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Abstract—Quantified crowd, a vision in which on-body sensors
of nearby people collaborate to detect various phenomena within
a crowd and produce feedback, is an emerging research area. One
of the issues that impedes progress in this new area is a lack of a
broadly applicable experimental platform, such as the platforms
that enabled research on wireless sensor networks.

In this paper, we aim to address this issue by presenting such
an experimental hardware-software platform. Not only does the
platform introduce custom badge-form low-power devices that
feature a number of sensors relevant to quantified crowd, but it
also ensures that these devices can interoperate with commercial
off-the-shelf smartphones, wristbands, and other devices for self-
quantification. In effect, it constitutes a powerful experimental
instrument, as we show in a preliminary real-world evaluation.

I. INTRODUCTION

The progress in miniaturization, energy efficiency, and wire-
less communication has made small personal devices, such
as smartphones or activity monitors, a popular technology.
Equipped with diverse sensors and specialized software, such
devices allow for continuous, fine-grained monitoring of var-
ious aspects of peoples’ lives and for giving personalized
feedback aimed to improve these aspects. This feedback loop
is the essence of the vision referred to as quantified self [1].

There is mounting evidence that self-quantification devices
will become even smaller and commonplace, embedded in
clothes, accessories, and everyday objects. Combining this
with the fact that they are increasingly capable of short-range
wireless communication, one may envision scenarios in which
the devices of various people exchange information directly,
depending on their hosts’ co-presence in physical spaces. In
other words, the devices collaborate to perform sensing and
coordinate to provide feedback not only for an individual, but
also for collocated groups or even crowds of people. This
vision, which we refer to as quantified crowd, has numerous
potential applications. Let us thus give just a few examples.

1) Detecting crowd dynamics: To start with, equipped with
proximity, direction, acceleration and other sensors, quantified
crowd devices worn by a large number of people could
communicate to collaboratively detect patterns of coordinated
movement of nearby persons and to assign a higher-level
semantic meaning to these patterns. For instance, they could
recognize formation of queues, emergence of flows in pedes-
trian lanes, intersections of such flows, and other problematic
situations, such as clogging [2]. This, in turn, could help

improve designing public spaces, planning train schedules,
provisioning staff, and avoiding disasters during mass events.

2) Maximizing event experience: Quantified crowd devices
could also be beneficial in trade fairs, conferences, and multi-
stage concerts [3], [4], [5], [6]. They could detect interpersonal
interactions and provide the participants with each others’ con-
tact information from online social networks. They could guide
a participant to interesting peers or exhibitions. They could
also track what music performances a group of friends enjoyed
(e.g., by dancing or jumping together), so that the songs could
be obtained after the concert. In short, the technology could
help maximizing the overall experience of an event.

3) Mitigating exclusion: Another problem the quantified
crowd technology could address is the exclusion of disabled
people. In particular, while blind people are often proficient
in navigating throughout a city, when two or more of them
want to arrange a meeting in a large, open, crowded public
space, they can have major difficulties finding each other.1

Quantified crowd devices could thus again be used to facilitate
the navigation through the crowds toward each other.

A. Problem Statement and Related Work

Recently, a lot of research progress facilitating the afore-
mentioned and similar applications has been made. To begin
with, it was shown that physical proximity, measured based on
wireless beacons broadcast by wearable devices, can be used
as a crude proxy for detecting social interactions between the
people wearing the devices [3], [6], [7], [8]. Using infrared
instead, one can also detect whether nearby people are facing
each other, which increases the likeliness of them having an
actual social interaction [4], [5], [9], [10]. Acceleration and
orientation are other modalities that can potentially allow for
detecting the physical activities of individuals [3], [11], [12] or
even for clustering individuals into groups behaving similarly
or moving together [13], [14]. Likewise, audio can be used to
detect a human conversation, including, for instance, recogniz-
ing the speakers’ mood [15], [16], [17]. Being able to sense
these modalities has allowed researchers to study real-world
social interactions in workplaces or during conferences [4],
[8], [9], to investigate techniques for identifying communities
and groups of influence [18], [19], [20], or to analyze basic
patterns in the behavior of crowds in physical spaces [2], [14],
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[21], even giving birth to a new field of science: Computational
Social Science [22]. Finally, new decentralized algorithms
for highly mobile networks, in particular, for opportunistic
forwarding [23], in-network aggregation [24], and density
estimation [25], have started being investigated to close the
feedback loop in the futuristic quantified crowd applications.

However, despite this progress, there are still numerous
research problems that must be solved before the quantified
crowd vision becomes a reality. One such basic issue is a lack
of a broadly applicable experimental platform. To illustrate,
instead of quantified crowd, consider the now mature wireless
embedded sensing. The immense development in wireless sen-
sor networks was possible in the last years partially due to the
versatile hardware-software platforms, such as the Mica2 [26]
and TelosB [27] motes together with the TinyOS environment
[28]. They allowed people with varying expertise to innovate
at different levels and to validate novel ideas in the real world.
In contrast, for quantified crowd, no such platforms exist yet.

A popular solution is to use smartphones [3], [6], [7], [14],
[17]. They are easy to program, contain various sensors, and
are relatively widespread, thereby being a perfect platform
for validating simple ideas quickly and at scale. Yet, as
commercial devices with use cases different than the futuristic
quantified crowd applications, they are not well suited for more
advanced studies of novel techniques. In particular, they are
missing sensors and interfaces that, despite no commercial
value today, could be useful for quantified crowd in the future.
In addition, their form factor does not match many experi-
mental scenarios, they consume relatively much power, are
heterogeneous, and difficult to extend with custom hardware.

To cope with these problems, an opposite approach is
often taken: designing devices dedicated for studying a given
phenomenon or technique [2], [4], [5], [8], [9], [10], [11],
[13]. An advantage of this approach is that the devices can be
fully customized. A major disadvantage is in turn that they
are usually aimed at few experimental scenarios. As such,
they may not support any wireless communication, focusing
on sensor data acquisition for offline analysis [11], [13];
alternatively, they may have wireless interfaces, but those
are specialized, precluding interoperability with, for instance,
smartphones [2], [4], [5], [8], [9], [10]. Furthermore, the
devices often disregard energy consumption, assuming short-
term operation. Finally, in many cases, they are not open,
which makes reproducing results of other groups laborious.

B. Contributions and Paper Organization

In this paper, we introduce a new experimental platform
for quantified crowd that addresses the aforementioned issues.
The platform consists of hardware and software that together
bridge the two previous experimental approaches. The plat-
form is also open, thereby allowing other groups to adapt it
to their own experimental needs without repeating our work.2

Drawing from the aforementioned research experiences, the
hardware has a form of name badge; the software, in turn,

2For the relevant hardware specs and software, please, refer to
http://www.mimuw.edu.pl/∼iwanicki/projects/SocSenSys/.

comprises a programming environment for the badges and
utility applications for mobile personal devices. Together, they
offer to their users numerous sensors that proved useful to
date, as well as sensors that seem appealing for measuring
some aspects of quantified crowd, but have not been evaluated
yet. In other words, even on its own, the platform enables
experiments with virtually all modalities recognized as rele-
vant to quantified crowd and in many different scenarios, as
we demonstrate in preliminary evaluation. Equally important,
however, it supports three different wireless communication
interfaces that enable interoperation with both smartphones
and wireless sensor nodes. In particular, it can exploit smart-
phones’ computational resources or their Internet connectivity.
Finally, despite these features, it minimizes power consump-
tion, allowing for weeks of operation without recharging.

The rest of this paper is organized as follows. Section II
discusses the platform in more detail. Section III demonstrates
its utility in preliminary experiments. Section IV concludes.

II. ARCHITECTURE OF THE PLATFORM

The goal of our platform is facilitating experimentation
in as many quantified crowd scenarios as possible. To this
end, it combines both new dedicated low-power hardware—the
badges—and software developed not only for the hardware but
also for commodity devices, notably smartphones. As one of
the consequences, it allows dedicated and commodity devices
to interoperate, opening numerous experimental possibilities.

A. Hardware

In line with this goal, we wanted the hardware to ensure
the following two properties. First, on its own, it should
enable experimentation in as many scenarios as possible. In
particular, its form factor, sensing capabilities, and power
consumption should be sufficient for a wide range of quantified
crowd experiments. Second, it should allow for extending
the platform with external devices. This implies that at the
very minimum, it should interoperate with commodity devices;
preferably, it should also bridge specialized wireless sensing
technology with commercial off-the-shelf personal devices.
Let us discuss how its design ensures these properties.

1) Form factor: Building upon the aforementioned research
experiences, our hardware has a popular form of name badge
(cf. Fig. 1). As such, it has a well defined position on the body
of its wearer. This simplifies detecting if the wearer is facing
another person with a badge or reasoning about the wearer’s
current physical activity. Likewise, the form factor facilitates
small-scale prototyping compared to tinier personal devices.

2) Local sensing: Drawing from quantified self, quantified
crowd relies heavily on sensing various modalities of individ-
ual people. Accordingly, our badge hosts a number of sensors.
A tri-axis accelerometer is meant for determining the current
physical activity of the badge wearer, for example, whether
the wearer is standing, walking, running, jumping, and so
on. A magnetometer enables detecting the badge wearer’s
orientation. Combined with a gyroscope, the accelerometer
and magnetometer allow for dead reckoning, that is, navigating



Fig. 1. Our badge without a casing.

the wearer without additional positioning. A microphone that
amplifies frequencies corresponding to human speech is meant
for detecting conversation as well as finer-grained sensing,
such as inferring the sex and mood of the speakers. A highly
sensitive barometer can give context information, such as the
elevation at which the badge resides. Light and temperature
sensors provide further context information, for example, if
the badge is outdoors or indoors. Overall, the suite of sensors
available on a badge covers virtually all modalities employed
in the aforementioned experiments conducted to date.

3) Communication and crowd texture sensing: Further-
more, what differentiates quantified crowd from quantified
self is communication between the devices of various people.
In quantified crowd, nearby devices must coordinate their
sensing and collaborate when analyzing the data and providing
feedback. In addition, by communicating, they must determine
spatial interdependencies between them, notably proximity and
mutual orientation, which is crucial for inferring the spatial
structure—the texture—of a crowd [2]. For these reasons, our
badge hosts three different communication interfaces.

First, a low-power radio (RF) is meant as the basic com-
munication interface as well as proximity detector. We chose
a popular radio chip for the sub-gigahertz ISM bands with
dynamically configurable output power, and coupled it with a
custom on-board antenna. The chip is compatible with several
wireless sensor network platforms and some personal devices,
like eZ430-Chronos smart watches [29], which enables extend-
ing the platform with other devices. The configurable output
power allows in turn for changing the transmission range,
which, combined with the selected band and antenna, enables
fine-grained sensing of the distance between badges.

Second, being more directional than the radio, an infrared
(IR) transceiver is meant to detect if badge wearers face each
other. Again, we designed the interface so that it can be
adjusted: the output power can be selected at runtime to enable
controlling the transmission range; the radiation cone can in
turn be regulated by the casing of the badge. Finally, infrared
can also be used for communicating information: the physical
bit encoding and frame format are determined by software, so
again the badges can interoperate with other infrared devices.

Third, our badge is equipped with a novel Bluetooth Low
Energy (BLE) transceiver. In effect, it can communicate
with modern smartphones and commercial devices for self-
quantification, such as the Fitbit wristband [30]. Considering
that BLE is gaining popularity, the number of external smart
devices that can extend our platform is growing as well.
Although BLE can also be used for sensing proximity, it is
not as versatile in terms of configuration and communication
protocols as the low-power radio, so we decided to have both.

4) Input-output: Apart from the communication interfaces,
our badge also has several input-output elements. To show the
name and affiliation of its bearer but also arbitrary dynamic
information, it has a 4.41-inch, 400×300-pixel e-paper display.
We have chosen e-paper over other technologies as it requires
energy only when changing the displayed image and the image
does not degrade in sunlight, which was problematic for other
technologies used in previous experiments, both by us and
others. Other I/O elements on our badge include buttons,
LEDs, a buzzer for audio feedback, external flash memory
and an additional SD card slot for logging data, and a USB
socket for charging batteries and post-mortem log acquisition.

5) Energy consumption: Finally, both individual compo-
nents of a badge and the badge as a whole minimize energy
consumption, which is crucial for experimental scenarios that
require badges to work unattended for weeks. In particular,
as the core of our badge, we have chosen an ARM Cortex-M
MCU, which is relatively powerful and yet ultra-low power.
Other component choices, such as BLE instead of the classic
Bluetooth or e-paper instead of another display technology,
were also motivated by the power requirements; so was the
lack of power hungry components, such as a GPS receiver or
a WiFi transceiver, which can be used indirectly if necessary,
by having a badge communicate with a smartphone. Last but
not least, the way the selected components are integrated as
well as the way their software drivers work (discussed in the
next section) strongly emphasize low energy consumption.

6) Summary: To sum up, our hardware builds upon pre-
vious research activities but addresses the drawbacks of the
instruments used in those activities, often because we experi-
enced these drawbacks ourselves (e.g., display). The form fac-
tor of a badge, its low energy consumption, and the rich suite
of sensors enable using our badges alone in a wide range of
experimental scenarios. The three low-power communication
interfaces in turn allow for increasing the capabilities of the
badges with external devices, both custom wireless sensors and
commercial personal devices. To the best of our knowledge,
these properties of the badges make them truly unique.

B. Software

The software of the platform consists in turn of two main
parts: the programming environment for the badges and util-
ities for mobile devices. Like the hardware, the software is
tailored to be applicable in as many experimental scenarios
as possible. Unlike the hardware, which is now stable, the
software is continuously extended, which hopefully further
increases its utility. Let us give an overview of its two parts.



1) Badge software: The programming environment for the
badges is based on the popular operating system for wireless
sensor networks, TinyOS [28]. We selected TinyOS for a few
reasons. First, its layering promotes rapid innovation, even
without expert knowledge about its internals. Second, its driver
architecture facilitates minimizing energy consumption. Third,
its code base contains many libraries that can be useful also
for experimenting with quantified crowds. Finally, it supports
many wireless sensor node platforms that, due to the radio
chip employed by us, can interoperate with our badges.

To provide the support for our badge in TinyOS, we have
created a completely new TinyOS platform, called badge. In
the process, we had to face a number of challenges.

To begin with, the ARM MCU used by our badges is 32-
bit and has a few unique features compared to the MCUs
supported by TinyOS, which are mostly 8- or 16-bit. As a
result, when implementing the support for our MCU, we had to
handle these new features within the boundaries of the TinyOS
architecture, which was sometimes problematic. For instance,
we discovered and fixed a bug in the low-level operating
system code [31], which existed because apparently the code
had never before been run on the 32-bit ARMs.

Furthermore, many sensor types available on our badges
as well as elements such as the IR transceiver had not been
supported in TinyOS. Consequently, we had to develop their
drivers at all the system layers. In addition, some of the
components, such as the BLE interface or the e-paper, had not
even had designs of a software architecture. We had to create
these designs from scratch because the operation of these
components differs significantly from the components that are
supported by TinyOS. Finally, we also adapted some of the
TinyOS services for the badges, like the timers library or over-
the-air reprogramming; likewise, we implemented services
customized for the badges, for instance, for acquisition of
logged data. In effect, we have obtained a complete, fully-
functional TinyOS platform with additional services useful for
experimentation in scenarios relevant to quantified crowds.

2) Mobile device software: In addition to the software
for the badges, we have developed software for commercial
personal devices. The software is written in Java as we targeted
devices running the Android OS. It is tailored mostly to
individual experimental scenarios we considered. For example,
since in some quantified crowd scenarios, such as conferences
or trade fairs, it is beneficial to know the profiles and/or
contacts of individuals, we created utilities for extracting
such information from online social networks. Other examples
include utilities for scanning nearby Bluetooth devices.

One piece of the Android software deserves more attention:
software for communicating with the badges. More specif-
ically, for testing badge prototypes, we implemented utility
code that enables exchanging information with a badge over
BLE. In the future, similar code can allow a badge to harness
the computational power of a smartphone (e.g., to perform
sensor data analysis that is beyond the capabilities of the
badge’s MCU) or to utilize the Internet connectivity of the
smartphone (e.g., to download user profiles from online social

networks or upload changes to such profiles). Developing this
code was not straightforward, as some BLE modes were (and
likely still are) poorly supported in Android.

3) Summary: To sum up, the layered TinyOS programming
environment allows developers to write experimental code
accessing the badge hardware at various levels and using
various services out of the box, depending on the developers’
expertise. At the same time, the Android software can enable
using the badges in combination with mobile off-the-shelf
devices, such as smartphones, wristbands, pedometers, and
so on. All in all, our software may facilitate building even
complex distributed systems for quantified crowd experiments.

III. PRELIMINARY EVALUATION

We have started experimenting with the platform to study
various phenomena relevant to quantified crowds. Although we
do provide sample results from such experiments, covering all
of them is out of the scope of this paper. Instead, the goal of
the paper is illustrating the potential of our platform.

A. Energy consumption

To start with, Table I presents the average standby- and
active-state current of each major hardware component of our
badge, as given by the manufacturer and validated empirically
by us. The leakage current is not included and is less than
1 µA per component. In short, the table shows that the energy
consumption of our badge can be ultra low, allowing for
weeks of operation on a default 3.7-V, 2400-mAh battery. This
facilitates using the badges in a wide range of experimental
scenarios that require long operation without charging.

TABLE I
AVERAGE CURRENT CONSUMPTION OF EACH HARDWARE COMPONENT

Component Standby [µA] Active [mA]
MCU 1.7 6.1
RF transceiver 0.2 16.9 (RX), 34.2 (TX @ 12 dBm)
Infrared transceiver 0 0.9 (RX), 72 (TX @ power level 3)
BLE module 0.4 25 (RX), 36 (TX)
E-compass 2 0.44
Gyroscope 1 5
Barometer 0.5 0.025
Light sensor 4 0.13
Microphone 0 1.8
External flash 100 20
SD card 0 depends on a card (e.g., 100)
E-paper display 0 8

B. Sensing crowd texture with RF

As we mention previously, an important modality in such
experiments is proximity of people. One of the proximity
sensors on our badge is the radio with the specifically selected
transceiver chip and antenna. More precisely, by dynamically
adjusting the radio output power, one can control the trans-
mission range, based on which proximity can be inferred.

As a demonstration, we conducted experiments in which
two people wearing badges were positioned at a given distance
from each other with line-of-sight visibility: one of the badges
being a transmitter, the other one, a receiver. We varied the
distance between the people, and for each distance, we studied
a set of radio output power values. For each (distance, power)



configuration, we measured the packet reception rate (PRR),
received signal strength indicator (RSSI), and link quality
indicator (LQI) over a thousand transmitted packets. Table II
presents the results for PRR for selected output power levels.

TABLE II
RF PRR [%] FOR SELECTED DISTANCES AND OUTPUT POWER LEVELS

Dist. [m] TX power [dBm]
-30.2 -27.7 -20.5 -15.7 -11.0 -5.0 -0.3 3.7

1 74.8 85.3 99.0 99.7 99.4 99.3 99.7 99.6
2 14.0 65.7 99.7 99.2 99.0 99.6 99.3 98.4
3 2.0 0.0 98.7 98.9 99.3 99.6 99.2 99.3
5 14.9 0.0 99.4 99.1 99.6 99.4 97.9 99.3

10 0.0 0.0 36.0 96.0 99.7 99.9 99.0 99.3
20 0.0 0.0 0.0 14.9 98.3 99.9 99.3 99.5
30 0.0 0.0 0.0 0.0 23.6 35.0 99.0 99.1
40 0.0 0.0 0.0 0.0 20.0 22.0 68.5 99.5
50 0.0 0.0 0.0 0.0 0.0 1.0 11.0 98.8
60 0.0 0.0 0.0 0.0 0.0 0.0 23.4 98.1
70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The results indicate that, despite the unpredictability of low-
power wireless communication, PRR does allow for reasoning
about proximity of badges. Using output power levels from
the table, as well as intermediate ones not depicted in the
table, one can distinguish shorter distances with an accuracy of
down to a few meters; higher distances can in turn be detected
with an accuracy of about ten meters (the maximal distance is
around 100 m). Moreover, it is also possible to exploit the raw
physical signal quality metrics, RSSI and LQI (not shown due
to space constraints), to further improve proximity inference.

C. Sensing crowd texture with IR

Like RF, IR can also be used for sensing proximity. To
this end, we conducted the same experiments as for RF but
employing IR instead. Their results are shown in Table III.

TABLE III
IR PRR [%] FOR SELECTED DISTANCES AND OUTPUT POWER LEVELS

Dist. [m] TX power [level]
0 1 2 3

1 100.0 99.0 93.0 88.0
2 74.0 67.0 99.0 88.0
3 0.0 55.0 33.0 51.0
4 0.0 0.0 50.0 53.0
5 0.0 0.0 0.0 30.0
6 0.0 0.0 0.0 0.0

In contrast to the radio, which is a single chip, the IR
transceiver is a custom circuit. We designed the circuit so
that it supports four power levels (0–3), derived from earlier
experiments. The table shows that these power levels allow
for inferring proximity with an even better accuracy than RF.
What is more, the accuracy can be further tuned by changing
the length of transmitted packets, which however is out of the
scope of this paper given the available page limit.

In addition, IR is more directional than RF. In particular,
Table IV shows how the orientation of the receiver with respect
to the transmitter affects PRR. PRR is the highest when the
badges face each other and becomes lower when they rotate. It
is the lowest when they have their backs to each other, though
it is not zero, because the experiment was conducted indoors,

where IR reflections can occur. Note also that the badges
were without casings. With an appropriate casing, one can
regulate the angle of the transmission cone, which may allow
for detecting the mutual orientation of badges more precisely.

TABLE IV
IR PRR [%] DEPENDING ON THE ANGLE BETWEEN BADGES

Angle [◦] 0 30 60 90 120 150 180 210 240 270 300 330
PRR [%] 98 99 89 46 18 26 4 5 23 7 94 99

D. Sample illustrative experiment

The previous experiments suggest that IR can be more
accurate than RF for sensing proximity. Yet, the maximal IR
bandwidth on our platform is two orders of magnitude lower
than that of RF, and IR transmissions require more energy than
RF ones. Therefore, when it comes to inferring proximity,
these two modalities should be combined. Likewise, mutual
orientation can be inferred from a combination of IR and
magnetometer. These are just two examples highlighting the
need for multi-modal sensing in quantified crowd applications.

Therefore finally, to illustrate a tiny sample of the multi-
modal sensing possibilities offered by our platform for such
applications, we present briefly one of our very first ex-
periments aimed at classifying interpersonal situations. More
specifically, we wanted to detect and distinguish between four
types of pairwise situations involving people wearing badges:
(1) no social interaction at all (denoted N), (2) two people
passing each other (P), (3) two people standing and having
a chat (C), and (4) two people walking together (T). To this
end, we first conducted 100 micro-benchmark experiments for
each of the situations, in each micro-benchmark recording data
from RF transmissions at three low output power levels, IR at
the minimal power level, the accelerometer and microphone.
We used the resulting data as a training set for a machine
learning toolkit, Weka [32], to obtain classification heuristics.
The heuristics were then deployed on the badges and used
in an experiment involving three participants moving freely
in a foyer of a building with other people present. Figure 2
depicts the resulting pairwise classifications (a) obtained at the
badge of participant 1 and the actual situations recorded by
an external observer and verified based on a video stream (b).

Although a more detailed discussion of the experimental
results is out of the scope of this paper, the figure already
suggests that the four situations can be automatically recog-
nized to a large extent. Note also that this was one of the very
first experiments with the platform, involving few modalities
and simple, automatically synthesized heuristics. Our recent
research indicates in turn that pairwise situation classification
can be improved with more advanced decision algorithms
and other modalities sensed by the badges. What is more,
a variety of additional external devices, which our platform
interoperates with, may improve the classification even further.

IV. CONCLUSION

All in all, our hardware-software platform does have the
potential to be a broadly applicable experimental instrument
for quantified crowd. Even on its own, it allows for a wide
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(a) the interactions of participant 1 with participants 2 and 3,
as detected by the badge of participant 1
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(b) the actual interactions of participant 1 with participants 2 and 3,
as recorded by an external observer and later verified

Fig. 2. Sample experiment for pairwise interaction classification based on
multi-modal sensing with our badges.

range of real-world experiments including studying human ac-
tivity, crowd textures, social interactions, collective behavior,
and the like, which we are confirming in our present research.
What is more, however, it can interoperate with both existing
wireless sensor node platforms and commercial devices for
self-quantification, thereby bridging these two worlds. As a
result, it can be extended with new hardware and software
to handle scenarios that we may not even envision yet. Since
to date such a platform has been lacking, we hope that our
platform will become for quantified crowd what the aforemen-
tioned Mica2, TelosB, and TinyOS solutions were for wireless
sensor networks: an instrument that eliminates the need for
redesigning everything, instead allowing different groups to
focus solely on research falling within their expertise, which
promotes innovation.
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[13] D. Roggen, M. Wirz, G. Tröster, and D. Helbing, “Recognition of crowd
behavior from mobile sensors with pattern analysis and graph clustering
methods,” Net. Heterog. Media, vol. 6, no. 3, pp. 521–544, 2011.

[14] M. B. Kjaergaard, M. Wirz, D. Roggen, and G. Troster, “Detecting
pedestrian flocks by fusion of multi-modal sensors in mobile phones,”
in Proc. ACM UbiComp ’12, 2012, pp. 240–249.

[15] P. Ruvolo, I. Fasel, and J. Movellan, “Auditory mood detection for social
and educational robots,” in IEEE ICRA ’08, 2008, pp. 3551–3556.

[16] F. Burkhardt, T. Polzehl, J. Stegmann, F. Metze, and R. Huber, “Detect-
ing real life anger,” in IEEE ICASSP ’09, 2009, pp. 4761–4764.

[17] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T.
Campbell, D. Gatica-Perez, and T. Choudhury, “StressSense: Detecting
stress in unconstrained acoustic environments using smartphones,” in
ACM UbiComp ’12, 2012, pp. 351–360.

[18] P. Hui, E. Yoneki, S.-Y. Chan, and J. Crowcroft, “Distributed community
detection in delay tolerant networks,” in Proc. ACM MobiArch ’07, 2007.

[19] H. Kim, J. Tang, R. Anderson, and C. Mascolo, “Centrality prediction
in dynamic human contact networks,” Comput. Netw., vol. 56, no. 3, pp.
983–996, 2012.

[20] D. Fay, J. Kunegis, and E. Yoneki, “Centrality and mode detection
in dynamic contact graphs; a joint diagonalisation approach,” in Proc.
ACM/IEEE ASONAM ’13, 2013, pp. 41–48.
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