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Abstract

In this thesis I prove that Strassen's additivity conjecture holds if one of tensors is of border
rank 3 and as a corollary I show families of tensors of rank 4 and 5 for which the conjecture
holds as well.
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Chapter 1

Introduction

Strassen in 1969 showed that it is possible to multiply two 2×2 matrices using seven basic
operations rather than eight, see 2.1, and this was proved to have the best possible compu-
tational complexity by Winograd in [W]. Using this fact, a better algorithm was produced to
multiply matrices of any size.

After Strassen's result, it was clear that even straightforward procedures can require fewer
operations than expected. In [S73] Strassen formulated his well known additivity conjecture
for bilinear maps: Given bilinear maps ϕ,ψ and two pairs of matrices M1,M2 and M ′1,M

′
2

the computational complexity of simultaneously computing ϕ(M1,M2) and ψ(M
′
1,M

′
2) is the

sum of the complexities of ϕ and ψ. The conjecture stands open since its formulation in 1973.
Strassen's conjecture can be naturally stated in terms of tensors and the notion of tensor

rank, see Conjecture 2.2.2. Note that an analogue of the additivity conjecture for approximate
complexity (border rank, in more recent terminology) does not hold (see Example 2.4.1 by
Schönhage). For de�nitions of tensor rank and tensor border rank see De�nition 2.1.6 and
De�nition 2.1.10.

Also the symmetric version of the conjecture stands open. A relevant contribution to its
study is the 2012 paper [CCG] where Strassen's additivity conjecture is proved for the sum
of (several) monomials.

In this thesis I prove that Strassen's additivity conjecture holds if one of tensors is of
border rank 3 (Theorem 3.3.3) and as a corollary I show families of tensors of rank 4 and 5
for which the conjecture holds as well (Corollary 3.3.4).

There is a theorem which summarize cases discussed in the thesis in which the Strassen's
additivity conjecture holds.

Theorem 1.0.1. Let A1, A2, B1, B2, C1, C2 be �nite dimensional vector spaces, T1 ∈ A1 ⊗
B1⊗C1 and T2 ∈ A2⊗B2⊗C2 be two tensors. Then the Strassen's additivity conjecture holds
for T1, T2, i.e. :

R(T1 ⊕ T2) = R(T1) +R(T2)

(where R denotes tensor rank and T1 ⊕ T2 ∈ (A1 ⊕ A2) ⊗ (B1 ⊕ B2) ⊗ (C1 ⊕ C2) ) if one of
the following conditions is ful�lled:

1. dimension of at least one of A1, A2, B1, B2, C1, C2 equals 2,

2. T1 is A1-concise, i.e. T1 cannot be written as a tensor in a smaller space A′1  A1

(see De�nition 3.1.2) and such that R(T1) = dim(A1) (analogous statements hold for
permuted situations),

3. there exists i such that the border rank R(Ti) = 3,
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4. at least one of tensors T1, T2 is of rank 4 and has form

a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b3 ⊗ c3,

5. at least one of tensors T1, T2 is of rank 5 and has one of the forms:

• a1 ⊗ (b1 ⊗ c3 + b2 ⊗ c2 + b3 ⊗ c1) + a2 ⊗ (b1 ⊗ c2 + b2 ⊗ c1) + a3 ⊗ b1 ⊗ c1,
• a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ (b3 ⊗ c1 + b1 ⊗ c3),
• a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1 + b3 ⊗ c3) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b3 ⊗ c1,
• a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1 + b2 ⊗ c3) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b1 ⊗ c3.

The point 1 is a result of Ja'Ja' and Takche [JT]. It is also discussed in [LM] Section 4,
I give a detailed proof in Proposition 3.2.12. The point 2 is a consequence of results of [L]
Theorem 10.3.3.3 and we discuss it in Chapter 3. Points 3-5 are a result of this thesis which
use the Alexeev-Forbes-Tsimerman method from article [LM], see Subsection 3.3, Theorem
3.3.3 and Corollary 3.3.4. Note that points 4 and 5 are special cases of point 3 (or point 1 if
there is a linear dependence), by Theorem 3.3.1.

Given 1 and 2, the smallest unsolved case of the conjecture is (A1⊕A2)⊗(B1⊕B2)⊗(C1⊕
C2) = (C3 ⊕ C3)⊗ (C3 ⊕ C3)⊗ (C3 ⊕ C3). Our result 3 (and 4, 5), in particular contributes
to this case.

Acknowledgments

I would like to thank my advisor, Jarosªaw Buczy«ski and Mateusz Michaªek for many
helpful discussions that broaden my understanding of the related material.
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Chapter 2

Preliminaries

2.1. Ranks and secant varieties

Notation 2.1.1. All vector spaces are presumed to be �nite-dimensional vector spaces over
the complex �eld C. Letters A,B,C possibly indexed denote vector spaces. The asterisk A∗

denotes the dual of a space A, so the space of linear maps A→ C. By a variety I always mean
an algebraic variety over C.
Notation 2.1.2. For a subset S ⊂ A, by 〈S〉 we denote the linear space spanned by S.

De�nition 2.1.3. For a linear space A, we de�ne a projective space PA = (A \ {0})/C∗,
where C∗ = C \ {0} is the multiplication group of the �eld C. If X̂ ⊂ A is invariant with
respect to rescaling ∀λ∈C(x ∈ X̂ ⇒ λx ∈ X̂), we de�ne X = P(X̂) ⊂ PA.

De�nition 2.1.4. Let us consider an invariant with respect to rescaling subset X̂ ⊂ A
spanning A as a linear space. Let p ∈ A. We de�ne X̂-rank of p as the least integer r = RX̂(p),
such that:

p =

r∑
i=1

λix̂i for certain x̂i ∈ X̂ and λi ∈ C.

Equivalently, r is the minimal integer such that p ∈ 〈{x̂1, x̂2, ..., x̂r}〉, for certain x̂i ∈ X̂.
Similarly for X = P(X̂) we de�ne X-rank of p ∈ PA as the least integer r = RX(p),

such that p ∈ 〈{x1, x2, ..., xr}〉, for certain xi ∈ X. Here 〈{x1, x2, ..., xr}〉 denotes the smallest
linear subspace Pk ⊂ PA containing {x1, x2, ..., xr}.

De�nition 2.1.5. For T ∈ A1 ⊗ A2 ⊗ ... ⊗ An, T is a simple tensor if there exist elements
a1, a2, ..., an such, that ∀i ai ∈ Ai and T = a1 ⊗ a2 ⊗ ...⊗ an.

De�nition 2.1.6. Let A = A1⊗· · ·⊗Ak, X̂ be a set of simple tensors, X = P(A1)×P(A2)×
· · ·×P(Ak). Then for x = ([a1], ..., [ak]) ∈ X, we have an inclusion Seg : X → P(A1⊗· · ·⊗Ak),
given by Seg(x) = [a1 ⊗ · · · ⊗ ak]. This inclusion is called the Segre's embedding. For such X
and X̂ we de�ne:

• in the a�ne case, a tensor rank of p̂ ∈ A is RX̂(p̂),

• in the projective case, a tensor rank of p ∈ P(A) is RSeg(X)(p).

The tensor rank of a tensor p will be denoted by R(p) if there is no risk of confusion. We will
write often just rank in place of tensor rank.
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Similarly we can de�ne the symmetric tensor rank.

De�nition 2.1.7. A tensor T ∈ A⊗d is a symmetric tensor of order d if for every permutation
σ of symbols {1, 2, ..., d} and every subset of vectors {v1, v2, ..., vd} ∈ Ad, T (v1, v2, ..., vd) =
T (vσ(1), vσ(2), ..., vσ(d)). The set of symmetric tensors of order d is denoted by Sd(A).

De�nition 2.1.8. For [l] = x ∈ X ⊂ P(A) we have an inclusion vd : X → P(SdA), given by
vd(x) = [l ⊗ · · · ⊗ l]. This inclusion is called the Veronese's embedding of degree d. We de�ne
the symmetric rank of p ∈ SdA as the vd(X)-rank of this point (see De�nition 2.1.4).

De�nition 2.1.9. 〈S〉 denotes space spanned by elements of S like in Notation 2.1.2. We
de�ne the r-th secant variety of a variety X̂ ⊂ A as the Zariski closure of the sum of all linear
subspaces spanned by r points of X̂:

σr(X̂) :=
⋃
{〈x̂1, ..., x̂r〉 : x̂i ∈ X̂} ⊂ A.

Equivalently the r-th secant variety of X̂ is the Zariski closure of the set of points of X̂-rank
at most r.

Similarly we de�ne the r-th secant variety of a projective algebraic variety X ⊂ PA. Here
〈S〉 denotes the projective space spanned by elements of S, i.e. the smallest linear subspace
Pk ⊂ PA which contains S. The r-th secant variety of a projective algebraic variety X ⊂ PA
is the Zariski closure of the sum of all linear subspaces spanned by r points of X:

σr(X) :=
⋃
{〈x1, ..., xr〉 : xi ∈ X} ⊂ PA.

The secant variety is an Zariski closure of a set of points of X-rank at most r.

De�nition 2.1.10. For p̂ ∈ A, X̂ ⊂ A (resp. p ∈ PA,X ⊂ PA) we de�ne RX̂(p̂), the X̂-border
rank of a point p̂ (resp. RX(p), the X-border rank of a point p) as the minimal number r,
such that p̂ ∈ σr(X̂) (resp. p ∈ σr(X)).

For A, p̂, p, X̂,X and Seg(X) as in De�nition 2.1.6, we de�ne the tensor border rank of
p̂ ∈ A as RX̂(p̂) (resp. tensor border rank of p ∈ P(A) as RSeg(X)(p)). The tensor border rank
of a tensor p will be denoted by R(p) if there is no risk of confusion. We will write often just
border rank in place of tensor border rank.

Example 2.1.11. For a tensor p ∈ A ⊗ B ≈ Hom(A∗ → B), the tensor rank of p is equal
the rank of matrix corresponding to tensor p. The set of tensors in A⊗ B of rank at most r
is closed, so for tensors in A⊗B the tensor rank equals the tensor border rank.

There are fundamental properties of the X̂-rank, for X̂ ⊂ A invariant under rescalings:

1. RX̂(p) = 0⇔ RX̂(p) = 0⇔ p = 0 (convention),

2. RX̂(p) = 1⇔ p ∈ X̂ \ {0},

3. Ŷ ⊂ X̂, p ∈ 〈Ŷ 〉, then RŶ (p) ≥ RX̂(p),

4. RX̂(λp) = RX̂(p), for any λ ∈ C
∗,

5. RX̂(p1 + p2) ≤ RX̂(p1) +RX̂(p2).
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2.2. The matrix multiplication

The matrix multiplication is a bilinear map Cfg×Cgh → Cfh. Hence one can think about
it as a tensor:

Mf,g,h ∈ (Cfg)∗ ⊗ (Cgh)∗ ⊗ Cfh = A⊗B ⊗ C.

The naive matrix multiplication algorithm needs fgh multiplications of complex numbers
and as a tensor, has a form:

Mf,g,h =
∑
i,j,k

a∗i,j ⊗ b∗j,k ⊗ ci,k,

where the sum goes by 1 ≤ i ≤ f, 1 ≤ j ≤ g, 1 ≤ k ≤ h, and elements ai,j ∈ Cfg, bj,k ∈
Cgh, ci,k ∈ Cfh make the standard bases.

This algorithm gives an estimate for the tensor rank R(Mf,g,h) 6 fgh. Strassen proved
that one can multiply two matrices 2 × 2 using only 7 multiplications of complex numbers
(instead of 2 · 2 · 2 = 8 multiplications) [S69]

M2,2,2 = (a∗1,1 + a∗2,2)⊗ (b∗1,1 + b∗2,2)⊗ (c1,1 + c2,2)

+ (a∗2,1 + a∗2,2)⊗ b∗1,1 ⊗ (c2,1 − c2,2)
+ a∗1,1 ⊗ (b∗1,2 − b∗2,2)⊗ (c2,1 + c2,2)

+ a∗2,2 ⊗ (−b∗1,1 + b∗2,1)⊗ (c2,1 + c2,2)

+ (a∗1,1 + a∗1,2)⊗ b∗2,2 ⊗ (−c1,1 + c2,1)

+ (−a∗1,1 + a∗2,1)⊗ (b∗1,1 + b∗1,2)⊗ c2,2
+ (a∗1,2 − a∗2,2)⊗ (b∗2,1 + b∗2,2)⊗ c1,1.

(2.1)

Strassen asked if there exists an algorithm that simultaneously computes two di�erent
matrix multiplications that costs less than the sum of the best algorithms for the individual
matrix multiplications. If not, one says that additivity holds for matrix multiplication.

In [S73] Strassen formulated his well known additivity conjecture for bilinear maps: Given
bilinear maps ϕ,ψ and two pairs of matricesM1,M2 andM

′
1,M

′
2 the computational complex-

ity of simultaneously computing ϕ(M1,M2) and ψ(M
′
1,M

′
2) is the sum of the complexities of

ϕ and ψ. The conjecture stands open since its formulation in 1973.

Strassen's conjecture can be naturally stated in terms of tensors and the notion of tensor
rank.

De�nition 2.2.1. For two tensors p1 =
∑r

i=1 ai⊗ bi⊗ ci ∈ A1⊗B1⊗C1 and p2 =
∑r′

i=1 a
′
i⊗

b′i ⊗ c′i ∈ A2 ⊗ B2 ⊗ C2 we de�ne the direct sum of tensors as a tensor p1 ⊕ p2 =
∑r

i=1 ai ⊗
bi ⊗ ci +

∑r′

i=1 a
′
i ⊗ b′i ⊗ c′i ∈ (A1 ⊕A2)⊗ (B1 ⊕B2)⊗ (C1 ⊕ C2).

Conjecture 2.2.2 (Strassen's additivity conjecture (SAC)). Additivity holds for bilinear
maps. That is, given T1 ∈ A1⊗B1⊗C1 and T2 ∈ A2⊗B2⊗C2, then letting A = A1⊕A2, B =
B1 ⊕B2, C = C1 ⊕ C2, we have:

RSeg(PA×PB×PC)(T1 ⊕ T2) = RSeg(PA1×PB1×PC1)(T1) +RSeg(PA2×PB2×PC2)(T2).

Note that an analogue of the additivity conjecture for border ranks does not hold (see
Example 2.4.1).
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In the Chapter 3. we will focus on the 3-way tensors T contained in the space A⊗B⊗C.
In the tensor literature, such tensors are often studied by their images T (A∗) ⊂ B ⊗ C etc.
and these images are studied in terms of bases, resulting in a parametrized subspace of a space
of matrices.

De�nition 2.2.3. For a tensor T contained in the space A ⊗ B ⊗ C, and a given bases of
A,B,C, the images T (A∗) ⊂ B ⊗ C etc. are parametrized spaces of matrices called slices.

2.3. The join of varieties and the secant varieties

De�nition 2.3.1. For a vector space A and x, y ∈ PA such that x 6= y, let P1xy denote the
projective line l ⊂ PA containing x and y.

De�nition 2.3.2. The join of two algebraic varieties Y,Z ⊂ PA is

J(Y,Z) =
⋃

y∈Y,z∈Z,y 6=z
P1yz.

The join of k varieties X1, ...., Xk ⊂ PA is de�ned to be the closure of the union of the
corresponding Pk−1, or by induction, J(Y1, ..., Yk) = J(Y1, J(Y2, ..., Yk)).

For Y = Z, J(Y, Y ) = σ2(Y ) denotes the second secant variety of Y . If ∀1≤k≤r−1 Yk = Yk+1

the join J(Y1, ..., Yr) = J(Y, ..., Y ) = σr(Y ) is the the r-th secant variety of Y . [L] Example
5.1.1.3 shows that for Y = Seg(PA1×PA2×PA3), such de�ned σr(Y ) agrees with the previous
notation (De�nition 2.1.9) of the set of tensors in P(A1 ⊗A2 ⊗A3) of border rank at most r.

De�nition 2.3.3. The expected dimension of J(Y, Z) ⊂ PA ismin{dimY+dimZ+1, dimPA}
because a point x ∈ J(Y, Z) is obtained by picking a point of Y , a point of Z, and a
point on the line joining the two points. Similarly, the expected dimension of σr(Y ) is
min{r(dimF ) + r − 1, dimPA}.

De�nition 2.3.4. If Xn ⊂ PN and dimσr(X) < min{rn + r − 1, N}, one says σr(X) is
defective, with defect δr = δr(X) := rn + r − 1 − dimσr(X). Otherwise one says σr(X) is
nondefective.

Example 2.3.5 ([L] Example 5.1.2.2). Let a = dim(A), b = dim(B) and a, b ≥ 3. Consider
σ2(Seg(PA× PB)). An open set of this variety may be parametrized as follows: choose bases
for A, B and write

x1 =

x
1
1
...
xa1

 , x2 =
x

1
2
...
xa2

 (2.2)

Choose the column vectors x1, x2 arbitrarily and then take the matrix

p = (x1, x2, c
3
1x1 + c32x2, ..., c

b
1x1 + cb2x2)

to get a general matrix of rank at most two. Thus the set of matrices of rank at most two in
A⊗B, denoted by σ̂2(Seg(PA× PB)) is locally parametrized by 2a+ 2(b− 2) = 2a+ 2b− 4
parameters. Hence dimσ2(Seg(PA× PB)) = 2a+ 2(b− 2)− 1 = 2a+ 2b− 5 compared with
the expected 2[(a− 1) + (b− 1)] + 1 = 2a+ 2b− 3, so δ2(Seg(PA× PB)) = 2.
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Example 2.3.6 ([L] Exercise 5.1.2.4). Let a = dim(A), b = dim(B) and a, b ≥ 3 for
σr(Seg(PA × PB)), r ≤ min{a, b}. Choose the column vectors x1, x2, ..., xr arbitrarily and
then take the matrix

p = (x1, x2, ..., xr,
r∑
i=1

cr+1
i xi, ...,

r∑
i=1

cr+1
i xi).

Thus dimσr(Seg(PA× PB)) = ra+ r(b− r)− 1 = r(a+ b− r)− 1.

One expects σ7(Seg(P3×P3×P3)) = P(C4⊗C4⊗C4), and this is indeed the case, which
explains how Strassen's algorithm for multiplying 2× 2 matrices could have been anticipated
(see [L] Section 5.2.2).

2.4. Schönhage example

Schönhage showed that border rank version of Strassen's conjecture (Conjecture 2.2.2)
cannot hold in general. I quote the following example and proposition from [BGL] because I
believe it is good to see the counterexample in details.

Example 2.4.1 (Schönhage's example ([BGL] Example 4.5.2)). Let

Ma,b,c : (Ca ⊗ Cb∗)× (Cb ⊗ Cc∗)× (Ca ⊗ Cc∗)

denote the matrix multiplication operator. Schönhage proved [Sch] that, while R(Me,1,l) = el
and R(M1,h,1) = h, nevertheless, by Proposition 2.4.2, we know that R(Me,1,l ⊕M1,h,1) ≤
el + 1 so for h > 1 the border rank Strassen's conjecture does not hold.

Proposition 2.4.2 ([BGL] Proposition 4.5.3). Let h = (e−1)(l−1), then R(Me,1,l⊕M1,h,1) ≤
el + 1.

Proof. Write A = A′⊕A′′, B = B′⊕B′′, C = C ′⊕C ′′, where A′, A′′, B′, B′′, C ′, C ′′ are linear
spaces. Let dimA′ = e,dimB′ = l,dimC ′ = el,dimA′′ = h,dimB′′ = h, and dimC ′′ = 1.
Fix index ranges 1 ≤ i ≤ e, 1 ≤ s ≤ l, 1 ≤ u ≤ e − 1, 1 ≤ v ≤ l − 1. Give the vector spaces
bases {ai}, {bs}, {ci,s}, {αu,v}, {βu,v}, and γ.

In the above bases,

Me,1,l =
∑

1≤i≤e,1≤s≤l
ai ⊗ bs ⊗ ci,s andM1,h,1 =

∑
1≤u≤e−1,1≤v≤l−1

αu,v ⊗ βu,v ⊗ γ.

Set αe,v = −
∑

u αu,v, βu,l = −
∑

v βu,v, αi,l = 0, βe,j = 0, which can be illustrated with
the following picture:

(αu,v)u=1,...,e
v=1,...,l

=


α1,1 α1,2 ... α1,l−1 0
α2,1 α2,2 ... α2,l−1 0
...

...
. . .

...
...

αe−1,1 αe−1,2 ... αe−1,l−1 0
−
∑

u αu,1 −
∑

u αu,2 ... −
∑

u αu,l−1 0

 ,

(βu,v)u=1,...,e
v=1,...,l

=


β1,1 β1,2 ... β1,l−1 −

∑
v β1,v

β2,1 β2,2 ... β2,l−1 −
∑

v β2,v
...

...
. . .

...
...

βe−1,1 βe−1,2 ... βe−1,l−1 −
∑

v β1,v
0 0 ... 0 0

 .
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Now let

T̃ (t) =
∑

1≤i≤e,1≤s≤l
(ai + tαi,s)⊗ (bs + tβi,s)⊗ (γ + t2ci,s)− (

∑
i

ai)⊗ (
∑
s

bs)⊗ γ.

Note that for t 6= 0, R(T̃ (t)) ≤ el + 1, and that T̃ (t) = t2T + O(t3) where T =Me,1,l ⊕
M1,h,1. Hence

T (t) :=
1

t2
T̃ (t) = T +O(t)

is the desired sequence of tensors, i.e. ∀06=t R(T (t)) ≤ el + 1, and in the limit we have
T (0) = T .
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Chapter 3

Lower bounds for the tensor rank and

the main theorem

3.1. Lower bounds for the tensor rank of a sum of tensors p1⊕p2,
when p1 is A1-concise.

Proposition 3.1.1 ([L] Proposition 3.1.3.1). Let tensor T ∈ A ⊗ B ⊗ C has rank r. Say
T ∈ A′ ⊗B′ ⊗C ′, where A′ ⊆ A, B′ ⊆ B, C ′ ⊆ C with at least one inclusion proper, let it be
A′ ( A. Then any expression T =

∑s
i=1 ai ⊗ bi ⊗ ci such that ∃i ai ∈/ A′ has s > r.

De�nition 3.1.2. Tensor p ∈ A⊗B ⊗ C is A-concise if the following implication holds:

∃A′⊆A p ∈ A′ ⊗B ⊗ C ⇒ A′ = A.

If p is A-concise, B-concise and C-concise we say it is concise.

Proposition 3.1.3 ([L] Theorem 10.3.3.3.). If p2 ∈ A2 ⊗B2 ⊗C2 and p1 ∈ A1 ⊗B1 ⊗C1 is
a A1-concise tensors, then R(p1 ⊕ p2) ≥ dim(A1) +R(p2).

Proof. There are presentations: p1 =
∑r1

i=1 a
′
i ⊗ b′i ⊗ c′i, p2 =

∑r2
i=1 a

′′
i ⊗ b′′i ⊗ c′′i , p1 + p2 =∑s

i=1 ai ⊗ bi ⊗ ci, where r1 = R(p1), r2 = R(p2), s = R(p1 ⊕ p2). We have the projections
πA1 : (A1 ⊕A2)→ A1, πB2 : (B1 ⊕B2)→ B2.

From the de�nition of the A1-conciseness we get dim((p1 ⊕ p2)(A∗1)) = dim(p1(A
∗
1)) =

dim(A1). Thus there exists a subset S = {ã1, . . . , ãa1} ⊂ {a1, . . . , an} of cardinality a1 =
dim(A1), such that πA1(Ã1) = 〈πA1(ã1), . . . , πA1(ãa1)〉 = A1, where Ã1 = 〈ã1, . . . , ãa1〉 is the
linear space spanned by elements of S. After a possible permutation of the ai's, we can forget
about tildes, so further we denote S = {a1, . . . , aa1}. A2 = ker(πA1), so A2 ∩ Ã1 = 0. Hence
when we de�ne the quotient map ϕ : (A1⊕A2)→ (A1⊕A2)/Ã1, then after restriction to A2

we have an isomorphism ϕ|A2 : A2 → (A1 ⊕A2)/Ã1 .
We can de�ne:

ϕ# : (A1 ⊕A2)⊗ (B1 ⊕B2)⊗ (C1 ⊕ C2)→ ((A1 ⊕A2)/Ã1)⊗B2 ⊗ (C1 ⊕ C2)

ϕ# = ϕ⊗ πB2 ⊗ Id(C1⊕C2).

We see that ϕ#|A2⊗B2⊗C2 is an isomorphism, we de�ne p̃2 := ϕ#(p2). The kernel of ϕ#

contains (A1 ⊕ A2) ⊗ B1 ⊗ (C1 ⊕ C2), so ϕ
#(p1 ⊕ p2) = ϕ#(p2) = p̃2. On the other hand,

because of the de�nition of the quotient map ϕ, we have:

ϕ#
( s∑
i=1

ai ⊗ bi ⊗ ci
)
= ϕ#

( s∑
i=a1+1

ai ⊗ bi ⊗ ci
)
.
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It implies ϕ#(p1⊕p2) = p̃2 =
∑s

i=a1+1 ai⊗bi⊗ci. From the de�nition of rank: s−a1 ≥ R(p̃2).
Because of the isomorphism ϕ#|A2⊗B2⊗C2 , we obtain s− a1 ≥ R(p2). So

R(p1 ⊕ p2) ≥ s− a1 + a1 ≥ R(p2) + a1 = R(p2) + dim(A1).

As a direct corollary we have:

Corollary 3.1.4. Let p2 ∈ A2⊗B2⊗C2 and p1 ∈ A1⊗B1⊗C1 be a A1-concise tensor, such
that R(p1) = dim(A1). Then Strassen's additivity conjecture holds for p1⊕p2, i.e. R(p1⊕p2) =
R(p1) +R(p2).

3.2. The Alexeev-Forbes-Tsimerman method for bounding ten-
sor rank

What follows is the general technique for �nding lower bounds for the tensor rank.

Proposition 3.2.1 ([LM] Proposition 2.1). Let tensor T be an element of A⊗B⊗C. There
exist r rank one elements of B ⊗ C such that T (A∗) is contained in their span if and only if
R(T ) ≤ r. Similarly, R(T ) ≤ r if and only if there exists a curve Et in the Grassmannian
G(r,B ⊗ C), where for t 6= 0, Et is spanned by r rank one elements and T (A∗) ⊆ E0 (which
is de�ned by the compactness of the Grassmannian).

Proof. For the case of a tensor rank:
For the �rst implication, T is a tensor of rank r, T =

∑r
i=1 ai⊗ bi⊗ ci. T (A∗) is contained

in an r-dimensional linear space spanned by 〈bi ⊗ ci〉.
For the reversed implication: We know that T (A∗) is contained in an r-dimensional linear

space spanned by {M1, ...,Mr}, so we know that T (α) =
∑r

i=1 λiMi for every α ∈ A∗. Thus,
for a chosen basis of A {a1, ..., aa}, we have:

T =

a∑
j=1

aj ⊗ (

r∑
i=1

λi,jMi).

We can reorder the sum, to write it as a sum of r simple tensors:

T =

r∑
i=1

(

a∑
j=1

λi,jaj)⊗Mi.

For the case of a border tensor rank:
Let us assume that R(T ) = r. Thus we have a curve of (Tt)t6=0 contained in A ⊗ B ⊗ C

with limit T = T0, such that ∀t6=0R(Tt) = r. Every single tensor Tt for t 6= 0 can be written
as Tt =

∑r
i=1 ai,t ⊗ bi,t ⊗ ci,t. For t 6= 0 we associate Tt with the linear space Et in B ⊗ C

spanned by {bi,t ⊗ ci,t}i=1,...,r and denote E0 := limt→0Et, which by the compactness of the
Grassmannian G(r,B⊗C) has dimension r. For every α ∈ A∗ T (α) = limt→0 Tt(α), so T (A

∗)
is contained in E0.

If R(T ) = k < r then by the just written method we obtain a curve Ẽt in G(k,B⊗C), so
we choose additional r − k points S = {p1, ...pr−k} in B ⊗C such that the space spanned by
points of Ẽ0 and S has dimension r. Our new, desired curve is given by ∀t Et = span(Ẽt, S),
the linear space spanned by points from Ẽt and S.
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We need to prove the remaining implication. We have ∀α∈A∗ T (α) ∈ E0 = 〈M1, . . . ,Mr〉,
where {M1, ...,Mr} is a basis of E0. We know that 〈M1, . . . ,Mr〉 is a limit of 〈M̃1,t, . . . , M̃r,t〉
when t goes to 0, where ∀k,t M̃k,t ∈ B ⊗ C is of rank 1. Thus every Mi can be approximated
by Mi,t =

∑r
k=1 ζi,k,tM̃k,t, where ∀i,k,t ζi,k,t ∈ C. We de�ne tensors T̃t as:

T̃t =
a∑
j=1

aj⊗(
r∑
i=1

λi,jMi,t) =
a∑
j=1

aj⊗(
r∑
i=1

λi,j(
r∑

k=1

ζi,k,tM̃k,t)) =

r∑
k=1

(

a∑
j=1

r∑
i=1

λi,jζi,k,taj)⊗M̃k,t

We received that T can be approximated by the tensors T̃t, each of rank r.

Corollary 3.2.2 ([LM] Corollary 2.2). Let T ∈ A ⊗ B ⊗ C be A-concise and denote a =
dim(A). Then R(T ) = a implies that T (A∗) ∩ Seg(PB × PC) 6= ∅.

More generally:

Corollary 3.2.3 ([LM] Corollary 2.3). Let T ∈ Cm ⊗Cm ⊗Cm = A⊗B ⊗C. If R(T ) = m,
then the �ag condition is ful�lled, i.e. there exists a complete �ag A1 ⊆ ... ⊆ Am−1 ⊆ Am = A,
with dimAj = j, such that PT (A∗j ) ⊆ σj(Seg(PB × PC)).

Proposition 3.2.4 ([LM] Proposition 3.1). Let T ∈ A ⊗ B ⊗ C, R(T ) = r, {ci}i=1,...,c be a
�xed basis of C, T =

∑c
i=1Mi ⊗ ci, where Mi ∈ A⊗B and M1 6= 0. Then:

1. there exist constants λ2, ...., λm, such that the tensor

T̃ :=

c∑
j=2

(Mj − λjM1)⊗ cj ∈ A⊗B ⊗ c⊥1
∗

(3.1)

has rank R(T̃ ) ≤ r − 1.

2. Moreover, if R(M1) = 1 then for any choices of λj we have R(T̃ ) ≥ r − 1.

Proof. By Proposition 3.2.1 there exist rank one tensors X1, ..., Xr ∈ A ⊗ B and scalars dij
such that for every j:

Mj =
r∑
i=1

dijXi.

Since M1 6= 0 we may assume d11 6= 0 and de�ne λj =
d1j
d11
. For these λ's the tensor T̃ (see

3.1) de�nes the subspace T̃ (c⊥1 ) contained in a span of X2, ..., Xr. Proposition 3.2.1 implies
R(T̃ ) ≤ r − 1. The last assertion holds because if R(M1) = 1 then we may assume X1 = M1

and apply Proposition 3.2.1.

Proposition 3.2.4 is usually implemented by consecutively applying the following steps,
which we will call after Michaªek and Landsberg the AFT method. I have slightly modi�ed
the AFT method from [LM], Section 3, adding �break� conditions, to avoid incorrect lower
bounds. For examples breaking algorithm see Example 3.2.6 and Example 3.2.7.

The AFT method for bounding rank of a tensor T ∈ A⊗B ⊗ C:

1. Distinguish one of the factors, say A, take its basis {aj} and take bases {βi}, {γj}
of B∗, C∗ and represent T ∈ A ⊗ B ⊗ C as a matrix M with entries that are linear
combinations of the basis vectors ai. That means in the (i, j) place of the matrix M we
have: mi,j = T (β∗i ⊗γ∗j ). We will denote by M(βi) the i-th row of M , and by M(γj) the
j-th column of M .
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2. Choose a subset SB = {i1, ...ib′} ⊂ {1, ...,b}, such that the rows of M corresponding
to the numbers belonging to SB are pairwise di�erent and nonzero. Similarly we choose
a subset SC = {j1, ...jc′} ⊂ {1, ..., c}, such that the columns of M corresponding to
numbers belonging to SC are pairwise di�erent and nonzero. We are going to change
the matrix M in the next steps, so let us denote by M̃ the copy of the beginning matrix
M .

3. Inductively, for 1 ≤ l ≤ b′:

(a) change the il-th row of matrix M to zeros, obtaining new matrix M ′.

If there exists v ∈ SC such that the column M ′(γv) is zero, then break the algo-
rithm.

(b) for every row M ′(βr) of number r ∈/ {i1, ..., il} ⊂ SB add M(βil) times a variable
λr,il , regarding the ai as formal variables. In a result we obtain the new matrix
M ′′.

If there exists a choice of values of λ-s in C, such that in a result ∃l<k≤b′ M ′′(βik) =
0 or ∃j∈SC

M ′′(γj) = 0 then break the algorithm.

(c) From now M :=M ′′.

4. Similarly for columns. Inductively, for 1 ≤ l ≤ c′:

(a) change the jl-th column of matrix M to zeros, obtaining new matrix M ′.

(b) for every column M ′(γv) of number v ∈/ {j1, ..., jl} ⊂ SC add M(γjl) times a
variable λ′v,jl , regarding the ai as formal variables. In a result we obtain the new
matrix M ′′.

If there exists a choice of values of λ-s, and λ′-s in C, such that in a result
∃l<k≤c′ M ′′(γjk) = 0 then break the algorithm.

(c) From now M :=M ′′.

5. Recall that the matrix we started with is M̃ , as in 2. For every aj that appeared in any
of the selected rows M̃(βi) or columns M̃(γj) for i ∈ SB and j ∈ SC , set aj equals zero
in all entries in whole matrix M obtaining a new matrix M ′. Notice, that M ′ does not
depend on the choice of λ-s and λ′-s.

After these 4 steps, if we do not break the algorithm, we obtain:

R(T ) ≥ b′ + c′ +R(T ′) (3.2)

where the tensor T ′ corresponds to the matrix M ′, i.e. T ′(A∗) = M ′. The inequality follows
by consecutively, b′ + c′ times applying the Proposition 3.2.4 and then, in the 5-th step, a
projection to smaller subspace. The above steps can be iterated, interchanging the roles of A,
B and C.

I rewrite more precisely the Example 3.3 from [LM] with a mistake corrected.

Example 3.2.5. Let T = a1⊗ (b1⊗ c1+ ...+ b8⊗ c8)+ a2⊗ (b1⊗ c5+ b2⊗ c6+ b3⊗ c7+ b4⊗
c8)+a3⊗(b1⊗c7+b2⊗c8)+a4⊗b1⊗c8+a5⊗b8⊗c1+a6⊗b8⊗c2+a7⊗b8⊗c3+a8⊗b8⊗c4,
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so

T (A∗) =



a1 a5
a1 a6

a1 a7
a1 a8

a2 a1
a2 a1

a3 a2 a1
a4 a3 a2 a1


.

Then R(T ) ≥ 18. Here we start by distinguishing the space B.

T (B∗) =



b1 b2 b3 b4 b5 b6 b7 b8
b1 b2 b3 b4

b1 b2
b1

b8
b8

b8
b8


contracting S1

A = {5, 6, 7, 8}. We obtain a tensor T ′ represented by the matrices

T ′(B∗) =



b1 b2 b3 b4 b5 b6 b7
b1 b2 b3 b4

b1 b2
b1


,

T ′(A∗) =



a1
a1

a1
a1

a2 a1
a2 a1

a3 a2 a1
a4 a3 a2


and the inequality R(T ) ≥ 4 + R(T ′). The AFT method applied 3 times more, with chosen:
S2
C = {1, 2, 3, 4}, S2

B = {7, 6, 5}, S3
C = {5, 6}, S3

B = {4, 3}, S4
C = {7}, S4

B = {2} gives R(T ′) ≥
(3 + 4) + (2 + 2) + (1 + 1) + 1 = 14 and R(T ) ≥ 18.

In fact, R(T ) = 18. It is enough to consider 17 matrices with just one nonzero entry
corresponding to all nonzero entries of T (A∗), apart from the top left and bottom right
corners and 1 matrix with 1 at each corner and all other entries equal to 0.

This generalizes to T ∈ C2k ⊗ C2k ⊗ C2k of rank 3 ∗ 2k − k − 3.

The examples in which the algorithm breaks:
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Example 3.2.6. Tensor T = a ⊗ b ⊗ (c1 + c2 + c3) ∈ A ⊗ B ⊗ C is of rank 1. Trying
to apply algorithm AFT for distinguished space A and SC = {c1, c2} we obtain [a, a, a] 7→
[0, a + λ2,1a, a + λ3,1a] and algorithm breaks because for λ2,1 = 1 the new matrix contains
the 0 element for every column belonging to SC . That agrees with R(T ) � R(T ′) + 2, for any
tensor T ′.

Example 3.2.7. Tensor T = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 ∈ C2 ⊗ C2 ⊗ C2 is concise and
R(T ) = 2. Trying to apply algorithm AFT for distinguished space A and S1

B = {2}, S1
C = {2}

we obtain: M =
[
a1 0
0 a2

]
7→M ′ =

[
a1 0
0 0

]
and algorithm breaks in step 3 of AFT - M ′(γ2) = 0.

That agrees with R(T ) � R(T ′) + 2 for T ′ = a1 ⊗ b1 ⊗ c1.

De�nition 3.2.8. We will say that a rank of a tensor T ∈ A⊗B ⊗ C can be determined by
the AFT method if there exist integer n > 0 and a way of consecutively applying the AFT
method n times, to obtain a sequence of inequalities (see 3.2):

R(T ) ≥ b′1 + c′1 +R(T ′1) ≥ b′1 + c′1 + b′2 + c′2 +R(T ′2) ≥ ... ≥
n∑
i=1

(b′i + c′i) +R(T ′n)

such that R(T ′n) = 0, and
∑n

i=1(b
′
i + c′i) = R(T ).

In many cases of low rank the AFT method provides the correct rank. The AFT helps us
to prove the following theorem.

Theorem 3.2.9 ([LM] Theorem 4.1). Let T1 ∈ A1⊗B1⊗C1 and T2 ∈ A2⊗B2⊗C2 be such
that R(T1) can be determined by the AFT method. Then Strassen's additivity conjecture holds
for T1 ⊕ T2, i.e. R(T1 ⊕ T2) = R(T1) +R(T2).

Proof. In each application of the AFT method for T1 we choose a subset of columns and
subset of rows. Let us assume that in AFT we distinguished A1. Because of injection fA1 :
A1 → A1⊕A2 we can interpret SB1 as a rows and SC1 as a columns of (T1⊕T2)((A1⊕A2)

∗)
letting AFT work for T1 ⊕ T2 in a bigger space. We do the same in case of B1 and C1. R(T1)
can be determined by the AFT method. Hence we are repeating the AFT method, which give
us the proper bound for T1, in a bigger space, changing A1 to A1 ⊕ A2 and similarly for B1

and C1, and translating the numbers of columns and rows by fA1 , fB1 , fC1 .
With each application of the AFT method, T1 is modi�ed to a tensor of lower rank living

in a smaller space and T2 is unchanged. It is still a direct sum after each application of AFT,
because in 5-th step of AFT method we cancel every possible coe�cient which could appear

in steps 3 and 4 denying T̃1 ⊕ T2 is a direct sum.
After all applications, T1 has been modi�ed to zero and T2 is still unchanged. Hence

R(T1 ⊕ T2) = R(T1) +R(T2) follows from inequality 3.2.

To prove Proposition 3.2.11, which we will need in the proof of Proposition 3.2.12, we
need the following lemma:

Lemma 3.2.10. Let B = Cb, C = Cc and b ≤ c. For a concise tensor T ∈ C2 ⊗ B ⊗ C
there exist γ ∈ C∗ such that T (γ) is a rank one matrix.

Proof. Because of conciseness, for T (C∗) ⊆ C2⊗B dimT (C) = c. We have dim(Seg(P(C2)×
P(B))) = 1+b−1+1 = 1+b, dim(C2⊗B) = 2b. Thus dim(C)+dim(Seg(P(C2)×P(B))) =
c+b+1 ≥ 2b+1 > 2b. Hence there is a non-empty intersection T (C∗)∩Seg(P(C2)×P(B)).

Proposition 3.2.11. Let B = Cb, C = Cc. For every non-zero tensor T ∈ C2⊗B⊗C there
exists γ, an element of B∗ or C∗ such that T (γ) is a rank one matrix.

18



Proof. If T is concise then we apply Lemma 3.2.10. In other case we can �nd A′ = Ca′ , B′ =
Cb′ , C ′ = Cc′ such that T ∈ A′ ⊗ B′ ⊗ C ′ ⊆ C2 ⊗ B ⊗ C is concise. If the a′ = 2 we apply
the lemma to A′, B′, C ′ or to A′, C ′, B′ if dimension of B′ is greater than dimension of C ′∗. If
not, a′ = 1, then for every γ ∈ C ′∗, T (γ) is a rank 1 tensor.

In [LM] Section 4, there is noted, with a short proof, that Strassen's additivity conjecture
holds if the space A1 is of dimension 2 and tensor T1 ∈ A1 ⊗B1 ⊗C1. I give a detailed proof
which follows the mentioned one.

Proposition 3.2.12. Let T1 ∈ A1⊗B1⊗C1 and T2 ∈ A2⊗B2⊗C2 be such that dim(A1) = 2.
Then Strassen's additivity conjecture holds for T1 ⊕ T2, i.e. R(T1 ⊕ T2) = R(T1) +R(T2).

Proof. We de�ne T := T1 ⊕ T2, A := A1 ⊕ A2 and similarly for B and C. Let us look
on T (A∗) = (T1 ⊕ T2)(A

∗
1 ⊕ A∗2). We slightly modify the AFT method. We take a basis

{a1, ..., aa1} of A1, {a′1, ..., a′a2
} of A2, {β1, ..., βb1} of B∗1 , {β′1, ..., β′b2

} of B∗2 , {γ1, ..., γc1} of
C∗1 , {γ′1, ..., γ′c2} of C

∗
2 , and represent T (A∗) as a block matrix M with entries that are linear

combinations of the basis vectors of A1 and A2.
By Proposition 3.2.11 we can always �nd either β ∈ B∗1 or γ ∈ C∗1 , such that T1(β) or

T1(γ) is a rank one matrix. Possibly after changing bases of B1 and C1, without loosing the
generality, we �nd β1. As in point 3a of the AFT algorithm, we change the row corresponding
to β1 to zero, obtaining a new matrix M ′. Now as in 3b, for every row v of M ′, other than
M ′(β1), we addM(β1) times a coe�cients λv,1 coming from Proposition 3.2.4 point 1 applied
to T = T1 ⊕ T2, regarding the {a1, ..., aa1 , a

′
1, ..., aa2

′} as formal variables. We obtained new
matrix M ′′ and new tensor T ′1 ∈ A1 ⊗B1 ⊗ C1 corresponding to M ′′|B1⊗C1 .

Constantly applying the previous paragraph (each application we start with the tensors
T ′1 ∈ A1 ⊗B1 ⊗C1 and T̃ ∈ A⊗B ⊗C, such that T̃ (A) =M ′′ from the previous application
in place of respectively T1, T,M) we �nally obtain the matrix M̃ with submatrix M̃ |B1⊗C1

equal zero. We reach the zero submatrix in not less than R(T1) steps because of Proposition
3.2.4 point 2. By Proposition 3.2.4 point 1 after each application, we reduce the rank of a
tensor by at least 1. We have a lower bound:

R(T̃ ) ≤ R(T )−R(T1)

We change all instances of vectors from A1 in M to zero, obtaining tensor T̃ ′ ∈ A⊗B⊗C
equivalent to tensor T2. We have:

R(T2) = R(T̃ ′) ≤ R(T̃ ) ≤ R(T )−R(T1),

thus:

R(T2) +R(T1) ≤ R(T ).

The inverse inequality always holds, see property 5, the end of �2.1.

3.3. The third secant variety of A⊗B⊗C and the main theorem

In this section I prove that the Strassen's additivity conjecture holds if one of the tensor
is of border rank 3 which gives a family of tensors of rank 5 for which SAC holds. The crucial
facts are the following theorem and Theorem 3.2.9.

Theorem 3.3.1. ([BL] Theorem 1.2.) Let X := Seg(PA× PB × PC). Let p = [v] ∈ σ3(X) \
σ2(X). Then v has one of the following normal forms:
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(i) a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3,

(ii) a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b3 ⊗ c3,

(iii) a1 ⊗ b2 ⊗ c2 + a2 ⊗ b1 ⊗ c2 + a2 ⊗ b2 ⊗ c1 + a1 ⊗ b1 ⊗ c3 + a1 ⊗ b3 ⊗ c1 + a3 ⊗ b1 ⊗ c1,

(iv) a2 ⊗ b1 ⊗ c2 + a2 ⊗ b2 ⊗ c1 + a1 ⊗ b1 ⊗ c3 + a1 ⊗ b3 ⊗ c1 + a3 ⊗ b1 ⊗ c1.

For type (iv) there are two other normal forms, where the role of a is switched with that
of b and c. We write these types in terms of slices (see De�nition 2.2.3) in Table 3.1, if v is
not contained in any of C2 ⊗ C3 ⊗ C3, C3 ⊗ C2 ⊗ C3, C3 ⊗ C3 ⊗ C2.

normal form slice R R

(i) a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3

t s
u

 3 3

(ii) a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b3 ⊗ c3

t s
s

u

 3 4

(iii) a1 ⊗ (b1 ⊗ c3 + b2 ⊗ c2 + b3 ⊗ c1) + a2 ⊗ (b1 ⊗ c2 + b2 ⊗ c1) + a3 ⊗ b1 ⊗ c1

t s u
s u
u

 3 5

(iv) a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ (b3 ⊗ c1 + b1 ⊗ c3)

t s u
s
u

 3 5

(iv) a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1 + b3 ⊗ c3) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b3 ⊗ c1

t s
s
u s

 3 5

(iv) a1 ⊗ (b1 ⊗ c2 + b2 ⊗ c1 + b2 ⊗ c3) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b1 ⊗ c3

t s u
s

s

 3 5

Table 3.1: Table of the normal forms of tensors in A ⊗ B ⊗ C of border rank 3. R denotes
rank and R denotes border rank of a tensor. [BL]

We can recover the rank of every tensor from the table, equivalently every tensor of border
rank 3, using the Alexeev-Forbes-Tsimerman method for bounding tensor rank.

Proposition 3.3.2. Rank of every tensor in A ⊗ B ⊗ C of border rank 3, which is not
contained in any of C2 ⊗ C3 ⊗ C3, C3 ⊗ C2 ⊗ C3, C3 ⊗ C3 ⊗ C2, can be computed using the
Alexeev-Forbes-Tsimerman method for bounding tensor rank.

Proof. Every tensor in A⊗B⊗C of border rank 3, which is not contained in any of C2⊗C3⊗C3,
C3⊗C2⊗C3, C3⊗C3⊗C2 can be presented in one of the normal forms from Table 3.1, where
a1, a2, a3, ... are linearly independent. Let us show that for every isomorphism class of such a
slices the AFT method gives us a proper bound, i.e. is equal to the rank of a corresponding
tensor.

(i) For the slice
[
t
s
u

]
applying AFT method we obtain:

[
t
s
u

]
7→
[
t
s

]
7→
[
t
]
. Thus

the rank is greater or equal 1 + 1 + 1 = 3.
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(ii) For the slice
[
t s
s

u

]
applying AFT method we obtain:

[
t s
s

u

]
7→
[
t

u

]
7→
[
t
]
. Thus

the rank is greater or equal 2 + 1 + 1 = 4.

(iii) For a slice
[
t s u
s u
u

]
we obtain

[
t s u
s u
u

]
7→
[
t s
s

]
7→
[
t
]
. Thus the rank is greater or

equal 2 + 2 + 1 = 5.

(iv) For a tensor of type (iv) normal forms are isomorphic, so we can choose slice
[
t s u
s
u

]
which give us the following intermediate matrices:

[
t s u
s
u

]
7→
[
t s
s

]
7→
[
t
]
and rank

greater or equal 2+2+1=5.

Now as a corollary we obtain:

Theorem 3.3.3. Let T1 ∈ A1⊗B1⊗C1 be a tensor of border rank 3 and T2 ∈ A2⊗B2⊗C2

be arbitrary tensor. Then Strassen's additivity conjecture holds for T1 ⊕ T2, i.e. R(T1 ⊕ T2) =
R(T1) +R(T2).

Proof. If one of A1, B1, C1 is of dimension less or equal 2 we have Proposition 3.2.12. If it's
not the case, the theorem follows from Theorem 3.2.9 and the Proposition 3.3.2.

Corollary 3.3.4. Then Strassen's additivity conjecture holds for T1 ∈ A1 ⊗ B1 ⊗ C1 and
T2 ∈ A2 ⊗B2 ⊗ C2, i.e. R(T1 ⊕ T2) = R(T1) +R(T2) if the tensor T1 ∈ A1 ⊗B1 ⊗ C1 ful�lls
one of the conditions:

• T1 is a tensor of rank 5 and type (iii) or (iv),

• T1 is a tensor of rank 4 and type (ii).
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