4.15] since I ′ is an extended ideal from k[α0, . . . , αn−1] by Lemma 2.11. Since we have
πk ◦ π(Slipr,n) = Hilbsmr (Pn) and V ∩Hilbsmr (Pn) is non-empty, π(Slipr,n) ∩W ′ is non-empty.

Now we show that

dimk HomS(K,S/K)0 ≤ N + dimk Se − r + 1 = dimW ′ + 1 (3.59)

holds for every [K] ∈W ′ ⊆ HilbkS .
Let [K] ∈W ′ and J = K ∩me. Consider the exact sequences

0→ HomS(J/K, S/J)0 → HomS(J, S/J)0 → HomS(K,S/J)0 → Ext1
S(J/K, S/J)0 (3.60)

and

0→ HomS(K,J/K)0 → HomS(K,S/K)0 → HomS(K,S/J)0 → Ext1
S(K,J/K)0. (3.61)

By assumption 1, there is an equality J/K = k(−e). It follows from Lemma 2.28 that we have

dimk HomS(K,J/K)0 = β1,e(S/K) = dimk Se − r (3.62)

and
dimk Ext1

S(K,J/K)0 = 0. (3.63)

Thus, by Equations (3.61) and (3.63) we get

dimk HomS(K,S/K)0 = dimk HomS(K,J/K)0 + dimk HomS(K,S/J)0. (3.64)

Moreover, HomS(J/K, S/J)0 is zero by Lemma 2.8. Therefore, it follows from Equations (3.60)
and (3.64) that we have

dimk HomS(K,S/K)0 ≤ dimk HomS(K,J/K)0 + dimk HomS(J, S/J)0 + dimk Ext1
S(k, S/J)e.

Equation (3.59) follows from Equation (3.62) and assumptions 4 and 5.
Let [K] ∈ W ′ ∩ π(Slipr,n) and let Z be an irreducible component of W ′ ∩ π(Slipr,n) passing

through [K]. By Theorem 2.75, Lemma 2.30 and Equation (3.59) we get

dimZ ≥ dimπ(Slipr,n) + dimW ′ − (dimW ′ + 1) = rn− 1.

Moreover,W ′ is open inW ′ sinceW ′ is locally closed. Therefore, the generic point of Z belongs to
W ′. As a result, Z is contained in U by assumption 3 and in fact there is an equality Z = U since
we have dimZ ≥ rn− 1 = dimU . Since U is closed in W ′ we get U = W ′ ∩Z ⊆W ′ ∩ π(Slipr,n)

and therefore, W ′ ∩ π(Slipr,n) is equal to U by assumption 3.

Lemma 3.65. Let J be a homogeneous ideal of S such that S/J has Hilbert function hr,1. We
have

dimk Ext1
S(k, S/J)a = 0

for all 1 ≤ a < r − 2 and
dimk Ext1

S(k, S/J)r−2 = 1.
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Proof. Up to a linear change of variables, we may and do assume that J is equal to(
α0, . . . , αn−2, θr(αn−1, αn)

)
.

The Ext groups from the statement are the middle cohomology groups of the complex

(S/J)a
δ0−→ (S/J)n+1

a+1
δ1−→ (S/J)

(n+1
2 )

a+2

obtained from the Koszul complex. Here we have

δ0([f ]) = ([αif ])i=0,...,n and δ1([fi]i=0,...,n) = ([αifj − αjfi])0≤i<j≤n.

Let a ∈ {1, . . . , r − 3} and assume that δ1([fi]i=0,...,n) is zero. Observe that [αjfi] is zero for
every i ∈ {0, . . . , n} and j ∈ {0, . . . , n − 2}. Furthermore, multiplications by αn−1 or αn give
injective maps (S/J)a → (S/J)a+1. It follows that [fj ] is zero for all j ≤ n − 2. Moreover,
we have [αnfn−1] = [αn−1fn]. There are unique representatives fn−1 and fn of the classes
[fn−1] and [fn] in S/J which are polynomials in variables αn−1 and αn. From the equality
Ja+2 = (α0, . . . , αn−2)a+2, it follows that there is a polynomial g in variables αn−1 and αn with
gαn−1 = fn−1 and gαn = fn. Hence we have δ0([g]) = ([fi])i=0,...,n. Consequently, Ext1

S(k, S/J)a
is trivial.

Now assume that a equals r − 2. As in the previous case, we get [fi] = 0 for all i ≤ n − 2.
Lift [fn−1] and [fn] to unique representatives which are polynomials in αn−1 and αn. Now from
the equality [αnfn−1] = [αn−1fn] we deduce that there is a constant c with

αnfn−1 = αn−1fn + cθr.

The space

Θ = {(fn−1, fn) ∈ (k[αn−1, αn]r−1)2 | αnfn−1 − αn−1fn is divisible by θr}

is r-dimensional. It follows that we have

dimk Ext1
S(k, S/J)r−2 = r − dimk δ0

(
(S/J)r−2

)
= r − (r − 1) = 1.

Finally, we can present the criterion for ideals defining subschemes contained in a line.

Theorem 3.66. Let [I] ∈ Hilb
hr,n
S be a closed point corresponding to an ideal I such that S/I

has Hilbert function hr,1. There exists [I ′] ∈ Slipr,n with I≥r−2 = I ′≥r−2 if and only if (I
2
)r−2 is

contained in Ir−2.

Proof. We may assume that we have n ≥ 2 and r ≥ 4 since otherwise both conditions are
trivially satisfied. Indeed, if we have n = 1 or r < 4 then Hilb

hr,n
S is irreducible (see Propositions

3.38–3.40) so we may take I ′ = I. On the other hand, if n equals 1 then I is saturated while if
we have r ≤ 3 then (I

2
)r−2 is zero.

We use the notation of the beginning of this subsection with f = hr,1. Let U be the locus of
those points [K] from W ′ that satisfy

(K
2
)r−2 ⊆ Kr−2.
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In this notation, we need to prove that we have π(Slipr,n) ∩W ′ = U , set-theoretically.
We start with showing that π(Slipr,n) ∩ W ′ is a subset of U . Let [I ′′] ∈ Hilb

hr,n
S satisfy

[I ′′ ∩mr−2] ∈W ′ \U . We use Theorem 3.42 with d = r− 2 and I = I ′′ to show that [I ′′ ∩mr−2]

does not belong to π(Slipr,n). By Lemma 3.57 condition 3 of Theorem 3.42 holds. Let b =

((I ′′)1) ⊆ S and a = b+I′′

I′′
⊆ S/I ′′. The ideal a is the zero ideal. In particular, there are

equalities dimk ar−2 = dimk ar−1 = 0. Furthermore, since [I ′′ ∩ mr−2] is not in U we have
(I ′′)r−2 = I ′′r−2 + lin{F} for some F ∈ ((I ′′)2)r−2 = ((I ′′1) · I ′′)r−2 = (b · I ′′)r−2. Thus, by
Proposition 3.46 condition 1 of Theorem 3.42 is fulfilled. We are left with proving that [I ′′∩mr−2]

is a smooth point of HilbhS . Note that the following proof of this fact uses only the assumption
that S/I ′′ has Hilbert function hr,1.

By Lemma 2.42 and Proposition 3.38, [I ′′] = [I ′′ ∩ m] is a smooth point. Therefore, by
Lemma 3.51 it is enough to show that the natural map

HomS(I ′′ ∩ma, S/I ′′)0 → HomS(I ′′ ∩ma+1, S/I ′′)0

is bijective for every 1 ≤ a < r− 2. Let 1 ≤ a ≤ r− 3 and Q = (I ′′ ∩ma)/(I ′′ ∩ma+1). We have
an exact sequence

0→ HomS(Q,S/I ′′)0 → HomS(I ′′ ∩ma, S/I ′′)0 → HomS(I ′′ ∩ma+1, S/I ′′)0 → Ext1
S(Q,S/I ′′)0.

Since HomS(Q,S/I ′′)0 is zero by Lemma 2.8, it follows from Lemma 3.65 that we have

HomS(I ′′ ∩ma, S/I ′′)0
∼= HomS(I ′′ ∩ma+1, S/I ′′)0. (3.67)

Thus, [I ′′∩mr−2] ∈ HilbhS is a smooth point by Lemma 3.51. By Theorem 3.42 we conclude that
[I ′′ ∩mr−2] does not belong to π(Slipr,n). Hence there is an inclusion

π(Slipr,n) ∩W ′ ⊆ U.

Now we show the opposite inclusion using Lemma 3.58. Assumption 1 is satisfied. Moreover,
assumption 4 holds by Lemma 3.51 and Equation (3.67). We have shown above that π(Slipr,n)∩
W ′ is contained in U . Assumption 5 is fulfilled by Lemma 3.65. In our case, V is homeomorphic
to a Hilb

hr,1
S[P1]

-bundle over Gr(n − 1, S1) by [20, Prop. 3.1]. In particular, V is irreducible of
dimension 2(n− 1) + r.

We need to show that U is irreducible of dimension rn − 1. Consider the natural map
U → V . The fiber over every closed point is irreducible of dimension (n − 1)(r − 2) − 1.
Indeed, up to a linear change of variables we may assume that we have [ProjS/I] ∈ V with
I = (α0, . . . , αn−2, θr(αn−1, αn)). The fiber over [ProjS/I] is the set of all codimension one
subspaces of

lin{αiαan−1α
b
n | i ∈ {0, . . . , n− 2}, a+ b = r − 3, a, b ≥ 0}.

It follows from [81, 11.4.C] that U is irreducible of dimension

(n− 1)(r − 2)− 1 + 2(n− 1) + r = rn− 1.

We end this subsection with two examples of applications of Theorem 3.66. In the first of
them, we show that a certain point does not belong to Slipr,n.
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Example 3.68. Let S = k[α0, . . . , α3] be a polynomial ring and let

I ′′ = (α0α1, α
2
1, α0α2, α0α3, α1α2, α1α3, α

3
0, α

4
2).

The point [I ′′] is in Hilb
h4,3

S and we claim that [I ′′] does not belong to Slip4,3. Indeed, we have
I ′′ = (α0, α1, α

4
2) but α2

0 ∈ (I ′′
2
)2 \ I ′′2 . Thus, the claim follows from Theorem 3.66.

Observe that we have HS/(I′′)2(6) = 15 < 16. Thus, we could have deduced that [I ′′] is not
in Slip4,3 from Theorem 3.5. In fact, the proof of Theorem 3.66 presented in [67, Thm. 2.7] is
based on the criterion from Theorem 3.5. Here we presented another proof that fits into the
bigger picture (Theorem 3.42).

On the other hand dimk HomS(I ′′ + md, S/(I ′′ + md))0 ≥ 12 holds for every d ≥ 3. It follows
that Proposition 3.1 cannot be used to deduce that [I ′′] does not belong to Slip4,3.

Consider again ideals I from Example 3.3 and I ′ from Example 3.6. We have (I
2
)4 = (I ′

2
)4 =

(α2
0)4. Moreover, there are inclusions (α2

0)4 ⊆ I4 and (α2
0)4 ⊆ I ′4. Thus, Theorem 3.66 cannot be

used to deduce that [I] and [I ′] are not in Slip6,2.
The following table summarizes Examples 3.3, 3.6 and 3.68.

Ideal Prop. 3.1 Thm. 3.5 Thm. 3.66

(α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) X ? ?

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2) ? X ?

(α0α1, α
2
1, α0α2, α0α3, α1α2, α1α3, α

3
0, α

4
2) ? X X

Table 3.2: Examples of points that are not in the irreducible component Slip.

The ideals in the first and second row are in k[α0, . . . , α2]. The ideal from the bottom row is
in k[α0, . . . , α3].

In the second example, we use Theorem 3.66 to show that a given point belongs to Slipr,n.

Example 3.69. Let S = k[α0, . . . , α3] be a polynomial ring and

J ′ = (α2
0, α0α1, α

2
1, α0α2, α1α2, α0α3, α1α

2
3, α

4
2).

The point [J ′] is in Hilb
h4,3

S and we claim that [J ′] belongs to Slip4,3. We have J ′ = (α0, α1, α
4
2)

and (J ′
2
)2 ⊆ J2. Therefore, by Theorem 3.66 there exists [K] ∈ Slip4,3 with K≥2 = J ′≥2. Since

K1 = J ′1 is zero, we conclude that [J ′] = [K] is in Slip4,3.

3.6.5 Application two: constant growth on projective plane

In this subsection we have S = k[α0, α1, α2]. Let [I] ∈ Hilb
hr,2
S and let f be the Hilbert function

of S/I. Let m = min{a ∈ Z | Ia 6= 0}. Assume that there exist positive integers t and e > m

such that f is given by

f(a) =


dimk Sa for a < m

r − (e+ 1− a)t for a ∈ {m,m+ 1, . . . , e}
r for a ≥ e+ 1

(3.70)
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Observe that for all r ≥ 4 the function hr,1 is of the above form with m = 1, e = r− 2 and t = 1.
Another example of such Hilbert function is (1, 3, 5, 7, 9, 11, 11, . . .). Here we have m = 2, e = 4

and t = 2.
Thus, in this subsection we consider more general Hilbert functions of S/I than in Subsec-

tion 3.6.4 but we require that n equals 2.
The goal of this subsection is Theorem 3.75. There, we give a necessary condition for [I] to

be in Slipr,2.
In the following lemma, we show that [I ∩me] is a smooth point. Thus, we verify condition 2

from Theorem 3.42.

Lemma 3.71. We have

β1,a(S/I) = 0 for all e+ 2 6= a ≥ m+ 2, (3.72)

and
β1,e+2(S/I) = t. (3.73)

As a result, [I ∩ me] ∈ HilbhS is a smooth point where h is the Hilbert function of S/(I ∩ me).
Moreover, we have dimk HomS

(
I ∩ me, S/(I ∩ me)

)
0

= dimW where W ⊆ HilbhS is the locally
closed subset whose closed points correspond to the ideals defining subschemes of P2 with Hilbert
function f .

Proof. Recall that the Hilbert function f of S/I satisfies Equation (3.70). Let e+2 6= a ≥ m+2.
By Lemma 2.13 we obtain β1,a(S/I) ≤ 2f(a − 1) − f(a) − f(a − 2) = 0. Similarly, we get
β1,e+2(S/I) ≤ 2f(e+ 1)− f(e+ 2)− f(e) = t.

We show that we have β1,e+2(S/I) ≥ t. Since I is saturated, dimk HomS(k, S/I) is zero.
Therefore, by Lemma 2.27 we get

− dimk Ext1
S(k, S/I)e−1 + dimk Ext2

S(k, S/I)e−1 − dimk Ext3
S(k, S/I)e−1

= HS/I(e− 1)− 3HS/I(e) + 3HS/I(e+ 1)−HS/I(e+ 2)

= (r − 2t)− 3(r − t) + 3r − r = t.

It follows from Lemma 3.48 that β1,e+2(S/I) ≥ t holds.
Having calculated the Betti numbers, we proceed to proving the second part of the lemma.

By Proposition 3.54 it is enough to show that there is an equality

HS/I(a)− 3HS/I(a+ 1) + 3HS/I(a+ 2)−HS/I(a+ 3) = β1,a+3(S/I) (3.74)

for every a ∈ {m,m+ 1, . . . , e− 1}. By direct calculation, the left-hand side of Equation (3.74)
equals zero for all a ∈ {m, . . . , e − 2} and equals t for a = e − 1. The same is true for the
right-hand side by Equations (3.72) and (3.73).

We present the main result of this subsection.

Theorem 3.75. In the notation of Theorem 3.42 assume additionally that n equals 2. Let
m = min{a ∈ Z | Ia 6= 0} and e = max{a ∈ Z | Ia 6= Ia}. Assume that e > m holds and that
there exists a positive integer t such that S/I has Hilbert function f as in Equation (3.70).

(i) There exists θ ∈ St with Ie ⊆ (θ)e;
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(ii) Let θ be as in part (i). If we have Ie = Ie + (θ · I)e then there is no [I ′] ∈ Slipr,2 with
I ′≥e = I≥e. In particular, [I] does not belong to Slipr,2;

(iii) If t equals 1 and θ ∈ S1 is as in part (i), then there exists [I ′] ∈ Slipr,2 with I ′≥e = I≥e if
and only if (θ · I)e is contained in Ie.

Proof.

(i) By Lemma 2.9(i) there is an element L ∈ S1 that is a nonzerodivisor on S/I. Moreover,
we can take for L any general linear form. Let T = S/(L) and

a =
(
I + (L)

)
/(L) ⊆ T.

We have HS/I(a) − HS/I(a − 1) = HT/a(a) for any positive integer a. In particular,
am is non-zero. Therefore, we have t = HT/a(m + 1) ≤ HT/a(m) ≤ m, where the first
inequality follows from Lemma 2.12 and the second from the fact that am is non-zero. We
get t = HT/a(e + 1) = HT/a(e) < e. Hence a has maximal growth in degree e. By [5,
Lem. 1.4], we get that I ′ = (I≤e) is a saturated ideal. Moreover, β1,e+1(S/I) is zero by
Lemma 3.71. Thus, S/I ′ has Hilbert polynomial P (a) = at + (r − e − 1) by Gotzmann’s
persistence theorem [10, Thm. 4.3.3] applied to T/(a≤e). Since P is of degree 1 and its
leading coefficient is t it follows from [48, Prop. I.7.6] that the subscheme of P2 defined by
I ′ contains a curve of degree t. Hence there exists θ ∈ St with Ie ⊆ (θ)e.

(ii) We want to use Theorem 3.42 with d = e. Assumption 3 of the theorem is fulfilled by
Lemma 3.57. Lemma 3.71 implies that assumption 2 is satisfied.

Finally, we address assumption 1. Let b = (θ) and a = (θ)+I

I
⊆ S/I. We assumed that we

have Ie = Ie + (θ · I)e. Therefore, by Proposition 3.46 it is enough to show that there is
an equality dimk ae = dimk ae+1. By part (i) and Equation (3.72) we get I≤e+1 ⊆ (θ). It
follows that there is a chain of equalities

dimk ae+1 − dimk ae = (dimk(θ)e+1 − dimk(θ)e)− (dimk Ie+1 − dimk Ie)

= (dimk Se−t+1 − dimk Se−t)−
(

dimk Se+1 −HS/I(e+ 1)− dimk Se +HS/I(e)
)

= (e+ 2− t)− (e+ 2− t) = 0.

(iii) Assume that there exists [I ′] ∈ Slipr,2 with I ′≥e = I≥e. We show that (θ · I)e is contained
in Ie. It follows from t = 1 that Ie is of codimension 1 in Ie. Therefore, if (θ · I)e is not
contained in Ie then we have (θ · I)e + Ie = Ie. Thus, we obtain a contradiction with
part (ii).

We proceed to the proof of the other implication. Let h, k, V,W and W ′ be defined as in
the beginning of Subsection 3.6.4 with n = 2 and f being the Hilbert function of S/I.

Let U be the locus of those points [K] of W ′ that satisfy

(θ ·K)e ⊆ Ke

where θ ∈ S1 is the common divisor of Ke. We need to show that U is contained in
π(Slipr,2) ∩ W ′ set-theoretically. We use Lemma 3.58. Assumption 1 is clear and as-
sumption 2 follows from Proposition 3.11. Assumption 4 is a consequence of Lemma 3.71.
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Part (ii) implies that we have π(Slipr,2)∩W ′ ⊆ U , set-theoretically. Therefore, we need to
show that

(a) U is irreducible of dimension 2r − 1;

(b) Ext1
S(k, S/J)e ≤ 1 holds for every [J ] ∈W .

We start with (a). By [81, 11.4.C] the subset U is an irreducible subset of HilbkS of dimension

dimV +
(

dimk Se − r −
(

dimk Se−1 − (r − 2)
))

= dimV + e− 1.

Indeed, the fiber over a closed point [ProjS/I ′] ∈ V of the natural map U → V is the set
of those codimension 1 subspaces of (I ′)e that contain (θ · I ′)e where θ ∈ S1 is the common
divisor of (I ′)e. Now, it suffices to establish the equality dimV = 2r − e.

Let Ef ⊆ HilbfS be the open subset whose points correspond to saturated ideals. It is
homeomorphic with V by Lemma 2.29 applied to the natural map HilbfS → Hilbr(P2).

Let I ′′ = (αm0 , α
m−1
0 α1, . . . , α

s
0α

m−s
1 , αs−1

0 αm−s+2
1 , . . . , α0α

m
1 , α

e+2
1 ) ⊆ S where we have

m+1−s = dimk Sm−f(m). The algebra S/I ′′ has Hilbert function f and I ′′ is saturated.
Therefore, by Proposition 3.10 and Theorem 2.75, it is enough to show that the equality

dimk HomS(I ′′, S/I ′′)0 = 2r − e

holds. Let T = k[α0, α1] and a = T ∩ I ′′. We have

dimk HomS(I ′′, S/I ′′)0 = dimk HomT (a, T/a)≤0 = 2r − dimk HomT (a, T/a)>0,

where the last equality follows from the fact that [SpecT/a] is a point of the smooth 2r-
dimensional scheme Hilbr(A2) and [49, Prop. 2.3]. By Proposition 2.22 the dimension of
HomT (a, T/a)>0 can be computed from the staircase diagram of a.

Observe that a can have minimal generators only in degreesm,m+1 and e+2. Furthermore,
β2,a(T/a) can be non-zero only for some a ∈ {m+ 1,m+ 2, e+ 3}. Let A = (m+ 1− s) =

β1,m(T/a). We have β1,m+1(T/a) = m−A, β2,m+1(T/a) = A−1 and β2,m+2(T/a) = m−A.
Therefore, by Proposition 2.22 we get

HomT (a, T/a)>0 = β1,m(T/a)(e−m+ 1) + β1,m+1(T/a)(e−m)

−β2,m+1(T/a)(e−m)− β2,m+2(T/a)(e−m− 1)

= A(e−m+ 1) + (m−A)(e−m)− [(A− 1)(e−m) + (m−A)(e−m− 1)] = e.

This concludes the proof of (a).

Let [J ] ∈W . Using Lemmas 3.48 and 3.71 we get

dimk Ext2
S(k, S/J)e = dimk Ext2

S(k, S/J)e = β1,e+3(S/J) = 0.

Furthermore, Lemma 2.27 and Equation (3.70) (with t = 1) imply that we have

−dimk Ext1
S(k, S/J)e + dimk Ext2

S(k, S/J)e − dimk Ext3
S(k, S/J)e

= HS/J(e)− 3HS/J(e+ 1) + 3HS/J(e+ 2)−HS/J(e+ 3) = −1.
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The inequality dimk Ext1
S(k, S/J)e ≤ 1 follows. Thus, (b) holds.

We end this subsection with two more examples. In the first, we use Theorem 3.75 to show
that a certain point is outside of Slip6,2.

Example 3.76. Let S = k[α0, α1, α2] be a polynomial ring and let

I ′′′ = (α2
0α1, α

2
0α2, α0α

2
1, α0α1α2, α

4
0, α

5
1).

The point [I ′′′] is in Hilb
h6,2

S and we claim that [I ′′′] does not belong to Slip6,2. We have I ′′′ =

(α2
0, α0α1, α

5
1). Thus, the Hilbert function of S/I ′′′ is as in Equation (3.70) with r = 6,m =

2, e = 3 and t = 1. We have (I ′′′)3 ⊆ (α0)3 but α3
0 ∈ (α0 · I ′′′)3 \ I ′′′3 . It follows from Theorem

3.75 that [I ′′′] does not belong to Slip6,2.
On the other hand, criteria from Proposition 3.1 and Theorem 3.5 (with k = 2) do not show

that [I ′′′] is not in Slip6,2. Furthermore, criterion from Theorem 3.66 cannot be applied to [I ′′′]

since we have HS/I′′′(1) 6= 2.
We summarize Examples 3.3, 3.6, 3.68 and 3.76 in the following table.

Ideal Prop. 3.1 Thm. 3.5 Thm. 3.66 Thm. 3.75

(α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) X ? ? ?

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2) ? X ? ?

(α0α1, α
2
1, α0α2, α0α3, α1α2, α1α3, α

3
0, α

4
2) ? X X NA

(α2
0α1, α

2
0α2, α0α

2
1, α0α1α2, α

4
0, α

5
1) ? ? NA X

Table 3.3: Examples of points that are not in the irreducible component Slip.

Here ideals from first, second and fourth rows are in k[α0, α1, α2], while ideal in the third row
is in the ring k[α0, α1, α2, α3]. The symbol NA means that a certain criterion cannot be applied
to a given point since the assumptions are not fulfilled. As before, the question mark means that
a given necessary condition is satisfied by the given point, i.e. the criterion is inconclusive.

In the second example, we use Theorem 3.75(iii) to deduce that a certain point belongs to
the irreducible component Slip6,2.

Example 3.77. Let S = k[α0, α1, α2] and J ′′ = (α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α0α

3
2, α

5
1). The

point [J ′′] is in Hilb
h6,2

S and we claim that it belongs to Slip6,2. The Hilbert function of S/J ′′ is
of the form given by Equation (3.70) with m = 2, e = 3, t = 1 and r = 6. Furthermore, (J ′′)≤3 is
contained in (α0)3. We have (α0 · J ′′)3 = (α2

0α1, α
2
0α2)3 ⊆ J ′′3 . Therefore, by Theorem 3.75(iii),

there exists [K] ∈ Slip6,2 with K≥3 = J ′′≥3. Since K≤2 = J ′′≤2 is zero, we conclude that [J ′′] = [K]

is in Slip6,2.
We summarize Examples 3.34, 3.69 and 3.77 in the following table.

Ideal Theorem 3.13 Theorem 3.66 Theorem 3.75

(α0α1, α
2
0α2, α0α

2
2, α

4
1) X NA NA

(α2
0, α0α1, α

2
1, α0α2, α1α2, α0α3, α1α

2
3, α

4
2) NA X NA

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α0α

3
2, α

5
1) NA NA X

Table 3.4: Examples of points that are in the irreducible component Slip.
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Here the ideal in the second row is in k[α0, . . . , α3] while the other two ideals are in k[α0, α1, α2].
As before, NA means that a certain criterion cannot be applied to the given ideal. Observe that
we cannot use Theorem 3.75(iii) for J since, in the notation of that theorem, we have m = e = 2.

3.7 Points on projective space—examples, part II

From Fogarty’s result [36] on Hilbr(P2) it may seem that Hilb
hr,2
S[P2]

should be smooth, or at least
not too complicated. We show that this is not the case. Speculating a bit, we may say that
Fogarty’s result concerns the case of codepth two, while we work in nonsaturated setting, hence
in codepth three. Thus, the correct parallel would be Hilbr(P3), where almost nothing is known
about the principal component.

3.7.1 4 points on projective space

In this subsection, we describe the closed points of Slip4,n for a positive integer n.

Proposition 3.78. Let I ⊆ S[Pn] be a homogeneous ideal such that S[Pn]/I has Hilbert function
h4,n. The point [I] is in Slip4,n if and only if (I

2
)2 is contained in I2.

Proof. Condition (I
2
)2 ⊆ I2 holds trivially for [I] ∈ Hilb

h4,n

S[Pn] if I is saturated. On the other
hand, Hilb4(Pn) is irreducible by [20, Thm. 1.1]. Thus, by Remark 2.47, it is enough to consider
ideals that are not saturated. Furthermore, by [20, Prop. 3.1], we may assume that we have
n ≤ 3.

If n equals 1, then every closed point [I] ∈ Hilb
h4,1

S[P1]
corresponds to a saturated ideal.

If n equals 2 and [I] is a point of Hilb
h4,2

S[P2]
with I 6= I, then S/I has Hilbert function h4,1.

This follows from Lemma 2.9. Therefore, by Theorem 3.66 we have

(I
2
)2 ⊆ I2 ⇔ there exists [J ] ∈ Slip4,2 with J≥2 = I≥2 ⇔ [I] ∈ Slip4,2 .

The latter equivalence follows from the fact that J≤1 = I≤1 is zero.
Assume that n equals 3 and [I] ∈ Hilb

h4,3

S[P3]
satisfies I 6= I. The algebra S/I has Hilbert

function h4,2 or h4,1. In the first case the condition (I
2
)2 ⊆ I2 holds. We claim that [I] belongs

to Slip4,3. Indeed, we have [ProjS/I] ∈ Hilbsm4 (P3) = Hilb4(P3), so there exists an ideal [J ] ∈
Slip4,3 with J = I. However, we have J1 = I1 = 0 and J≥2 = I≥2 = I≥2, so [I] = [J ] is in Slip4,3.

Finally, assume that [I] ∈ Hilb
h4,3

S[P3]
is such that S/I has Hilbert function h4,1. As in the case

n = 2, by Theorem 3.66 we get

(I
2
)2 ⊆ I2 ⇔ there exists [J ] ∈ Slip4,3 with J≥2 = I≥2 ⇔ [I] ∈ Slip4,3 .

As a corollary, we obtain an example of a reducible multigraded Hilbert scheme.

Corollary 3.79. The scheme Hilb
h4,2

S[P2]
is reducible. In fact, we have [(α0α1, α0α2, α

3
0, α

4
1)] /∈

Slip4,2.

We stress the fact, that there is a point outside of Slip4,2 that corresponds to a monomial
ideal since it was conjectured that it is impossible.

Remark 3.80. The comment after [15, Cor. 6.3] puts forward a conjecture that conditions (i)
and (iii) of [15, Cor. 6.3] imply condition (iv). Corollary 3.79 shows that this is not true.
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3.7.2 5 points on projective plane

In this subsection, we describe the closed points of Slip5,2 (see Proposition 3.89). Let S = S[P2] =

k[α0, α1, α2] and [I] be a closed point of Hilb
h5,2

S . By Lemma 2.9, the Hilbert function of S/I is
one of the three: h5,2, g or h5,1, where g : Z→ Z is given by

g(a) =


dimk Sa for a ≤ 0;

a+ 2 for a = 1, 2;

5 for a ≥ 3;

or informally, g = (1, 3, 4, 5, 5, . . .).
The cases when S/I has Hilbert function h5,2 or g are easy.

Lemma 3.81. Let [I] ∈ Hilb
h5,2

S be a closed point such that S/I has Hilbert function h5,2 or g.
The point [I] is in Slip5,2.

Proof. If I is saturated, then the claim follows from Remark 2.47 since Hilb5(P2) is irreducible.
Assume that S/I has Hilbert function g. Observe that we have g(a) 6= h5,2(a) if and only if a
equals 2. Thus, the claim follows from Theorem 3.13.

We study those points [I] ∈ Hilb
h5,2

S for which S/I has Hilbert function h5,1. We introduce
some more notation. Let h : Z→ Z be given by h = (1, 3, 6, 5, 5, . . .) or more formally,

h(a) =

{
dimk Sa for a ≤ 2;

5 for a ≥ 3.

Let π : Hilb
h5,2

S → HilbhS and π′ : HilbhS → Hilb5(P2) be the natural morphisms. Let V ⊆
Hilbr(P2) be the closed subset whose closed points correspond to the subschemes with Hilbert
function h5,1.

LetW ⊆ HilbhS be the set-theoretic inverse image of V under π′ and let U be the set-theoretic
inverse image of W under π. We show that these subsets are irreducible and we calculate their
dimensions. We start with V , but we state it in greater generality since we need this also in
Subsection 3.7.3.

Lemma 3.82. Let r be a positive integer. Let V be the closed subset of Hilbr(P2), whose closed
points correspond to subschemes with Hilbert function hr,1. The set V is irreducible and (r+ 2)-
dimensional.

Proof. The scheme Hilb
hr,1
S is irreducible, smooth and (r + 2)-dimensional by Proposition 3.38

and [20, Prop. 3.1]. Therefore, the natural morphism Hilb
hr,1
S → Hilbr(P2) factors through V

(with reduced subscheme structure). It follows from Lemma 2.29 that V is homeomorphic to
Hilb

hr,1
S . In particular, it is irreducible and (r + 2)-dimensional.

Lemma 3.83. The subset U ⊆ Hilb
h5,2

S is irreducible and 11-dimensional.

Proof. By Lemma 3.82, the locus V is irreducible and 7-dimensional. Thus, in order to show
that U is irreducible and 11-dimensional, it is enough to show that the fiber of π′ ◦ π over
every closed point of V is irreducible and 4-dimensional (see [81, 11.4.C]). Choose a closed point
[ProjS/I] ∈ V . Denote the fiber of π′ ◦ π over this point by X. We have a pullback diagram
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X Fl(3, 5, I3)

Gr(1, I2) Gr(3, I3),

where Fl(3, 5, I3) is the flag variety parametrizing pairs of linear subspaces A3 ⊆ A5 of I3 with
dimAi = i for all i ∈ {3, 5}. The lower horizontal morphism maps lin{`} to lin{α0`, α1`, α2`}.
Since the fibers of the right vertical map are irreducible and of dimension 2, it follows that X is
irreducible and of dimension dimX = dim Gr(1, I2) + 2 = 4.

Let U ′ be the subset of U whose closed points [I] satisfy (I
2
)3 ⊆ I3.

Lemma 3.84. The subset U ′ of U is closed.

Proof. Consider the diagram

Hilb
h5,2

S

Fl(3, 5, S3) Gr(5, S3)

Gr(1, S1) Gr(3, S3) ,

d

c

b

a

where a maps lin(`) to lin{α0`
2, α1`

2, α2`
2} and b, c, d are the natural maps. We have U ′ =

U ∩ d−1(c(b−1(a(Gr(1, S1))))), so it is closed.

Let W ′ ⊆ HilbhS be the set-theoretic image π(U ′). It is closed by Lemma 3.84 since π is a
morphism of projective schemes by Theorem 2.36.

Lemma 3.85. The subset W ′ ⊆ HilbhS is irreducible and 9-dimensional.

Proof. Consider the natural map W ′ → V . By Lemma 3.82 and [81, 11.4.C], it is enough to
show that the fibers are irreducible and 2-dimensional. Let [ProjS/I] ∈ V . We may assume that
I is equal to

(
α0, θ5(α1, α2)

)
. We have (α2

0)3 ⊆ I3 for every [I] ∈ W ′ that is in the fiber over
[ProjS/I]. Thus, the fiber of W ′ → V is Gr(2, lin{α0α

2
1, α0α1α2, α0α

2
2}).

Let
W ′i = {[K] ∈W ′ | dimk(K : m)2 = i}

for all i ∈ {1, 2}. Observe that we have W ′ = W ′1 ∪W ′2. Indeed, let [K] ∈ W ′ and assume that
there is an equality K1 = (α0)1. We have α2

0 ∈ (K : m)2 by the definition of W ′. On the other
hand, if dimk(K : m)2 ≥ 3 holds then (α0)2 is contained in (K : m)2. It follows that (α0)3 is a
subset of K3. This contradicts the assumption that HS/K(3) equals 5.

Lemma 3.86. The closed subset W ′2 of W ′ is irreducible and 8-dimensional.

Proof. We have a natural map W ′2 → V . By Lemma 3.82 and [81, 11.4.C], it is enough to show
that its fibers are irreducible and 1-dimensional. Consider the point [ProjS/(α0, θ5(α1, α2))] ∈ V .
Fiber over this point is

{[K3] ∈ Gr(5, (α0)3) | (α2
0)3 ⊆ K3 and dimk((K3) : m)2 = 2}.
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We have α2
0 ∈ ((K3) : m)2 for every [K3] in the fiber. Therefore, the fiber is P1 corresponding to

the choice of [`] ∈ P(lin{α1, α2}) with K3 = lin{α3
0, α

2
0α1, α

2
0α2, α0α1`, α0α2`}.

Let
Z1 = {[I] ∈ U ′ | dimk(I≥3 : m)2 = 1}

and
Z2 = {[I] ∈ U ′ | dimk(I≥3 : m)2 = 2}.

Lemma 3.87. The closed subsets Z1 and Z2 are irreducible and 9-dimensional. Moreover, we
have U ′ = Z1 ∪ Z2 set-theoretically.

Proof. By definition we have Zi = π−1(W ′i ) set-theoretically. Moreover, Z1 is homeomorphic to
W ′1. We claim that the fiber of Z2 →W ′2 over every closed point is irreducible and 1-dimensional.
Indeed, the fiber over [K] is P1 corresponding to the choice of a non-zero element of (K : m)2.

Therefore, Z1 and Z2 are irreducible and 9-dimensional by Lemmas 3.85, 3.86 and [81, 11.4.C].

Now we can describe the set-theoretic intersection of Slip5,2 with U .

Lemma 3.88. Set-theoretically we have U ∩ Slip5,2 = Z1 ∪ Z2.

Proof. Containment U ∩ Slip5,2 ⊆ Z1 ∪ Z2 follows from Theorem 3.66. Moreover, for every
[I] ∈ Z1, the only ideal [J ] ∈ Hilb

h5,2

S with J≥3 = I≥3 is I. Thus, Z1 is a subset of Slip5,2 by
Theorem 3.66.

We show that Z2 is contained in Slip5,2. Let I = (α0α1, α
3
0, α

2
0α2, α0α

3
2 + α4

1). We have [I] ∈
Hilb

h5,2

S . Moreover, the Hilbert function of S/I is g. Thus, [I] belongs to Slip5,2 by Lemma 3.81.
Consider the initial ideal I ′ of I with respect to the grevlex order with α1 < α2 < α0. The
ideal I ′ is equal to (α0α1, α

3
0, α

2
0α2, α0α

3
2, α

5
1). The point [I ′] is in Slip5,2 ∩Z2. Furthermore, we

have dimk HomS(I ′, S/I ′)0 = 12 = dimU + 1 (see Lemma 3.83). It follows from Theorem 2.75
and Lemma 2.30 that every irreducible component of Slip5,2 ∩U passing through [I ′] is at least
9-dimensional. This intersection is contained in Z1 ∪ Z2 and this is a union of two irreducible
9-dimensional subsets. Hence it suffices to show that [I ′] does not belong to Z1. Consider the
projection Hilb

h5,2

S → Gr(1, S2). The image of Z1 is

{lin{`2} | ` ∈ S1 \ {0}},

i.e. it is the image of the second Veronese embedding of PS1. On the other hand, α0α1 ∈ I ′2 is
not a power of a linear form. Thus, [I ′] is not in Z1.

We summarize the above results in the following proposition which describes Slip5,2.

Proposition 3.89. Let S = k[α0, α1, α2] and [I] ∈ Hilb
h5,2

S be a closed point. The point [I] is in
Slip5,2 if and only if (I

2
)3 is contained in I3.

Proof. If S/I has Hilbert function h5,2 or g, then [I] is in Slip5,2 by Lemma 3.81. On the other
hand, in both this cases (I

2
)3 ⊆ I3 holds since (I

2
)3 is zero.

Assume that S/I has Hilbert function h5,1. We have (I
2
)3 ⊆ I3 if and only if [I] belongs

to Z1 ∪ Z2 (see Lemma 3.87). This is equivalent to the condition that [I] is in Slip5,2 by
Lemma 3.88.
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3.7.3 6 points on projective plane

The main result of this subsection is the description of Slip6,2 (see Proposition 3.104). Let
S = k[α0, α1, α2] and let [I] ∈ Hilb

h6,2

S be a closed point. The Hilbert function of S/I is one of
the four: h6,2, f, g or h6,1 where f : Z→ Z is given by

f(a) =


0 for a < 0;

2a+ 1 for a ∈ {0, 1, 2};
6 for a ≥ 3

(or, in a brief form, f = (1, 3, 5, 6, 6, . . .)) and g : Z→ Z is given by

g(a) =


dimk Sa for a ≤ 1;

a+ 2 for a ∈ {2, 3};
6 for a ≥ 4

(or, g = (1, 3, 4, 5, 6, 6, . . .)).
We start with the points [I] for which the Hilbert function of S/I is h6,2 or f .

Lemma 3.90. Let [I] ∈ Hilb
h6,2

S be a closed point such that S/I has Hilbert function h6,2 or f .
The point [I] is in Slip6,2.

Proof. If I is saturated, the claim follows from Remark 2.47. Assume that the Hilbert function
of S/I is f . Observe that we have f(a) 6= h6,2(a) if and only if a equals 2. Thus, the claim
follows from Theorem 3.13.

Next we consider points [I] corresponding to ideals such that S/I has Hilbert function g.

Lemma 3.91. Let [I] ∈ Hilb
h6,2

S be a closed point such that S/I has Hilbert function g. There
is a linear form θ ∈ S1 with I3 ⊆ (θ)3. We have [I] ∈ Slip6,2 if and only if (θ · I)3 is contained
in I3.

Proof. The existence of θ as in the statement follows from Theorem 3.75(i). Moreover, by
Theorem 3.75(iii) there exists [J ] ∈ Slip6,2 with J≥3 = I≥3 if and only if (θ · I)3 is a subset of I3.
We claim that necessarily we have [J ] = [I].

There are equalities h6,2(a) = dimk Sa for every a ≤ 2. Therefore, if [J ] ∈ Hilb
h6,2

S satisfies
J≥3 = I≥3, then there is an equality J = I.

In order to study the case when S/I has Hilbert function h6,1, we introduce some notation.
Let Ug be a locally closed subset of Hilb

h6,2

S , whose closed points correspond to ideals I for
which S/I has Hilbert function g. Similarly, let U be the closed subset corresponding to Hilbert
function h6,1. Let h : Z→ Z be given by h = (1, 3, 6, 10, 6, 6, . . .), or more formally,

h(a) =

{
dimk Sa for a ≤ 3;

6 for a > 3.

We have the natural morphisms π : Hilb
h6,2

S → HilbhS and π′ : HilbhS → Hilb6(P2).
We start with showing that Ug is irreducible and we compute its dimension.
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Lemma 3.92. The locus Ug is irreducible and 13-dimensional.

Proof. Consider the locally closed subset Vg (with reduced subscheme structure) of Hilb6(P2)

whose closed points correspond to subschemes with Hilbert function g. This locus is irreducible
by Proposition 3.11. We claim that Vg has dimension 9. Let πg : HilbgS → Hilb6(P2) be the
natural map. Let Eg ⊆ HilbgS be the open subset of points corresponding to saturated ideals. It
is smooth by Proposition 3.10. Therefore, πg : Eg → Hilb6(P2) factors through Vg. It follows from
Lemma 2.29 that Vg is homeomorphic to Eg. Consider the point [I] ∈ Eg with I = (α2

0, α0α1, α
5
1).

We have dimk HomS(I, S/I)0 = 9. Therefore, by Theorem 2.75 we have dimkT[I] HilbgS = 9.
Thus, we get dimVg = dimEg = 9 by Proposition 3.10.

By definition, Ug is the inverse image of Vg under π′ ◦π. By [81, 11.4.C], it is enough to show
that the fiber over each point is irreducible and 4-dimensional. This follows from Lemma 2.43.

Let Ui = {[I] ∈ U | dimk(I≥4 : m)3 = i}. We claim that there is an equality U = U4 ∪ U5.
Indeed, let [I] ∈ U and denote (I≥4 : m) by K. We have I3 ⊆ K3 ( I3. The latter inclusion is
proper since otherwise we obtain I4 ⊆ I4 which contradicts the assumption thatHS/I(4) equals 6.

We claim that U4 and U5 are irreducible. In order to prove this, we introduce more notation.
Let V ⊆ Hilb6(P2) be the closed subset of points corresponding to the subschemes with Hilbert
function h6,1. The set U is the set-theoretic inverse image of V under π′ ◦ π. Let W ⊆ HilbhS be
the set-theoretic inverse image of V under π′.

For an integer 0 ≤ i ≤ 10, let Wi = {[K] ∈ W | dimk(K : m)3 = i} and W≥i =
⋃
j≥iWj .

Observe that W≥i is closed for every i. Furthermore, W5 = W≥5 ∩ π(U) and W4 ∪ W5 =

W≥4 ∩ π(U) are closed in HilbhS .
We show that W4 and W5 are irreducible. Moreover, we compute their dimensions. We have

natural maps W5 → V and W4 ∪W5 → V and we want to study their fibers over a closed point
[ProjS/I] ∈ V .

Recall the notion of the dual ring from Subsection 2.4.1.

Lemma 3.93. Let I =
(
α0, θ6(α1, α2)

)
for some θ6 ∈ k[α1, α2]6 \ {0}. The fiber of π′ : HilbhS →

Hilb6(P2) over [ProjS/I] is isomorphic with P9. Moreover, the points of the fiber are in the
natural correspondence with points [F ] in PS∗3 where S∗ = kdp[x0, x1, x2] is the dual ring of S.

Proof. By Lemma 2.43 this fiber is isomorphic to the Grassmannian of codimension 1 subspaces
of I4. Dually, a point of the fiber corresponds to a choice of an element [G] ∈ P(S∗4/(I4)⊥) where
(I4)⊥ is the set of all elements of S∗4 which are annihilated by I4 = (α0)4. Therefore, we may
take [G] = [x0F ] for some F ∈ S∗3 .

Given F ∈ S∗3 we denote by CatF (1, 2; 3) the catalecticant matrix (see [56, §1.1]). This is a
3 × 6-matrix of coefficients of αiyF (for i = 0, 1, 2) in the basis of S∗2 given by divided power
monomials.

In the notation of Lemma 3.93, the condition that a point of the fiber corresponding to
[F ] ∈ PS∗3 is in Ws (for some s ∈ {4, 5}) is equivalent to the condition that we have

dimk lin{α0yx0F, α1yx0F, α2yx0F, x
[3]
1 , x

[2]
1 x2, x1x

[2]
2 , x

[3]
2 } = 10− s.

Moreover, αiy(x0F ) = x0(αiyF ) holds for all i ∈ {0, 1, 2}. Therefore, the point of the fiber
corresponding to [F ] ∈ PS∗3 is in Ws if and only if the catalecticant matrix CatF (1, 2; 3) has rank
6− s, that is either 2 or 1.
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Lemma 3.94. The locus W5 is irreducible and 10-dimensional.

Proof. The locus V is irreducible and 8-dimensional by Lemma 3.82. SinceW5 is closed in HilbhS ,
it is enough to show that points of the fiber of π′ : HilbhS → Hilb6(P2) belonging to W5 form
an irreducible subset of dimension 2 (see [81, 11.4.C]). In fact, we claim that the locus of these
points inside PS∗3 coincides with ν3(PS∗1). This follows from [72, Cor. 3.5] since this locus is given
by the ideal generated by the 2× 2-minors of the generic catalecticant matrix Cat(1, 2; 3).

The case of W4 is analogous.

Lemma 3.95. The locus W4 is irreducible and 13-dimensional.

Proof. The locus V is irreducible and 8-dimensional by Lemma 3.82. It is enough to show that
the closed subset W4 ∪ W5 ⊆ HilbhS is irreducible and 13-dimensional. Thus, by [81, 11.4.C]
it suffices to show that the fiber over every closed point is irreducible and 5-dimensional. The
fiber is given by the ideal generated by the 3 × 3-minors of the generic catalecticant matrix
Cat(1, 2; 3). This coincides set-theoretically with the 2-nd secant variety σ2(ν3(PS∗1)) by [56,
Thm. 4.5A]. Furthermore, it is irreducible and 5-dimensional by [56, Prop. 1.23].

Remark 3.96. Observe that if we have char k = 0, then in fact in the proof of Lemma 3.95 the
set-theoretical equality of the fiber with σ2(νd(PS∗1)) can be strengthened to the equality of their
defining ideals. See [73].

Now we show that U4 and U5 are irreducible and we compute their dimensions.

Lemma 3.97. The subsets U4 and U5 are irreducible. Moreover, we have dimU4 = 13 and
dimU5 = 14.

Proof. Let i ∈ {4, 5}, [I] ∈ Ui and [K] = π([I]) ∈ Wi. The ideals I and K differ only in degree
3. Furthermore, we have dimk I3 = 4 and I3 ⊆ (K : m)3.

Therefore, the natural map U4 → W4 is bijective on closed points. Thus, U4 is irreducible
and 13-dimensional by Lemmas 2.29 and 3.95.

Let [K] ∈ W5. The fiber of the map U5 → W5 over [K] is irreducible and 4-dimensional.
Indeed, it corresponds to the choice of a 4-dimensional subspace of the 5-dimensional linear space
(K : m)3. Thus, W5 is irreducible and of dimension 14 by Lemma 3.94 and [81, 11.4.C].

Let U ′i = {[I] ∈ Ui | (I
2
)4 ⊆ I4} for all i ∈ {4, 5}.

Lemma 3.98. Let [I] ∈ Ui for i = 4 or i = 5. There is a point [J ] ∈ Slip6,2 with I≥4 = J≥4 if
and only if [I] is in U ′i . In particular, we have U4 ∩ Slip6,2 = U ′4, set-theoretically.

Proof. The first part of the lemma follows from Theorem 3.66. If [I] ∈ U ′4 and [J ] ∈ Hilb
h6,2

S

satisfy I≥4 = J≥4 then we claim that we have I = J . Since I≤2 = J≤2 is zero it is enough to
show that the equality I3 = J3 holds. However, by the definition of U4 we get

I3 = (I≥4 : m)3 = (J≥4 : m) = J3.

Thus, U ′4 is contained in Slip6,2, set-theoretically.

Let U ′′5 = {[I] ∈ U ′5 | (I · (I≤4))3 ⊆ I3}. We claim that we have U ′5 ∩ Slip6,2 = U ′′5 set-
theoretically. We start with describing (I≤4) for all [I] ∈ U ′5.
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Lemma 3.99. Let [I] ∈ U ′5. Up to a linear change of variables, we have (I≤4) = (α2
0, α0α1).

Proof. Up to a linear change of variables, we may assume that I is equal to (α0, θ6(α1, α2)) for
some non-zero θ ∈ k[α1, α2]6. Let [F ] ∈ PS∗3 be the point corresponding to the point [I≥4] in the
fiber of π′ : HilbhS → Hilb6(P2) over [ProjS/I] (see Lemma 3.93).

Since [I] belongs to U ′5 we have dimk(I≥4 : m)3 = 5 and [F ] ∈ P(kdp[x1, x2]3). We get

dimk lin{α1yF, α2yF} = 1.

Therefore, we may assume by a linear change of variables in k[α1, α2] that F equals x[3]
2 .

We have
I4 = Ann(lin{x0x

[3]
2 , x

[4]
1 , x

[3]
1 x2, x

[2]
1 x

[2]
2 , x1x

[3]
2 , x

[4]
2 })4.

It follows that (α2
0, α0α1) is contained in (I≤4). On the other hand, (I≤4) is a subset of (α0).

Thus, if we have (α2
0, α0α1) ( (I≤4) then α0α

N
2 is in (I≤4) for some N . This is impossible since

α0α
N
2 /∈ (I≤4) holds for every positive integer N .

Let W ′5 = {[I] ∈W5 | (I
2
)4 ⊆ I4}.

Lemma 3.100. The subset W ′5 is irreducible and 9-dimensional.

Proof. Consider the natural morphism W ′5 → V . The target is irreducible and 8-dimensional
by Lemma 3.82. By [81, 11.4.C], it is enough to show that the fibers are irreducible and 1-
dimensional. Let T ∗ = kdp[x1, x2] ⊆ S∗ = kdp[x0, x1, x2]. In the notation of Lemma 3.93 we now
have [F ] ∈ PT ∗3 ⊆ PS∗3 since we have to choose a codimension one subspace of (α0)4 containing
(α2

0)4. Therefore, the fiber inside PT ∗3 is set-theoretically given by the vanishing of 2× 2-minors
of the generic catalecticant matrix Cat(1, 2; 2). Thus, it is ν3(PT ∗1 ) by [72, Cor. 3.5].

Now we show that U ′′5 is irreducible and we compute its dimension.

Lemma 3.101. The subset U ′′5 is irreducible and 11-dimensional.

Proof. Consider the natural map U ′′5 → W ′5. Let [K] ∈ W ′5 be a closed point with (K≤4) =

(α2
0, α0α1) (see Lemma 3.99). The fiber over [K] is isomorphic to P2 corresponding to a choice

of a two-dimensional subspace of lin{α0α
2
1, α0α

2
2, α0α1α2}. Thus, U ′′5 is irreducible and 11-

dimensional by Lemma 3.100 and [81, 11.4.C]

The key technical step is the following lemma.

Lemma 3.102. The locus U ′5 \ U ′′5 is disjoint from Slip6,2.

We defer the proof of this lemma until the end of the subsection. We use it to describe the
set-theoretic intersection U5 ∩ Slip6,2.

Lemma 3.103. We have U5 ∩ Slip6,2 = U ′′5 set-theoretically.

Proof. Consider the point [I] ∈ Hilb
h6,2

S with I = (α3
0, α

2
0α1, α0α

2
1 +α2

0α2, α0α1α2, α0α
4
2, α

6
2). We

have [I] ∈ U ′′5 . We claim that it also belongs to Slip6,2. Let J = (α0α1α2 + α3
2, α0α

2
1 + α2

0α2 +

α1α
2
2, α

2
0α1 + α0α

2
2, α

3
0). It is a saturated ideal and [J ] is in Hilb

h6,2

S . It follows that [J ] is in
Slip6,2 by Lemma 3.90. The initial ideal of J with respect to the weight vector (3, 2, 1) is I.

Now we use Lemma 2.30 to conclude that U5 ∩ Slip6,2 = U ′′5 holds set-theoretically. Indeed,
U5 ∩ Slip6,2 is contained in U ′′5 by Lemmas 3.98 and 3.102. Moreover, we have [I] ∈ U5 ∩ Slip6,2
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and dimk HomS(I, S/I)0 = 15 = dimU5 + 1. It follows from Theorem 2.75 and Lemma 2.30 that
the intersection contains an irreducible subset of dimension 11. Therefore, the intersection is U ′′5
by Lemma 3.101.

The following proposition summarizes the above considerations.

Proposition 3.104. Let [I] be a point of Hilb
h6,2

S . It belongs to Slip6,2 if and only if one of the
following holds:

1. The ideal I is saturated.

2. The algebra S/I has Hilbert function f = (1, 3, 5, 6, 6, . . .).

3. The algebra S/I has Hilbert function g = (1, 3, 4, 5, 6, 6, . . .) and we have (θ ·I)3 ⊆ I3 where
θ is the common linear divisor of two quadratic generators of I.

4. The algebra S/I has Hilbert function h6,1 = (1, 2, 3, 4, 5, 6, 6, . . .) and there are inclusions

((I≤d+1) · I)d ⊆ Id

for d = 3 and d = 4.

Proof. The cases 1–3 follow from Lemmas 3.90 and 3.91.
Observe that if [I] is in U then we have I5 = (I1)5 = I5 and therefore we get

(I
2
)4 = ((I≤5) · I)4.

Hence in case 4, if [I] belongs to U5 the claim follows from Lemma 3.103.
Assume that [I] is in U4. By Lemma 3.98 the point [I] belongs to Slip6,2 if and only if we

have
(I

2
)4 = ((I≤5) · I)4 ⊆ I4. (3.105)

We need to show that if [I] is in U ′4, then ((I≤4) · I)3 is a subset of I3. Let f ∈ ((I≤4) · I)3 and
i ∈ {0, 1, 2}. We have αif ∈ (I

2
)4. From Equation (3.105) we get αif ∈ I4. It follows that we

have f ∈ (I≥4 : m)3 = I3 where the last equality follows from the definition of U4.

We are left with proving Lemma 3.102. Assume that [I] is a point of U ′5 \ U ′′5 with I =(
α0, θ6(α1, α2)

)
. By Lemma 3.99 we may assume that we have (I≤4) = (α2

0, α0α1). It follows
that there is an equality

I = (W ) + (α2
0, α0α1)≥4 + (α0)≥5 + (θ6) (3.106)

where [W ] ∈ Gr(4, lin{α3
0, α

2
0α1, α0α

2
1, α

2
0α2, α0α1α2}) is such that lin{α3

0, α
2
0α1} is not contained

in W .
Assume that [I] ∈ Slip6,2 is as in Equation (3.106) with α3

0 /∈ W . By taking the initial ideal
with respect to lex order with α2 > α1 > α0 we obtain an ideal of the form

I ′ =
(
α2

0α1, α0α
2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, θ
′
6(α1, α2)

)
(3.107)

such that [I ′] belongs to Slip6,2.

80



On the other hand, if [I] ∈ Slip6,2 is as in Equation (3.106) with α3
0 ∈ W but α2

0α1 /∈ W ,
then by taking the initial ideal we get a point [I ′] in Slip6,2 of the form

I ′ =
(
α3

0, α0α
2
1, α

2
0α2, α0α1α2, α0α

4
2, θ
′
6(α1, α2)

)
. (3.108)

We claim that if I ′ is of the form as in Equation (3.107) or (3.108) then [I ′] is not in Slip6,2.

Lemma 3.109. There is no point [I ′] ∈ Slip6,2 with I ′ as in Equation (3.108).

Proof. Let J = I ′ + m5. Note that it does not depend on θ′6 so it is the same for every I ′ as in
Equation (3.108). We have dimk HomS(J, S/J)0 = 8. Thus, [I ′] does not belong to Slip6,2 by
Proposition 3.1.

We show that there is no point [I ′] ∈ Slip6,2 with I ′ as in Equation (3.107). First, we
introduce some more multigraded Hilbert schemes. Let h6,2 : Z→ Z be defined by

h6,2(a) =

{
h6,2(a) for a ≤ 4;

0 for a > 4

or, more briefly, by h6,2 = (1, 3, 6, 6, 6, 0, 0, . . .). Define f : Z→ Z by f = (1, 3, 5, 6, 6, 0, 0, . . .) or,
more formally, by

f(a) =

{
f(a) for a ≤ 4;

0 for a > 4.

Finally, let k : Z→ Z be defined by

k(a) =


dimk Sa for a ≤ 1;

a+ 3 for a ∈ {2, 3, 4};
0 for a > 4

or, in a brief form by k = (1, 3, 5, 6, 7, 0, 0, . . .).
We have natural maps Hilbk,fS → HilbfS → Hilb

h6,2

S . Let Z be the set-theoretic image of

Hilbk,fS in Hilb
h6,2

S . We claim that it is irreducible and 12-dimensional.

Lemma 3.110. The set Z is irreducible closed and 12-dimensional.

Proof. Observe that both morphisms Hilbk,fS → HilbfS and HilbfS → Hilb
h6,2

S are closed by Theo-

rem 2.36. We claim that they are both injective on closed points. We start with HilbfS → Hilb
h6,2

S .
Suppose that there are two points [I] 6= [I ′] ∈ HilbfS with I∩m3 = I ′∩m3. Let J = (I2⊕I ′2)⊕I≥3.
The algebra S/J has Hilbert function (1, 3, 4, 6, 6, 0, 0, . . .). This contradicts the Macaulay’s
bound [10, Thm. 4.2.10].

Now we show that Hilbk,fS → HilbfS is injective on closed points. Let [I ′ ⊆ I ′′] ∈ Hilbk,fS .
We have (I ′≤3) = (θ2, θ3) for some generators θi ∈ Si. Furthermore, I ′ has no minimal generator
of degree 4 since there is no homogeneous ideal J of S such that S/J has Hilbert function
(1, 3, 5, 6, 8, . . .) by Macaulay’s bound [10, Thm. 4.2.10]. Therefore, we have I ′ = (I ′′≤3) +m5. As

a result, Hilbk,fS → HilbfS is injective on closed points.
It follows from the above considerations that it suffices to show that the flag multigraded

Hilbert scheme Hilbk,fS is irreducible and 12-dimensional.
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Let πk : Hilbk,fS → HilbkS be the natural projection. The fiber over a closed point [K] ∈ HilbkS
is irreducible and 6-dimensional corresponding to the choice of a 9-dimensional subspace of S4

containing the 8-dimensional subspace K4. By [81, 11.4.C] it is enough to show that HilbkS is
irreducible and 6-dimensional.

Let X be the pullback

X Fl(3, 4, S2)

Gr(1, S1) Gr(3, S2)

where the lower horizontal map takes [`] to [lin{α0`, α1`, α2`}]. It is irreducible and of dimension
4. Moreover, if [I] belongs to HilbkS then the generators of I of degree 2 and 3 have a common
linear factor since we have HS/I(4) = 7 > 6. Therefore, there is the parametrization X ×
Gr(1, S1)→ HilbkS given by(

([`], [`S1 ⊆ V ]), [`′]
)
7→ (``′) + (V `′) + m5.

Thus, HilbkS is irreducible and of dimension 6.

Let p : Hilb
h6,2

S → Hilb
h6,2

S be the natural map given by [I] 7→ [I + m5]. Let

K = (α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0) + m5.

For every ideal I ′ as in Equation (3.107), we have p([I ′]) = [K]. Thus, it is enough to show that
there is no point [J ] ∈ Slip6,2 with p([J ]) = [K].

Lemma 3.111. If [K] is a point of p(Slip6,2), then there is an irreducible 10-dimensional subset
Z ′ of the set-theoretic intersection p(Slip6,2) ∩ Z. Furthermore, [K] belongs to Z ′.

Proof. Let K ′ = (α0α1, α
2
0α2) + m5 and K ′′ = K ′ + (α4

0 + α4
1). We have [K ′ ⊆ K ′′] ∈ Hilbk,fS .

Therefore, [K ′′ ∩ m3 + m5] is in Z. However, the initial ideal of K ′′ ∩ m3 + m5 with respect to
the lex order with α0 > α1 > α2 is K. Thus, [K] belongs to p(Slip6,2) ∩ Z. Moreover, we have

dimkT[K] Hilb
h6,2

S = dimk HomS(K,S/K)0 = 14, where the first equality follows from Theorem
2.75. Therefore, the claim follows from Lemmas 2.30 and 3.110 and equalities dim p(Slip6,2) =

dim Slip6,2 = 12.

Suppose that we have [K] ∈ p(Slip6,2). There exists an irreducible closed subset Z ′′ ⊆ Slip6,2

with p(Z ′′) = Z ′, where Z ′ is as in Lemma 3.111. Since p(Z ′′) is contained in Z, it follows that
Z ′′ is disjoint from the set of saturated ideals. Moreover, p(Ug), p(U4) and p(U5) are of dimension
less than 10 (see Lemmas 3.92 and 3.97). It follows that Z ′′ is contained in the closure of the
locus Uf where

Uf = {[I] ∈ Hilb
h6,2

S | S/I has Hilbert function f = (1, 3, 5, 6, 6, . . .)}.

Let q : HilbfS → Hilb
h6,2

S be the natural map. It is a closed map by Theorem 2.36 and it is
injective on closed points corresponding to saturated ideals. Thus, Z ′′ is contained in the image
of the closure of the locus of all points of HilbfS corresponding to saturated ideals.
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It follows that there is an ideal [I ′′] ∈ HilbfS that satisfies I ′′≤4 = (α0α1, α
2
0α2, α

4
0)≤4 and I ′′ is

a limit of saturated ideals.
By taking an initial ideal, we get that at least one of the following ideals corresponding to

points of HilbfS is a limit of saturated ideals:

1. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

5
1);

2. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

4
1α2);

3. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

3
1α

2
2);

4. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

2
1α

3
2);

5. I ′′′ = (α0α1, α
2
0α2, α

4
0, α1α

4
2);

6. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

6
1);

7. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

5
1α2);

8. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

4
1α

2
2);

9. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

3
1α

3
2);

10. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

2
1α

4
2);

11. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

1
1α

5
2);

12. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

6
2).

We claim that this is impossible. Cases 1–5 can be excluded since then [I ′′′ ∩ m3] is in
Slip6,2 ∩Ug but I ′′′ ∩ m3 is not of the form from Lemma 3.91. Furthermore, if I ′′′ is one of the
ideals 6–12, then we have HS/(I′′′)2(8) = 17 < 18. Therefore, by Theorem 3.5, I ′′′ is not in the
closure of the locus of all radical ideals. Thus, it is also not in the closure of the locus of all
saturated ideals since a general saturated ideal of S such that the quotient algebra has Hilbert
function f is radical.

To summarize, we have arrived at a contradiction after assuming that [K] belongs to p(Slip6,2).
This shows in particular, that if I ′ is as in Equation (3.107) then [I ′] is not in Slip6,2. Together
with Lemma 3.109, this finishes the proof of Lemma 3.102 and thus, of Proposition 3.104.
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Chapter 4

Criteria for smooth projective toric
varieties

In this chapter we work in the category of schemes over the complex numbers. We consider
smooth projective toric varieties and the corresponding multigraded Hilbert schemes. The main
motivation is to study the case of the product of projective spaces. However, secant varieties of
more general toric varieties have also been studied [25], [38].

In Section 4.1 we recall the basic notions of the theory of toric varieties. We mainly follow
[28]. In Section 4.2 we consider a morphism with connected fibers f : X → Y between smooth
projective toric varieties. We present a necessary condition for an ideal I in the Cox ring of X to
be in the irreducible component Slipr,X . In Sections 4.3 and 4.4 we present two particular cases
of that criterion. In Section 4.3 we assume that X is the blowing up of Y at the closure of a
torus orbit. In Section 4.4 we assume that X is a projective toric bundle over Y . In particular,
the criterion from this section is applicable to the case of the product of projective spaces. In
Section 4.5 we obtain another necessary condition in the case that X is the product of projective
spaces. Finally, in Section 4.6 we present two examples of reducible multigraded Hilbert schemes
corresponding to two points on a toric surface.

The main technical tool used in this chapter is the possibility to lift a morphism between
smooth projective toric varieties to a homomorphism of their Cox rings (see Subsection 4.1.3).
This and similar problems have been extensively studied. In particular, in [9] there are general
results that could shorten our presentation. This is true, for example for Lemmas 4.4, 4.10, 4.11
and Proposition 4.21. However, since in the generality that we require, most of those results can
be presented from scratch, we decided to do so.

4.1 Toric varieties

In Subsections 4.1.1–4.1.3 we recall some basic definitions and results related to toric varieties.
This is mainly to fix the notation. Therefore, we omit most of the proofs, referring the reader
to [28]. Our notation follows closely the one used there. In Subsection 4.1.3 we recall the main
technical tool—lifting a morphism between smooth projective toric varieties to a morphism of
their Cox rings.

Subsection 4.1.4 is concerned with morphisms f : X → Y between smooth projective toric
varieties with f∗OX ∼= OY . This property is assumed in Theorem 4.15 which is one of the main
results of this chapter.
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In Subsection 4.1.5 we finally give the definition of a multigraded Hilbert scheme of points
in general position for a smooth projective toric variety. This is the generality in which it was
introduced in [15].

Although the results from this section are stated for smooth projective toric varieties, some
of them are still true for more general toric varieties.

4.1.1 Fans and toric varieties

By a toric variety we mean a normal variety X over the field of complex numbers such that X
contains an algebraic torus T ∼= (C∗)n as an open subset and the action of T on itself extends to
an action of T on X.

Given an algebraic torus T ∼= (C∗)n, we denote by M the character lattice of T, i.e. M =

Hom(T,C∗) is the set of all algebraic group homomorphisms from T to the one-dimensional torus.
We have M ∼= Zn and the dual lattice HomZ(M,Z) is denoted by N . For every m ∈ M the
corresponding character is χm : T→ C∗. We denote by 〈 , 〉 the natural pairing M ×N → Z and
its extension to the R-vector spaces MR = M ⊗Z R and NR = N ⊗Z R.

Toric varieties are obtained by gluing affine toric varieties corresponding to certain combina-
torial objects in the R-vector space NR. We explain in more details how to obtain affine toric
varieties. A subset σ ⊆ NR is called a (rational polyhedral) cone if there is a finite set of elements
u1, . . . ,uk ∈ N with σ = {

∑k
i=1 λiui | λi ≥ 0}. Since we do not consider more general cones, we

omit the phrase "rational polyhedral". A cone σ ⊆ NR is strongly convex if σ does not contain a
positive-dimensional vector subspace ofNR. Given a cone σ ⊆ NR, we can consider the semigroup
Sσ = σ∨ ∩M where σ∨ is the dual cone of σ, i.e. σ∨ = {m ∈ MR | 〈m,u〉 ≥ 0 for all u ∈ σ}.
If σ is strongly convex, then the spectrum of the semigroup algebra C[Sσ] is an n-dimensional
affine toric variety and is denoted by Uσ. As shown in [28, Thm. 1.3.5], all affine toric varieties
are of this form.

Given a cone σ ∈ NR, its face is the intersection of σ with an affine hyperplane

Hm = {u ∈ NR | 〈m,u〉 = 0}

in NR for some m ∈ MR satisfying 〈m,u〉 ≥ 0 for every u ∈ σ. A fan is a finite collection Σ of
strongly convex cones in NR satisfying conditions:

1. Each face of each cone in Σ is an element of Σ.

2. Every two cones in Σ intersect along a common face.

Given such combinatorial data there is a toric variety XΣ obtained by gluing the affine toric
varieties {Uσ | σ ∈ Σ} (see [28, Thm. 3.1.5]). Moreover, every toric variety with torus T comes
from the above construction for a fan in NR where N is the lattice dual to the character lattice
of the torus (see [28, Cor. 3.1.8]). For a toric variety X we denote by ΣX a fan such that we
have XΣX = X. Note that ΣX is not uniquely determined by X since we can apply any Z-linear
automorphism of NR to a fan Σ and obtain the same abstract toric variety. In Sections 4.3 and
4.4 we consider a morphism of toric varieties X → Y . Starting from an arbitrary choice of a fan
ΣY corresponding to Y we describe a fan ΣX corresponding to X that is convenient to use.
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4.1.2 Picard groups and Cox rings

Given a smooth projective toric variety X and a corresponding fan ΣX in NR the Picard group
Pic(X) of X can be calculated using the combinatorial data of the one-dimensional cones in ΣX

(see [28, Thm. 4.1.3]). Let ΣX(1) be the set of all one-dimensional cones in ΣX , i.e. cones whose
linear spans are one-dimensional real vector subspaces of NR. The torus invariant prime divisors
on X are in bijective correspondence with elements of ΣX(1). Given ρ ∈ ΣX(1) we denote by uρ
the ray generator of ρ (i.e. the unique generator of the semigroup ρ∩N) and the corresponding
divisor by Dρ.

Let e1, . . . , en a Z-basis of M . The group Pic(X) is generated by classes of [Dρ] for all
ρ ∈ ΣX(1). Moreover, these generators are subject to relations

0 = [div(χei)] =
∑

ρ∈ΣX(1)

〈ei,uρ〉[Dρ]

for all i = 1, . . . , n.
Let X be a smooth projective toric variety associated with a fan ΣX ⊆ NR. There is a

corresponding polynomial ring S[X] graded by the Picard group Pic(X). This ring is called the
Cox ring of X. We have

S[X] = C[αρ | ρ ∈ ΣX(1)] and deg(αρ) = [Dρ].

By [28, Prop. 5.3.7] we have S[X][D]
∼= Γ(X,OX(D)) for all [D] ∈ Pic(X).

Remark 4.1. The construction of a Cox ring can be carried out for more general varieties, see
[1]. It does not have to be a polynomial ring. Moreover, unlike for toric varieties, the construction
requires some choices so we speak of a Cox ring of X instead of the Cox ring of X.

4.1.3 Irrelevant ideals and the quotient construction

One of the main tools in this chapter is Theorem 4.3 which states that a morphism f : X → Y

between smooth projective toric varieties can be lifted to a graded homomorphism f
#

: S[Y ]→
S[X] of their Cox rings.

We start with recalling the quotient construction of a smooth projective toric variety X

presented in [28, Thm. 5.1.11]. Given a cone σ ∈ ΣX we denote by σ(1) the set of all 1-
dimensional faces of σ. Let S[X] = C[αρ | ρ ∈ ΣX(1)] be the Cox ring of X. For all σ ∈ ΣX(1)

we define ασ̂ to be
∏
ρ∈ΣX(1)\σ(1) αρ. The irrelevant ideal of X is

B(ΣX) = (ασ̂)σ∈ΣX ⊆ S[X].

Observe that it is enough to take generators corresponding to maximal cones of ΣX . We denote
the affine space SpecS[X] by X and the open subset X \ V

(
B(ΣX)

)
by X̂.

By [28, Prop. 4.2.5] we have Pic(X) ∼= Zk for some integer k. Therefore,HX = SpecC[Pic(X)]

is a torus. Since S[X] is Pic(X)-graded, there is a natural action of the torus HX on X. The
variety X is the geometric quotient by the induced action of HX on X̂. We denote the open
immersion X̂ → X by iX and the quotient X̂ → X by πX .

Definition 4.2. Suppose that f : X → Y is a morphism between smooth projective toric varieties
and let f∗ : Pic(Y ) → Pic(X) be the pullback map. Suppose that there exists a C-algebra
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homomorphism f
#

: S[Y ]→ S[X] such that the following conditions hold:

1. f#
(S[Y ][D]) is contained in S[X]f∗([D]) for every [D] ∈ Pic(Y );

2. the corresponding morphism f : X → Y restricts to a morphism f̂ : X̂ → Ŷ ;

3. we have πY ◦ f̂ = f ◦ πX .

We call f# a lift of f .

If f# is a lift of a morphism f : X → Y between smooth projective toric varieties, we have a
commutative diagram

X Y

X̂ Ŷ

X Y.

f

iX

f̂

πX πY

iY

f

Observe that once conditions 1–2 from Definition 4.2 are satisfied, there is a unique morphism
f ′ : X → Y with f ′◦πX = πY ◦ f̂ . Indeed, πY ◦ f̂ is constant on HX -orbits and πX is a categorical
quotient (see [28, Thm 5.1.11]). Condition 3 says, that we have f ′ = f .

The possibility of lifting a morphism f : X → Y to a homomorphism f
#

: S[Y ] → S[X] has
been studied in various settings. The version suitable for our needs is considered in [26]. The
case of rational maps of toric varieties using multi-valued maps of Cox rings is studied in [9].
Analogous quotient construction holds for the so called Mori dreams spaces. These are varieties
admitting a Cox ring that is a finitely generated C-algebra. Lifting of rational maps of Mori
dream spaces is discussed in [18] and the case of a regular map can be found in [52].

Now we can state the key existence theorem.

Theorem 4.3 ([26, Thm. 3.2]). Let f : X → Y be a morphism between smooth projective toric
varieties. There exists a lift f# of f .

Let X and Y be smooth projective toric varieties corresponding to fans ΣX ⊆ (NX)R and
ΣY ⊆ (NY )R, respectively. Assume that f : X → Y is a toric morphism, i.e. it maps the torus
TX of X into the torus TY of Y and the restricted map TX → TY is a group homomorphism.
Such morphisms correspond to Z-linear maps φ : NX → NY such that for every cone σ ∈ ΣX ,
there is a cone σ′ ∈ ΣY satisfying φR(σ) ⊆ σ′ (see [28, Thm. 3.3.4]). Here φR denotes φ⊗Z idR.
We say that φ is compatible with the fans ΣX and ΣY .

In the following lemma we study the condition under which a homomorphism of graded rings
f

#
: S[Y ]→ S[X] is a lift of the given toric morphism f : X → Y .

Lemma 4.4. Let f : X → Y be a toric morphism between smooth projective toric varieties.
Let S[X] = C[αρ | ρ ∈ ΣX(1)] and S[Y ] = C[βρ | ρ ∈ ΣY (1)] be the Cox rings of X and Y ,
respectively. Let φ : NX → NY be the map corresponding to f .

Assume that we are given a homomorphism of rings f#
: S[Y ]→ S[X] satisfying conditions

1 and 2 from Definition 4.2. The homomorphism f
# is a lift of f , if and only if we have∏

ρ∈ΣY (1)

(
f

#
(βρ)

)〈m,uρ〉 =
∏

ρ∈ΣX(1)

α
〈ψ(m),uρ〉
ρ (4.5)
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for every m ∈MY , where ψ : MY →MX is the dual map of φ : NX → NY .

Proof. Let f ′ : X → Y be the morphism induced by f . It is enough to show that f and f ′ define
the same morphism Uσ → Uσ′ of affine toric varieties for every pair of cones σ ∈ ΣX and σ′ ∈ ΣY

satisfying φR(σ) ⊆ σ′.
Recall that we have βσ̂′ =

∏
ρ∈ΣY (1)\σ′(1) βρ and ασ̂ =

∏
ρ∈ΣX(1)\σ(1) αρ. There is an isomor-

phism C[(σ′)∨∩MY ] ∼= (S[Y ]
βσ̂′

)0 given by χm 7→
∏
ρ∈ΣY (1) β

〈m,uρ〉
ρ (see the proof of [28, 5.1.11])

and a similar one C[σ∨ ∩MX ] ∼= (S[X]ασ̂)0.
The map Uσ → Uσ′ induced by f corresponds to the homomorphism C[(σ′)∨ ∩ MY ] →

C[σ∨ ∩ MX ] given by χm 7→ χψ(m). On the other hand, the map Uσ → Uσ′ induced by f ′

corresponds to the map (f
#

βσ̂′
)0 : (S[Y ]

βσ̂
′ )0 → (S[X]ασ̂)0. Therefore, f and f ′ induce the same

map Uσ → Uσ′ if and only if Equation (4.5) holds. Indeed, this is equivalent to the commutativity
of the diagram

C[(σ′)∨ ∩MY ] C[σ∨ ∩MX ]

(S[Y ]
βσ̂′

)0 (S[X]ασ̂)0.

χm 7→
∏
ρ∈ΣY (1) β

〈m,uρ〉
ρ

χm 7→χψ(m)

χm 7→
∏
ρ∈ΣX (1) α

〈m,uρ〉
ρ

(f
#

βσ̂
′ )0

The fact that a morphism f : X → Y restricts to a morphism f̂ : X̂ → Ŷ has the following
algebraic consequence.

Lemma 4.6. Let f : X → Y be a morphism between smooth projective toric varieties. Assume
that f#

: S[Y ] → S[X] is a homomorphism of C-algebras satisfying condition 2 from Defini-
tion 4.2. If I ⊆ S[X] is a homogeneous ideal which is saturated with respect to B(ΣX), then
(f

#
)−1(I) is saturated with respect to B(ΣY ).

Proof. By assumption that f : X → Y restricts to a morphism f̂ : X̂ → Ŷ we conclude that
there is an inclusion

f
−1
(
V
(
B(ΣY )

))
⊆ V

(
B(ΣX)

)
. (4.7)

By [6, Prop. 3 §6.2] we have f−1
(
V
(
B(ΣY )

))
= V

(
f

#(
B(ΣY )

))
. Therefore, from Equa-

tion (4.7) we get

B(ΣX) ⊆
√
f

#(
B(ΣY )

)
· S[X].

Since S[X] is a Noetherian ring, there is a positive integer k with

B(ΣX)k ⊆ f#(
B(ΣY )

)
· S[X]. (4.8)

Let J = (f
#

)−1(I). Take an element F of (J : B
(
ΣY )

)
. We need to show that F is in J , or

equivalently, that f#
(F ) belongs to I. Since I is saturated with respect to B(ΣX), it is enough

to show that f#
(F ) is an element of (I : B(ΣX)k). We have

f
#

(F ) ·B(ΣX)k
(4.8)
⊆ f

#
(F ) · f#(

B(ΣY )
)
· S[X] ⊆ f#(

F ·B(ΣY )
)
· S[X] ⊆ f#

(J) · S[X] ⊆ I,

where the penultimate containment follows from the choice of F and the ultimate one is by the
definition of J .
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4.1.4 Morphism with connected fibers

In this subsection X and Y are smooth projective toric varieties. We consider a morphism
f : X → Y such that the natural map f : OY → f∗OX is an isomorphism. In particular,
f is dominant and therefore surjective. Furthermore, f has connected fibers [48, Cor. III.11.3].
Conversely, since the base field C has characteristic zero, for every surjective morphism f : X → Y

whose fibers are connected we have an isomorphism f∗OX ∼= OY [30, §1.13].
In what follows we do not assume that f is a toric morphism. However, if f happens to be a

toric morphism, then the condition f∗OX ∼= OY has an equivalent combinatorial reformulation
(see [29, Prop. 2.1]).

Lemma 4.9. Let f∗ : Pic(Y )→ Pic(X) be the pullback map. The equality

dimC S[X]f∗([D]) = dimC S[Y ][D]

holds for every [D] ∈ Pic(Y ).

Proof. We have

S[X]f∗([D])
∼= H0(X, f∗OY (D)) ∼= H0(Y, f∗(f

∗OY (D)))

∼= H0(Y, f∗OX ⊗OY (D)) ∼= H0(Y,OY (D)) ∼= S[Y ][D].

The middle equality follows from projection formula [48, Ex. II.5.1]. The first and the last
equality follow from [28, Prop. 5.3.7].

We lift f to a homomorphism f
#

: S[Y ] → S[X] as in Definition 4.2. The following lemma
is used in the proof of Theorem 4.15—one of the main results of this chapter.

Lemma 4.10. We have:

(i) the pullback map f∗ : Pic(Y )→ Pic(X) is injective;

(ii) the map f# induces an isomorphism of the C-vector spaces S[Y ][D] → S[X]f∗([D]) for every
[D] ∈ PicY .

Proof.

(i) Since f∗OX → OY is an isomorphism, it follows from projection formula (see [48, Ex. II.5.1])
that the map f∗ : Pic(Y )→ Pic(X) is injective.

(ii) The pullback f∗ : Pic(Y )→ Pic(X) is injective by part (i). Hence the corresponding map
of algebraic tori HX = SpecC[Pic(X)] → SpecC[Pic(Y )] = HY is dominant. Thus, it is
surjective by [28, Prop. 1.1.1].

Since f is a projective morphism with f∗OX ∼= OY , it is surjective. We claim that f is
dominant. It is enough to show that f̂ : X̂ → Ŷ is surjective. Let ŷ ∈ Ŷ . Since f and
πX are surjective, there is a point x̂ with f ◦ πX(x̂) = πY (ŷ). Thus, there is an element
t ∈ HY satisfying t ·

(
f̂(x̂)

)
= ŷ. Using the fact that the map of tori is surjective and f̂ is

equivariant, we conclude that there is t′ ∈ HX with f̂(t′ · x̂) = ŷ.

This shows f is dominant and hence f# is injective. In particular, it induces injections
S[Y ][D] → S[X]f∗([D]) for every [D] ∈ Pic(Y ). These maps are surjective by Lemma 4.9.
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Given a finite set of points {p1, . . . , pr} ∈ X, we denote by I({p1, . . . , pr}) the unique B(ΣX)-
saturated homogeneous ideal of S[X] defining this set of points as a reduced subscheme of X.

Lemma 4.11. We have (f
#

)−1(I({p1, . . . , pr})) = I({f(p1), . . . , f(pr)}).

Proof. Let R ⊆ X be the (reduced) subscheme {p1, . . . , pr}. Let i : R → X be the closed
immersion. Let R′ be the scheme-theoretic image of R. Since R is reduced and f is closed, R′ is
the (reduced) subscheme {f(p1), . . . , f(pr)}.

The scheme theoretic image R′ of R is defined by the ideal sheaf ker(OY → f∗OX → f∗i∗OR).
By assumption OY → f∗OX is an isomorphism. Therefore, the ideal sheaf of R′ is ker(f∗OX →
f∗i∗OR). Moreover, f∗ is left-exact, so the ideal sheaf of R′ is the pushforward under f of the
ideal sheaf of R.

The ideal I({p1, . . . , pr}) is saturated with respect to B(ΣX). Hence, the subscheme of Y
corresponding to (f

#
)−1(I({p1, . . . , pr})) ⊆ S[Y ] is R′ by [66, Thm. 3.5] and Lemma 4.10. By

Lemma 4.6, the ideal (f
#

)−1(I({p1, . . . , pr})) is saturated with respect to B(ΣY ). Thus, we have

(f
#

)−1(I({p1, . . . , pr})) = I({f(p1), . . . , f(pr)}),

as claimed.

4.1.5 Multigraded Hilbert schemes

Let Y be a smooth projective toric variety with Cox ring S[Y ]. A natural generalization of the
function hr,Pn : Z→ Z studied in Chapters 2 and 3 is the function hr,Y : Pic(Y )→ Z defined by

hr,Y ([D]) = min{dimCH
0(Y,OY (D)), r} = min{dimC S[Y ][D], r},

where the latter equality follows from [28, Prop. 5.3.7]. Observe that in the case of the projective
space we have implicitly used the identifications Pic(Pn) = Z[H] where H is a hyperplane divisor
and H0(Pn,OPn(dH)) ∼= C[α0, . . . , αn]d.

Let Hilb
hr,Y
S[Y ] be the corresponding multigraded Hilbert scheme (see Subsection 2.2.2). We

denote by Sipr,Y the subset of Hilb
hr,Y
S[Y ] whose closed points correspond to B(ΣY )-saturated,

homogeneous ideals of r-tuples of disjoint points in Y . Let Slipr,Y be the closure of Sipr,Y in
Hilb

hr,Y
S[Y ]. By [15, Prop. 3.13] it is an irreducible component of Hilb

hr,Y
S[Y ].

We construct a natural morphism from r-tuples of distinct points of Y in general position to
Hilb

hr,Y
S[Y ]. Let Y r

dis = {(p1, . . . , pr) | pi 6= pj for all i 6= j} be the set of r-tuples of distinct points
of Y . This is an open subset of Y r so it has a natural scheme structure.

Recall that, given a point (p1, . . . , pr) ∈ Y r
dis, we denote by I({p1, . . . , pr}) the unique B(ΣY )-

saturated homogeneous ideal defining this set of points as a reduced subscheme of Y . Let

Y r
gen = {(p1, . . . , pr) ∈ Y r

dis | S[Y ]/I({p1, . . . , pr}) has Hilbert function hr,Y }.

We use the following key observation from [14].

Theorem 4.12. The set Y r
gen is a dense open subset of Y r

dis. In particular, it has a natural
scheme structure.

Proof. The following sketch of proof is based on [14]. The subset Y r
gen is dense in Y r

dis by [15,
Lem. 3.9]. In order to show that it is open we introduce some notation. Let Udis ⊆ Y r

dis × Y be
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the (reduced) closed subscheme
∐r
i=1 Zi where we have

Zi = {(p1, . . . , pr), q | pi = q}.

Let πdis : Udis → Y r
dis be the projection. The family Udis is flat over Y r

dis, since each Zi is mapped
isomorphically to Y r

dis. By construction, the fiber of πdis over a closed point (p1, . . . , pr) of Y r
dis

is the (reduced) subscheme {p1, . . . , pr} of Y .
It suffices to show that for every affine open subset U = SpecA of Y r

dis the set U ∩ Y r
gen

is open. Therefore, we can replace Y r
dis by an affine open subset U = SpecA. Let Z denote

Udis|π−1
dis(U). Let IZ denote the ideal sheaf of Z and for a point u ∈ U let IZu denote the ideal

sheaf of the fiber Zu ⊆ Yκ(u). Pick a degree [D] ∈ Pic(Y ) of the grading group. Since Z is flat
over U , from the exact sequence

0→ IZ(D)→ OYA(D)→ OZ(D)→ 0

we get the exact sequence

0→ IZu(D)→ OYκ(u)
(D)→ OZu(D)→ 0.

Therefore, there is the exact sequence

0→ H0(Yκ(u), IZu(D))→ H0(Y,OY (D))⊗C κ(u)→ H0(Yκ(u),OZu(D))→ · · · .

We claim that the set

U[D] := {u ∈ U | dimκ(u)
H0(Y,OY (D))⊗C κ(u)

H0(Yκ(u), IZu(D))
< hr,Y ([D])}

is a closed subset of U . The point u ∈ U belongs to U[D] if and only if we have

dimκ(u)H
0(Yκ(u), IZu(D)) > dimCH

0(Y,OY (D))− hr,Y ([D]).

Therefore, U[D] is closed by [48, Thm. III.12.8].
Observe that there is an equality Y r

gen ∩ U = U \
⋃

[D]∈Pic(Y ) U[D] but the union is over a
countable indexing set. Therefore, the observation that each U[D] is closed is not sufficient to
conclude that Y r

gen ∩ U is open in U .
Assume that Y is the projective n-space and let H be a divisor such that the corresponding

sheaf OY (H) is isomorphic with OY (1). By Gotzmann’s regularity theorem [10, Thm. 4.3.2] and
[32, Thm. 4.2] we get U[D] = ∅ unless [D] belongs to the set {[0], [H], [2H], . . . , [(r−1)H]}. Thus,
in this case the union

⋃
[D]∈Pic(Y ) U[D] is actually a finite union. For more general toric varieties

it is harder to conclude that
⋃

[D]∈Pic(Y ) U[D] is closed (see [14]).

The rest of this subsection is devoted to showing that (p1, . . . , pr) 7→ [I({p1, . . . , pr})] defines
a morphism Y r

gen → Hilb
hr,Y
S[Y ]. Let Udis be as in the proof of Theorem 4.12. We denote by U the

restriction of Udis to Y r
gen × Y . Let π : Y r

gen × Y → Y r
gen be the natural projection. Consider the

exact sequence of sheaves of OY rgen×Y -modules

0→
⊕

[D]∈Pic(Y )

IU (D)→
⊕

[D]∈Pic(Y )

OY rgen×Y (D)
η−→

⊕
[D]∈Pic(Y )

OU (D)→ 0. (4.13)
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Let A = im(π∗η). We verify the following claims:

1. we have π∗
(⊕

[D]∈Pic(Y )OY rgen×Y (D)
) ∼= OY rgen ⊗C S[Y ];

2. A is a sheaf of OY rgen ⊗C S[Y ]-algebras;

3. A[D] is a locally free sheaf of OY rgen-modules of rank hr,Y ([D]) for every [D] ∈ Pic(Y ).

The first claim follows from [48, Prop. III.9.3] since there is an isomorphism Γ(Y,OY (D)) ∼=
S[Y ][D]. The second claim follows from the fact that in exact sequence (4.13) the OY rgen×Y -
submodule

⊕
[D]∈Pic(Y ) IU (D) of the sheaf of OY rgen×Y -algebras

⊕
[D]∈Pic(Y )OY rgen×Y (D) is in

fact a sheaf of ideals. Therefore, from left-exactness of the pushforward, it follows that the
kernel of π∗(η) is a sheaf of ideals of the sheaf OY rgen ⊗C S[Y ].

Finally, we address the third claim. We consider two cases:

(a) hr,Y ([D]) = r;

(b) hr,Y ([D]) < r.

Observe that by definition of U , for every y ∈ Y r
gen we have

dimCH
0
(
(Y r
gen × Y )y, (IU (D))y

)
= dimC S[Y ][D] − hr,Y ([D]).

Similarly, we have dimCH
0
(
(Y r
gen × Y )y, (OU (D))y

)
= r for every y ∈ Y r

gen. Moreover, both
OU (D) and IU (D) are flat over Y r

gen. Therefore, by [48, Cor. III.12.9] the sheaves of OY rgen-
modules π∗(IU (D)) and π∗(OU (D)) are locally free of rank dimC S[Y ][D] − hr,Y ([D]) and r,
respectively. In particular, this establishes claim 3 in the case (b) since then we have A[D]

∼=
OY rgen ⊗C S[Y ][D].

Thus, it is enough to show that if hr,Y ([D]) equals r then π∗(η) induces a surjection OY rgen⊗C
S[Y ][D] → π∗(OU (D)). This can be checked on stalks over closed points, and by Nakayama’s
lemma it is even enough to check this on fibers. Let y ∈ Y r

gen correspond to the subscheme
Z ⊆ Y and let IZ denote its B(ΣY )-saturated ideal. Using [48, Cor. III.12.9], it is enough to
show that natural map

S[Y ][D] → Γ(Y,OZ(D))

is surjective for every [D] ∈ Pic(Y ) with hr,Y ([D]) = r. However, the kernel of this map is (IZ)[D]

and we have
r = dimC Γ(Y,OZ(D)) = dimC S[Y ][D] − dimC(IZ)[D]

by the choice of [D]. This finishes the proof of claims 1–3.

Lemma 4.14. There is a natural morphism ψr,Y : Y r
gen → Hilb

hr,Y
S[Y ] which on closed points maps

{p1, . . . , pr} to [I({p1, . . . , pr})].

Proof. By properties 1–3 above, A defines an admissible family over Y r
gen for the Hilbert function

hr,Y . Thus, there is a morphism Y r
gen → Hilb

hr,Y
S[Y ]. By construction, on closed points, it maps

{p1, . . . , pr}, to I({p1, . . . , pr}).

4.2 Criterion based on a morphism of toric varieties

Let f : X → Y be a morphism between smooth projective toric varieties with f∗OX ∼= OY .
Let r be a positive integer. In this section we present a necessary condition for a closed point

92



[I] ∈ Hilb
hr,X
S[X] to be in the irreducible component Slipr,X . The most interesting case is when we

have X = Pn1 × · · · × Pnk+1 and Y = Pn1 × · · · × Pnk for some positive integers k, n1, . . . , nk+1

and f is the natural projection.

Theorem 4.15. Let f : X → Y be a morphism between smooth projective toric varieties with
f∗OX ∼= OY . Let r be a positive integer and [I] ∈ Hilb

hr,X
S[X] be a closed point. Let f#

: S[Y ] →
S[X] be a lift of f as in Definition 4.2.

(i) f# induces a morphism π : Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ] given on closed points by [I] 7→ [(f

#
)−1(I)];

(ii) The morphism π : Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ] from part (i) induces a surjection Slipr,X → Slipr,Y .

Proof. The existence of a lift f# follows from Theorem 4.3.

(i) Using Lemma 4.10 we may identify (as Pic(Y )-graded rings) the ring S[Y ] with the subring⊕
[D]∈PicY S[X]f∗([D]) of S[X]. Under this identification, we have

(f
#

)−1(I) = I|f∗(Pic(Y )) :=
⊕

[D]∈Pic(Y )

If∗([D]).

It follows that if S[X]/I has Hilbert function hr,X , then S[Y ]/(f
#

)−1(I) has Hilbert func-
tion hr,Y . Thus, we have a natural transformation of functors of points

Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ]

given on a C-algebra R by

Hilb
hr,X
S[X](R) 3 I 7→ I|f∗(Pic(Y )) ∈ Hilb

hr,Y
S[Y ](R).

Hence we have the corresponding morphism of schemes π : Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ].

(ii) We first show that π(Slipr,X) is contained in Slipr,Y set-theoretically. If I is radical then

(f
#

)−1(I) is also radical. Moreover, if I is saturated with respect to B(ΣX), then (f
#

)−1 is
saturated with respect to B(ΣY ) by Lemma 4.6. It follows that we have π(Sipr,X) ⊆ Sipr,Y
set-theoretically. Therefore, π(Slipr,X) is a subset of Slipr,Y .

Now we show that in fact π : Slipr,X → Slipr,Y is surjective. Recall the definition of Y r
gen

from Subsection 4.1.5. Consider the product morphism f r : Xr → Y r. By Chevalley’s the-
orem [41, Thm. 10.20] the image of Xr

gen in Y r is constructible. Moreover, f r is projective
and surjective and Xr

gen is dense in Xr by Theorem 4.12. It follows that f r(Xr
gen) is dense

in Y r. Thus, there is an open subset U ⊆ Y r contained in f r(Xr
gen) (see [48, Ex. II.3.18]).

Let V = U ∩ Y r
gen and W = (f r)−1(V ) ∩Xr

gen. We have a diagram

Hilb
hr,X
S[X] Hilb

hr,Y
S[Y ]

W V

π

(ψr,X)|W
fr|W

(ψr,Y )|V
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where the maps ψr,X and ψr,Y are as in Lemma 4.14. We claim that this diagram
is commutative. Let (p1, . . . , pr) be a point of W . We have ψr,Y ◦ f r(p1, . . . , pr) =

[I({f(p1), . . . , f(pr)})] and

π ◦ ψr,X(p1, . . . , pr) = [(f
#

)−1(I({p1, . . . , pr}))] = [I({f(p1), . . . , f(pr)})].

Here the last equality follows from Lemma 4.11. Thus, the diagram commutes.

By construction, f r(W ) equals V , so it is dense in Y r
gen. Since π is projective, it follows

that we have

Slipr,Y = ψr,Y ◦ f r(W ) = π ◦ ψr,X(W ) = π(ψr,X(W )) = π(Slipr,X)

set-theoretically.

We obtain the following corollary.

Corollary 4.16. In the notation of Theorem 4.15, assume that [J ] ∈ Slipr,Y is such that there

exists a unique closed point [I] ∈ Hilb
hr,X
S[X] with (f

#
)−1(I) = J . The point [I] is in Slipr,X .

Remark 4.17. The usual Hilbert scheme Hilbr(X) is usually not functorial in X. That is,
let f : X → Y be a regular non-constant morphism of algebraic varieties. A general r-tuple of
distinct points of X is mapped to an r-tuple of points of Y and this assignment induces a rational
map of the smoothable components π : Hilbsmr (X) 99K Hilbsmr (Y ). However, this map needs not
to extend to a regular morphism Hilbr(X)→ Hilbr(Y ), or even Hilbsmr (X)→ Hilbsmr (Y ).

Let r = 2 and f : X → Y be the blowup of P2 at a point (thus we are in the situation of
Theorem 4.15). There are degree 2 finite subschemes contained in the exceptional divisor, which
is contracted to a point. It is straightforward to verify that there is no continuous map that
extends π : Hilbsm2 (X) 99K Hilbsm2 (P2) to the points representing such subschemes.

In contrast, Theorem 4.15 shows that the multigraded Hilbert scheme Hilb
hr,X
S[X] and the ana-

logue of its smoothable component Slipr,X behave nicely (functorially), at least under some
special morphisms. In some sense, the induced map Slipr,X → Slipr,Y is a natural resolution of
the rational map Hilbsmr (X) 99K Hilbsmr (Y ).

4.3 Blowup of the closure of a torus orbit

In this section we study a special case of Theorem 4.15—the blowup of a smooth projective toric
variety at the closure of a torus orbit.

Let Y be a smooth projective n-dimensional toric variety associated with a fan ΣY ⊆ N⊗ZR.
Let f : X → Y be the blowup of Y at the closure of the torus orbit V (τ) = O(τ) corresponding
to a cone τ ∈ ΣY (see [28, Thm. 3.2.6]). In that case, as follows from [28, pp. 132–133], the
variety X is the toric variety associated with the fan Σ∗Y (τ) ⊆ N ⊗Z R, whose construction we
recall below. Moreover, the blowup f : X → Y corresponds to the identity map on the lattice N .
Observe that the special case, when τ is n-dimensional (or, equivalently, when V (τ) is a torus
invariant point of Y ) is [28, Prop. 3.3.15].

Now we recall the construction of the fan Σ∗Y (τ). Given a cone σ ∈ ΣY , we denote by σ(1)

the set of all edges of σ. Let uτ =
∑

ρ∈τ(1) uρ be the sum of the ray generators of edges of τ .
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Let σ ∈ ΣY be a cone containing τ and consider the set

(ΣY )∗σ(τ) = {Cone(A) | A ⊆ {uτ} ∪
⋃

ρ∈σ(1)

{uρ} such that τ(1) 6⊆ A}.

We have
Σ∗Y (τ) = {σ ∈ ΣY | τ 6⊆ σ} ∪

⋃
τ⊆σ

(ΣY )∗σ(τ).

Let ΣY (1) = {ρ1, . . . , ρn, ρ
′
1, . . . , ρ

′
t} and τ = Cone(ρi | i = 1, . . . , s) for some 1 ≤ s ≤ n. Let

e1, . . . , en be the standard basis of M and let e∗1, . . . , e
∗
n be the dual basis. Since Y is smooth,

we may assume that the ray generator uρi of ρi for all i = 1, . . . , n is e∗i . We can express the ray
generators of ρ′j in terms of this basis

uρ′j =
n∑
i=1

aije
∗
i (4.18)

for some aij ∈ Z. We have ΣX(1) = ΣY (1) ∪ {ρτ}, where ρτ equals Cone(uτ ).
By [28, Thm. 4.1.3], the Picard group Pic(Y ) is generated by the classes

[Dρ1 ], . . . , [Dρn ], [Dρ′1
], . . . , [Dρ′t

]

of prime torus invariant divisors modulo the relations

0 = [div(χei)] =

n∑
j=1

〈ei,uρj 〉[Dρj ] +

t∑
j=1

〈ei,uρ′j 〉[Dρ′j
] for all i = 1, . . . , n. (4.19)

It follows from Equations (4.18) and (4.19) that we have

Pic(Y ) =
t⊕
i=1

Z[Dρ′i
]

and

[Dρi ] =

t∑
j=1

−aij [Dρ′j
]

for all i = 1, . . . , n. We use this description to identify Pic(Y ) with Zt.
Similarly, we obtain

Pic(X) =

t⊕
i=1

Z[Dρ′i
]⊕ [Dρτ ],

[Dρi ] = −
t∑

j=1

aij [Dρ′j
]− [Dρτ ]

for all i = 1, . . . , s and

[Dρi ] = −
t∑

j=1

aij [Dρ′j
]

for all i = s+ 1, . . . , n.
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It follows that the Cox ring of Y is S[Y ] = C[β1, . . . , βn, β
′
1, . . . , β

′
t] with deg(βi) = [Dρi ] =

−
∑t

j=1 aijei for all i = 1, . . . , n and deg(β′i) = ei where e1, . . . , et is the standard basis of
Zt ∼= Pic(Y ).

Similarly, the Cox ring of X is S[X] = C[α1, . . . , αn, α
′
1, . . . , α

′
t, α
′′] with

deg(αi) = [Dρi ] = −
t∑

j=1

aijfj − ft+1 for all i = 1, . . . , s,

deg(αi) = [Dρi ] = −
t∑

j=1

aijfj for all i = s+ 1, . . . , n,

deg(α′i) = [Dρ′i
] = fi for all i = 1, . . . , t

deg(α′′) = [Dρτ ] = ft+1

where f1, . . . , ft+1 is the standard basis of Zt+1 ∼= Pic(X).
We lift the map f : X → Y to a map of Cox rings f#

: S[Y ]→ S[X] as in Definition 4.2. We
start with describing the pullback map f∗ : Pic(Y )→ Pic(X).

Lemma 4.20. The pullback map f∗ : Pic(Y )→ Pic(X) is given by ei 7→ fi for all i = 1, . . . , t.

Proof. For all i = 1, . . . , t, let ϕDρ′
i
: N → R be the support function of the torus invariant

Cartier divisor Dρ′i
on Y (see [28, Def. 4.2.11]). By [28, Prop. 6.2.7], f∗([Dρ′i

]) is the class of the
torus invariant Cartier divisor on X corresponding to the same support function. By definition
we have

ϕDρ′
i
(uρ) = −δρρ′i for all ρ ∈ ΣY (1).

In particular, ϕDρ′
i
(uτ ) is zero since ϕDρ′

i
is zero on each ray generator of the cone τ . Thus, we

get f∗(ei) = fi for all i = 1, . . . , t.

Now we describe a lift of f : X → Y to a map f#
: S[Y ]→ S[X].

Proposition 4.21. The C-algebra homomorphism f
#

: S[Y ]→ S[X] given by

βi 7→ αi · α′′ for all i = 1, . . . , s

βi 7→ αi for all i = s+ 1, . . . , n

β′i 7→ α′i for all i = 1, . . . , t

is a lift of f : X → Y as in Definition 4.2. In particular, if r is a positive integer and [I] belongs
to Slipr,X , then [(f

#
)−1(I)] is in Slipr,Y .

Proof. By Lemma 4.20, the homomorphism f
# is a map of graded rings with respect to the

homomorphism f∗ : Pic(Y )→ Pic(X) of grading groups, i.e.

f
#

(S[Y ][D]) ⊆ S[X]f∗([D])

holds for every [D] ∈ Pic(Y ).
It follows that f# defines an equivariant map f : X = SpecS[X] → SpecS[Y ] = Y . Let

B(ΣX) ⊆ S[X] and B(ΣY ) ⊆ S[Y ] be the irrelevant ideals. We claim that f restricts to a map

f̂ : X \ V
(
B(ΣX)

)
= X̂ → Ŷ = Y \ V

(
B(ΣY )

)
.
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Recall that ΣY (n) is the set of all maximal cones of the fan ΣY . For all σ ∈ ΣY (n) let βσ̂ be
the product of variables in S[Y ] corresponding to rays in ΣY (1) which are not rays in σ(1). We
have

B(ΣY ) = (βσ̂)σ∈ΣY (n)

by [28, p. 207].
We consider two types of maximal cones in ΣY (n). Namely, there is an equality ΣY (n) =

Σ′Y (n) ∪ Σ′′Y (n) with
Σ′Y (n) = {σ ∈ ΣY (n) | τ 6⊆ σ}

and
Σ′′Y (n) = {σ ∈ ΣY (n) | τ ⊆ σ}.

For a cone σ ∈ Σ′′Y (n) and i ∈ {1, . . . , s} we define σi = Cone
((⋃

ρ∈σ(1),ρ 6=ρi{uρ}
)
∪ {uτ}

)
. We

have ΣX(n) = Σ′Y (n) ∪
⋃
σ∈Σ′′Y (n)

⋃s
i=1{σi}. For a cone σ ∈ ΣX(n), let ασ̂ be the product of

variables of S[X] corresponding to rays from ΣX(1) \ σ(1). There is an equality

B(ΣX) = (ασ̂)σ∈ΣX(n).

The map f : An+t+1 → An+t is given by

p := (a1, . . . , an, a
′
1, . . . , a

′
t, a
′′) 7→ (a1a

′′, . . . , asa
′′, as+1, . . . , an, a

′
1, . . . , a

′
t).

Assume that f(p) is in V
(
B(ΣY )

)
. We show that p belongs to V

(
B(ΣX)

)
.

Let σ ∈ Σ′Y (n). We have

0 = βσ̂
(
f(p)

)
= (a′′)k ·

(
βσ̂(a1, . . . , an, a

′
1, . . . , a

′
t)
)

= (a′′)k−1 ·
(
ασ̂(p)

)
where s ≥ k ≥ 1 is the number of rays in τ(1) \ σ(1). It follows that ασ̂(p) is zero.

For every σ ∈ Σ′′Y (n) and i ∈ {1, . . . , s} there are equalities

ασ̂i(p) = ai ·
(
βσ̂
(
f(p)

))
= 0.

We have shown that p is in V
(
B(ΣX)

)
.

By Lemma 4.4, in order to verify that f# is a lift of f , it suffices to show that

s∏
i=1

(αiα
′′)〈m,uρi 〉 ·

n∏
i=s+1

α
〈m,uρi 〉
i ·

t∏
i=1

α′
〈m,uρ′

i
〉

i =
s∏
i=1

α
〈m,uρi 〉
i ·

n∏
i=s+1

α
〈m,uρi 〉
i ·

t∏
i=1

α′
〈m,uρ′

i
〉

i ·α′′〈m,uτ 〉

holds for every m ∈M . This holds since we have uτ =
∑s

i=1 uρi .
The last part of the proposition follows from Theorem 4.15.

4.4 Toric bundle

In this section we study another special case of Theorem 4.15—where X is a decomposable toric
vector bundle.

Let Y be a smooth projective toric variety defined by a fan ΣY ⊆ NR. Let n be a positive
integer and consider torus invariant divisors Di =

∑
ρ∈ΣY (1) aiρDρ for all i = 0, . . . , n, where
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Dρ’s are prime torus invariant divisors of Y corresponding to rays of ΣY and aiρ’s are integers.
Let E = OY (D0)⊕ · · · ⊕OY (Dn) and let X = P(E ). The variety X is a smooth projective toric
variety (see [28, Prop. 7.3.3.]). We construct a lift f#

: S[Y ] → S[X] of the natural projection
f : X → Y . A special case of interest is when we have Y = Pa × Pb, X = Pa × Pb × Pc and f is
the projection.

We start with describing the Cox ring of X. Let f1, . . . , fm be a basis of the lattice M
and let f∗1 , . . . , f

∗
m be its dual basis. Consider Zn with the standard Z-basis e∗1, . . . , e

∗
n and let

e∗0 = −e∗1 − · · · − e∗n. Given a ray generator uρ ∈ NR with ρ ∈ ΣY (1) we define

vρ = uρ + (a1ρ − a0ρ)e
∗
1 + · · ·+ (anρ − a0ρ)e

∗
n ∈ NR × Rn.

The cones of the fan ΣX ⊆ NR × Rn of X are of the form

σi = Cone(vρ | ρ ∈ σ(1)) + Cone(e∗0, . . . , ê
∗
i , . . . , e

∗
n)

together with their faces, where we have σ ∈ ΣY , i ∈ {0, . . . , n} and ê∗i means that e∗i is omitted
([28, Prop. 7.3.3.]). Thus, the ray generators of the fan of X are

{vρ | ρ ∈ ΣY (1)} ∪ {e∗0, . . . , e∗n}.

In particular, by [28, Thm. 4.1.3] the Picard group of X is generated by the classes of torus invari-
ant divisors Fρ for all ρ ∈ ΣY (1) corresponding to vρ and the classes of E0, . . . , En corresponding
to e∗0, . . . , e

∗
n. Moreover, these generators are subject to the relations

0 = [div(χfi)] =
∑

ρ∈ΣY (1)

〈fi,uρ〉[Fρ] for all i = 1, . . . ,m

and
0 = [div(χei)] = [Ei]− [E0] +

∑
ρ∈ΣY (1)

(aiρ − a0ρ)[Fρ] for all i = 1, . . . , n.

Therefore, we have an isomorphism Pic(X) ∼= Pic(Y )× Z given by

[Fρ] 7→ ([Dρ], 0) for all ρ ∈ ΣY (1)

[Ei] 7→ (−
∑

ρ∈ΣY (1)

(aiρ − a0ρ)[Dρ], 1) for all i = 0, . . . , n.

In particular, [E0] ∈ Pic(X) corresponds to (0, 1) ∈ Pic(Y ) × Z. From these considerations, it
follows that the Cox rings of Y and X are

S[Y ] = C[{βρ | ρ ∈ ΣY (1)}] and S[X] = C[{αρ | ρ ∈ ΣY (1)}, α′0, . . . , α′n]

with

deg(βρ) = [Dρ] ∈ Pic(Y ) for all ρ ∈ ΣY (1),

deg(αρ) = [Fρ] = ([Dρ], 0) ∈ Pic(Y )× Z for all ρ ∈ ΣY (1) and

deg(α′i) = [Ei] for all i = 0, . . . , n.

Let φ : N × Zn → N be the natural surjection of lattices. If τ is a face of σi ∈ ΣX for some
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σ ∈ ΣY and i ∈ {0, . . . , n}, then φR(τ) is a face of σ. Therefore, the map φ is compatible with
the fans of X and Y . Thus, it induces a toric morphism f : X → Y [28, Thm. 3.3.4]. We want
to lift this morphism to a homomorphism of Cox rings as in Definition 4.2. First we describe the
pullback map f∗ : Pic(Y )→ Pic(X).

Lemma 4.22. The pullback map f∗ : Pic(Y )→ Pic(X) maps [Dρ] to [Fρ] for every ρ ∈ ΣY (1).

Proof. Let ϕDρ : NR → R be the support function corresponding to Dρ, i.e. it is linear on each
cone of ΣY and we have ϕDρ(uρ′) = −δρρ′ (see [28, Thm. 4.2.12]). By [28, Thm. 6.2.7] f∗([Dρ])

is the class of the torus invariant Cartier divisor with support function

ψ : NR × Rn φR−→ NR
ϕDρ−−→ R.

We have ψ(vρ′) = ϕDρ(uρ′) = −δρρ′ and ψ(e∗i ) = 0. Thus, ψ is the support function of Fρ.

Now we describe a lift of f to a map f#
: S[Y ]→ S[X].

Proposition 4.23. The C-algebra homomorphism f
#

: S[Y ] → S[X] given by βρ 7→ αρ for all
ρ ∈ ΣY (1) is a lift of f as in Definition 4.2. In particular, if [I] ∈ Slipr,X is a closed point, then

[(f
#

)−1(I)] is in Slipr,Y .

Proof. By Lemma 4.22, the homomorphism f
# is a homomorphism of graded rings, i.e.

f
#

(S[Y ][D]) ⊆ S[X]f∗([D])

holds for every [D] ∈ Pic(Y ). Therefore, it induces an equivariant map f : X → Y . We claim
that it restricts to a morphism f̂ : X̂ → Ŷ . The map f is defined by

(a1, . . . , as, a
′
0, . . . , a

′
n) 7→ (a1, . . . , as),

where the first s = #ΣY (1) coordinates of the affine space X correspond to αρ’s. By ΣY (m)

we denote the set of all m-dimensional cones of ΣY . Given σ ∈ ΣY , let βσ̂ =
∏
ρ∈ΣY (1)\σ(1) βρ.

Recall that B(ΣY ) is equal to (βσ̂ | σ ∈ ΣY (m)). Similarly, we have B(ΣX) = (ασ̂i | σ ∈
ΣY (m), i ∈ {0, . . . , n}). Assume that (a1, . . . , as) belongs to V (B(ΣY )). Let σ ∈ ΣY (m) and
i ∈ {0, . . . , n}. The equality βσ̂(a1, . . . , as) = 0 implies that we have

0 = a′i · βσ̂(a1, . . . , as) = ασ̂i(a1, . . . , as, a
′
0, . . . , a

′
n).

Thus, (a1, . . . , as, a
′
0, . . . , a

′
n) is in V (B(ΣX)).

We have shown, that f : X → Y restricts to a map f̂ : X̂ → Ŷ . Therefore, there is an induced
morphism f ′ : X → Y . We claim that we have f = f ′. By Lemma 4.4, it is enough to show that

∏
ρ∈ΣY (1)

α
〈m,uρ〉
ρ =

∏
ρ∈ΣY (1)

α
〈ψ(m),vρ〉
ρ ·

n∏
i=0

α
′〈ψ(m),e∗i 〉
i

holds for every m ∈ M , where ψ : M → M × Zn is dual to N × Zn → N (i.e., it is the natural
inclusion). The claimed equality follows from the definition of vρ.

The last part of the proposition is implied by Theorem 4.15.
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4.5 Product of projective spaces

Let X be the product of projective spaces X = Pn1 × · · · × Pnk for some positive integers
k ≥ 2, n1, . . . , nk. Proposition 4.23 gives a necessary condition for [I] ∈ Hilb

hr,X
S[X] to be in Slipr,X .

In this section, we present another condition that must be fulfilled for [I] to be in the irreducible
component Slipr,X .

The Cox ring of X is of the form

S[X] = C[α1,0, . . . , α1,n1 , α2,0, . . . , α2,n2 , . . . , αk,0, . . . , αk,nk ].

It has a grading in Zk. In the standard basis e1, . . . , ek of Zk we have deg(αi,j) = ei for all
i ∈ {1, . . . , k} and all j ∈ {0, . . . , ni}. The Cox ring of the i-th factor of X = Pn1 × · · · × Pnk
is the polynomial ring C[αi,0, . . . , αi,ni ] with the standard Z-grading, i.e. deg(αi,j) equals 1 for
all j ∈ {0, . . . , ni}. The irrelevant ideal B(Σi) of Pni is B(Σi) = (αi,0, . . . , αi,ni). The irrelevant
ideal of X is B(ΣX) = B(Σ1) · · ·B(Σk) =

(
S[X](1,1,...,1)

)
.

We use the following lemma about Hilbert functions of quotient algebras of homogeneous
ideals in S[X].

Lemma 4.24. Let I 6= (1) be a Zk-graded ideal in S[X]. If I is saturated with respect to the
irrelevant ideal B(ΣX), then for all i ∈ {1, . . . , k} there is a homogeneous element γi ∈ S[X]ei
such that γi is a nonzerodivisor on S[X]/I. Therefore:

(i) For all u ∈ Zk and for all i ∈ {1, 2, . . . , k} we have HS[X]/I(u) ≤ HS[X]/I(u + ei).

(ii) Let u ∈ Zk≥0 and assume that there is i ∈ {1, 2, . . . , k} with

HS[X]/I(u) = HS[X]/I(u + ei).

We have HS[X]/I(u + ei) = HS[X]/I(u + 2ei).

Proof. Let p1, . . . , ps be the associated primes of S[X]/I. These are Zk-graded ideals. We
claim that for each i, the C-vector subspace

⋃s
j=1(pj)ei ⊆ S[X]ei is a proper subspace. Indeed,

otherwise, there is j ∈ {1, . . . , s} with (pj)ei = S[X]ei . Therefore, B(ΣX) is contained in pj .
We obtain (I : B(ΣX)) 6= I which contradicts the assumption that I is saturated with respect to
B(ΣX). Having established the claim, we proceed to the proof of the lemma.

(i) By the above claim, for every i ∈ {1, . . . , k} there is a homogeneous nonzerodivisor γi
on S[X]/I of degree ei. It follows that the map (S[X]/I)u → (S[X]/I)u+ei given by
multiplication by γi is injective.

(ii) Let [Θ] ∈ (S[X]/I)u+2ei . There are Θ0, . . . ,Θni ∈ S[X]u+ei with

[Θ] = [αi,0Θ0 + · · ·+ αi,niΘni ].

Using the notation of the proof of part (i), multiplication by γi gives an isomorphism
(S[X]/I)u → (S[X]/I)u+ei . Therefore, there are Γ0, . . . ,Γni ∈ S[X]u with [Θj ] = [γiΓj ]

for all j ∈ {0, . . . , ni}. It follows that we have [Θ] = γi([αi,0Γ0 + · · · + αi,niΓni ]). Thus,
the injective map (S[X]/I)u+ei → (S[X]/I)u+2ei given by multiplication by γi is in fact
bijective.
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We present a necessary condition for [I] ∈ Hilb
hr,X
S[X] to be in the irreducible component Slipr,X .

Theorem 4.25. Let X = Pn1 × · · · × Pnk for some positive integers k ≥ 2, n1, . . . , nk. For all
i ∈ {1, . . . , k} let B(Σi) ⊆ S[X] be the extension of the irrelevant ideal of Pni under the natural
inclusion S[Pni ]→ S[X]. If [I] is a point of Slipr,X for some positive integer r, then

dimC HomS[X]

(
I +B(Σi)

2, S[X]/
(
I +B(Σi)

2
))

0
≥ r(n1 + · · ·+ nk)

holds for all i ∈ {1, . . . , k}.

Proof. Assume that [I] belongs to Hilb
hr,X
S[X] where I ⊆ S[X] is an ideal saturated with respect to

B(ΣX). Fix an integer i ∈ {1, . . . , k} and let

Ai = {u = (u1, . . . , uk) ∈ Zk | uj ≥ 0 for all j ∈ {1, . . . , k} and ui ∈ {0, 1}}.

Let J be the ideal of S[X] generated by ⊕
u∈Ai

Iu.

We claim that we have (J : B(ΣX)∞) = I. We first show how to conclude the proof using the
claim. Let g be the Hilbert function of S[X]/(I +B(Σi)

2) and consider the natural map

χ : Hilb
hr,X
S[X] → HilbgS[X]

given on closed points by χ([I]) = [I + B(Σi)
2]. It follows from the claim that χ is injective on

points corresponding to ideals that are saturated with respect to B(ΣX). Indeed, the inverse
map is [I ′] 7→ [

(⊕
u∈Ai I

′
u

)
: B(ΣX)∞]. Since a general closed point of Slipr,X corresponds to

an ideal of S[X] that is saturated with respect to B(ΣX), it follows that the image of Slipr,X
under χ is of dimension dim Slipr,X = r(n1 + · · ·+ nk). Therefore, if [I] belongs to Slipr,X then
the tangent space to HilbgS[X] at χ([I]) is of dimension at least r(n1 + · · ·+ nk). Application of
Theorem 2.75 finishes the proof of the theorem.

We are left with proving the claim. Let K = (J : B(ΣX)∞). Since there are inclusions
J ⊆ K ⊆ I, it follows that Ku = Ju = Iu holds for all u ∈ Ai. Let u = (u1, . . . , uk) ∈ Ai with
uj ≥ r for all j 6= i and ui = 0. Since we have

HS[X]/K(u) = HS[X]/K(u + ei) = r,

it follows from Lemma 4.24(ii) that HS[X]/K(u) equals r for all u = (u1, . . . , uk) ∈ Zk with uj ≥ r
for all j ∈ {1, 2, . . . , k}. Therefore, we get HS[X]/K(u) ≤ r for all u ∈ Zk by Lemma 4.24(i).
Since K is contained in I and S[X]/I has Hilbert function hr,X , it follows that the Hilbert
function of S[X]/K is also hr,X . Thus, we have K = I as claimed.

4.6 Small examples of reducible multigraded Hilbert schemes

In this section we show that Hilb
h2,X

S[X] need not be irreducible for a smooth projective toric surface
X. We present two examples: Hirzebruch surface H1 = P

(
OP1 ⊕ OP1(1)

)
and P1 × P1. These

examples illustrate that the necessary condition described in Theorem 4.15 is in general not
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sufficient even for small values of r and dimX. In fact, as explained below, this condition is
trivially satisfied in these two cases.

Both special versions of Theorem 4.15 studied in Sections 4.3 and 4.4 apply to multigraded
Hilbert scheme Hilb

h2,H1

S[H1] since H1 is also the blowup of P2 at a torus invariant point. However,

we present also the example of Hilb
h2,P1×P1

S[P1×P1]
to demonstrate that Theorem 4.25 gives some insight

into Slip2,P1×P1 even though Theorem 4.15 is of no use in this case.

Proposition 4.26. Let S[P1×P1] = C[α0, α1, β0, β1] be the Cox ring of P1×P1 with deg(α0) =

deg(α1) = (1, 0) and deg(β0) = deg(β1) = (0, 1). The scheme Hilb
h2,P1×P1

S[P1×P1]
is not irreducible. In

fact, we have [(α0α1, α0β0, α1β0, β0β1)] ∈ Hilb
h2,P1×P1

S[P1×P1]
\Slip2,P1×P1 .

Proof. Let I = (α0α1, α0β0, α1β0, β0β1). The point [I] belongs to Hilb
h2,P1×P1

S[P1×P1]
. We claim that it

is not in Slip2,P1×P1 . Let a = (α0, α1) and J = I+a2. The C-vector space HomS[P1×P1](J, S[P1×
P1]/J)0 has dimension 2. Thus, we get [I] /∈ Slip2,P1×P1 by Theorem 4.25.

The case of the Hirzebruch surface H1 is more involved since we lack a criterion analogous
to Theorem 4.25.

Proposition 4.27. Let H1 = P
(
OP1 ⊕ OP1(1)

)
be the Hirzebruch surface. The multigraded

Hilbert scheme Hilb
h2,H1

S[H1] is not irreducible.

Proof. We start with calculating the Cox ring of H1. Let S[P2] = C[β0, β1, β2] with deg(β0) =

deg(β1) = deg(β2) = 1. The Hirzebruch surface H1 can be constructed as the blowup of P2 at
the torus invariant point [0 : 1 : 0].

The Cox ring S[H1] of H1 is C[α0, α1, α2, α3] with deg(α0) = deg(α2) = (1,−1), deg(α1) =

(1, 0) and deg(α3) = (0, 1) (see Section 4.3). Moreover, by Proposition 4.21 the graded homo-
morphism of graded rings S[P2] → S[H1] given by β0 7→ α0α3, β1 7→ α1, β2 7→ α2α3 is a lift of
the natural map H1 → P2. We identify S[P2] with its image in S[H1].

Let W be the locus of those points [I] of Hilb
h2,P2

S[P2]
for which the unique linear generator

of I is of the form aα0α3 + bα2α3 for some a, b ∈ C (or geometrically, the locus of all points
defining subschemes contained in a line passing through the center of the blowup). We claim
that W is irreducible and 3-dimensional. Indeed, it is a Hilb

h2,P1

S[P1]
-bundle over the projective line

P(lin{α0α3, α2α3}). Since Hilb
h2,P1

S[P1]
is isomorphic to P2 (see Proposition 3.38), our claim follows.

Let π : Hilb
h2,H1

S[H1] → Hilb
h2,P2

S[P2]
be the natural map from Theorem 4.15. We claim that the

set-theoretic inverse image V of W is of dimension at least 4. Let [I] ∈W be a closed point. We
may assume that we have

I = (α0α3, Aα
2
2α

2
3 +Bα1α2α3 + Cα2

1)

for some A,B,C ∈ C, not all zero. It is enough to show that the fiber over [I] is of positive
dimension. Let [a : b] ∈ P1. We claim that

[J ] = [(α0α3, Aα
2
2α

2
3 +Bα1α2α3 + Cα2

1, α0(aα0 + bα2), α0α1)]

is a point of that fiber. We need to check two things:

1. we have J ∩ S[P2] = I;
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2. S[H1]/J has Hilbert function h2,H1 .

We start with 1. Clearly, I is contained in J ∩S[P2]. Suppose that f is an element of (α0(aα0 +

bα2), α0α1)(d,0) for some positive integer d. We show that f belongs to (α0α3). Observe that we
have deg(α0(aα0 + bα2)) = (2,−2) and deg(α0α1) = (2,−1). Since deg(f) equals (d, 0), we get
that α3 divides f . This shows that 1 is fulfilled.

Now we show that 2 holds. The ideal J is contained in K = (α0, Aα
2
2α

2
3 + Bα1α2α3 +

Cα2
1). Moreover, if J(a,b) and K(a,b) are not equal to each other then we have b = −a < 0 and

dimC(S[H1]/K)(a,−a) = dimC(S[H1]/J)(a,−a) − 1. Thus, it is enough to establish the following
equality:

dimC(S[H1]/K)(a,b) =

{
h2,H1(a, b)− 1 = 1 if b = −a < 0;

h2,H1(a, b) otherwise.

We can rewrite this as follows:

dimC(S[H1]/K)(a,b) =


0 if a+ b < 0 or a < 0;

1 if a+ b = 0 and a ≥ 0;

1 if a = 0 and b ≥ 0;

2 if a+ b > 0 and a > 0.

(4.28)

Let R = C[α1, α2, α3] ⊆ S[H1]. We have

dimCR(a,b) =

{
0 if a+ b < 0 or a < 0;

a+ b+ 1−max{0, b} otherwise.
(4.29)

Indeed, the case a+ b < 0 or a < 0 is clear since there are equalities deg(α1) = (1, 0), deg(α2) =

(1,−1) and deg(α3) = (0, 1). On the other hand, if we have a + b ≥ 0 and a ≥ 0 then R(a,b) is
spanned by

{αa+b−c
1 αc−b2 αc3 | max{0, b} ≤ c ≤ a+ b}.

There are equalities

dimC(S[H1]/K)(a,b) = dimC(R/(Aα2
2α

2
3 +Bα1α2α3 + Cα2

1))(a,b) = dimCR(a,b) − dimCR(a−2,b).

(4.30)
Equations (4.29) and (4.30) imply Equation (4.28) and thus, finish the proof that V is of dimen-
sion at least 4.

If Hilb
h2,H1

S[H1] is irreducible, then it is of dimension dim Slip2,H1
= 4. It follows that we

have V = Hilb
h2,H1

S[H1] set-theoretically. This contradicts Theorem 4.15 since W is not equal to

Hilb
h2,P2

S[P2]
= Slip2,P2 .

We conclude this chapter with a remark.

Remark 4.31. In this section we considered two examples of toric morphisms f : X → Y

between smooth projective toric varieties with f∗OX ∼= OY . Hence Theorem 4.15 applies to
these cases. However, we have Y = P1 or P2 (depending on example) and r = 2. Therefore,
Hilb

h2,Y

S[Y ] equals Slip2,Y (see Proposition 3.39). Thus, the necessary condition from Theorem 4.15

is trivially satisfied. Nevertheless, we have Slip2,X 6= Hilb
h2,X

S[X] in both cases.
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Chapter 5

Applications of border apolarity to
secant varieties

In this chapter we present some applications of the border apolarity lemma (Proposition 2.92)
for studying secant varieties. Section 5.1 deals with existence of homogeneous wild polynomials,
i.e. polynomials whose border rank is strictly smaller than the smoothable rank. In Subsec-
tion 5.1.1 we show that there are no wild degree d polynomials in three variables of border rank
at most d + 2. In Subsection 5.1.2 we prove that there is no wild quartic in four variables of
border rank at most 6. In Subsection 5.1.3 we give an example of a wild quintic in four variables
of border rank 7. In Subsection 5.1.4 we show that the known example of a wild cubic of border
rank 5 in five variables (see [12, Thm. 1.3]) is a unique such example up to a change of variables.
Results from Section 5.1 depend on the criteria developed in Chapter 3. Subsections 5.1.1, 5.1.2
and 5.1.4 are based on [67].

Sections 5.2, 5.3 and 5.4 are based on [40]. This paper uses Proposition 2.92 in a simple
form. Namely, we do not use any criteria for distinguishing Slipr,n from Hilb

hr,n
S[Pn]. Therefore,

these results are not directly related to the rest of the thesis. Consequently, we present them
in special versions, where the proofs are simpler. In Section 5.2 we calculate cactus and border
cactus rank of a homogeneous subspace of a divided power ring that is divisible by a large power of
a linear form. This is then used in Section 5.3 to describe the points in κ14

(
νd(P6)

)
\σ14

(
νd(P6)

)
for all d ≥ 7. Results from Section 5.3 have their analogues for κ8,3

(
νd(P4)

)
\ σ8,3

(
νd(P4)

)
. In

Section 5.4 we state the main theorem in that direction.

5.1 Wild polynomials

In this section we assume that the base field k is the field of complex numbers C since we cite
results from papers in which this is assumed. Let n be a positive integer and S = C[α0, . . . , αn]

be the polynomial ring with the standard Z-grading. We consider the dual polynomial ring
S∗ = C[x0, . . . , xn] with the structure of an S-module on S∗ given by partial differentiation. We
denote this action by y. Given a homogeneous polynomial F ∈ S∗ we denote by Ann(F ) the
ideal {θ ∈ S | θyF = 0}.

We use the following consequence of the border apolarity lemma (Proposition 2.92).

Corollary 5.1. Let d be a positive integer and F ∈ S∗d . Assume that br(F ) ≤ r < cr(F ) holds
for some integer r. There exists an ideal I ⊆ Ann(F ) with [I] ∈ Slipr,n and Id 6= Id.
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Proof. By Proposition 2.92, there is an ideal [I] ∈ Slipr,n with I ⊆ Ann(F ). If we have Id =

Id, then there is an inclusion I ⊆ Ann(F ) by [11, Prop. 3.4]. Thus, cr(F ) ≤ r follows from
Proposition 2.91. This is a contradiction.

We always have br(F ) ≤ sr(F ) (see [56, Lem. 5.17]). Recall that we say that F is wild, if
the inequality is strict. Wild polynomials are more difficult to control using standard, existing
methods. Therefore, new methods need to be developed in order to study them effectively. For
example, see [3, Prop. 11] and its applications, [19, Rmk. 1.5] and [40].

We study wild homogeneous polynomials F satisfying br(F ) ≤ deg(F ) + 2. If the inequality
br(F ) ≤ deg(F ) + 1 holds then F is not wild. This is established in [11, Prop. 2.5] based on a
result in [3]. Therefore, we assume that we have br(F ) = deg(F ) + 2.

We use the following observation.

Lemma 5.2. Let r ≥ 2 be an integer and [I] ∈ Hilb
hr,n
S[Pn] be a closed point. If we have Ir−2 6= Ir−2

then S/I has Hilbert function hr,1.

Proof. Let g be the Hilbert function of S/I. The Hilbert polynomial of S/I is r. Therefore, by
Lemma 2.9(ii) we get g(r − 2) ≤ r − 1. Lemma 2.9(iii) implies that we have g(0) = 1 < g(1) <

g(2) < · · · < g(r − 2) ≤ r − 1. It follows that g(a) = a + 1 holds for every a ∈ {0, . . . , r − 2}.
Using Lemma 2.9 again we obtain the equalities g(a) = r for all a ≥ r − 1. Thus, g equals
hr,1.

5.1.1 Polynomials in three variables of small border rank

In this subsection we prove that there is no wild homogeneous polynomial F in three variables
of border rank at most deg(F ) + 2.

We start with the following observation.

Lemma 5.3. Let d be a positive integer and let e = dd+1
2 e. Let Hd−1 ∈ C[x1, x2]d−1 and Hd ∈

C[x1, x2]d be homogeneous polynomials. There exists an element α0ξe−1+ξe ∈ Ann(x0Hd−1+Hd)

with ξe−1 ∈ C[α1, α2]e−1, ξe ∈ C[α1, α2]e and ξe 6= 0.

Proof. Let T ∗ = C[x1, x2] and T = C[α1, α2]. We consider the restriction of the action of
S = C[α0, α1, α2] on S∗ = C[x0, x1, x2] to an action of T on T ∗. If H is an element of T ∗, we
write AnnT (H) if we compute the annihilator ideal with respect to the T action.

Let F = x0Hd−1 + Hd. We have (α0ξe−1 + ξe)yF = x0(ξeyHd−1) + (ξe−1yHd−1 + ξeyHd).
Therefore, we need to choose ξe ∈ AnnT (Hd−1). If there exists a non-zero ξe ∈ AnnT (Hd−1) ∩
AnnT (Hd) we can set ξe−1 = 0 and we are done.

Otherwise, let h be the Hilbert function of T/AnnT (Hd−1). The C-vector space

lin{ξeyHd | ξe ∈ AnnT (Hd−1)e}

has dimension e+ 1− h(e). On the other hand the vector space

lin{ξe−1yHd−1 | ξe−1 ∈ Te−1}

is of dimension h(e − 1). It is enough to show that these two vector subspaces of T ∗d−e have a
non-zero intersection. It suffices to establish the inequality

e+ 1− h(e) + h(e− 1) ≥ d− e+ 2. (5.4)
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By the definition of e we have d + 1 ≤ 2e. We claim that h(e − 1) − h(e) is non-negative. If
AnnT (Hd−1)e−1 is non-zero, then the inequality h(e − 1) − h(e) ≥ 0 follows from Lemma 2.12.
On the other hand, if we have AnnT (Hd−1)e−1 = 0 and h(e) > h(e − 1), then AnnT (Hd−1)e is
zero. Since T/AnnT (Hd−1) is Gorenstein, we get h(d − 1 − e) = h(e) = e + 1. This gives a
contradiction with d+ 1 ≤ 2e. These remarks imply Equation (5.4).

Now we present the main result of this subsection.

Proposition 5.5. Let S = C[α0, α1, α2] be a polynomial ring with dual ring S∗ = C[x0, x1, x2].
Let F ∈ S∗d be a non-zero polynomial for some d ∈ Z>0. If the border rank of F is at most d+ 2,
then we have cr(F ) = sr(F ) = br(F ).

Proof. By [11, Prop. 2.5] we may assume that br(F ) equals d + 2. Furthermore, sr(F ) = cr(F )

holds since Hilbr(P2) is irreducible for every positive integer r. If we have cr(F ) ≤ d + 2, it
follows from

d+ 2 = br(F ) ≤ sr(F ) = cr(F ) ≤ d+ 2

that there are equalities cr(F ) = sr(F ) = br(F ). Assume that we have cr(F ) > d + 2. From
Corollary 5.1 we obtain that there is an ideal I ⊆ Ann(F ) with [I] ∈ Slipd+2,2 and Id 6= Id.
From Lemma 5.2 we get that S/I has Hilbert function hd+2,1. We may assume that I equals(
α0, Fd+2(α1, α2)

)
. It follows from Theorem 3.66 that (α2

0) · (α0, α1, α2)d−2 is contained in I ⊆
Ann(F ). Thus, α2

0 is in Ann(F ) and consequently, F is of the form F = x0Hd−1 + Hd with
Hd−1 ∈ C[x1, x2]d−1 and Hd ∈ C[x1, x2]d.

Let e = dd+1
2 e. By Lemma 5.3, there is an element ηe = α0ξe−1 + ξe ∈ Ann(F ) with

ξe−1 ∈ C[α1, α2]e−1 and non-zero ξe ∈ C[α1, α2]e. Let J = (α2
0, ηe). We have J ⊆ Ann(F ) and

S/J has Hilbert polynomial 2e ≤ d+ 2. Moreover, J is saturated. Indeed, let > be the lex order
with α2 > α1 > α0 and let J ′ be the initial ideal of J with respect to the order >. We have
J ′ = (α2

0,M) where M belongs to {αe1, α
e−1
1 α2, . . . , α

e
2}. In particular, J ′ is saturated. Thus, so

is J by Lemma 2.7. It follows from Proposition 2.91 that we have cr(F ) ≤ d+ 2.

Remark 5.6. In [3, p. 37] in the paragraph above Remark 13, there is an example that suggests
that there could exist a wild polynomial in σ8(ν6(P2)). Proposition 5.5 shows that there is no
such polynomial.

In the context of Proposition 5.5, there is the following natural question.

Problem 5.7. Does there exist a homogeneous polynomial F ∈ C[x0, x1, x2] with br(F ) 6=
sr(F )? If it does, what is the smallest possible degree of such a polynomial?

It follows from Proposition 5.5 that if there exists a wild polynomial F ∈ C[x0, x1, x2]d, then
we have d ≥ 6 since otherwise σd+2(νd(P2)) is equal to P(2+d

d )−1 by the Alexander-Hirschowitz
theorem [7, Thm. 1.2].

5.1.2 Quartics in four variables of small border rank

There are no wild cubics in four variables [12, Thm. 1.3]. In this subsection we prove that there
are no wild homogeneous quartics in four variables of border rank at most 6.

Proposition 5.8. Let S = C[α0, . . . , α3] be a polynomial ring with dual ring S∗ = C[x0, . . . , x3].
Let F ∈ S∗4 be non-zero. If the border rank of F is at most 6, then we have cr(F ) = sr(F ) = br(F ).
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Proof. By [11, Prop. 2.5] we may assume that br(F ) equals 6. Since Hilb6(P3) is irreducible (see
[20, Thm. 1.1]), it is enough to show that we have cr(F ) ≤ 6. Assume that it does not hold.

By Corollary 5.1 there is an ideal [I] ∈ Slip6,3 with I ⊆ Ann(F ) and I4 6= I4. It follows from
Lemma 5.2 that S/I has Hilbert function h6,1. We may assume that I1 is equal to (α0, α1)1. By
Theorem 3.66 we get (α0, α1)2 ⊆ Ann(F ). Thus, we may restrict our attention to the case that
we have F = x0C1 + x1C2 +D with C1, C2 ∈ C[x2, x3]3 and D ∈ C[x2, x3]4.

There is a polynomial θ ∈ C[α2, α3]3 satisfying θyC1 = θyC2 = 0. By a linear change of
variables in C[α2, α3] we may assume that θ is one of the following:

1. θ = α3
2;

2. θ = α2
2α3;

3. θ = α2α3(α2 − α3).

We study this case by case. We further simplify F by a linear change of variables and in each
case we find a homogeneous ideal J ⊆ Ann(F ) whose initial ideal with respect to the lex order
with α2 > α3 > α1 > α0 is saturated and the Hilbert polynomial of the corresponding quotient
algebra is 6. Thus, cr(F ) ≤ 6 is a consequence of Lemma 2.7 and Proposition 2.91. In each case
the given set of generators of J is a Gröbner basis. We may assume that Ann(F )1 is zero by
Proposition 5.5 and [12, §3.1].

We start with case 1. Up to a linear change of variables in S∗ we have one of the cases:

1.A F = x0(x2
2x3 + ax3

3) + x1x2x
2
3 +Q with a ∈ C and Q ∈ C[x2, x3]4;

1.B F = x0(x2
2x3 + ax2x

2
3) + x1x

3
3 +Q with a ∈ C and Q ∈ C[x2, x3]4;

1.C F = x0x2x
2
3 + x1x

3
3 +Q with Q ∈ C[x2, x3]4.

Let α3
2yQ = Ax2 +Bx3. Corresponding to the above cases, the following ideals contained in

Ann(F ) show that the cactus rank of F is at most 6:

1.A J = (α2
0, α0α1, α

2
1, α0α2 − α1α3, α1α

2
2, α

3
2 − A

2 α0α2α3 − B
2 α1α2α3);

1.B J = (α2
0, α0α1, α

2
1, α1α2, α0α

2
2 − 1

3α1α
2
3, α

3
2 − A

2 α0α2α3 + aA−B
6 α1α

2
3);

1.C J = (α2
0, α0α1, α

2
1, α1α2, α0α

2
2, α

3
2 − A

2 α0α
2
3 − B

6 α1α
2
3).

Now we consider case 2, namely we assume that α2
2α3yC1 = α2

2α3yC2 is zero. Up to a linear
change of variables in S∗ and excluding possibilities already considered in case 1, we have one of
the cases:

2.A F = x0(x3
2 + ax3

3) + x1(x2x
2
3 + bx3

3) +Q with a, b ∈ C and Q ∈ C[x2, x3]4;

2.B F = x0(x3
2 + ax2x

2
3) + x1x

3
3 +Q with a ∈ C and Q ∈ C[x2, x3]4.

Let α2
2α3yQ = Ax2 +Bx3. Corresponding to the above cases, the following ideals contained

in Ann(F ) show that the cactus rank of G is at most 6:

2.A If a is non-zero, take J = (α2
0, α0α1, α

2
1, aα1α2− 1

3α0α3, α0α2α3, α
2
2α3− A

6 α0α
2
2− B

2 α1α2α3).

If a is zero, take J = (α2
0, α0α1, α

2
1, α0α3, α1α

2
2, α

2
2α3 − A

6 α0α
2
2 − B

2 α1α2α3);

2.B Take J = (α2
0, α0α1, α

2
1, α1α2, α0α2α3 − a

3α1α
2
3, α

2
2α3 − A

6 α0α
2
2 − B

6 α1α
2
3).
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Finally we consider case 3, that is we assume that α2α3(α2 − α3)yC1 = α2α3(α2 − α3)yC2 is
zero. Up to a linear change of variables in S∗ and excluding possibilities considered in case 1, we
have one of the cases:

3.A F = x0(x3
2 + ax3

3) + x1(x2
2x3 + x2x

2
3 + bx3

3) +Q with a, b ∈ C and Q ∈ C[x2, x3]4;

3.B F = x0(x3
2 + ax2

2x3 + ax2x
2
3) + x1x

3
3 +Q with a ∈ C and Q ∈ C[x2, x3]4.

Let (α2
2α3 − α2α

2
3)yQ = Ax2 + Bx3. Corresponding to the above cases, the following ideals

show that the cactus rank of G is at most 6:

3.A If a is non-zero, take J = (α2
0, α0α1, α

2
1, aα1α2+a

3α0α2−aα1α3+(b−1
3)α0α3, α0α2α3, α

2
2α3−

α2α
2
3 − A

6 α0α
2
2 − B

2 α1α
2
2).

If a is zero, take J = (α2
0, α0α1, α

2
1, α0α3, α1α

2
2 + 1

3α0α
2
2−α1α2α3, α

2
2α3−α2α

2
3− A

6 α0α
2
2−

B
2 α1α

2
2);

3.B If a is zero, then we are in case 2.B. Therefore, assume that a is non-zero. Take

J = (α2
0, α0α1, α

2
1, α1α2, α0α2α3−α0α

2
3−

a

3
α1α

2
3, α

2
2α3−α2α

2
3−

A

6
α0α

2
2 +

aA− 3B

18
α1α

2
3).

5.1.3 Wild quintic in four variables of border rank 7

In Proposition 5.8 we showed that there are no wild quartics in four variables of border rank 6.
In this subsection, we give an example of a wild quintic in four variables of border rank 7.

Proposition 5.9. Let S = C[α0, α1, α2, α3] be polynomial ring with graded dual ring S∗ =

C[x0, x1, x2, x3]. Let F = x0x
4
2 + x0x

3
2x3 + x1x

2
2x

2
3 + x1x

4
3. We have br(F ) = 7 and cr(F ) > 7.

Thus, F is wild.

Proof. The Hilbert scheme Hilb7(P3) is irreducible by [20, Thm. 1.1]. Therefore, there is an
equality sr(F ) = cr(F ) so it is enough to show that we have br(F ) = 7 < cr(F ). Furthermore,
by [11, Prop. 2.5] it suffices to show that the inequalities br(F ) ≤ 7 < cr(F ) hold.

We have (α0, α1)2 ⊆ Ann(F ). If J is equal to (Ann(F )≤3)+(α7
2), then [J ] is in Hilb

h7,3

S and it
follows from Theorem 3.66 that there is an ideal [J ′] ∈ Slip7,3 with (J ′)≥5 = J≥5. In particular,
we have J ′5 = J5 ⊆ Ann(F )5 so J ′ is contained in Ann(F ). The inequality br(F ) ≤ 7 follows
from Proposition 2.92.

Now we show that we have cr(F ) > 7. Otherwise, by Proposition 2.91 there exists a ho-
mogeneous, saturated ideal K ⊆ Ann(F ) such that S/K has Hilbert polynomial 7. Since
HS/Ann(F )(a) = h7,3(a) holds for all a ≤ 3, we have K≤3 = Ann(F )≤3. We get (α0, α1) =

(Ann(F )≤3) ⊆ K. This is a contradiction since K1 = Ann(F )1 is zero.
The claims that [J ] is in Hilb

h7,3

S and that we have (α0, α1) = (Ann(F )≤3) where checked in
Macaulay2 [43] using the following code:

S=QQ[x_0..x_3];
F=x_0*x_2^4+x_0*x_2^3*x_3+x_1*x_2^2*x_3^2+x_1*x_3^4;
Ann=inverseSystem(F);
AnnUpTo3 = ideal (select ((entries mingens Ann)#0, (i) -> (degree i)#0 <= 3));
J=AnnUpTo3 + ideal(x_2^7);

108



hilbertSeries(J, Order=>12)
saturate(AnnUpTo3).

5.1.4 Cubics in five variables of minimal border rank

In this subsection we let S = C[α0, . . . , α4] be a polynomial ring and S∗ = C[x0, . . . , x4] be the
dual ring. Let C ∈ S∗ be a homogeneous polynomial of degree 3. We say that C is concise if
Ann(C)1 is zero. It is known that there exists a wild concise cubic in S∗ of border rank 5 (see
[12, Thm. 1.3]) and that a concise cubic in S∗ of border rank 5 is wild if and only if its Hessian
is zero (see [53, Thm. 4.9]).

Using Theorem 3.66 we obtain in a simple way that up to a linear change of variables, the
cubic given in [12, Thm. 1.3] is the unique wild cubic in S∗ of border rank 5.

Proposition 5.10. Let S = C[α0, . . . , α4] be a polynomial ring with graded dual ring S∗ =

C[x0, . . . , x4]. Up to a linear change of variables, the cubic

x0x
2
3 − x1(x3 + x4)2 + x2x

2
4 (5.11)

is the unique wild cubic in S∗ of border rank 5.

Proof. Let C ∈ S be a wild cubic of border rank 5. By [12, Thm. 1.3] we may assume that
C is concise. By Proposition 2.92 there is an ideal I ⊆ Ann(C) with [I] ∈ Slip5,4. If the
Hilbert function of S/I is not h5,1, then we have I3 = I3 by Lemma 5.2. Thus, cr(C) ≤ 5 holds
by Corollary 5.1. Consequently, C is not wild since there is an equality cr(C) = sr(C) (see
[20, Thm. 1.1]). Therefore, we may assume that I is equal to

(
α0, α1, α2, F (α3, α4)

)
for some

F ∈ C[α3, α4]5. Since [I] belongs to Slip5,4 it follows from Theorem 3.66 that (α0, α1, α2)2 ·
(α0, α1, . . . , α4) is a subset of Ann(C) and thus, (α0, α1, α2)2 is contained in Ann(C). Hence we
have

C = x0Q0 + x1Q1 + x2Q2 + C ′ where Q0, Q1, Q2 ∈ C[x3, x4]2 and C ′ ∈ C[x3, x4]3.

Moreover, Q0, Q1, Q2 ∈ C[x3, x4]2 are linearly independent since C is concise. Therefore, after a
linear change of variables we may reduce C to the form given in Equation (5.11).

Remark 5.12. The annihilator ideal Ann(C) of a concise cubic C has a minimal generator of de-
gree 3 (see [15, Thm. 5.4] for a vast generalization). Therefore, the form given in Equation (5.11)
should be compared to the form given in [16, Thm. 4.5].

5.2 (Border) cactus rank of a homogeneous subspace divisible by
a large power of a linear form

In this section we compute the cactus rank and the border cactus rank of a homogeneous subspace
of a divided power ring divisible by a large power of a linear form. This result is based on [40,
Thm. 4.2 and 4.3]. However, here we strengthen the assumptions to omit technical difficulties.

Let k be an algebraically closed field, let n be a positive integer and consider polynomial
rings S = k[α1, . . . , αn] ⊆ k[α0, . . . , αn] = T with graded dual rings S∗ = kdp[x1, . . . , xn] ⊆
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kdp[x0, . . . , xn] = T ∗. Let d1 be a positive integer and W ⊆ S∗≤d1
be a linear subspace. For a

non-negative integer d2 we define

W hom,d2 = {fhom,d2 | f ∈W} ⊆ T ∗d1+d2
.

where we have

fhom,d2 =

deg(f)∑
i=0

Fix
[d2+d1−i]
0 ∈ T ∗d1+d2

for every f = Fdeg f + · · ·+ F0 ∈W with Fi ∈ S∗i . We show that there are equalities

cr(W hom,d2) = bcr(W hom,d2) = dimk S/Ann(W )

if the inequality d2 ≥ d1 holds.
We start with a lemma which is based on [4, Lem. 2].

Lemma 5.13 ([40, Lem. 3.6 and 3.8]). We have:

(i) Ann(W )hom ⊆ Ann(W hom,d2), and

(ii) (Ann(W )hom)≤d2 = Ann(W hom,d2)≤d2.

Proof. The proof of the lemma is based on the following calculation. Let

Γ = αd0Θ0 + αd−1
0 Θ1 + · · ·+ Θd,

with Θi ∈ Si and let f ∈W . We can rewrite Γyfhom,d2 as follows

Γyfhom,d2 =

d1∑
e=0

min(d1−e,d)∑
j=0

(αd−j0 Θj)y(x
[d1+d2−(e+j)]
0 Fe+j)

=

d1∑
e=0

min(d1−e,d)∑
j=0

(αd−j0 yx[d1+d2−(e+j)]
0 )(ΘjyFe+j)

=

min(d1,d1+d2−d)∑
e=0

min(d1−e,d)∑
j=0

x
[d1+d2−d−e]
0 (ΘjyFe+j)

=

min(d1,d1+d2−d)∑
e=0

x
[d1+d2−d−e]
0

min(d1−e,d)∑
j=0

ΘjyFe+j .

(5.14)

(i) Let θ = Θ0 + · · · + Θd ∈ Ann(W ), where Θi is homogeneous of degree i. We show that
θhom = αd0Θ0 + αd−1

0 Θ1 + · · ·+ Θd belongs to Ann(W hom,d2). We have

Ann(W hom,d2) =
⋂
f∈W

Ann(fhom,d2). (5.15)

Thus, it suffices to show that θhom is in Ann(fhom,d2) for every f ∈ W . If f belongs
to W , then θ is in Ann(f). We set Γ = θhom in Equation (5.14). For every e =

0, . . . ,min(d1, d1 + d2 − d) the sum
∑min(d1−e,d)

j=0 ΘjyFe+j is zero since θyf is zero. We
get θhomyfhom,d2 = 0, as claimed.
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(ii) The inclusion Ann(W )hom ⊆ Ann(W hom,d2) follows from part (i). We claim that we have

(Θ|α0=1) ∈ Ann(f) for every f ∈W and Θ ∈ Ann(fhom,d2)≤d2 . (5.16)

Before proving the claim, we show how to conclude the proof of part (ii). Let Θ ∈
Ann(W hom,d2)≤d2 . It follows from Equation (5.15) that Θ is in Ann(fhom,d2) for every
f ∈W . Thus, by Equation (5.16) we get

Θ|α0=1 ∈
⋂
f∈W

Ann(f) = Ann(W ).

As a result Θ belongs to (Ann(W )hom)≤d2 .

We are left with proving the claimed Equation (5.16). Pick f ∈ W . Assume that the
inequality d ≤ d2 holds and let Θ = αd0Θ0 + αd−1

0 Θ1 + · · ·+ Θd with Θi ∈ Si be such that
Θyfhom,d2 is zero. We claim that (Θ|α0=1)yf is zero. By Equation (5.14) (with Γ = Θ) we
have

0 =

d1∑
e=0

x
[d1+d2−d−e]
0

min(d1−e,d)∑
j=0

ΘjyFe+j .

Since the exponents at x0 are pairwise different, we get

min(d1−e,d)∑
j=0

ΘjyFe+j = 0 for every d1 ≥ e ≥ 0.

This implies that (Θ|α0=1)yf is zero.

We use the following result, which bounds the degree from which T/Ann(W )hom agrees with
its Hilbert polynomial.

Lemma 5.17 ([40, Cor. 3.3]). Let W ⊆ S∗≤d1
be a linear subspace. The equality

H(T/Ann(W )hom, e) = dimk S/Ann(W )

holds for every e ≥ d1.

Now we present the main result of this section. The version for polynomials instead of
arbitrary subspaces can be strengthened, see [40, Thm. 4.3]. Recall the notion of a standard
Hilbert function from Definition 2.93.

Theorem 5.18 ([40, Thm. 4.2]). Let W ⊆ S∗≤d1
be a linear subspace and r = dimk S/Ann(W ).

Let d2 be a non-negative integer. We have the following:

(i) The cactus rank of W hom,d2 is at most r.

(ii) If we have d2 ≥ d1, then there is no homogeneous ideal J ⊆ Ann(W hom,d2) such that
T/J has an (r − 1, n + 1)-standard Hilbert function. In particular, the border cactus rank
bcr(W hom,d2) of W hom,d2 equals r.

(iii) If we have d2 ≥ d1 + 1 and J ⊆ Ann(W hom,d2) is a homogeneous ideal such that T/J has
an (r, n+ 1)-standard Hilbert function, then the equality J = Ann(W )hom holds.
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Proof.

(i) We have Ann(W )hom ⊆ Ann(W hom,d2) by Lemma 5.13(i). The Hilbert polynomial of
T/Ann(W )hom is dimk S/Ann(W ) = r. Moreover, the ideal Ann(W )hom is saturated.
Hence the claim follows from Proposition 2.91.

(ii) We have H(T/Ann(W )hom, d1) = r by Lemma 5.17. Therefore, by Lemma 5.13(ii) we
have

H(T/Ann(W hom,d2), d1) = r.

Thus, there exists no ideal J ⊆ Ann(W hom,d2) such that T/J has an (r−1, n+1)-standard
Hilbert function. By Proposition 2.94 we get bcr(W hom,d2) ≥ r, which together with
part (i) implies that bcr(W hom,d2) equals r.

(iii) Assume that J ⊆ Ann(W hom,d2) is such that T/J has an (r, n + 1)-standard Hilbert
function. By Lemmas 5.13(ii) and 5.17 we get

H(T/Ann(W hom,d2), d2) = H(T/Ann(W )hom, d2) = r.

In particular, we have Jd2 = (Ann(W )hom)d2 . Since Ann(W )hom is generated in degrees
smaller or equal d1 + 1 ≤ d2, it follows that Jd ⊇ (Ann(W )hom)d holds for every d ≥ d2.

Ideals J and Ann(W )hom have the same Hilbert polynomial. Hence we get

J = (Ann(W )hom) = Ann(W )hom.

5.3 Distinguishing secant from cactus varieties

In this section we work over the field of complex numbers. We show that for all d ≥ 7, the
cactus variety κ14

(
νd(P6)

)
has two irreducible components: η14

(
νd(P6)

)
and the secant variety

σ14

(
νd(P6)

)
. Moreover, we describe the points of η14

(
νd(P6)

)
and present an algorithm that

verifies whether a point in κ14

(
νd(P6)

)
is in σ14

(
νd(P6)

)
. These results are special cases of [40,

Thm. 1.4 and Thm. 1.6] which address the case of κ14

(
νd(Pn)

)
for all n ≥ 6 and all d ≥ 5 ([40,

Thm. 1.4]) or d ≥ 6 ([40, Thm. 1.6]). Our presentation follows [40] with minor changes and some
simplifications due to additional assumptions.

For X = An or Pn, we denote by HilbGorr (X) the open subset of the Hilbert scheme Hilbr(X)

consisting of points corresponding to Gorenstein subschemes. Let HilbGor,smr (X) denote its
smoothable component. It is a key observation, that the cactus variety κr

(
νd(Pn)

)
is actually

determined by the Gorenstein locus of the Hilbert scheme. More precisely, we have

κr(νd(Pn)) =
⋃
{〈νd(R)〉 | [R] ∈ HilbGorr (Pn)} (5.19)

by [11, Prop. 2.2]. Therefore, ifHilbGorr (Pn) is irreducible then κr
(
νd(Pn)

)
is equal to σr

(
νd(Pn)

)
.

Note that a description of the cactus variety, similar to the one given by Equation (5.19), works
over an arbitrary field (see [17, Cor. 6.20]).

If we have either r ≤ 13 or r = 14 and n < 6, the scheme HilbGorr (An) is irreducible by [21,
Thm. A]. Therefore, in that case, κr

(
νd(Pn)

)
is equal to σr

(
νd(Pn)

)
. Thus, the cactus variety

κ14

(
νd(P6)

)
that we study in this section is the simplest example of a reducible cactus variety.
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We assume that we have d ≥ 7. However, the presented results hold for all d ≥ 6, and some of
them, even for d = 5, with more technical proofs. See [40] for this as well as the case n > 6.

We start with defining for all d ≥ 3 an irreducible, closed subset η14

(
νd(P6)

)
. Consider the

following rational map ϕ, which assigns to a scheme R its projective linear span 〈vd(R)〉

ϕ : HilbGor14 (P6) Gr(14,SymdC7).

Let U ⊆ HilbGor14 (P6) be a dense open subset on which ϕ is regular. Consider the projectivized
universal bundle PS over Gr(14, SymdC7), given as a set by

PS = {([P ], [p]) ∈ Gr(14, SymdC7)× P(SymdC7) | p ∈ P},

together with the inclusion i : PS ↪→ Gr(14,SymdC7)× P(SymdC7). We pull the commutative
diagram

PS Gr(14,SymdC7)× P(SymdC7)

Gr(14, SymdC7)

i

π

pr1

back along ϕ to U , getting the commutative diagram

ϕ∗(PS) U × P(SymdC7)

U .

ϕ∗i

ϕ∗π

pr1

Let Y be the closure of ϕ∗(PS) inside HilbGor14 (P6) × P(SymdC7). The scheme Y has two irre-
ducible components, Y1 and Y2, corresponding to two irreducible components of HilbGor14 (P6), the
schemes HilbGor,sm14 (P6) and H1661, respectively. For the description of irreducible components
of HilbGor14 (P6) see [21].

We have

σ14

(
νd(P6)

)
= pr2(Y1), and we define

η14

(
νd(P6)

)
= pr2(Y2).

By construction, if κ14

(
νd(P6)

)
is reducible, then η14

(
νd(P6)

)
and σ14

(
νd(P6)

)
are its irreducible

components.
In the next lemma, we bound the dimension of η14

(
νd(P6)

)
.

Lemma 5.20 ([40, Prop. 5.5]). The irreducible set η14

(
νd(P6)

)
has dimension at most 89.

Proof. There is the following commutative diagram

P(SymdC7) ⊇ σ ∪ η Y1 ∪ Y2 PS

HilbGor14 (P6) HilbGor,sm14 (P6) ∪H1661 Gr(14,SymdC7)

χ

where σ and η denote σ14

(
νd(P6)

)
and η14

(
νd(P6)

)
respectively, and χ : Y1 ∪ Y2 → HilbGor14 (P6)

is the projection. We have dim η14(νd(P6)) ≤ dim(Y2) = m + 13, where m equals dimH1661
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and 13 is the dimension of the general fiber of the map χ|Y2 : Y2 → H1661. It follows from [59,
Thm. 1.1], that m is equal to 76 and therefore, we get dim η14

(
νd(P6)

)
≤ 89.

One of the reasons why the case of P6 is simpler than the case of Pn for n > 6 is the following
lemma which follows from [59].

Lemma 5.21. Let S = C[α1, . . . , α6] be a polynomial ring and let S∗ = C[x1, . . . , x6] be its
graded dual ring. For a polynomial f = F3 + F2 + F1 + F0 ∈ S∗≤3 with Fi ∈ S∗i consider the
conditions:

(i) Apolar(f) has (local) Hilbert function (1, 6, 6, 1);

(ii) Apolar(F3) has Hilbert function (1, 6, 6, 1);

(iii) [Spec Apolar(f)] is a point of HilbGor14 (A6) \ HilbGor,sm14 (A6);

(iv) [Spec Apolar(F3)] is a point of HilbGor14 (A6) \ HilbGor,sm14 (A6).

Conditions (i) and (ii) are equivalent. Conditions (iii) and (iv) are equivalent.

Proof. The equivalence of (i) and (ii) follows from [59, Rmk. 2.2] and the other equivalence is a
consequence of [59, Thm. 1.1].

In Lemma 5.22 we identify for all d ≥ 7 some points in κ14

(
νd(P6)

)
\ σ14

(
νd(P6)

)
. Later, we

show that the closure of the locus of these points is the irreducible component η14

(
νd(P6)

)
.

Lemma 5.22 ([40, Prop. 5.6]). Let T = C[α0, . . . , α6] be a polynomial ring with graded dual ring
T ∗ = C[x0, . . . , x6]. Let (y0, y1, . . . , y6) be a C-basis of T ∗1 . Assume that G is equal to yd−3

0 P for
some natural number d ≥ 7 and P ∈ T ∗3 . Define f := P |y0=1 = F3 + F2 + F1 + F0 ∈ R∗ :=

C[y1, . . . , y6]. If f satisfies the following conditions:

(a) Apolar(f) has (local) Hilbert function (1, 6, 6, 1),

(b) we have [Spec Apolar(f)] /∈ HilbGor,sm14 (A6),

then [G] is a point of κ14

(
νd(P6)

)
\ σ14

(
νd(P6)

)
.

Proof. Let F ′i = (d− i)!Fi for all i ∈ {0, 1, 2, 3} and let f ′ = F ′3 + F ′2 + F ′1 + F ′0. We have

G =
3∑
i=0

y
[d−i]
0 F ′i . (5.23)

By Lemma 5.21, conditions (a) and (b) hold with f ′ instead of f . There is an equality
dimC(R/Ann(f ′)) = 14 by condition (a). Therefore, from Theorem 5.18(i) and Equation (5.23)
we get cr(G) ≤ 14.

From Proposition 2.92, if [G] belongs to σ14

(
νd(P6)

)
then there exists J ⊆ Ann(G) with

[J ] ∈ Slip14,PT ∗1 ⊆ Hilb
h14,6

T . Thus, [Proj(T/J)] is in Hilbsm14 (P6). From Theorem 5.18(iii) it
follows that we have J = Ann(f ′)hom, so we get

[Spec(R/Ann(f ′))] ∈ HilbGor,sm14 (A6).

This contradicts condition (b).

114



The following lemma is an analogue of [40, Lem. 5.3].

Lemma 5.24. Let S = C[α1, . . . , α6] be a polynomial ring and S∗ = C[x1, . . . , x6] be the graded
dual ring. Define subsets

Â = {f ∈ S∗≤3 | S/Ann(f) has local Hilbert function (1, 6, 6, 1)}

and
B̂ = {f ∈ Â | [SpecS/Ann(f)] /∈ HilbGor,sm14 (A6)}.

The subset Â is irreducible and 84-dimensional. Furthermore, B̂ is dense in Â.

Proof. It follows from Lemma 5.21 that for a given f = F3 +F2 +F1 +F0 ∈ S∗≤3 we have f ∈ Â
(respectively, f ∈ B̂) if and only if F3 belongs to Â (respectively, F3 is in B̂). Moreover, Â is
open in S∗≤3 so there are equalities dim Â = dimS∗≤3 = 84.

We have a well defined morphism

π : Â→ HilbGor14 (A6) ⊆ Hilb14(A6)

that maps f to [SpecS/Ann(f)] (see [40, Thm. 7.1] which is based on [59, Prop. 2.12]). By
definition, B̂ is equal to π−1

(
H1661 \HilbGor,sm14 (A6)

)
, where H1661 is the irreducible component

of HilbGor14 (A6) other than the smoothable component. It follows that B̂ is open, and hence dense
in Â.

Now we present the main result of this section.

Theorem 5.25 ([40, Thm. 1.1]). Let d ≥ 7 be an integer and T ∗ = C[x0, x1, . . . , x6]. The
cactus variety κ14

(
νd(PT ∗1 )

)
has two irreducible components: the secant variety σ14

(
νd(PT ∗1 )

)
and the other one, denoted by η14

(
νd(PT ∗1 )

)
. Consider the map ψ : PT ∗1 × PT ∗3 → PT ∗d given by

([y0], [P ]) 7→ [yd−3
0 P ]. Its image is η14

(
νd(PT ∗1 )

)
.

Proof. Let
U0 = {[a0x0 + · · ·+ a6x6] ∈ PT ∗1 | ai ∈ C and a0 6= 0}.

Let S∗ = C[x1, . . . , x6]. Given [y0] ∈ U0 with y0 = a0x0 + · · ·+a6x6 and P ∈ T ∗d , we can consider
P |y0=1 as an element of S∗. Note that it is independent of the choice of representative y0 of the
class [y0]. Indeed, it is obtained by substituting x0 = 1−

∑6
i=1

ai
a0
xi. Recall the definition of the

set B̂ from Lemma 5.24. We use the following subset of PT ∗1 × PT ∗3 :

D = {[y0], [P ] ∈ PT ∗1 × PT ∗3 | [y0] ∈ U0 and P |y0=1 ∈ B̂}.

Observe that the condition P |y0=1 ∈ B̂ is independent of the choice of representatives y0 and P of
[y0] and [P ]. By construction and Lemma 5.24, D is irreducible and of dimension 6+dim B̂−1 =

89. We have dim(PT ∗1 × PT ∗3 ) = 6 + 83 = 89. Thus, D is equal to PT ∗1 × PT ∗3 . The morphism ψ

is closed. We get
ψ(PT ∗1 × PT ∗3 ) = ψ(D).

By Lemma 5.22 the set-theoretic image ψ(D) is contained in η14

(
νd(PT ∗1 )

)
. Therefore,

ψ(PT ∗1 × PT ∗3 ) is a subset of η14

(
νd(PT ∗1 )

)
. Observe that ψ has finite fibers. It follows that

ψ(PT ∗1 ×PT ∗3 ) is an 89-dimensional, irreducible closed subset of η14

(
νd(PT ∗1 )

)
. The latter variety
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is irreducible and of dimension at most 89 (see Lemma 5.20). Thus, we have ψ(PT ∗1 × PT ∗3 ) =

η14

(
νd(PT ∗1 )

)
.

Having described the irreducible component of κ14

(
νd(P6)

)
other than σ14

(
νd(P6)

)
we can

algorithmically check whether a given point [G] ∈ κ14

(
νd(P6)

)
belongs to σ14

(
νd(P6)

)
.

We start with the following lemma which characterizes the points of κ14

(
νd(P6)

)
\σ14

(
νd(P6)

)
.

Lemma 5.26. Let T = C[α0, . . . , α6] be a polynomial ring and T ∗ = C[x0, . . . , x6] be the graded
dual ring. Let d ≥ 7. The point [G] ∈ κ14

(
νd(P6)

)
does not belong to σ14

(
νd(P6)

)
if and only if

there exist y0 ∈ T ∗1 and P ∈ T ∗3 such that G is equal to yd−3
0 P and for any completion of y0 to a

basis (y0, . . . , y6) of T ∗1 (with dual basis equal to (β0, . . . , β6)) we have:

(a) Apolar(P |y0=1) has Hilbert function (1, 6, 6, 1),

(b) [Spec Apolar(P |y0=1)] /∈ HilbGor,sm14 (A6).

Proof. If y0 ∈ T ∗1 and P ∈ T ∗3 are such that G equals yd−3
0 P and there exists a completion of y0

to a basis (y0, . . . , y6) of T ∗1 for which conditions (a) and (b) hold, we get [G] /∈ σ14

(
νd(P6)

)
by

Lemma 5.22.
Assume that we have [G] /∈ σ14

(
νd(P6)

)
. By Theorem 5.25 there exists a linear form y0 ∈ T ∗1

with yd−3
0 |G. We claim that G is not divisible by yd−2

0 . Indeed, otherwise, from Theorem 5.18(ii)
we get bcr(G) ≤ 8, so [G] belongs to κ8

(
νd(P6)

)
= σ8

(
νd(P6)

)
⊆ σ14

(
νd(P6)

)
. We showed that

G is equal to yd−3
0 P for some P ∈ T ∗3 . Extend y0 to a basis y0, y1, . . . , y6. Let f = P |y0=1 ∈

C[y1, . . . , y6]. Suppose f equals F3 + F2 + F1 + F0.
Now we prove that conditions (a) and (b) hold. Let f ′ = F ′3 + F ′2 + F ′1 + F ′0 ∈ C[y1, . . . , y6]

with F ′i = (d− i)!Fi. By Lemma 5.21, it is enough to show that conditions (a) and (b) hold for
f ′ instead of f = P |y0=1. We have

G =

3∑
i=0

y
[d−i]
0 F ′i .

By Lemma 5.13 (i) there is an inclusion

Ann(f ′)hom ⊆ Ann(G).

If we have dimC
(

Apolar(f ′)
)
≤ 13, then cr(G) ≤ 13 holds by Proposition 2.91, since Ann(f ′)hom

is saturated and T/Ann(f ′)hom has Hilbert polynomial dimC
(

Apolar(f ′)
)
. We have [G] ∈

κ13

(
νd(P6)

)
= σ13

(
νd(P6)

)
⊆ σ14

(
νd(P6)

)
, a contradiction.

From Theorem 5.18(ii) we obtain dimC
(

Apolar(f ′)
)
≤ 14, and thus, dimC

(
Apolar(f ′)

)
=

14. We claim that we have [ProjT/Ann(f ′)hom] /∈ Hilbsm14 (P6). Indeed, otherwise, there is a
point [J ] ∈ Slip14,6 with

J = Ann(f ′)hom ⊆ Ann(G).

By Proposition 2.92, this contradicts the assumption that [G] does not belong to σ14

(
νd(P6)

)
.

We showed that we have [ProjT/Ann(f ′)hom] /∈ Hilbsm14 (P6) and therefore, condition (b) holds.
Hence the algebra Apolar(f ′) has Hilbert function (1, 6, 6, 1) by [59, Thm. 1.1]. Thus, condition
(a) also holds.

We present the aforementioned algorithm.
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Theorem 5.27 ([40, Thm. 1.6]). Let T = C[α0, . . . , α6] be a polynomial ring with graded dual
ring T ∗ = C[x0, . . . , x6]. Given an integer d ≥ 7 and [G] ∈ κ14

(
νd(PT ∗1 )

)
⊆ PT ∗d the following

algorithm checks if [G] belongs to σ14

(
νd(PT ∗1 )

)
.

Step 1 Compute the ideal a =
√

((AnnG)≤d−3) ⊆ T .
Step 2 If a1 is not 6-dimensional, then [G] is in σ14

(
νd(PT ∗1 )

)
and the algorithm terminates.

Otherwise, compute {K ∈ T ∗1 | a1yK = 0}. Let y0 be a generator of this one-dimensional
C-vector space.

Step 3 Let e be the maximal integer such that ye0 divides G. If we have e 6= d − 3, then [G] is
in σ14

(
νd(PT ∗1 )

)
and the algorithm terminates. Otherwise, let G = yd−3

0 P . Pick a basis
y0, y1, . . . , y6 of T ∗1 and compute f = P |y0=1 ∈ R∗ := C[y1, . . . , y6].

Step 4 Let I = Ann(f) ⊆ R. If the (local) Hilbert function of R/I is not (1, 6, 6, 1), then [G] is
in σ14

(
νd(PT ∗1 )

)
, and the algorithm terminates.

Step 5 Compute r = dimC HomR(I,R/I). The point [G] is in σ14

(
νd(PT ∗1 )

)
if and only if we

have r > 76.

Proof. Assume that [G] does not belong to σ14

(
νd(P6)

)
. There exist a basis (y0, . . . , y6) of T ∗1 and

P ∈ T ∗3 as in Lemma 5.26. Let f = P |y0=1 and define f ′ = F ′3+F ′2+F ′1+F ′0 ∈ C[y1, . . . , y6] where
F ′i equals (d − i)!Fi. We have G = y

[d−3]
0 F ′3 + y

[d−2]
0 F ′2 + y

[d−1]
0 F ′1 + y

[d]
0 F ′0. By Lemma 5.13(ii),

there is an equality Ann(G)≤d−3 = (Ann(f ′)hom)≤d−3. Moreover,(
(Ann(f ′)hom)≤d−3

)
= Ann(f ′)hom

holds since we have d− 3 ≥ 4 > deg(f ′). Therefore, we get

a =
√

(Ann(G)≤d−3) =
√

Ann(f ′)hom = (β1, . . . , β6),

where β1, . . . , β6 ∈ T1 are dual to y1, . . . , y6 ∈ T ∗1 . This shows that if the C-linear space(√
(Ann(G)≤d−3)

)
1
is not 6-dimensional then [G] is in σ14

(
νd(P6)

)
. Therefore, in that case,

algorithm stops correctly at Step 2.
Assume that the algorithm did not stop at Step 2. If G is of the form as in Lemma 5.26,

then y0 divides G exactly (d−3)-times. Otherwise [G] belongs to σ14

(
νd(P6)

)
and the algorithm

stops correctly at Step 3.
Assume that the algorithm did not stop at Step 3. The algorithm does not stop at Step 4 if

and only if condition (a) of Lemma 5.26 is fulfilled.
If the algorithm did not stop at Step 4, then P satisfies condition (a) from Lemma 5.26.

Hence [G] is in σ14

(
νd(P6)

)
if and only if P does not satisfy condition (b). The irreducible

component Hilb1661 of HilbGor14 (A6) is 76-dimensional and HilbGor14 (A6) is smooth at points in
Hilb1661\HilbGor,sm14 (A6) (see [59, Thm. 1.1 and Claim 3]). Thus, P does not satisfy condition (b)
from Lemma 5.26 if and only if we have

dimC HomR(I,R/I) > 76,

since the left term is the dimension of the tangent space T[SpecR/I]HilbGor14 (A6) by [49, Prop. 2.3].

An implementation in Macaulay2 [43] of the algorithm from Theorem 5.27 is presented in
[40, §A].
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5.4 Distinguishing Grassmann secant from Grassmann cactus va-
rieties

Let d ≥ 5 be an integer. In this section, we state a theorem from [40] describing the irre-
ducible component η8,3

(
νd(P4)

)
of the cactus variety κ8,3

(
νd(P4)

)
other than the secant variety

σ8,3

(
νd(P4)

)
. This is analogous to Theorem 5.25.

Theorem 5.28 ([40, Thm. 1.2]). Let d ≥ 5 be an integer and T ∗ = C[x0, x1, . . . , x4]. The
Grassmann cactus variety κ8,3

(
νd(PT ∗1 )

)
has two irreducible components: the Grassmann secant

variety σ8,3

(
νd(PT ∗1 )

)
and the other one, denoted by η8,3

(
νd(PT ∗1 )

)
. Consider the map ψ : PT1×

Gr(3, T ∗2 )→ Gr(3, T ∗d ) given by ([y0], [U ]) 7→ [yd−2
0 U ]. Its image is η8,3

(
νd(PT ∗1 )

)
.

Theorem 5.28 can be generalized for all n ≥ 4 (see [40, Thm. 1.5]). However, we present the
simpler version due to its similarity to Theorem 5.25.

By [20, Thm. 1.1], for all r ≤ 8, the Hilbert scheme Hilbr(Pn) is reducible if and only if
we have n ≥ 4 and r = 8. Furthermore, for all n ≥ 4 and r = 8, a general point of the non-
smoothable irreducible component of Hilbr(Pn) corresponds to a subscheme whose coordinate
ring has local Hilbert function (1, 4, 3). Therefore, Theorem 5.28 describes the other irreducible
component of the Grassmann cactus variety in a minimal case when such a component exists.

As in Section 5.3, we can characterize the points of η8,3

(
νd(Pn)

)
\ σ8,3

(
νd(Pn)

)
(see [40,

Lem. 6.9]) and obtain an algorithm analogous to the one from Theorem 5.27 (see [40, Thm 6.8]).
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