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Abstract
In this thesis I prove that Strassen’s additivity conjecture holds if one of tensors is of border

rank 3 and as a corollary I show families of tensors of rank 4 and 5 for which the conjecture
holds as well.
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Chapter 1

Introduction

Strassen in 1969 showed that it is possible to multiply two 2 x 2 matrices using seven basic
operations rather than eight, see 2.1 and this was proved to have the best possible compu-
tational complexity by Winograd in [W]. Using this fact, a better algorithm was produced to
multiply matrices of any size.

After Strassen’s result, it was clear that even straightforward procedures can require fewer
operations than expected. In [S73] Strassen formulated his well known additivity conjecture
for bilinear maps: Given bilinear maps ¢, and two pairs of matrices M;, My and M, M}
the computational complexity of simultaneously computing ¢(Mi, My) and (M, MJ) is the
sum of the complexities of ¢ and 1. The conjecture stands open since its formulation in 1973.

Strassen’s conjecture can be naturally stated in terms of tensors and the notion of tensor
rank, see Conjecture[2.2.2] Note that an analogue of the additivity conjecture for approximate
complexity (border rank, in more recent terminology) does not hold (see Example by
Schonhage). For definitions of tensor rank and tensor border rank see Definition and
Definition R.1.70

Also the symmetric version of the conjecture stands open. A relevant contribution to its
study is the 2012 paper [CCG| where Strassen’s additivity conjecture is proved for the sum
of (several) monomials.

In this thesis I prove that Strassen’s additivity conjecture holds if one of tensors is of
border rank 3 (Theorem and as a corollary I show families of tensors of rank 4 and 5
for which the conjecture holds as well (Corollary .

There is a theorem which summarize cases discussed in the thesis in which the Strassen’s
additivity conjecture holds.

Theorem 1.0.1. Let Ay, Ay, B1, By, C1,Cs be finite dimensional vector spaces, T1 € A1 ®
Bi®Cy and Th € As ® Ba® Cy be two tensors. Then the Strassen’s additivity conjecture holds
for 11,15, i.e. :

R(Ty & Ty) = R(Th) + R(T%)
(where R denotes tensor rank and Ty ® Ty € (A1 ® A2) @ (B1 ® B2) ®@ (C1 ® C2) ) if one of
the following conditions is fulfilled:

1. dimension of at least one of Ay, Aa, B1, Ba, C1,Co equals 2,

2. Ty is Aq-concise, i.e. T cannot be wriltten as a tensor in a smaller space A’1 ¢ A
(see Definition and such that R(T1) = dim(A;) (analogous statements hold for
permuted situations),

3. there exists i such that the border rank R(T;) = 3,



4. at least one of tensors 11,15 is of rank 4 and has form

a1 ® (b1 ®ca+by®er) +az @by ®cy + a3z @ by @ cs,

5. at least one of tensors 11, Ty is of rank 5 and has one of the forms:

e 11 Qb1 ®e3+ba®Rca+b3®c1)+a2® (b1 ®@ca+by®c1)+a3®b; e,
e 41 ® (b1 ®ca+ba®c1)+aa®@b1 ®c1+az® (bs@cy + by ®cs),

e 41 ® (b1 ®ca+ba®c1+b3®c3)+a2 @b ®cp+a3RbsRcq,

¢ a1 @M1 ®c2+bra®cr+b2®c3) +az®@b; ®cp+ a3 @by @ cs.

The point 1 is a result of Ja'Ja’ and Takche [JT|. It is also discussed in [LM] Section 4,
I give a detailed proof in Proposition . The point 2 is a consequence of results of [L]
Theorem 10.3.3.3 and we discuss it in Chapter [3| Points 3-5 are a result of this thesis which
use the Alexeev-Forbes-Tsimerman method from article [LM], see Subsection Theorem
and Corollary Note that points 4 and 5 are special cases of point 3 (or point 1 if
there is a linear dependence), by Theorem [3.3.1]

Given 1 and 2, the smallest unsolved case of the conjecture is (A1 ® A2)® (B1® B2)® (C1 &
Cy) = (CCaC®) @ (CPaC?) @ (C*@C3). Our result 3 (and 4, 5), in particular contributes
to this case.
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Chapter 2

Preliminaries

2.1. Ranks and secant varieties

Notation 2.1.1. All vector spaces are presumed to be finite-dimensional vector spaces over
the complex field C. Letters A, B, C possibly indexed denote vector spaces. The asterisk A*
denotes the dual of a space A, so the space of linear maps A — C. By a variety I always mean
an algebraic variety over C.

Notation 2.1.2. For a subset S C A, by (S) we denote the linear space spanned by S.

Definition 2.1.3. For a linear space A, we define a projective space PA = (A \ {0})/C",
where C* = C \ {0} is the multiplication group of the field C. If X C A is invariant with
respect to rescaling Vaec(r € X = Ax € X), we define X = P(X) C PA.

Definition 2.1.4. Let us consider an invariant with respect to rescaling subset XcA
spanning A as a linear space. Let p € A. We define X-rank of p as the least integer » = R 4 (p),
such that:

,
p= Z ;. Z; for certain ©; € X and A e C.
i=1

Equivalently, r is the minimal integer such that p € ({&1, s, ..., % }), for certain #; € X.
Similarly for X = P(X) we define X-rank of p € PA as the least integer r = Rx(p),
such that p € ({z1, 9, ..., 2, }), for certain z; € X. Here ({x1,x9, ..., 2, }) denotes the smallest

linear subspace P¥ C PA containing {z1, s, ..., T, }.

Definition 2.1.5. For T € A1 ® A3 ® ... ® A,, T is a simple tensor if there exist elements
ai,as,...,a, such, that V; a; € A; and T = a1 ® as ® ... Q@ an,.

Definition 2.1.6. Let A = A, ®---® Ay, X be a set of simple tensors, X = P(A;) x P(A3) x
.-+ xPP(Ag). Then for = ([a1], ..., [ax]) € X, we have an inclusion Seg : X — P(4;1®---®Ay),
given by Seg(x) = [a1 ® - - - ® ag]. This inclusion is called the Segre’s embedding. For such X
and X we define:

e in the affine case, a tensor rank of p € Ais R4 (p),
e in the projective case, a tensor rank of p € P(A) is Rgeq(x)(p).

The tensor rank of a tensor p will be denoted by R(p) if there is no risk of confusion. We will
write often just renk in place of tensor rank.



Similarly we can define the symmetric tensor rank.

Definition 2.1.7. A tensor T € A®? is a symmetric tensor of order d if for every permutation
o of symbols {1,2,...,d} and every subset of vectors {v1,vs,...,vq} € AL T(v1,va,...,vq) =
T(Vg(1) Vo (2)s -+ Vo(d))- The set of symmetric tensors of order d is denoted by Se(A).

Definition 2.1.8. For [[| = 2 € X C P(A) we have an inclusion vg : X — P(S?A), given by
va(x) = [l ® - - - ®]. This inclusion is called the Veronese’s embedding of degree d. We define
the symmetric rank of p € S?A as the vg(X)-rank of this point (see Definition [2.1.4)).

Definition 2.1.9. (S) denotes space spanned by elements of S like in Notation [2.1.2] We
define the r-th secant variety of a variety X C A as the Zariski closure of the sum of all linear
subspaces spanned by r points of X:

or(X) = J{(#1, ..o dr) 1 5 € X} C A,

Equivalently the r-th secant variety of X is the Zariski closure of the set of points of X-rank
at most r.

Similarly we define the r-th secant variety of a projective algebraic variety X C PA. Here
(S) denotes the projective space spanned by elements of S, i.e. the smallest linear subspace
P*  PA which contains S. The r-th secant variety of a projective algebraic variety X C PA
is the Zariski closure of the sum of all linear subspaces spanned by r points of X:

or(X) = U{<x1, o)t x; € X} CPA.
The secant variety is an Zariski closure of a set of points of X-rank at most r.

Definition 2.1.10. Forpe A, X C A (resp. p € PA, X C PA) we define R ¢ (p), the X -border
rank of a point p (resp. Ry (p), the X-border rank of a point p) as the minimal number r,

such that p € o,(X) (resp. p € 0,(X)).

For A,p,p, X, X and Seg(X) as in Definition , we define the tensor border rank of
p € Aas Rg(p) (vesp. tensor border rank of p € P(A) as Rgeq(x)(p)). The tensor border rank
of a tensor p will be denoted by R(p) if there is no risk of confusion. We will write often just
border rank in place of tensor border rank.

Example 2.1.11. For a tensor p € A ® B ~ Hom(A* — B), the tensor rank of p is equal
the rank of matrix corresponding to tensor p. The set of tensors in A ® B of rank at most r
is closed, so for tensors in A ® B the tensor rank equals the tensor border rank.

There are fundamental properties of the X-rank, for X C A invariant under rescalings:
L. R¢(p) =04 Ry(p) =0 < p =0 (convention),

2. R¢(p) =1« pe X\ {0},

3. Y C X,pe (Y), then Ry(p) > Rg(p),

4. R4 (Ap) = R (p), for any A € C*,

5. R¢(p1+p2) < Rg(p1) + Ry (p2)-



2.2. The matrix multiplication

The matrix multiplication is a bilinear map C9 x C9* — Cf". Hence one can think about
it as a tensor:

Mygn € (C* @ (C") oC=A0BoC.

The naive matrix multiplication algorithm needs fgh multiplications of complex numbers
and as a tensor, has a form:

* k
Mygh = Z a;; @ Uj ) ® Ciks
i7j7k

where the sum goes by 1 < i < f,1 < j < g,1 <k < h, and elements a;; € (Cfg,bmk €
Coh, Cik € CfP make the standard bases.

This algorithm gives an estimate for the tensor rank R(My, 1) < fgh. Strassen proved
that one can multiply two matrices 2 x 2 using only 7 multiplications of complex numbers
(instead of 2 -2 -2 = 8 multiplications) [S69)|

Mazo2 = (a1 +a55)® (b1 1+ b55) ® (c1,1 + c2.2)
+ (a5, +a39) ®b7 1 ® (co1 — ca2)
+aj1® (b —b55) ® (c21 + c2.2)
+ a3, ® (=bj; +b31) @ (c21 +c2.2) (2.1)
+ (a1 +alo) ®by o @ (—c11 + c2,1)
+(=al; +a3;) ® (b1 1 +b1) ®cap
+ (al g —a39) ® (b3 +054) ®c11.

)

Strassen asked if there exists an algorithm that simultaneously computes two different
matrix multiplications that costs less than the sum of the best algorithms for the individual
matrix multiplications. If not, one says that additivity holds for matrix multiplication.

In [S73] Strassen formulated his well known additivity conjecture for bilinear maps: Given
bilinear maps ¢, ¢ and two pairs of matrices My, My and M{, M the computational complex-
ity of simultaneously computing ¢(M, Ms) and (M, M}) is the sum of the complexities of
w and . The conjecture stands open since its formulation in 1973.

Strassen’s conjecture can be naturally stated in terms of tensors and the notion of tensor
rank.

Definition 2.2.1. For two tensors p1 =Y ,_,a;®b;®¢; € A1 ® By ®Cy and pp = Zz;l a,®
b, ® ¢, € Ay ® By ® Co we define the direct sum of tensors as a tensor py ®pa =Y ;1 4; ®
bi@ci+ Y i_a;0b;@c; € (A1 ® Az) ® (B1 ® B2) ® (C, @ Cy).

Conjecture 2.2.2 (Strassen’s additivity conjecture (SAC)). Additivity holds for bilinear
maps. That is, given Ty € A1 B1®Cy and Ty € As R Bo®Cy, then letting A = A1 P Ay, B =
B1® By, C = C; ® Cy, we have:

RsegpaxpBxpc)(T1 © 1) = Rgegpa, xpByxpCy)(T1) + Rseg(PayxPBy xPCy) (12)-

Note that an analogue of the additivity conjecture for border ranks does not hold (see

Example 2.4.1)).



In the Chapter [3] we will focus on the 3-way tensors 1" contained in the space AQ B® C.
In the tensor literature, such tensors are often studied by their images T(A*) C B ® C etc.
and these images are studied in terms of bases, resulting in a parametrized subspace of a space
of matrices.

Definition 2.2.3. For a tensor T contained in the space A ® B ® C, and a given bases of
A, B, C, the images T(A*) C B ® C etc. are parametrized spaces of matrices called slices.

2.3. The join of varieties and the secant varieties

Definition 2.3.1. For a vector space A and x,y € PA such that x # y, let ]P’iy denote the
projective line [ C PA containing x and y.

Definition 2.3.2. The join of two algebraic varieties Y, Z C PA is

Jv,zy= |J PL.
yeY,2€2Z,y#2

The join of k varieties X1, ...., X C PA is defined to be the closure of the union of the
corresponding P*~1 or by induction, J(Y1,...,Y3) = J(Y1, J (Y2, ..., Yz)).

ForY =Z,J(Y,Y) = 02(Y) denotes the second secant variety of Y. If Vi<p<,—1 Yi = Vi1
the join J(Y1,...,Y;) = J(Y,...,Y) = 0,(Y) is the the r-th secant variety of Y. [L] Example
5.1.1.3 shows that for Y = Seg(PA; x PAs xPA3), such defined o,.(Y) agrees with the previous
notation (Definition of the set of tensors in P(4; ® Ay ® Ag) of border rank at most r.

Definition 2.3.3. The expected dimension of J(Y, Z) C PAis min{dim Y +dim Z+1, dimPA}
because a point x € J(Y,Z) is obtained by picking a point of Y, a point of Z, and a
point on the line joining the two points. Similarly, the expected dimension of o,.(Y) is
min{r(dim F') +r — 1,dimPA}.

Definition 2.3.4. If X" C PV and dimo,(X) < min{rn 4+ r — 1, N}, one says 0,(X) is
defective, with defect 6, = §,(X) := rn+r — 1 — dimo,(X). Otherwise one says o,(X) is
nondefective.

Example 2.3.5 (|L] Example 5.1.2.2). Let a = dim(A),b = dim(B) and a,b > 3. Consider
o2(Seg(PA x PB)). An open set of this variety may be parametrized as follows: choose bases
for A, B and write

71 z3
y 3

Choose the column vectors x1, xo arbitrarily and then take the matrix
p = (21, 72, C%Ul + C§$2, o leﬂﬁl + 031‘2)

to get a general matrix of rank at most two. Thus the set of matrices of rank at most two in
A ® B, denoted by d2(Seg(PA x PB)) is locally parametrized by 2a + 2(b —2) = 2a + 2b — 4
parameters. Hence dim o3(Seg(PA x PB)) = 2a + 2(b — 2) — 1 = 2a + 2b — 5 compared with
the expected 2[(a — 1) + (b — 1)] + 1 = 2a + 2b — 3, so d2(Seg(PA x PB)) = 2.
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Example 2.3.6 (|[L] Exercise 5.1.2.4). Let a = dim(A),b = dim(B) and a,b > 3 for
or(Seg(PA x PB)), r < min{a, b}. Choose the column vectors x1,xs, ..., 2z, arbitrarily and
then take the matrix

T T
_ r—+1 r+1
p = (1,22, ..., Tp, E C; Ly ey E c; o x).
i=1 i=1

Thus dim o, (Seg(PA x PB)) =ra+r(b—r)—1=r(a+b—1r)— 1.

One expects o7(Seg(P? x P? x P3)) = P(C* ® C* ® C*), and this is indeed the case, which
explains how Strassen’s algorithm for multiplying 2 x 2 matrices could have been anticipated
(see L] Section 5.2.2).

2.4. Schonhage example

Schonhage showed that border rank version of Strassen’s conjecture (Conjecture [2.2.2))
cannot hold in general. I quote the following example and proposition from [BGL]| because I
believe it is good to see the counterexample in details.

Example 2.4.1 (Schonhage’s example ([BGL] Example 4.5.2)). Let
Ma,b,c . (Ca ® (Cb*) ~ ((Cb ® (CC*) > (Ca ® (CC*)

denote the matrix multiplication operator. Schénhage proved [Sch| that, while R(M, 1) = el
and R(Mj 1) = h, nevertheless, by Proposition we know that R(Me1; ® My p1) <
el + 1 so for h > 1 the border rank Strassen’s conjecture does not hold.

Proposition 2.4.2 (|[BGL] Proposition 4.5.3). Let h = (e—1)(I—1), then R(Mc1,EM1p1) <
el +1.

Proof. Write A=A ®A", B=B ®B",C=C"®C", where A', A", B, B”,C’,C" are linear
spaces. Let dim A" = e,dim B’ = [,dimC’ = el,dim A” = h,dim B” = h, and dimC” = 1.
Fix index ranges 1 <i<e, 1 <s<[j1 <u<e—1,1<v <[ —1. Give the vector spaces

bases {ai}7 {bS}v {Ci,8}7 {aufU}v {Bu,v}v and -
In the above bases,

Me,l,l = 5 a; @ bs ® Cis and Ml,h,l = g Qyp & Bu,v & 7.
1<i<e,1<s<1 1<u<e—1,1<v<l—1

Set ey = — Y Oy Pug = — 2y Buw, @ig = 0, Bej = 0, which can be illustrated with
the following picture:

[ a1 12 1,1 0]
a1 Qg2 Q21 0
(Qup)u=1,...e = : : : R
v=1,...,l
Qe—1,1 Me—1,2 ae—10-1 0
| — Zu Q1 — Zu Q2 ... T Zu Qg l—1 0_
[ Bia Biz o B — >, B

Boi  Po2 o Poimr =, Pow

Be—11 Pe—12 o Be—ti—1 — 2, P10
0 0 0 0

11



Now let

T(t)= Y (ai+teis) @ (bs +18is) @ (7 + t2¢is) — (Z a;) ® () _bs) ®7.

1<i<e,1<s<1 % S

Note that for t # 0, R(T(t)) < el + 1, and that T(t) = t*T + O(t*) where T = M,1; ®
M 1. Hence

1 -~
T(t) := t—QT(t) =T+ 0(t)

is the desired sequence of tensors, i.e. Yoz R(T'(t)) < el + 1, and in the limit we have

T0)="T. [

12



Chapter 3

Lower bounds for the tensor rank and
the main theorem

3.1. Lower bounds for the tensor rank of a sum of tensors p; ®po,
when p; is A;-concise.

Proposition 3.1.1 (|L] Proposition 3.1.3.1). Let tensor T € A® B ® C has rank r. Say
TecA @B @C', where A C A, B'C B, C' C C with at least one inclusion proper, let it be
A" C A. Then any expression T = ;| a; ® b; @ ¢; such that 3; a; ¢ A" has s > .

Definition 3.1.2. Tensor p € A® B ® C' is A-concise if the following implication holds:
HA/gApGA/®B®C:>A/:A.
If p is A-concise, B-concise and C-concise we say it is concise.

Proposition 3.1.3 (|[L] Theorem 10.3.3.3.). Ifp2 € A9 ® Bo® Co and p1 € A1 ® B1 ® Cy is
a Ai-concise tensors, then R(p1 @ p2) > dim(Ay) + R(p2).

Proof. There are presentations: p; = > ;L a, @b, @, pp = >.2,a @b/ @/, pr +p2 =
Yoia; @b ® ¢, where r1 = R(p1),r2 = R(p2),s = R(p1 & p2). We have the projections
TA - (Al @Az) — A17 TRy ! (Bl @Bg) — Bs.

From the definition of the Aj-conciseness we get dim((p; @ p2)(A7)) = dim(p1(47)) =
dim(A;). Thus there exists a subset S = {a1,...,aa; } C {a1,...,a,} of cardinality a; =
dim(Ay), such that 74,(Ay) = (74,(@1),...,74,(Ga,)) = A1, where A} = (a1, ...,da,) is the
linear space spanned by elements of S. After a possible permutation of the a;’s, we can forget
about tildes, so further we denote S = {ay,...,aa, }. A2 = ker(ma,), 5o Ay N A; = 0. Hence
when we define the quotient map ¢ : (41 @ Az) — (41 @ Ag)/A~1, then after restriction to As
we have an isomorphism ¢4, : Ao — (A1 & Ag)/fil )

We can define:

(p# : (A1 &) Ag) ® (Bl b Bg) X (Cl b Cz) — ((Al D AQ)//L) ® By ® (C1 D 02)

SO# =@ ® T By ® Id(cl€902)

We see that ¢™|a,58,00, 15 an isomorphism, we define o := ¢*(p2). The kernel of ¢#
contains (A; @ As) ® By ® (C1 @ Cy), s0 ¢ (p1 ® p2) = ©7 (p2) = Pa. On the other hand,
because of the definition of the quotient map ¢, we have:

‘P#(iai@)bi@@) :go#< Zs: ai®bi®ci).
i=1

i=a3+1

13



It implies gp# (p1®Bp2) = P2 = Zf:aﬁl a; @b; ®¢;. From the definition of rank: s—aj > R(p2).
Because of the isomorphism ¢ | 4,6 B,0,, We obtain s —a; > R(pz2). So

R(p1 ® p2) > s — a1+ a1 > R(p2) + a1 = R(p2) + dim(A;).

As a direct corollary we have:

Corollary 3.1.4. Let po € A5 R Bo®Cy and p1 € A1 ® B1 ® Cy be a Ai-concise tensor, such
that R(p1) = dim(Ay). Then Strassen’s additivity conjecture holds for p1 ®pa, i.e. R(p1®p2) =
R(p1) + R(p2)-

3.2. The Alexeev-Forbes-Tsimerman method for bounding ten-
sor rank

What follows is the general technique for finding lower bounds for the tensor rank.

Proposition 3.2.1 ([LM] Proposition 2.1). Let tensor T be an element of A® B® C. There
exist v rank one elements of B ® C such that T(A*) is contained in their span if and only if
R(T) < r. Similarly, R(T) < r if and only if there exists a curve Ey in the Grassmannian
G(r,B® C), where fort # 0, E; is spanned by r rank one elements and T'(A*) C Ey (which
is defined by the compaciness of the Grassmannian,).

Proof. For the case of a tensor rank:

For the first implication, T is a tensor of rank 7, T =3, a; ® b; ® ¢;. T(A*) is contained
in an r-dimensional linear space spanned by (b; ® ¢;).

For the reversed implication: We know that T'(A*) is contained in an r-dimensional linear
space spanned by {Mi, ..., M,}, so we know that T'(a)) = >\ \iM; for every a € A*. Thus,
for a chosen basis of A {ai,...,aa}, we have:

a r
T = Zaj X (Z )\L,]MZ)
j=1 i=1

We can reorder the sum, to write it as a sum of r simple tensors:

T a
T = Z(Z /\maj) X Mz

i=1 j=1

For the case of a border tensor rank:

Let us assume that R(T') = r. Thus we have a curve of (7});xo contained in A ® B ® C
with limit 7" = Tp, such that V,.oR(T}) = r. Every single tensor T} for ¢t # 0 can be written
as Ty = Z;zl ait @ bit ® c;y. For t # 0 we associate T; with the linear space F; in B ® C
spanned by {bj; ® ¢;+}i=1,.., and denote Ey := lim; o E;, which by the compactness of the
Grassmannian G(r, B® C') has dimension r. For every a € A* T'(a) = limy—,0 T3 (), so T'(A*)
is contained in Ej.

If R(T) = k < r then by the just written method we obtain a curve E; in G(k, B® C), so
we choose additional r — k points S = {p1,...pr—r} in B ® C such that the space spanned by
points of Ey and S has dimension . Our new, desired curve is given by V; E; = span(Ey, S),
the linear space spanned by points from E; and S.
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We need to prove the remaining implication. We have Vaear T() € Eo = (M, ..., M;),
where {Mi, ..., M, } is a basis of Ey. We know that (M, ..., M,) is alimit of (My4,..., M;y)
when ¢ goes to 0, where Vi, My, € B® C is of rank 1. Thus every M; can be approximated

by My =>4y Gkt My, where V; i+ Gkt € C. We define tensors T; as:

B a T a T T B T a T 5

T = a; 00 XiMi) = > ;@O MO GmeMis) =D (O XijGikras) @ My,
j=1 i=1 j=1 i=1 k=1 k=1 j=1i=1

We received that T can be approximated by the tensors T}, each of rank 7. |

Corollary 3.2.2 ([LM| Corollary 2.2). Let T € A® B ® C be A-concise and denote a =
dim(A). Then R(T) = a implies that T(A*) N Seg(PB x PC) # (.

More generally:

Corollary 3.2.3 ([LM] Corollary 2.3). Let T e C"@C" @ C" = A® B C. If R(T) = m,
then the flag condition is fulfilled, i.e. there exists a complete flag A1 C ... C Ay 1 CT A = A,
with dimA; = j, such that PT(A}) C 0j(Seg(PB x PC)).

Proposition 3.2.4 ([LM]| Proposition 3.1). Let T € A® B& C, R(T) =1, {¢i}i=1,..c be a
fized basis of C, T = > 1 M; ® ¢;, where M; € A® B and My # 0. Then:

1. there exist constants Mg, ...., \m, such that the tensor
B (&
T:=> (Mj—\M)®c; € A9 B®ct (3.1)
j=2

has rank R(T) <1 — 1.
2. Moreover, if R(My) = 1 then for any choices of \j we have R(T) > r — 1.

Proof. By Proposition there exist rank one tensors Xi,..., X, € A® B and scalars d;-
such that for every j:

M; = idj.xi.
=1

1

Since M; # 0 we may assume di # 0 and define \; = %. For these \’s the tensor T (see
1

N defines the subspace T(cf-) contained in a span of Xo, ..., X,. Proposition implies
R(T) <r —1. The last assertion holds because if R(M;) =1 then we may assume X; = M;

and apply Proposition [3.2.1] |

Proposition is usually implemented by consecutively applying the following steps,
which we will call after Michalek and Landsberg the AFT method. 1 have slightly modified
the AFT method from [LM]|, Section 3, adding “break” conditions, to avoid incorrect lower
bounds. For examples breaking algorithm see Example and Example [3.2.7]

The AFT method for bounding rank of a tensor '€ A® B® C:

1. Distinguish one of the factors, say A, take its basis {a;} and take bases {8;}, {7}
of B*,C* and represent T' € A ® B ® C as a matrix M with entries that are linear
combinations of the basis vectors a;. That means in the (i, 7) place of the matrix M we
have: m; j = T(B; ®~;). We will denote by M (j3;) the i-th row of M, and by M (v;) the
j-th column of M.
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2. Choose a subset Sp = {i1,...ipy} C {1,...,b}, such that the rows of M corresponding
to the numbers belonging to Sp are pairwise different and nonzero. Similarly we choose
a subset S¢ = {j1,...je'} C {1,...,c}, such that the columns of M corresponding to
numbers belonging to S¢ are pairwise different and nonzero. We are going to change
the matrix M in the next steps, so let us denote by M the copy of the beginning matrix
M.

3. Inductively, for 1 <1 <b':

(a) change the 4;-th row of matrix M to zeros, obtaining new matrix M’.
If there exists v € S such that the column M'(7y,) is zero, then break the algo-

rithm.

(b) for every row M'(j,) of number r ¢ {i1,...,i;} C Sp add M(f;,) times a variable
Aryi,, regarding the a; as formal variables. In a result we obtain the new matrix
M.

If there exists a choice of values of A-s in C, such that in a result Jcp<py M"(8;,) =
0 or djes, M"(vj) = 0 then break the algorithm.

(¢) From now M := M".
4. Similarly for columns. Inductively, for 1 <1 < ¢’

(a) change the j;-th column of matrix M to zeros, obtaining new matrix M.

(b) for every column M’(~,) of number v & {ji,....,5i} C Sc add M(y;,) times a
variable >\{Uvjl7 regarding the a; as formal variables. In a result we obtain the new
matrix M".

If there exists a choice of values of A-s, and N-s in C, such that in a result

Ji<k<er M"(vj,) = 0 then break the algorithm.
(¢) From now M := M".

5. Recall that the matrix we started with is M, as in 2. For every a; that appeared in any
of the selected rows M (3;) or columns M(~;) for i € Sp and j € Sc, set aj equals zero
in all entries in whole matrix M obtaining a new matrix M’. Notice, that M’ does not
depend on the choice of A-s and X-s.

After these 4 steps, if we do not break the algorithm, we obtain:

R(T)>b'+c + R(T") (3.2)
where the tensor 7" corresponds to the matrix M’; i.e. T'(A*) = M’. The inequality follows
by consecutively, b’ + ¢’ times applying the Proposition and then, in the 5-th step, a

projection to smaller subspace. The above steps can be iterated, interchanging the roles of A,
B and C.

I rewrite more precisely the Example 3.3 from [LM| with a mistake corrected.

Example 3.2.5. Let T' = al®(b1®Cl+...+b8®08)+02®(bl®C5+b2®C6+b3®C7+b4®
Cg)+a3®(bl®C7+b2®68>+a4®b1®Cg+a5®bg®01—l—aﬁ®bg®02+a7®b8®63+a8®b8®64,
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SO

231 as
al a6
aj az
T(A*) = ai as
ag ai
az ai
as a2 a
LG4 a3 a2 ai |

Then R(T) > 18. Here we start by distinguishing the space B.

(b1 ba b3 by bs bg b7 b3

b1 by b3 by
b1 bs
b1

bg

contracting Six = {5,6,7,8}. We obtain a tensor T” represented by the matrices

(b1 by b3 by by bg b7 ]
by by by by
b1 by
T/(B") = o
o -
a1
ai
IOARY ai
T'(A") = a a
an aq
as as ay
La4 a3 a2 i

and the inequality R(T) > 4 + R(T”). The AFT method applied 3 times more, with chosen:
S2 ={1,2,3,4},5% = {7,6,5}, S¢. = {5,6},S% = {4,3}, 5% = {7}, 5% = {2} gives R(T") >
B+4)+2+2)+(1+1)+1=14 and R(T) > 18.

In fact, R(T) = 18. It is enough to consider 17 matrices with just one nonzero entry
corresponding to all nonzero entries of T(A*), apart from the top left and bottom right
corners and 1 matrix with 1 at each corner and all other entries equal to 0.

This generalizes to T' € C?" @ C? ® C?" of rank 3% 2% — k — 3.

The examples in which the algorithm breaks:
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Example 3.2.6. Tensor T = a ®b® (c1 + c2 +¢3) € A® B® C is of rank 1. Trying
to apply algorithm AFT for distinguished space A and S¢ = {c1,c2} we obtain [a,a,a] —
[0,a + A21a,a + A3 1a] and algorithm breaks because for A\g; = 1 the new matrix contains
the 0 element for every column belonging to Sc. That agrees with R(T) 2 R(T”) + 2, for any
tensor T".

Example 3.2.7. Tensor T = a1 ® by @ ¢1 + a2 ® by @ ¢5 € C2 @ C? ® C? is concise and
R(T) = 2. Trying to apply algorithm AFT for distinguished space A and Sy = {2}, St = {2}
we obtain: M = [% 2] — M’ = [% 0] and algorithm breaks in step 3 of AFT - M’(72) = 0.

0 as

That agrees with R(T) 2 R(T") +2for T = a1 ® by ® ¢1.

Definition 3.2.8. We will say that a rank of a tensor T € A ® B® C can be determined by
the AFT method if there exist integer n > 0 and a way of consecutively applying the AFT
method n times, to obtain a sequence of inequalities (see :

R(T) > b} + ¢} + R(T{) > b + ¢} + by +ch + R(T3) > ... > > (bj +c}) + R(T},)
=1

such that R(T}) =0, and > (b} + c}) = R(T).

In many cases of low rank the AFT method provides the correct rank. The AFT helps us
to prove the following theorem.

Theorem 3.2.9 ([LM| Theorem 4.1). Let T} € A1 ® B1 ® Cy and Ty € Ay ® By ® Cy be such
that R(T1) can be determined by the AFT method. Then Strassen’s additivity conjecture holds
for Ty & 1y, i.e. R(Tl D TQ) = R(Tl) + R(TQ)

Proof. In each application of the AFT method for 77 we choose a subset of columns and
subset of rows. Let us assume that in AFT we distinguished A;. Because of injection fa, :
Ay — A; @ Ag we can interpret Sp, as a rows and S¢, as a columns of (T @ T2)((A; @ A2)*)
letting AFT work for T} & T» in a bigger space. We do the same in case of By and C;. R(T})
can be determined by the AFT method. Hence we are repeating the AFT method, which give
us the proper bound for T7, in a bigger space, changing A; to A1 @ As and similarly for By
and (1, and translating the numbers of columns and rows by fa,, fB,, fc,-

With each application of the AFT method, T7 is modified to a tensor of lower rank living
in a smaller space and T5 is unchanged. It is still a direct sum after each application of AFT,
because in 5-th step of AFT method we cancel every possible coefficient which could appear

in steps 3 and 4 denying 717 @ T is a direct sum.
After all applications, T7 has been modified to zero and T is still unchanged. Hence
R(Ty ® Ty) = R(Ty) + R(T) follows from inequality [

To prove Proposition [3.2.11] which we will need in the proof of Proposition [3.2.12] we
need the following lemma:

Lemma 3.2.10. Let B = CP, C = C® and b < c. For a concise tensor T € C2@ B® C
there exist v € C* such that T'(7y) is a rank one matriz.

Proof. Because of conciseness, for T(C*) C C2® B dim T(C) = ¢. We have dim(Seg(P(C?) x
P(B))) =1+b—1+1=1+b, dim(C?*® B) = 2b. Thus dim(C) +dim(Seg(P(C?) x P(B))) =
c+b+1 > 2b+1 > 2b. Hence there is a non-empty intersection T(C*)NSeg(P(C?)xP(B)). W

Proposition 3.2.11. Let B = CP, C' = C®. For every non-zero tensor T € C2@ B® C' there
exists v, an element of B* or C* such that T(vy) is a rank one matriz.
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Proof. If T is concise then we apply Lemma In other case we can find A’ = C?, B/ =
CP',C" =C such that T € A/ @ B'® C' C C2® B ® C is concise. If the a’ = 2 we apply
the lemma to A’, B',C" or to A’,C’, B if dimension of B’ is greater than dimension of C"*. If
not, a' = 1, then for every v € C"*, T'(y) is a rank 1 tensor. [ |

In [LM] Section 4, there is noted, with a short proof, that Strassen’s additivity conjecture
holds if the space A1 is of dimension 2 and tensor T7 € A1 ® B1 ® C1. I give a detailed proof
which follows the mentioned one.

Proposition 3.2.12. LetT) € A1 ®B1®C) and Ty € Ay®@ Ba®Cy be such that dim(A;) = 2.
Then Strassen’s additivity conjecture holds for Ty @ T, i.e. R(ThW & Tz) = R(Th) + R(T»).

Proof. We define T' := T1 @ Ty, A := A1 & Ay and similarly for B and C. Let us look
on T(A*) = (11 & Ta)(A] & AS). We slightly modify the AFT method. We take a basis
{a1, ..., aa, } of A1, {ah,...;an,} of Aa, {B1, ..., Buy } of BY, {81, ..., By, } of B3, {71, ., %e; } of
Ct, {71, -+ Ve b of C3, and represent T'(A*) as a block matrix M with entries that are linear
combinations of the basis vectors of A; and As.

By Proposition we can always find either 8 € B} or v € CY, such that 77(3) or
Ti(7y) is a rank one matrix. Possibly after changing bases of By and C1, without loosing the
generality, we find 81. As in point 3a of the AFT algorithm, we change the row corresponding
to B1 to zero, obtaining a new matrix M’. Now as in 3b, for every row v of M’, other than
M'(B1), we add M (B1) times a coefficients A, ; coming from Proposition point 1 applied
to T = Ty & Ty, regarding the {ay,...,aa,,d}, ..., aay } as formal variables. We obtained new
matrix M" and new tensor 7] € A1 ® By ® C; corresponding to M"|p,gc; .

Constantly applying the previous paragraph (each application we start with the tensors
T/ e Ai®@ B, ®Cyand T € A® B® C, such that T(A) = M” from the previous application
in place of respectively Ty, T, M) we finally obtain the matrix M with submatrix M |BioCy
equal zero. We reach the zero submatrix in not less than R(T1) steps because of Proposition
point 2. By Proposition point 1 after each application, we reduce the rank of a
tensor by at least 1. We have a lower bound:

R(T) < R(T) - R(TY)

We change all instances of vectors from A; in M to zero, obtaining tensor T/ € AQ B® C
equivalent to tensor T5. We have:

R(Ty) = R(T") < R(T) < R(T) — R(Th),

thus:
R(T») + R(Ty) < R(T).

The inverse inequality always holds, see property 5, the end of §2.1. |

3.3. The third secant variety of A® B® (' and the main theorem

In this section I prove that the Strassen’s additivity conjecture holds if one of the tensor
is of border rank 3 which gives a family of tensors of rank 5 for which SAC holds. The crucial
facts are the following theorem and Theorem [3.2.9]

Theorem 3.3.1. (/BL] Theorem 1.2.) Let X := Seg(PA x PB x PC'). Let p = [v] € 03(X) \
o9(X). Then v has one of the following normal forms:
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(i) a1 ®b1 ®c1 4+ a2 @bs @ ca + a3 @ by @ c3,

(i) a1 b1 Rca+a1 @by @1+ a2 @by ®cr +az3® bz @ cs,

(11i) a1 @ ba R ca+ a2 @b Rca+a3Rbs @ ¢y +a1 @by ®ecg+ a1 @bs ¢ +ag @by ® ey,
() a2 @b ®ca+as@by®ci +a1 b1 ®cz+a1 b3 c1 + a3 @b @cy.

For type (iv) there are two other normal forms, where the role of a is switched with that
of b and c. We write these types in terms of slices (see Definition [2.2.3) in Table [3.1], if v is
not contained in any of C2® C3 ® C3, C* @ C? ® C3, C3 ® C3 ® C2.

normal form slice R
0 _
(i) a1 b1 ®c1 +as®by®co+ az ® by ® c3 S 3
L u_
T
(ii) a1®(bl®02+b2®01)+a2®61®cl+a3®b3®03 S 3
U
t s u
(i) a1 @ (i1 ®e3+ba®ca+b3®c1)+a2®@ (b1 @ca+br®@ci) +az@bi®@cy | [s u 3
U
[t s
v) |la1®@ b1 ®c2+ba®@c1) +a2 @b ®@c1 +a3® (b3 ®c1 + by @ c3) S 3
U
FE—
(iV) a1®(b1®02+b2®01+b3®63)+a2®b1®cl+a3®b3®cl S 3
_u S—
[t s ]
(V) a1 @ b1 ®ca+ba®@c1+ba®c3)+a2 @b ®ec1 +az3 @b @3 s 3
S

Table 3.1: Table of the normal forms of tensors in A ® B ® C' of border rank 3. R denotes
rank and R denotes border rank of a tensor. [BL]

We can recover the rank of every tensor from the table, equivalently every tensor of border
rank 3, using the Alexeev-Forbes-Tsimerman method for bounding tensor rank.

Proposition 3.3.2. Rank of every tensor in A ® B ® C of border rank 3, which is not
contained in any of C2@ C3 @ C3, C3 @ C?> @ C3, C3 ® C3 ® C?, can be computed using the
Alezeev-Forbes- Tsimerman method for bounding tensor rank.

Proof. Every tensor in A9 BQC of border rank 3, which is not contained in any of C2@C3®C3,
C}*@C?®C3, C?®C?®C? can be presented in one of the normal forms from Table where
ai,as,as, ... are linearly independent. Let us show that for every isomorphism class of such a
slices the AFT method gives us a proper bound, i.e. is equal to the rank of a corresponding
tensor.

(i) For the slice [t E } applying AFT method we obtain: [t E } — [t s } — [t
u u

the rank is greater or equal 1 +1+1 = 3.

} . Thus
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(ii) For the slice [gs } applying AFT method we obtain: [Es } — [t } — [t } Thus
u u u
the rank is greater or equal 2+ 1+ 1 =4.
(iii) For a slice [ﬁ u u] we obtain [2 u u} — [2 ° ] — [t } Thus the rank is greater or
u u
equal 2424+ 1=5.
S Uu

(iv) For a tensor of type (iv) normal forms are isomorphic, so we can choose slice ;
u
which give us the following intermediate matrices: [é ° u} — F B } — [t } and rank
u
greater or equal 242+41=5.
|

Now as a corollary we obtain:

Theorem 3.3.3. Let T} € A1 ® By ® Cy be a tensor of border rank 3 and Ty € Ay ® By ® Coy
be arbitrary tensor. Then Strassen’s additivity conjecture holds for Ty ® T, i.e. R(Ty & Ts) =
R(Tl) + R(Tg).

Proof. If one of Ay, By, is of dimension less or equal 2 we have Proposition [3.2.12] If it’s
not the case, the theorem follows from Theorem and the Proposition [3.3.2] [ |

Corollary 3.3.4. Then Strassen’s additivity conjecture holds for T € A1 ® By ® Cy and
Ty € Ay ® Bo ® Oy, i.e. R(T1 D Tg) = R(Tl) + R(Tg) Zf the tensor 11 € A1 ® B1 ® (4 fulﬁlls
one of the conditions:

e T} is a tensor of rank 5 and type (ii1) or (iv),

o T} is a tensor of rank 4 and type (i1).
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