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Abstract

We study families of singular lines on projective varieties with respect to an ample polarization.
We use weighted projective spaces to construct projective varieties covered by singular lines,
and we also show an example of a smooth projective surface admitting two distinct lines
intersecting at two points. As an application, we show that there exists a smooth Fano
variety with the Picard number equal to 1 admitting a positive dimensional family of singular
lines with respect to the anti–canonical polarization.
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Introduction

Since the dawn of civilization, geometry has always been inherently related to the concept of
a line. From the classical point of view, one can define the projective plane as a model of the
following axiomatic theory, using points and lines as the primitive notions:

1. given two distinct points, there is exactly one line incident with both points;

2. given two distinct lines, there is exactly one point incident with both lines;

3. there exist four points such that no three of them are incident with the same line.

From a more modern but still classical point of view, one considers a variety embedded into
the complex projective space Pn. Lines on an embedded variety X are lines on the projective
space Pn, that are contained in X. One obtains very similar properties of lines to those
assumed in axiomatic geometry:

1. given two distinct points, there is at most one line incident with both points;

2. given a line and a hyperplane section, either the line is contained in the hyperplane
section or there is exactly one point incident with both objects;

3. every line is isomorphic to P1.

We consider a generalization of the concept of a line. Instead of embedding a projective
variety into the projective space, we choose an ample line bundle. A polarized variety is a
pair (X,L) consisting of a variety X and an ample line bundle L on X. Lines on (X,L) are
rational curves of degree 1 with respect to L. If we have chosen L to be a very ample line
bundle, it gives an equivalent description of lines to the classical case; see Lemma 1.11.

We study how the behaviour of lines on polarized varieties can differ from the behaviour
described by properties 1,2 and 3. We are particularly interested in lines not satisfying the
last property, that is, the singular lines. In Chapter 4 we see that even in the case of smooth
surfaces, there is an example contradicting properties 1 and 3:

Theorem (Theorem 4.1). There exists a smooth polarized projective surface (Y,L) admitting
two distinct singular lines intersecting at two points.

Despite that, lines admit a lot of regularity. For example, a classical consequence of Mori’s
Bend and Break Lemma 2.8 [Kol96, Corollary II.5.5.2], states that given two distinct points,
there is at most a finite number of lines incident with both points. Other examples of such
regularity are the following corollaries of [Keb02, Theorem 2.4]:

Corollary. [Keb02, Theorem 3.3] Let (X,L) be a projective polarized variety. Then for a
general point p ∈ X, there is at most a finite number of singular lines containing p.
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Corollary. [Keb02, Theorem 3.3] Let (X,L) be a projective polarized variety. Then for a
general point p ∈ X, there is no line with its singular point at p.

There is different kind of motivations, a little bit more technical.

Let X be a projective variety. Let RatCurvesn(X) be the normalization of the space
of rational curves on X, as defined in [Kol96, Definition 2.11]. Let H be an irreducible
component of RatCurvesn(X). From the universal property of RatCurvesn(X), we get the
universal family UH , together with the evaluation morphism ξ : H → X and the projection
π : UH → H.

UH X

H

π

ξ

We say that H is a minimal component of RatCurvesn(X), if ξ is dominant and for
a general point p ∈ X, the fibre ξ−1(p) is proper. Elements of the minimal component are
called minimal rational curves.

Study of minimal rational curves is a very active area of research; see: [HM04], [KK04],
[HK05], [FH09], [BM19], [HL21], [Hwa22], [HL22].

The connection of this research with our topic is following. The space of lines on (X,L)
is a projective scheme [BKK20, Proposition 3.7]. Thus, we see that for a variety X covered
by lines, lines are minimal rational curves. To some extent, lines are the simplest possible
examples of minimal rational curves.

Another motivation for our study is the following Kebekus-Miyaoka-Shepherd-Barron The-
orem, which characterizes the projective space. We state a version of the theorem from
[BKK20, Theorem 2.8]:

Theorem. [Keb02, Theorem 3.6] Let (X,L) be a polarized projective variety of dimension
n, such that two general points are connected by a line. Then the normalization of X is the
projective space Pn

This is a very interesting result because it shows that one can characterize a variety by
studying the geometry of its lines.

Last but not least, there is an interest in studying lines on contact Fano manifolds. A
contact manifold is a complex odd-dimensional manifold X with a contact structure, that is
admitting a short exact sequence

0→ F → TX
θ−→ L→ 0,

where F is a sub-bundle of TX, L ∈ Pic(X) and locally dθ|F induces a symplectic structure
on each fibre of F . Study of lines is used to address the problem of classification of contact
Fano manifolds; see [KPSW00], [Keb01], [Keb05], [PS14], [BKK20]. In this thesis, we work
in a more general setting and do not assume any contact structure on X. In this context, we
prove the following theorem:

Theorem (Theorem 4.7). There exists smooth Fano variety Y with the Picard number equal
to 1, admitting a positive dimensional family of singular lines with respect to the anti–canonical
polarization.
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Chapter 1

Lines, parameter spaces, and smooth
divisors in linear systems

1.1. Basic definitions

Throughout the whole thesis, we work over the complex numbers C. By scheme we always
mean a separated scheme of finite type over C. A variety is a reduced and irreducible scheme.
Given a variety X, we say that a property holds at a general point if it holds for all points
in an open dense subset of points of X.

First, we state the definitions of the fundamental objects of our concern.

Definition 1.1. Let U and W be schemes. We say that morphism f : U →W is an immer-
sion if it restricts to an isomorphism between U and a locally closed subscheme of W .

Definition 1.2. Let U be a variety. A line bundle L ∈ Pic(U) is a very ample line bundle
if and only if there exists an immersion i : U → Pr, such that i∗OPr(1) ∼= L.

Definition 1.3. Let U be a variety. A line bundle L ∈ Pic(U) is an ample line bundle if
and only if there exists a number k ∈ N such that L⊗k is very ample.

Definition 1.4. A polarized variety is a pair (U,L) consisting of a variety U and ample
line bundle L.

Definition 1.5. Let (U,L) be a polarized variety. Let C be a rational curve on X and denote
the normalization of C by η : P1 → C. A curve C ⊂ X is a line on (X,L) if and only if
η∗(L|C) ∼= OP1(1).

1.1.1. Intersection numbers

Intersection theory is a useful tool in our study. We recall basic definitions and properties of
the intersection numbers.

Notation. Let U be a scheme. We denote by Div(U) the group of Cartier divisors on U .

Theorem 1.6. [Laz04, Section 1.1 C] Let us fix k ∈ N. Let X be a projective variety, and
let V be a subvariety of X of dimension k. There exists the intersection number which is
a function

∫
V : Div(X)k → Z, satisfying the following properties:

•
∫
V is symmetric and multilinear;
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• (D1 · . . . ·Dk · V ) :=
∫
V (D1, . . . , Dk), depends only on the linear equivalence classes of

the Di’s;

• if D1|V , . . . , Dk|V are effective divisors with supports not containing V , and they meet
transversally at smooth points of V , then

(D1 · . . . ·Dk · V ) := #{D1|V ∩ . . . ∩ Dk|V };

• let f : Y → X be a generically finite surjective projective map, then∫
Y

(f∗D1, . . . , f
∗Dk) = (deg f)

∫
X

(D1, . . . , Dk);

• let C be a curve on X and D a Cartier divisor, then∫
C
D = degC(D).

Remark. Since the intersection number depends only on the linear classes of divisors, one
can compute the intersection for line bundles instead of divisors.

Definition 1.7. [Laz04, Definition 1.1.14] Let X be a projective variety. Divisors D1, D2 ∈
Div(X) are numerically equivalent if and only if for every curve C on X

(D1 · C) = (D2 · C).

Definition 1.8. [Laz04, Definition 1.1.15] The Néron–Severi group Num(X) of a projec-
tive variety X is the group of numerical equivalence classes of divisors on X.

Definition 1.9. [Laz04, Definition 1.1.17] The rank of Num(X) is called the Picard number
of X.

In the context of intersection theory, we get an alternative description of lines.

Lemma 1.10. Let (X,L) be a polarized projective variety. A rational curve C on X is a line
if and only if the intersection number (L · C) equals to 1.

Proof. Let C be a rational curve on (X,L). Consider the normalization η : P1 → C. Suppose
that η∗(L|C) ∼= OP1(1), then (η∗(L|C) · P1) = 1. The normalization morphism is finite,
surjective, projective and of degree 1; thus, by the functoriality of intersection (L|C ·C) = 1.
Conversely assume that (L|C · C) = 1, then by the functoriality (η∗(L|C) · P1) = 1, any line
bundle of degree 1 on P1 is isomorphic to OP1(1).

1.2. Motivation from classical geometry

In this section, we describe the classical case of lines, where L is very ample as a point of
reference for further study.

Lemma 1.11. Let V be a linear space. A line on the projective space (P(V ),OP(V )(1)) is a
projectivization of a two-dimensional linear subspace of V .
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Proof. Let us take a curve C on P(V ) and consider the normalization ηC of C

P1 C P(V ).
ηC

f

i

The composition f := i ◦ µC of the normalization µC with the closed embedding i : C ⊂ PN
is given by n+ 1 section (h0, . . . , hn) of OP1(1)

f : [s : t] 7→ [h0(s, t) : . . . : hn(s, t)].

Since the morphism f is not a constant map, one can choose two of hi’s that are not linearly
dependent. Thus, the morphism f has to be a closed embedding and then the normalization
µC is an isomorphism.

We get these immediate corollaries.

Corollary 1.12. Let (X,L) be polarized projective variety, and let L be a very ample line
bundle. Then every line on (X,L) is smooth.

Corollary 1.13. Let (X,L) be polarized projective variety, and let L be a very ample line
bundle. Consider two distinct closed points x, y ∈ X, there exists at most one line C on (X,L)
incident to both points.

In Chapter 4, Theorem 4.1, we show that, for L ample, but not very ample, the conclusion
of Corollary 1.13 does not necessarily hold. More precisely we prove that there exists a smooth
polarized projective variety (X,L) admitting two distinct lines with two common points. Even
in such a situation, Theorem 2.8 tells us that there does not exist a proper positive dimensional
family of lines through two points.

1.3. Bertini theorem

Another useful tool is Bertini theorem, which allows us to construct examples of smooth
varieties admitting certain families of lines.

Theorem 1.14. [Har77, Theorem 8.15] Let Y be a variety. The cotangent sheaf ΩY is a
locally free sheaf if and only if Y is smooth.

Theorem 1.15. [GW20, Theorem 11.17] Let X be a Noetherian reduced scheme, and let F be
a coherent sheaf on X and e be a non-negative integer. There exists a locally closed subscheme
of X denoted X(F , e), which is characterized by the following universal property; for every
reduced scheme T and any morphism g : T → X, the morphism g factors through X(F , e) if
and only if g∗F is locally free of rank e.

Theorem 1.16. [GW20, Theorem 11.17] Let X be a projective reduced scheme, and let F be
a coherent sheaf on X. The locally closed subschemes X(F , e) are disjoint only finitely many
of them are non-empty, and they constitute a stratification of X.

Theorem 1.17. Let us consider the following tuple (Z, S,X,O(1)), where Z is a projective
variety, S is a finite subset of Z containing the singular locus of Z, X is a closed reduced
subscheme of Z disjoint from S and O(1) is a very ample line bundle on Z. Let I be the ideal
sheaf of X in Z, consider s ∈ N such that I(s) := I ⊗O(1)⊗s is globally generated on Z and
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very ample on the open subscheme Z \X. Let us consider the stratification of X by X(ΩX , e)
as in Theorem 1.15 and Theorem 1.16, we define E to be the set of natural numbers e such
that X(ΩX , e) 6= ∅. Assume that the following estimate holds:

max
e∈E

(dimX(ΩX , e) + e) < dimZ,

then a general section of I(s) cuts out a smooth projective variety Y containing X and disjoint
from S.

Proof. The strategy of the proof is to describe the incidence locus of sections that do not satisfy
the required properties. We call these sections bad ones. Then we estimate the dimension of
the set of the bad sections as a closed subset of the projective space of sections of I(s) and
conclude that the complement is open and dense.

Let V = Γ(I(s), Z), |V | = dim(P(V )), dim(Z) = r.
We consider the stratification of Z by locally closed subsets

Z = S t
⊔
e∈E

X(ΩX , e) t Z \ (S ∪X).

For each stratum T , we define a closed subscheme BT ⊂ P(V )× T .

Take T = Ω(X, e), for some e. Consider the conormal sequence

I/I2 → ΩZ ⊗OX → ΩX → 0.

Since I(s) is globally generated by V , we get that the following composition is a surjective
one

V ⊗OX → I(s)→ I/I2(s).

We twist the conormal sequence by O(s) and get the exact sequence

V ⊗OX → ΩZ(s)⊗OX → ΩX(s)→ 0.

Since we are working over T we tensor the sequence with OT

V ⊗OT
φ−→ ΩZ(s)⊗OT → ΩX(s)⊗OT → 0.

For any closed point p ∈ T with residue field denoted by k(p) ∼= C, we get the exact sequence
of complex vector spaces

0→ ker(φp)→ V
φp−→ ΩZ(s)⊗ k(p)→ ΩX(s)⊗ k(p)→ 0.

The kernel ker(φp) consists of sections from V that cut out hypersurfaces singular at p, since
those sections induce 0 cotangent vector at p. As a consequence, we define

Bp := P(ker(φp)) ⊂ P(V )× {p}.

The kernel ker(φp) has dimension |V | + 1 − dim im(φp). Since, dim(ΩZ(s) ⊗ k(p)) = r and
dim(ΩX(s)⊗ k(p)) = e, we get that dim(ker(φp)) = |V |+ 1− r + e. Now we go back to the
level of stratum T :

0→ ker(φ)→ V ⊗OT
φ−→ ΩZ(s)⊗OT .
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The kernel ker(φ) is a locally free coherent sheaf, since every closed fibre ker(φp) has constant
dimension |V |+ 1− r + e. Thus, we get a closed subscheme [Vak17, Definition 17.2.C]:

BT := ProjT (Sym(ker(φ)∗)) ⊂ P(V )× T.

We remark that dim(BT ) = |V | − r + e+ dim(T ) < |V |.

Since the case when T = Z \ (S∪X) is the classical Bertini theorem for a quasi–projective
variety and the argument is similar but simpler than the previous one we omit the argument.
Details can be found in [Vak17, 12.4.2. Bertini’s Theorem]. We get a closed subscheme BT
of P(V )× T of dimension |V | − 1, which is an incidence locus of sections from V that cut out
hypersurface of Z singular at a point of T .

Now we consider the case T = S; bad sections at p ∈ S are simply the ones that vanish at
some p ∈ S. Fix f0 ∈ V , such that f0 does not vanish on p. Then one defines the linear map

φp : V → Op,Z/mp,Z ,

f 7→ f

f0
.

The kernel of this map is the linear space of sections vanishing at the closed point p.

dim(ker(φp)) = |V |,

so Bp = P(kerφp) for p ∈ S is a projective space of dimension |V | − 1. The scheme BT is a
disjoint union of such Bp, since there are only finitely many of them it is a well–defined closed
subscheme of P(V )× T .

For each stratum T the dimension of BT is strictly lower than |V |. We get that the
closure of each image π1(BT ) of projection on the first coordinate is a closed subset of P(V ) of
dimension less than |V |. A union of finitely many strict closed subsets of lower dimension is
a proper closed subset. Thus, the complement of this union is an open dense subset of P(V ).

Since elements of V are sections of I(s), every element of P(V ) cuts out a hypersurface
containing X. Elements of π1(BS) correspond to all elements of V that cut out hypersurfaces
that contain any point of S. Elements of π1(BT ), for a chosen stratum T 6= S, correspond
to all elements of V that cut out hypersurfaces that are singular at a point of T . Therefore,
an element outside the union π1(BT ) is a section that cuts out hypersurface satisfying our
assumptions.

Corollary 1.18. Let Z be a smooth projective variety of dimension at least 1. Then any pair
of two distinct points p ∈ Z and q ∈ Z can be connected by a smooth curve.

Proof. We argue by induction on dimension dim(Z) = m. If m = 1 then the statement
trivially holds. Suppose that the statement holds for 0 < k < m. Let us choose a very
ample bundle L on Z. Take X = {p, q} with the reduced scheme structure. The tuple
(Z, ∅, X, L) satisfies the assumptions of Theorem 1.17; consequently, we get a smooth variety
Y of dimension m− 1 containing p and q.

Notation. Let X and E be as in Theorem 1.17.The embedding dimension of X is the
supremum of E.
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Remark. Let X,Z and E be as in Theorem 1.17. Denote the embedding dimension of X by
N . Note that in Theorem 1.17, instead of checking the estimate

max
e∈E

(dimX(ΩX , e) + e) < dimZ,

we can check the stronger estimate

dimX +N < dimZ.
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Chapter 2

Parametrizing space of lines

In this chapter, we study families of lines and it particular parametrizing space of lines
Lines(X,L). The results come from [Kol96], [Keb02] and [BKK20].

Definition 2.1. Let (X,L) be a polarized variety. A family of lines on (X,L) is a pair of
morphisms of varieties, a projection π : UR → R, and an evaluation ξ : UR → X, satisfying
the following properties:

• varieties UR and R are normal;

• π is a proper map;

• every set-theoretic fibre of ξ endowed with the reduced scheme structure is isomorphic to
P1;

• for any closed point [l] ∈ R, the morphism ξ|π−1([l]) is mapped onto l, line on (X,L);

• the morphism ξ|π−1([l]) : π−1([l])→ l is the normalization morphism of line l.

We define some basic properties of the families of lines. They are intuitive, but we state
them for clarity of the arguments.

Definition 2.2. Let (X,L) be a polarized variety. The dimension of a family of lines
(π : UR → R, ξ : UR → X) on (X,L) is the dimension of R. We say that the family of
lines is positive dimensional if dim(R) > 0.

Definition 2.3. Let (X,L) be a polarized variety. A family of lines (π : UR → R, ξ : UR → X)
is a proper family of lines if R is a proper variety.

Definition 2.4. Let (X,L) be a polarized variety. A family of lines (π : UR → R, ξ : UR → X)
is a family of singular lines if each line for each closed point [l] ∈ R, the associated line
l ⊂ X is a singular curve.

Definition 2.5. Let (X,L) be a polarized variety. A family of lines (π : UR → R, ξ : UR → X)
covers the variety X if the evaluation ξ morphism is dominant.

Now we state the crucial theorems, describing the parametrizing space of lines on (X,L).
In our case, the parametrizing space Lines(X,L) is just a subscheme of Chow variety of X.
For further details see [Kol96, Section 1.3 Chow Varieties] and [BKK20, Section 3.1].

Theorem 2.6. [BKK20, Proposition 3.7.1] Let (X,L) be a polarized projective variety. Sup-
pose that (π, ξ) is a family of lines on (X,L). Then E = π∗(ξ

∗L) is a vector bundle of rank
2 on R and UR ∼= P(E∗).
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Theorem 2.7. [BKK20, Proposition 3.7] Let (X,L) be a polarized projective variety. There
exists a projective reduced scheme Lines(X,L), together with function Rep from the set of
closed points of Lines(X,L) to the set of lines on (X,L), satisfying the following properties:

• the function Rep is a bijection. We say that a closed point r ∈ Lines(X,L) represents a
line l ⊂ X if Rep(r) = l;

• consider a family of lines (π, ξ) on (X,L). There exists a morphism f : R→ Lines(X,L),
such that for any closed point [l] ∈ R the image f([l]) is a point representing line
l = ξ(π−1([l]))red;

• suppose R is an irreducible normal variety together with a morphism f : R→ Lines(X,L).
There exists a family of lines π : UR → R, such that for any point [l] ∈ R, the image of
ξ|π−1([l]) is the line l represented by the point f([l]).

2.1. Bend and break

We need a classical consequence of Mori’s Bend and Break Lemma [Kol96, Corollary II.5.5.2]
in a version as in [BKK20, Lemma 3.8].

Theorem 2.8. [BKK20, Lemma 3.8] [Bend and break] Let (X,L) be a polarized projective
variety. Let R be a positive dimensional normal variety with non-constant morphism f : R→
Lines(X,L). Consider a family of lines (π, ξ) induced by f by Theorem 2.7, then there is at
most one point p ∈ X incident to every line from the family.

Proof. We argue by a contradiction. Suppose that the family has at least two common points.
We replace R with a closed curve on R. Then, we replace R with its normalization. We have
a morphism R → Lines(X,L), by Theorem 2.7, Lines(X,L) is projective. Therefore, using
curve-to-projective extension [Vak17, 16.5.1. The Curve-to-Projective Extension Theorem],
we can extend the morphism f to f̃ : R̃→ Lines(X,L) from R̃ a smooth projective compacti-
fication of R. Now we replace R with its compactification R̃ and f with f̃ . Then by Theorem
2.7 we assume that UR → R is a ruled surface.
Two common points of the family give rise to disjoint sections σ1, σ2 : R→ UR, contracted by
the evaluation morphism ξ.

UR X

R.

ξ

πσ1,2

Since UR is a ruled surface then by [Har77, Proposition V 2.3],

Num(UR) = Z⊕ Z.

Moreover, Num(UR) is generated by a section σ1(R) and a fibre F (all fibres are numerically
equivalent). Also, we have the following relations

σi · F = 1, for i = 1, 2,

F 2 = 0.

Since sections are contractible then, by [Kol96, Proposition II 5.3.2 ],

σ2i < 0 for i = 1, 2,
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and also
σ1 = ασ2 + βF.

Now we perform a simple calculation to obtain a contradiction.

1 = σ1 · F = ασ2 · F = α,

0 = σ1 · σ2 = σ22 + β =⇒ β > 0,

0 > σ21 = β > 0.

Corollary 2.9. Let (X,L) be a polarized projective variety. For any two chosen closed points
p1, p2 ∈ X there is at most a finite number of lines incident to both points.

Proof. Fix two closed points p1 ∈ X and p2 ∈ X. By Theorem 2.7 every such line is repre-
sented by a closed point of projective scheme Lines(X,L). Take an irreducible component R
of Lines(X,L). The normalization of R, denoted by R̃ induces a family of lines (π : UR̃ → R̃,
ξ : UR̃ → X). The subset of lines in R̃ incident to both points π(ξ−1(p1)) ∩ π(ξ−1(p2)) is
closed. The scheme W := (π(ξ−1(p1)) ∩ π(ξ−1(p2)))red is projective; in particular, it has
finitely many irreducible components. By Theorem 2.8, the normalization of an irreducible
component of W has to be 0-dimensional. As a consequence W is finite.

2.2. Families of singular lines

In this subsection, we cite results from [Keb02] as a motivation for Theorems 3.21 and 3.22

Definition 2.10. Let (C,L) be a singular line. Let C0 be the cuspidal plane cubic, and C1

be the nodal plane cubic. We say that point p ∈ C is a special point if one of the following
holds:

• p is a singular point of C;

• there exists a birational morphism β : Ci → C, such that β∗(L) ∼= OCi(β
−1(p)).

Lemma 2.11. [Keb02, Lemma 2.3] Let (C,L) be a singular line. Then the set of special
points of C is finite.

Theorem 2.12. [Keb02, Theorem 2.4] Let (X,L) be a polarized projective variety. Let
(π : UR → R, ξ : UR → X) be a proper family of lines on (X,L), such that every line in
the family is singular and there exists a point p incident to every line [l] ∈ R. Then there
exists a line [l] ∈ R , such that p ∈ l is a special point.

Natural continuation is the study of families with a common point, which is special to
each line from the family. Theorems 3.21 and 3.22, show that there exist such families with a
common point, singular on each line and such that it is a smooth special point on each line.
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Chapter 3

Weighted projective spaces

The main tools of this thesis, used to construct various families of singular lines, are the
weighted projective spaces. In the first section, we state a few important properties of such.

3.1. Basic properties of weighted projective spaces

Definition 3.1. Let a := (a0, . . . , an) be tuple of positive integers. Let R be a polynomial ring
C[y0, . . . , yn] with not necessarily standard grading, deg(yi) = ai. The weighted projective
space with weights (a0, . . . , an) is Proj(R).

Notation. Let R be a polynomial ring C[y0, . . . , yn] with not necessarily standard grading,

deg(yi) = ai. The weighted projective space with weights (

m+1– times︷ ︸︸ ︷
1, . . . , 1, a0, . . . , an) will be denoted

by

P((1)mj=0,a) := P(

m+1– times︷ ︸︸ ︷
1, . . . , 1, a) := P(

m+1– times︷ ︸︸ ︷
1, . . . , 1, a0, . . . , an) := Proj(R[x0, . . . , xm]),

where deg(xi) = 1. If m = 0 then instead of x0 we write x,

P(1,a) := Proj(R[x]).

Lemma 3.2. The distinguished open set D(x) ⊂ P(1,a) is isomorphic to An+1.

Proof. By the definition of distinguished open setD(x) = Spec((R[x]x)0) ∼= Spec(C [y0/xa0 , . . . , yn/xan ]).
Since C[y0/xa0 , . . . , yn/xan ] ∼= C [x0, . . . , xn], the statement holds.

Definition 3.3. The weighted projective space P(a) is well-formed if gcd(a0, . . . , âi, . . . , an) =
1 for every i ∈ {0, . . . , n}.

Lemma 3.4. [IF00, Lemma 5.7] For every positive integer d > 0, we get the isomorphism

P(da0, da1, . . . , dan) ∼= P(a0, . . . , an).

Assume that gcd(a0, . . . , an) = 1, then for q = gcd(a1, . . . , an) we get the isomorphism

P(a0, a1, . . . , an) ∼= P(a0, a1/q, . . . , an/q).

In particular, every weighted projective space P(a) is isomorphic to a well-formed weighted
projective space.
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Proof. To prove the first claim, let us recall from [Vak17, Exercise 6.4.D] that for a graded
ring R and the d–th Veronese subring R(d) :=

⊕
m∈ZRdm,

Proj(R) ∼= Proj(R(d)).

Then consider the ring R′ = C[z0, . . . , zn] with grading given by the tuple (da0, . . . , dan).
Since R′(d) ∼= R, we get the first claim,

Proj(R) ∼= Proj(R′(d)) ∼= Proj(R′).

Second claim we prove similarly. We considerR(q) and look at the monomial yd00 . . . , ydnn ∈ R
(q)
kq

of degree kq. This leads us to the equation

a0d0 + . . .+ andn = kq.

Since for every for i > 0, ai is divisible by q, and gcd(a0, q) = 1, q|d0. Thus, R(q) ∼=
C[yq0, . . . , yn], but then

Proj(R) ∼= Proj(R(q)) ∼= P(qa0, a1, . . . , an) ∼= P(a0, a1/q, . . . , an/q).

Definition 3.5. Let M be a graded R-module. We define M(d) to be M twisted by d, that is
M as R-module, but with grading defined by the formula

M(d)j := Mj+d.

Definition 3.6. We define the sheaf OP(a)(d) to be a coherent sheaf associated to the graded
module R(d).

The definition above is analogous to the case of the standard projective space, but for a
general choice of a tuple a, those sheaves may admit a whole range of pathologies; for example,
they do not have to be line bundles.

Example 3.7. Let us consider P(1, 1, 2) = Proj(C[x0, x1, y0]). The sheaf OP(1,1,2)(1) is not a
line bundle. On the open set D(y0) ∼= Spec(C [x20/y0, x0x1/y0, x

2
1/y0]) it is given by the module

x0
y0

C [x20/y0, x0x1/y0, x
2
1/y0] +

x1
y0

C [x20/y0, x0x1/y0, x
2
1/y0] ,

and it is not a free C [x20/y0, x1x0/y0, x
2
1/y0]–module of rank 1.

Lemma 3.8. [Rob84, Theorem 1.13] Let us assume that gcd(a) = 1. Let us denote the least
common multiplier lcm(a) by l. Then the following claims hold:

• OP(a)(l) is an ample line bundle;

• OP(a)(dl)⊗OP(a)(c) ∼= OP(a)(dl + c), for every c, d ∈ Z;

• OP(a)(c) ∼= Hom(OP(a)(dl),OP(a)(dl + c)) for every c, d ∈ Z;

• R(d) ∼= H0(P(a),OP(a)(d)) for every d ∈ Z.

The following example shows why one should be careful when approaching the OP(a)(c)
sheaves.
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Example 3.9. Let us consider P(2, 3) = Proj(C[y0, y1]), by Lemma 3.4 it is isomorphic to
P1. The sheaf OP(2,3)(1) is not an ample line bundle. Since P(2, 3) ∼= P1 as varieties, a line
bundle is ample if and only if it has at least two-dimensional space of sections. The sheaf
OP(1) is a line bundle, we see that on the affine cover P(2, 3) = D(y0)∪D(y1). On the affine
set D(y0) it is given by a free module of rank 1,

y1
y0

C [y21/y30] ,

On the affine set D(y1) it is given by a free module of rank 1 as well,

y20
y1

C [y30/y21] .

But OP(2,3)(1) has no global sections by Lemma 3.8. We also see that OP(6) is very ample
bundle, by considering the 6–th Veronesse ring of C[y0, y1]. Thus, OP(2,3)(1)⊗6 6∼= OP(2,3)(6),
otherwise OP(2,3)(1) would be ample.

3.2. M–regular locus

We would like to study the lines with respect to the sheaf OP(a)(1), but this sheaf is in general
not an ample line bundle; see Example 3.7 and Example 3.9. That is the reason why we
consider the M–regular locus, which is only quasi-projective, but OP(a)(1) restricted to it is
an ample line bundle.

Definition 3.10. [BR86, Definition 5.4] The regular locus of Mori (M–regular locus) of
a weighted projective space P(a) is an open subscheme U(a) ⊂ P(a), given as the union of the
distinguished open subschemes

⋃
D(YI), where YI := Πi∈Iyi, for I ⊂ {0, . . . , n} satisfying

gcd((ai)i∈I) = 1.

Theorem 3.11. [Mor75, Theorem 1.7] The M–regular locus U(a) is the largest open sub-
scheme of P(a) with the following two properties:

• for every d ∈ Z, the sheaf OU(a)(d) is a line bundle;

• for every d ∈ Z, the natural morphism

OU(a)(1)⊗d ∼= OU(a)(d),

induced by the homomorphism
R(1)⊗d → R(d),

is an isomorphism.

Example 3.12. Let us consider P(2, 3) = Proj(C[y0, y1]) = Proj(R). The M–regular locus
of P(2, 3) is, by Definition 3.10, equal to D(y0y1). The coherent sheaf OP(2,3)(1) on the affine
set D(y0) it is given by a free module of rank 1

y1
y0

C [y21/y30] .

Note that D(y0) = Spec(C [y21/y30])
∼= A1, thus every line bundle on D(y0) is trivial. In

particular the following isomorphism holds:

OD(y0)(1)⊗6 ∼= OD(y0)(6),
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but this isomorphism is not induced by the homomorphism R(1)⊗6 → R(6). The line bundle
OD(y0)(6) is given by the free module

y0
3C [y21/y30] 6=

(
y1
y0

)6

C [y21/y30] ,

where the right hand side is the module associated to OD(y0)(1)⊗6.

Corollary 3.13. The coherent sheaf OU(a)(1) is an ample line bundle.

Proof. By Theorem 3.11, OU(a)(1)⊗l ∼= OU(a)(l). By Lemma 3.8 we know that there is a
number l ∈ N such that OP(a)(l) is ample; consequently, OU(a)(l) is ample. Thus, OU(a)(1) is
an ample bundle as well.

The following lemma is crucial because taking generic hypersurface of considered weighted
projective space, we can always omit fixed finite subset; see Bertini theorem 1.17.

Lemma 3.14. Let us consider P(a) and suppose that gcd(ai, aj) = 1, for i 6= j. Then the
M -regular locus is a co-finite subset of P(a) and it is contained in the smooth locus of P(a).

Proof. By Definition 3.10, for i 6= j, the distinguished open subsets D(xixj) are contained in
the M–regular locus of P(a). Thus, the complement of the M–regular locus consists of points
[b0 : . . . : bn] ∈ P(a) with bi 6= 0 for only one index i. There are only finitely many such
points. From [IF00, The singular locus 5.15] we see that M–regular locus is contained in the
smooth locus.

One needs to take caution, the M–regular locus is in general not equal to the smooth
locus.

Example 3.15. Let us take P(2, 3) ∼= P1. Every point of P(2, 3) is smooth, but points [0, 1]
and [1, 0] are not M–regular. On the other hand, the M–regular locus of P(1, 1) is the whole
P(1, 1). So taking a M–regular locus takes into account more than the class of isomorphism
of weighted projective space, but also the graded structure of the underlying ring.

3.3. Cones on weighted projective spaces

Definition 3.16. Let us consider the surjective rational map

π : P(1,a) 99K P(a),

π : [c : b0 : . . . : bn] 7→ [b0 : . . . : bn].

The domain of π is Dom(π) = P(1,a)\{[1 : 0 : . . . : 0]}. Let X be a closed subvariety of P(a),
then the cone over X, denoted by Cone(X), is the closure of π|Dom(π)

−1(X) in P(1,a).

Example 3.17. Let us take P(a) = P(2, 3). By Lemma 3.4, we know that P(2, 3) ∼= P1 =
P(1, 1). But Cone(P(2, 3)) = P(1, 2, 3) 6∼= P2 = P(1, 1, 1) = Cone(P(1, 1)), the former is
singular and latter is a smooth variety. So taking a weighted cone takes into account more
than the class of isomorphism of our variety, but also the graded structure of the underlying
ring.

We want to show that for a sufficiently general tuple of weights a, the cone over a closed
point of the weighted projective space P(a) is a line. To do so, we first show the following
two lemmas.
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Lemma 3.18. Let us consider the action of Gn+1
m on P(a) given by the formula

Gn+1
m × P(a)→ P(a),

((λ0, . . . , λn), [b0 : . . . : bn]) 7→ [λa00 b0 : . . . : λann bn].

Consider X a closed subvariety of P(a), and fix an element of the torus λ = (λ0, . . . , λn) ∈
Gn+1
m , then we have an isomorphism of cones Cone(X) ∼= Cone(λ ·X).

Proof. On P(1,a) we define an action of Gn+1
m given by the formula

Gn+1
m × P(1,a)→ P(1,a),

((λ0, . . . , λn), [c : b0 : . . . : bn]) 7→ [c : λa00 b0 : . . . : λann bn].

The action above is a lift of action on P(a) by π; that is, we get the following commutative
diagram:

P(1,a) P(1,a)

P(a) P(a).

π

·λ

π

·λ

As a consequence, we get that

Cone(λ ·X) = λ · Cone(X) ∼= Cone(X).

Lemma 3.19. Fix a tuple of positive integers (c0, . . . , cm). Consider the embedding

φ : P(a)→ P(c0, . . . , cm,a),

φ : [b0 : . . . : bn] 7→ [

m+1– times︷ ︸︸ ︷
0 : . . . : 0 : b0 : . . . : bn].

For a fixed closed subvariety X ⊂ P(a) the cone Cone(X) ⊂ P(1,a) is isomorphic to the cone
Cone(φ(X)) ⊂ P(1, c0, . . . , cm,a).

Proof. Let us take the closed embedding φ1 defined analogously to φ,

φ1 : P(1,a)→ P(1, c0, . . . , cm,a),

φ1 : [c : b0 : . . . : bn] 7→ [c :

m+1– times︷ ︸︸ ︷
0 : . . . : 0 : b0 : . . . : bn].

We get the following commutative diagram:

Cone(X) P(1,a) P(1, c0, . . . , cm,a)

X P(a) P(c0, . . . , cm,a),

cl

π|Cone(X)

φ1

π πc0

cl φ

where πc0 is defined as in Definition 3.16, thus π is a restriction of πc0 to Cone(P(a)) = P(1,a)
and the rest follows from the definition of cone.
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Theorem 3.20. Let us consider P(a), suppose that for i 6= j, gcd(ai, aj) = 1, and for
all i ∈ {0, . . . , n}, ai > 1. Then the cone over any M–regular point is a singular line on
(U(1,a),OU(1,a)(1)). The point [1 : 0 : . . . : 0] ∈ P(1,a) is a singular point of the considered
cone.

Proof. Let us choose a M–regular point p ∈ U(a) and denote the homogeneous prime ideal of
p in P(a) by J ⊂ R. We consider the closed embedding of P(a) into P(1,a) and the rational
projection π in the other direction, and translate it to algebra,

P(a) P(1,a) P(a),

R[x]/(x) R[x] R,

P(a) ∩ Cone({p}) Cone({p}) {p},

J ⊗R R[x]/(x) J ⊗R R[x] J.

cl π

cl π

With the identification R ∼= R[x]/(x), the ideal J ⊗R R[x]/(x) is equal to J as an ideal of R;
that is, we have the following commutative diagram:

R[x]

R R[x]/(x)

J J ⊗R R[x]/(x)

∼=

∼=

As a consequence Cone({p}) intersects P(a) transversally in exactly one point, in p. Since
the M–regular locus of P(1,a) is equal to U(a)∪D(x), Cone({p}) is contained in U(1,a). By
Theorem 1.6 the intersection number (Cone(p) · OCone(p)(1)) is equal to 1.

From now on we check properties dependent only on isomorphism classes, before going
further we simplify the statement a little bit. Suppose that p = [b0 : . . . : bn] ∈ P(a), by
Lemma 3.19 we can assume that none of bi’s is 0, then by Lemma 3.18, we can assume that
each bi is 1.

Now we prove that Cone({p}) is a rational curve, because by Lemma 1.10 this im-
plies that Cone({p}) is a line on (Cone({p}),OCone({p})(1)), consequently it is a line on
(U(1,a),OU(1,a)(1)) as well. We consider the distinguished open subset D(x) ⊂ P(1,a), the
coordinate ring is C [y0/xa0 , . . . yn/xan ] as a non-graded ring is isomorphic to R = C[y0, . . . , yn].
With this identification, the prime ideal of Cone({p}) restricted to D(x) is equal to J . Let us
consider the following homomorphism:

f : R/J → C[t],

f : yi 7→ tai .

Since J is the homogeneous prime ideal of the point p = [1 : . . . : 1] ∈ P(a), the homo-
morphism f is well-defined. It is a finite, injective morphism into integrally closed domain,
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thus C[t] is the integral closure of R/J . Consequently Cone({p}) ∩ D(x) is rational, thus
Cone({p}) is as well.

Last thing to prove is that Cone({p}) is a singular curve. Suppose that the weights are
ordered, a0 < a1 < . . . < an. We prove that q = [1 : 0 : . . . : 0] ∈ P(1,a) is a singular
point of Cone({p}). We again consider open dense subset Cone({p}) ∩D(x) and examine it
algebraically. With the identificationD(x) ∼= Spec(C[y0, . . . , yn]), q is 0 ∈ Spec(C[y0, . . . , yn]).
We show that for every homogeneous polynomial W ∈ J :

∂W

∂y0
(0) = 0,

∂W

∂y1
(0) = 0.

Assume otherwise, that there exists a homogeneous polynomial W ∈ J with one of those
derivatives non–zero at 0. Then it would be of the form (up to a scalar):

W = yi + Fi, for i = 0 or i=1,

where Fi is zero or linearly independent of yi and deg(Fi) = ai. Fi 6= 0 since J is also the
ideal of p = [1 : . . . : 1] ∈ P(a). Since 1 < a0 < a1 < a2 < . . . < an and gcd(a0, a1) = 1, it
is impossible for F to be linearly independent of yi. Thus, at the Cone({p}) has at least two
dimensional tangent space at the point q.

Theorem 3.21. For any chosen positive integer n, there exists a polarized projective variety
(X,L) of dimension n and such that X is covered by a family R of singular lines, together
with a closed point p ∈ X incident to every line [l] from R and p is singular on each [l] ∈ R.

Proof. Let us consider a weighted projective space P(a0, . . . , an) with weights ai pairwise
coprime and greater than 1. By Lemma 3.14 the M–regular locus of P(a0, . . . , an) is cofinite.
By Bertini Theorem 1.17 we can find closed subvariety X ′ of dimension n−1 contained in the
M–regular locus. Let us consider X := Cone(X ′). It has dimension equal to n. Since X is
contained in theM–regular locus, the pair (X,OX(1)) is a polarized variety. By Theorem 3.20,
X as a cone is covered by lines intersecting in point [1 : 0 : . . . : 0], which is a singular point
of each line obtained as a cone over point.

Theorem 3.22. For any chosen positive integer M , there exists a polarized projective variety
(X,L) of dimension M and such that X is covered by a family R of singular lines, together
with a closed point p ∈ X incident to every line [l] from R and p is a smooth special point of
each [l] ∈ R.

Proof. Let us consider a weighted projective space P(a0, . . . , an) with weights ai pairwise
coprime and greater than 1. The point p = [1 : . . . : 1] isM–regular. By Theorem 3.20 the cone

Cone({p}) is a line on (U(a),OU(a)(1)). Let us now consider X :=

m+1– times︷ ︸︸ ︷
Cone ◦ . . . ◦ Cone({p}).

Note that X is contained in the M–regular locus of P((1)mj=0,a). We define a family of lines
on X. First, we consider the following morphism, surjective onto X:

η : Pm+1 → P((1)mj=0,a),

η : [s0 : . . . : sm : t] 7→ [s0 : . . . : sm : ta0 : . . . : tan ].

It is a well-defined morphism, see [Vak17, Exercise 6.4A].
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Let us fix a tuple c := (c0, . . . , cm) of complex numbers, not all equal to 0. Take the
embedding

µc : P1 → Pm,
µc : [s′ : t′]→ [c0s

′ : . . . : cms
′ : t′].

The composition η ◦ µc is the normalization morphism of its image. And its image is up to a
linear change of degree 1 coordinates the cone over the point p. Moreover, the images of µc’s
are not disjoint; they intersect at the point q′ = [0 : . . . : 0 : 1] ∈ Pm+1 and Pm+1 is not a
P1-bundle over Pm. Thus, we consider the blowup of Pm+1 in q′

Pm+1 × Pm Blq′ Pm+1 Pm+1 P((1)mj=0,a)

Pm.

π

f

ξ

η

Fix an element [l] = [c0 : . . . : cm] ∈ Pm, the morphism f |π−1([l]) is exactly µc. Consequently,
the pair (ξ, π) forms a family of lines on (X,OX(1)). The point which is common for all lines

described above is the point q := η(q′) = [

m+1–times︷ ︸︸ ︷
0 : . . . : 0 : 1 : . . . : 1] ∈ P((1)mj=0,a). If we fix a

line l ⊂ X, represented by [l] ∈ Pm, and look at the normalization ξ|π−1([l]), we see that q is
a special smooth point of l. We have obtained M = (m+ 1)-dimensional polarized projective
variety (X,OX(1)) as in the statement.

Example 3.23. An example of surface constructed in Theorem 3.22 is the subvariety X of
P(1, 1, 2, 3) cut out by the equation

y30 − y21 = 0.

The variety X is a double cone Cone(Cone(p)) over the point p = [1 : 1] ∈ P(2, 3).
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Chapter 4

Families of lines on smooth varieties

Now we show an interesting result to be compared with Corollary 1.13.

Theorem 4.1. There exists a smooth polarized projective surface (Y,L) admitting a pair of
lines intersecting at two points.

Proof. Let us take the weighted projective space P(1, 2, 3) = Proj(C[x, y0, y1]). We consider
two distinct lines l0 and l1 given by the following equations:

l0 : y30 − y21 = 0,

l1 : y30 − y21 + xy20 = 0.

The curve l0 is a line since it is a cone over the point [1, 1] ∈ P(2, 3), see Theorem 3.20. The
curve l1 intersects P(2, 3) at the point [0, 1, 1] transversally. On the affine open set D(x), l1
it is a standard nodal cubic curve, thus it is rational. Consequently, by Lemma 1.10, l1 is a
line as well.

Note that the points [0, 1, 1] and [1, 0, 0] are contained in both lines. Denote the scheme
theoretic union of l0 and l1 by X. Let us observe that X is contained in the M–regular
locus of P(1, 2, 3), thus the embedding dimension of X is at most 2. The dimension of X is
1. There is a finite number of singular points of X. We consider the stratification of X for
the cotangent sheaf ΩX as in Theorem 1.16. Since the embedding dimension of X is limited
by 2, it has only two strata, one of dimension 1, the smooth locus, and the singular locus,
consisting of points with the embedding dimension equal to 2. We take the closed embedding
of P(1, 2, 3) into Z := P(1, 1, 2, 3), as in Lemma 3.19. The dimension of Z is 3, which is larger
than maxe∈E(dimX(ΩX , e)+e), where in this case E = {1, 2}. Since Z is projective it admits
a very ample bundle L. Let us denote the complement of the M–regular locus of Z by S, by
Lemma 3.14 this is a finite set. The tuple (Z, S,X,L) satisfies the assumptions for Bertini
theorem 1.17. As a consequence, there exists a smooth surface Y containing X and omitting
S. In particular, OY (1) is ample and l0 and l1 are lines on (Y,OY (1)).

4.1. Fano variety

The final result is a construction of a smooth Fano variety with the Picard number equal to 1,
admitting a positive dimensional family of singular lines. We do this in a few steps. First, we
need to investigate the properties of a certain simple example of weighted projective space.

Lemma 4.2. Consider Zm := P((1)mj=0, 2, 3). The line bundle OZm(6) is very ample and the
sheaf OZm(6 + r), for r > 0 is globally generated.
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Proof. Let us take a monomial W := xr00 . . . xrmm yb0y
c
1 ∈ C[x0, . . . xm, y0, y1] = R[x0, . . . xm] of

degree
∑
ri + 2b+ 3c ≥ 12. We claim that W is divisible by a monomial of degree 6. Assume

to the contrary, then
∑
ri ≤ 5, b ≤ 2 and c ≤ 1. Since

∑
ri + 2b + 3c ≥ 12, we get that∑

ri = 5, b = 2 and c = 1, but a monomial with such exponents is divisible by a monomial
of degree 6 of form xiy0y1.

We consider the Veronese subring R(6) =
⊕

n∈ZR6n, from the calculation above R(6) is
generated in degree 6. Therefore R(6) induces a closed embedding into the projective space;
thus, OP(a)(6) is very ample.

Let us choose r > 0. To prove that OP(a)(6 + r) is globally generated it is enough to
prove that for the distinguished open sets D(T ), T ∈ {x0, . . . , xm, y0, y1}, the following map
is surjective:

H0(P(a),OP(a)(6 + r))⊗OD(T ) → OD(T )(6 + r).

Since D(T ) is an affine scheme it is enough to prove this claim on the level of global sections.
Take an element u ∈ H0(D(T ),OP(a)(6 + r)) which is a monomial in R[1/T ], and express it as
a fraction

u = U/T s,

where U ∈ R, s > 0, and U/T s = UT 5s/T 6s. The monomial UT 5s has degree d = deg(u) +
6s deg(T ) ≥ 12 + r. So from the calculation above, we can decompose it into a product of
two monomials, one of degree 6 and the second of degree d− 6. We take the second one and
repeat this procedure until we get the following decomposition:

UT 5s = AB,

where deg(A) = 6+r and 6|deg(B). So by Lemma 3.8, A defines a global section ofOP(a)(6+r)
and B/T 6s ∈ H0(D(T ),OP(a)), which proves that OP(a)(6 + r) is globally generated.

Lemma 4.3. Let us fix m ∈ N. Let X be a closed subvariety of Zm cut out by the following
system of equations:

xi = 0 for i > 1,

y30 − y21 = 0.

Let I be the ideal sheaf of X in Zm. Then the following claims hold:

• the sheaf I(12) := I ⊗OZm(6)⊗2 is globally generated;

• the line bundle I(18)|Zm\X := (I ⊗OZm(6)⊗3)
∣∣
Zm\X is very ample.

Proof. Fix m ∈ N and denote Z := Zm. The ideal sheaf I is a coherent sheaf associated to
the ideal J = (x2, . . . , xm, y

3
0 − y21) ⊂ R[x0, . . . , xm]. We have the following exact sequence of

graded R[x0, . . . , xm]-modules:⊕
i

R[x0, . . . , xm](−1)⊕R[x0, . . . , xm](−6)→ J → 0.

Since the functor of taking the coherent sheaf associated to a graded module is exact [Sta22,
Tag 01M7], we get the following exact sequence:⊕

i

OZ(−1)⊕OZ(−6)→ I → 0.
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If we twist it by OZ(6)⊗2, by Lemma 3.8 we get the following exact sequence:⊕
i

OZ(−1 + 12)⊕OZ(−6 + 12)→ I(12)→ 0.

By Lemma 4.2 if r ≥ 6 then OZ(r) is globally generated. Thus, the first claim holds.

Let us observe that if I(12) is globally generated then in particular, I(12)|Z\X is a base
point free line bundle. The tensor product of a base point free line bundle with a very ample
one is very ample [Vak17, Exercise 16.6.C]. Thus, the second claim of the statement is implied
by the first one.

Before proving the final theorem, we state a few more theorems, that enable us to control
the canonical bundle of the variety obtained by using Bertini theorem 1.17.

Theorem 4.4. [BN16, Theorem 1.1] Let (Z,L) be a normal polarized projective variety of
dimension at least 4 and L be a very ample line bundle. Let X ⊂ Z be a closed subscheme of
codimension at least 3. Let us fix s ∈ N, such that the sheaf I ⊗L⊗(s−1) is globally generated.
Then a general section of I ⊗L⊗s cuts out a closed subscheme Y containing X and satisfying
the following property:

Cl(Z) ∼= Cl(Y ).

Theorem 4.5. [Dol82, Theorem 3.3.4] Let P((1)mj=0,a) be a well-formed weighted projective
space. Let U theM–regular locus of P((1)mj=0,a). Then the canonical divisor KU is isomorphic
to OU (−

∑
ai − (m+ 1)).

Theorem 4.6. [Har77, II Proposition 8.20] Let U be a smooth variety and let Y be a smooth
subvariety of codimension 1. Let D be the Cartier divisor associated to Y . Then KY

∼=
(KU +D)|Y .

Now we state and prove the final theorem.

Theorem 4.7. There exists a smooth Fano variety Y with the Picard number equal to one,
admitting a positive dimensional family of singular lines with respect to the anti–canonical
polarization.

Proof. Fix m ∈ N and denote Z := Zm. Let us take X ⊂ Z as in Lemma 4.3, note that
X is contained in the M–regular locus of Z. The dimension of X is 2, and since it can
be embedded in the M–regular locus of P(1, 1, 2, 3), the embedding dimension of X is at
most 3. By S denote the complement of M–regular locus of Z, by Lemma 3.14 the set S is
finite. By Lemma 4.3, the tuple (Z, S,X,O(6)) and s = 3, provided that dim(Z) = m+ 2 >
5 = dim(X) + dim(P(1, 1, 2, 3)), satisfy the assumptions of Bertini Theorem 1.17. We also
use Theorem 4.4 on the pair (Z,O(6)) for s = 3, again by Lemma 4.3 the assumptions are
satisfied. As a consequence, we get a smooth variety Y containing X with the property that

Cl(Z) ∼= Cl(Y ) ∼= Pic(Y ).

The Weil divisor class group of weighted projective space Cl(Z) is isomorphic to Z ([Rob84,
Theorem 2.7]). Thus, Pic(Y ) ∼= Z, in particular, the Picard number of Y is 1.

Now we use the adjunction formula 4.6 to compute the canonical divisor of Y

KY
∼= (OZ(−5− (m+ 1))⊗OZ(18))|Y ∼= OY (12−m).

If we putm = 11, we get that Y has Pic(Y ) = Z, −KY
∼= OY (1) and Y contains the surface X

which is by Example 3.23 covered family of singular lines with respect to OX(1) ∼= KY |X .
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Chapter 5

Summary

We have studied families of singular lines with respect to an ample polarization through a
common point. Such a common point has to be unique for the chosen positive dimensional
family, thanks to Bend and Break Theorem 2.8.

Following the article [Keb02, Theorem 2.4], we stated Theorem 2.12, saying that the
common point of such a family has to be a special point (Definition 2.10). Then we have
constructed such families through a common singular point, in Theorem 3.21, and through a
common smooth special point, in Theorem 3.22. The main idea for constructions is to take a
weighted projective space and consider cones over points; see Definition 3.16. If the weights of
weighted projective space are chosen carefully, then the cone over a general point is a line on
the M–regular locus of higher dimensional weighted projective space; see Theorem 3.20. The
M–regular locus is not a projective variety, but if we choose weights carefully it is a co-finite
subset of weighted projective space; see Lemma 3.14. Therefore, a general hypersurface is
contained in it.

In Chapter 4 we constructed an example of a polarized smooth projective surface admitting
two lines intersecting at two points. Finally, we have established that there exists a smooth
Fano variety with the Picard number equal to 1 admitting a positive dimensional family of
lines with respect to the anti–canonical polarization.

31





Bibliography

[BKK20] Jarosław Buczyński, Michał Kapustka, and Grzegorz Kapustka. Special lines on
contact manifolds. to appear in Annales de l’Institut Fourier, arXiv: 1405.7792,
2020.

[BM19] Jarosław Buczyński and Giovanni Moreno. Complex contact manifolds, varieties
of minimal rational tangents, and exterior differential systems. In Geometry of
Lagrangian Grassmannians and nonlinear PDEs, volume 117 of Banach Center
Publ., pages 145–176. Polish Acad. Sci. Inst. Math., Warsaw, 2019.

[BN16] John Brevik and Scott Nollet. Grothendieck-Lefschetz theorem with base locus.
Israel J. Math., 212(1):107–122, 2016.

[BR86] Mauro Beltrametti and Lorenzo Robbiano. Introduction to the theory of weighted
projective spaces. Exposition. Math., 4(2):111–162, 1986.

[Dol82] Igor Dolgachev. Weighted projective varieties. In Group actions and vector fields
(Vancouver, B.C., 1981), volume 956 of Lecture Notes in Math., pages 34–71.
Springer, Berlin, 1982.

[FH09] Baohua Fu and Jun-Muk Hwang. Minimal rational curves on complete toric
manifolds. arXiv: 0912.1638, 2009.

[GW20] Ulrich Görtz and Torsten Wedhorn. Algebraic geometry I. Schemes—with exam-
ples and exercises. Springer Studium Mathematik—Master. Springer Spektrum,
Wiesbaden, [2020] c©2020. Second edition [of 2675155].

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Grad-
uate Texts in Mathematics, No. 52.

[HK05] Jun-Muk Hwang and Stefan Kebekus. Geometry of chains of minimal rational
curves. J. Reine Angew. Math., 584:173–194, 2005.

[HL21] Jun-Muk Hwang and Qifeng Li. Characterizing symplectic Grassmannians by
varieties of minimal rational tangents. J. Differential Geom., 119(2):309–381,
2021.

[HL22] Jun-Muk Hwang and Qifeng Li. Minimal rational curves and 1-flat irreducible
G-structures. J. Geom. Anal., 32(6):Paper No. 179, 37, 2022.

[HM04] Jun-Muk Hwang and Ngaiming Mok. Birationality of the tangent map for minimal
rational curves. Asian J. Math., 8(1):51–63, 2004.

33



[Hwa22] Jun-Muk Hwang. Varieties of minimal rational tangents of unbendable rational
curves subordinate to contact structures. J. Math. Soc. Japan, 74(2):571–590,
2022.

[IF00] A. R. Iano-Fletcher. Working with weighted complete intersections. In Explicit
birational geometry of 3-folds, volume 281 of London Math. Soc. Lecture Note Ser.,
pages 101–173. Cambridge Univ. Press, Cambridge, 2000.

[Keb01] Stefan Kebekus. Lines on contact manifolds. J. Reine Angew. Math., 539:167–177,
2001.

[Keb02] Stefan Kebekus. Families of singular rational curves. J. Algebraic Geom.,
11(2):245–256, 2002.

[Keb05] Stefan Kebekus. Lines on complex contact manifolds. II. Compos. Math.,
141(1):227–252, 2005.

[KK04] Stefan Kebekus and Sándor J. Kovács. Are rational curves determined by tangent
vectors? Ann. Inst. Fourier (Grenoble), 54(1):53–79, 2004.

[Kol96] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.

[KPSW00] Stefan Kebekus, Thomas Peternell, Andrew J. Sommese, and Jarosław A.
Wiśniewski. Projective contact manifolds. Invent. Math., 142(1):1–15, 2000.

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting:
line bundles and linear series.

[Mor75] Shigefumi Mori. On a generalization of complete intersections. J. Math. Kyoto
Univ., 15(3):619–646, 1975.

[PS14] Thomas Peternell and Florian Schrack. Contact Kähler manifolds: symmetries
and deformations. In Algebraic and complex geometry, volume 71 of Springer Proc.
Math. Stat., pages 285–308. Springer, Cham, 2014.

[Rob84] Lorenzo Robbiano. Factorial and almost factorial schemes in weighted projective
spaces. In Complete intersections (Acireale, 1983), volume 1092 of Lecture Notes
in Math., pages 62–84. Springer, Berlin, 1984.

[Sta22] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.
edu, 2022.

[Vak17] Ravi Vakil. The rising sea — foundations of algebraic geometry., 2017. a book
in preparation, November 18, 2017 version, http://math.stanford.edu/~vakil/
216blog/FOAGnov1817public.pdf.

34

http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf

	Introduction
	Lines, parameter spaces, and smooth divisors in linear systems
	Basic definitions
	Intersection numbers

	Motivation from classical geometry
	Bertini theorem

	Parametrizing space of lines
	Bend and break
	Families of singular lines

	Weighted projective spaces
	Basic properties of weighted projective spaces
	M–regular locus
	Cones on weighted projective spaces

	Families of lines on smooth varieties
	Fano variety

	Summary

