Quick reminder:
CW -complex is a space $K=\bigcup_{n=0}^{\infty} K^{n}$
where K^{D} is a discrete set of points
$K^{n} \subseteq K^{n+1}$ oud K^{n+1} is obtained
by attaching disks D^{n+1} to K^{n} along mops
$\dot{\delta}: S^{n} \rightarrow K^{n}$
$U S^{n} \rightarrow U D^{n+1}$

Example \mathbb{R}^{2}

$$
\begin{aligned}
& \downarrow \begin{array}{c}
\text { note } \\
\text { coper } \\
\text { rel } \\
\simeq \downarrow
\end{array} \\
& K^{\wedge} \bigcirc \rightarrow \mathbb{R} \mathbb{P}^{2}
\end{aligned}
$$

Each of the resulting maps $D^{n+n} \rightarrow K^{n+n}$
is a called a cell
G-complex, G - finite group
Def 1.
G-complex is a CW-complex together with GQK by cellular mops $\left(g\left(K^{n}\right) \subseteq K^{n}\right)$, s.t.
$\forall_{g} \in G \quad\{x \in K \mid g(x)=x\}$ is a subcomplex of K

Def 2
K is a G-complex if it is a $C W$-complex obtained by attaching cells of the form $G / H^{n} \times D^{n}$ along $\operatorname{mops} G / H \times S^{n-1}$

$$
G / H \times S^{n-1} \rightarrow G / H^{\prime} \times D^{n}
$$

$$
\begin{equation*}
\downarrow_{k} \rightarrow \underset{p}{\downarrow} \tag{Prushout}
\end{equation*}
$$

Def 1 ard Def 2 ore equivalent this is non-triviel

Equivoriont mop
$f: X \rightarrow Y$ continuous map of G-spaces

Equivoriont homotopy
$\alpha, \beta: X \rightarrow Y$ equiv. mops of $G-$ spaces
we have a natural G-action on $X \times I$
Eq. homotpy between α and β
$H: X \times I \rightarrow y$ equiv. mop
s.t. $H(x, 0)=\alpha(x) \quad H(x, 1)=\beta(x)$

$$
g(H(x, t))=H(g(x), t)
$$

Example of equiv. homotopy.

T4 action on these spaces
$\alpha: X \rightarrow Y$ "notum" injection
p toking everything to center

$H\left(x, t_{0}\right)$ for same fixed to this is equivoriout

Examples of G-complexes
\mathbb{Z}_{2} action on sphere
o) $K^{\wedge} \bigcirc \mathbb{Z}_{2}$ acts on K^{1} by antipodal map
$K^{\circ} \simeq \mathbb{Z}_{2}$ (as disunite $G-s$ pace $)$
K^{1} is oltrind by ottabiry $\mathbb{Z}_{2} \times D^{1}$ to K^{0}
$K^{2}=K \leadsto \mathbb{Z}_{2} \times D^{2} \quad$ (upper and bower semi-sphue)
Z_{2} acts on K by antiputa mas
b) $K \wedge \mathbb{Z}_{2}$ acts trividly
$k^{0}=\mathbb{Z}_{2} / \mathbb{Z}_{2} \omega \mathbb{Z}_{2} / \mathbb{Z}_{2} \quad K^{1}$ as so
$\mathbb{Z}_{2} \times D^{2}=$ attach this to K^{1} s.t.
$K^{2}=K$ the plane containing K^{1}.

Exomple
of conse I. hore S_{5} action on it. S_{5} - complex
Definctions

1) Retroction $A \subseteq X$
$f: X \rightarrow A$ is a retuction if $\left.f\right|_{A}=i d_{A}$
2) Deformation rethaction $A \in X$
def.etr. is $H: X \times I \rightarrow X$ s.t. $\forall_{x \in x} H(x, 0)=x$

$$
\begin{aligned}
& \forall x \in x H(x, 1) \in A \\
& \forall a \in A H(0,1)=0
\end{aligned}
$$

3) Stiong def. retr. $A \subseteq X$
$H: X \times I \rightarrow X \quad H$ is a def. vetr.

$$
\forall_{o \in A} \quad \forall_{t \in I} \quad H(a, t)=a
$$

Homotopy extension proparty.
$\dot{j}: A \longrightarrow X$ satisfles homotipy extension property

$$
\begin{aligned}
& \text { (} j \text { is a cofibuation) if } \\
& A \times h \theta\} \xrightarrow[H]{i_{0}} A \times I
\end{aligned}
$$

$$
\begin{aligned}
& X \times \text { hob } \underset{i_{0}}{ } X \times I \\
& \text { Fact } \\
& i: S^{n-1} \longrightarrow D^{n} \\
& \text { sotisfices ItEP. }
\end{aligned}
$$

All mops ore equivoiont I! Y which is equir.
checked eosily.

Theorem Let K be a G-complex (Def 2)
L be a G-invarient subcomplex of K
$\left(\forall_{g \in G} \quad \forall x \in L \quad g(x) \in L\right)$ then $j: L \rightarrow K$
Sotisfies equiveriont homotopy extension property.

$$
\begin{aligned}
& L \times h 0\} \xrightarrow[e v t]{e q} L \times I \\
& \text { eq } \downarrow \text { eq/フ } Y_{\text {Fiv }}^{\text {eq }} \downarrow \text { eq } \\
& K \times\{0\} \xrightarrow[e q]{\longrightarrow} \mathrm{K} \times I
\end{aligned}
$$

Proof: induction on the $C W$-skeletan of K. For K°. For $x \in K^{0}$
eithe $x \in L \rightarrow o K$
$x \notin L \quad H(x, t)=x \quad$ this equir.
becouse it is equir. on the zers leved.

Let's assume that we extended the homotipy to K^{n-1}. We will tale one cell $G / 1+\times D^{n}$ and extend it here.

$$
D^{n} \times I \longrightarrow D^{n} \cup S^{n-n} \times I
$$

$$
D^{n} \times I \rightarrow D^{n} \cup S^{n-1} \times I
$$

Poop $X=L \times I \cup K \times 40\} \quad X \subseteq K \times I$
X is a eq strong deformation retract of $K \times I$
construct $L C B \subset K$
B neighborhood of L
then exists eq. str. Def. et $B \rightarrow L$
(2) Then exists $x \subset u \subset K \times I$
U is a eq. shang deformation retraction on X
sit. then exist $L C \underset{\text { Li open }}{A C K} U \geq A \times I$
(3) There exists eq. str. def. nett. of $K \pm I \rightarrow U$
$u \rightarrow x$
(4) Thesis May "A concise cause on dg. top".

