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Unit testing, an important facet of software quality assurance, is underappreciated by wireless sensor network
(sensornet) developers. This is likely because our tools lag behind the rest of the computing field. As a

remedy, we present a new framework that enables modern unit testing techniques in sensornets. While the

framework takes a holistic approach to unit testing, its novelty lies mainly in two aspects. First, to boost test
development, it introduces embedded mock modules that automatically abstract out dependencies of tested

code. Second, to automate test assessment, it provides embedded code coverage tools that identify untested

control flow paths in the code. We demonstrate that in sensornets these features pose unique problems,
solving which requires dedicated support from the compiler and operating system. However, the solutions

have the potential to offer substantial benefits. In particular, they reduce the unit test development effort by

a few factors compared to existing solutions. At the same time, they facilitate obtaining full code coverage,
compared to merely 57%–72% that can be achieved with integration tests. They also allow for intercepting

and reporting many classes of run-time failures, thereby simplifying the diagnosis of software flaws. Finally,

they enable fine-grained management of the quality of sensornet software.
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1. INTRODUCTION
Unit testing is at the heart of popular software development methodologies, such as eXtreme Pro-
gramming [Beck 1999], SCRUM [Schwaber and Beedle 2001], and Test-Driven Development [As-
tels 2003]. What sets it apart from other software quality assurance techniques is the focus on testing
each individual module in isolation from the rest of the system. The isolation facilitates testing all
control flow paths of the module, which greatly improves reliability and is hard to achieve with
coarser-grained integration testing [Barrenetxea et al. 2008; Langendoen et al. 2006; Ramanathan
et al. 2005; Tolle and Culler 2005]. In other words, unit testing scales well with code. Likewise, due
to the isolation, unit testing scales well with the development team, as to write a test, a developer
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need not know the entire system. In addition, unit tests for a module ultimately document the mod-
ule’s behavior and usage, which facilitates collaborative development. Designing for unit testability,
in turn, improves code modularity and reuse. There are myriads of other examples illustrating that
unit testing is indispensable for producing high-quality software [Astels 2003].

Embedded in physical spaces and operating largely unattended, sensornets do require such reli-
able software. Yet, numerous failed prototype sensornet deployments evidence that building such
software is not trivial [Barrenetxea et al. 2008; Krishnamurthy et al. 2005; Langendoen et al. 2006;
Tolle and Culler 2005; Werner-Allen et al. 2006]. In the absence of unit testing, many failures result
from the difficulty of pre-exercising corner-case control flow paths in the code to be deployed or
from flaws introduced with updates to existing stable code. What is more, recent standardization
activities, which aim to make sensor nodes fully-fledged Internet devices, and opportunities for in-
tegrating sensornets into complex cyber-physical systems, which these activities offer for industry,
will likely make matters worse. Compliance with the emerging standards in combination with prac-
tical issues like security, manageability, and interoperability, can yield software surpassing in size
any prototypes to date, especially observing the growth in flash memory of low-power MCUs. A
massive industrial adoption, in turn, can reshape the software development model: from commu-
nal one, in which open-source code is polished by numerous experts, to competitive one, in which
proprietary code is built by competing companies. For such companies producing volumes of new
code that cannot be disclosed to community experts for review, any means for improving software
reliability will be of great value. Unit testing will thus likely become a necessity. Today, however, it
is largely underappreciated by sensornet developers: it is far from being a common practice.

It is the main tenet of this article that unit testing is not popular in the sensornet community,
because our tools do not sufficiently reduce its costs. Even though the tools, discussed in the next
section, automate test execution and management, they lag behind the rest of the computing industry
in their support for unit test development and assessment. More specifically, to the best of our
knowledge, no tools help a developer isolate the tested module from the code on which it depends,
which is the very idea of unit testing. In effect, the developer has to resort to integration testing
or manually build stub modules that abstract out the dependencies. As we show, the first approach
makes checking all corner cases hard while the second is laborious. Likewise, existing tools do not
enable automatically assessing how well tests exercise various control flow paths. As a result, it is
difficult to detect if tests for a corner case are missing, which impairs code reliability. All in all,
without appropriate support for developing and assessing tests, unit testing is simply not economic.

In this article, we show how a modern unit testing framework for sensornets can address these
issues. As a case study, we use a framework that we have developed for TinyOS 2.x [Levis et al.
2005] and its programming language, nesC [Gay et al. 2003]. While the framework takes a holistic
approach to unit testing, the article focuses mostly on the two aforementioned core challenges: (1)
minimizing the cost of isolating individual modules and developing tests for such isolated code and
(2) automating the identification of control flow paths in the code that are covered by a test. We
demonstrate how to address these challenges in the face of resource constraints of sensor nodes. An
additional contribution is an empirical evaluation of the presented techniques.

More specifically, to minimize the development costs of tests that exercise a module in isolation,
our framework introduces embedded mock modules. Mock modules are implementations of inter-
faces that are automatically synthesized by the framework. They are dynamically configurable, so
that they can mimic real modules on which the tested module depends. In effect, they isolate the
module from the rest of the system with a minimal effort from test developers. In this respect, em-
bedded mock modules resemble mock objects that form a basis of modern unit testing frameworks
for object-oriented languages [Freeman et al. 2004]. However, unlike mock objects, embedded mock
modules cannot rely on dynamic language features, such as polymorphism or lazy functions. Due to
resource constraints of sensor nodes, such features are not available in the predominant languages
for sensornets: C and nesC. In addition, the resource constraints make it hard to provide certain
guarantees for mock-based testing from the execution environment. By and large, introducing em-
bedded mock modules poses numerous unique challenges stemming from resource and language
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limitations. We demonstrate that to provide elegant solutions, support from the compiler and oper-
ating system is necessary.

To enable, in turn, assessing how well various control flow paths are tested, the framework pro-
vides embedded code coverage tools. The tools automatically instrument code such that it becomes
possible to investigate which of its pieces are executed based on various coverage metrics. For ex-
ample, line coverage allows for each line to determine whether that line is executed during a test.
Similarly, branch coverage makes it possible for each condition to infer why the condition is true or
false during a test. Again, what differentiates our work from existing coverage solutions are resource
constraints and operating system limitations. With existing tools it is virtually impossible to instru-
ment any system more complex than an application periodically blinking LEDs of a sensor node.
In contrast, our tools adopt a principle that every bit matters, thereby allowing for instrumenting
even large systems. This focus on constraints gives rise to solutions dedicated to sensornets. Like
embedded mock modules, we demonstrate how to integrate these solutions into a compiler and how
to provide appropriate operating system support.

Finally, having a modern, holistic framework, we empirically confirm the aforementioned qual-
ities of unit testing in sensornets. To the best of our knowledge, these are first such studies. In
particular, we show that existing TinyOS tests, which are mostly integration tests, have a low cov-
erage: in the code they target, they exercise only 72% of lines and 57% of branches. Adopting unit
testing for individual modules is thus simply a necessity to exercise all control flow paths. However,
an average TinyOS module depends on nearly 24 external functions, hence isolating it manually can
make the test code surpass the module’s code even several times, an overhead that is uneconomic.
In contrast, employing mock modules, which automatically abstract out the dependencies, can slash
this overhead by a few factors, to a value acceptable by developers, without impairing the code cov-
erage. In general, the solutions introduced by the framework in all aspects of unit testing effectively
enable adopting the aforementioned modern software development methodologies in sensornets.

The rest of the article is organized as follows. Section 2 discusses related work. Section 3 gives an
overview of our unit testing framework. Sections 4–7 explain in detail the solutions the framework
introduces for test development, execution, assessment, and management. Section 8 empirically
evaluates the advantages and limitations of these solutions. Finally, Section 9 concludes.

2. RELATED WORK
Software quality assurance in sensornets is a multifaceted topic covering, among others, program-
ming languages [Gay et al. 2003], design patterns [Gay et al. 2007], memory safety [Cooprider et al.
2007], interface contracts [Archer et al. 2007], automated design inference [Kothari et al. 2008], in-
tegrated development environments [Burri et al. 2006], and debugging tools [Iwanicki and van Steen
2007; Ramanathan et al. 2005; Romer and Ma 2009; Whitehouse et al. 2006; Yang et al. 2007], to
name just a few examples. In this article, however, we focus on testing.

Simulators, such as TOSSIM [Levis et al. 2003], and emulators, such as Avrora [Titzer et al. 2005]
or COOJA [Österlind et al. 2006], enable testing complete sensornet systems and protocol suites
at scale. Similarly, testbeds, like Motelab [Werner-Allen et al. 2005], Kansei [Ertin et al. 2006],
or our own ones [Iwanicki et al. 2008; Michalowski et al. 2012], are invaluable for assessing the
performance of complete systems or self-contained subsystems and protocols on actual sensornet
hardware. However, while simulation, emulation, and testbed experiments exercise common-case
control flow paths well, they do not facilitate testing all corner cases, as the past experience suggests
[Barrenetxea et al. 2008; Langendoen et al. 2006; Ramanathan et al. 2005; Tolle and Culler 2005]
and this article confirms empirically.

Conversely, formal methods, like symbolic execution [Sasnauskas et al. 2010] and model check-
ing [Li and Regehr 2010], do enable exhaustively analyzing the control flow paths of a system. In
effect, they are indispensable for identifying software flaws due to unpredicted interactions between
various modules of the system. However, since the system is analyzed as a whole, the state space
that formal methods have to explore grows exponentially with software and network size. In effect,
to make the verification process feasible, parts of the analyzed code, typically hardware driver code
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or complex protocol code, have to be abstracted out [Li and Regehr 2010; Sasnauskas et al. 2010].
Not only is this laborious, but it may also impair the overall software reliability.

All in all, there is no silver bullet in software quality assurance, and thus, unit testing complements
the aforementioned techniques. In fact, popular software development methodologies, like eXtreme
Programming [Beck 1999], SCRUM [Schwaber and Beedle 2001], and Test-Driven Development
[Astels 2003], would be impossible without unit testing.

However, to be economic, unit testing requires holistic support for the entire testing process. More
specifically, it requires mechanisms that minimize the effort involved in developing, executing, as-
sessing, and managing tests. When it comes to test development, it is vital to minimize the overhead
incurred by dealing with each individual module in isolation from the rest of the system. Ideally,
a test developer should focus only on writing minimal test logic for the module. The framework,
in turn, should provide an appropriate testing model, should automatically isolate the tested mod-
ule from other modules, and should combine everything into a meaningful test program that can
be executed on a sensor node, in a simulator, etc. Likewise, test execution should be automated to
the extent that a single command triggers execution of relevant test cases. Importantly, when a test
case fails, the framework should strive to provide descriptive feedback information, thereby sparing
the user the effort required to diagnose the failure with a hardware or software debugger. When it
comes to test assessment, in turn, the framework should automatically provide information on how
well particular tests exercise the various control flow paths and corner cases in each module. Such
raw execution information should allow developers to quickly identify any missing test scenarios;
aggregated statistics should in turn give managers a measure of quality of their software. Finally, test
management requires databases containing test cases and the history of their execution statistics, as
well as mechanisms for triggering test execution. Such mechanisms may, for instance, trigger the
execution of relevant tests whenever new code is submitted to a repository.

We are aware of two major test frameworks for sensornets: TUnit [Moss 2007] and MUnit [Okola
and Whitehouse 2010].

For developers, TUnit defines a simple testing model, in which each test is written as a nesC
component with a well defined interface. In addition, it provides a set of assertion macros that the
developers can use to verify whether test execution progresses as expected, for example, to check
whether a value returned by the tested module is equal to an expected value. A test is executed on
a node and communicates with a frontend application running on a PC. The frontend automates
the execution process to a large extent, including compiling tests into node images, programming
nodes with those images, starting the execution of the tests, and collecting their output. TUnit also
gathers simple statistics: the number of successful and failed tests and their duration. Finally, from
a managerial perspective, TUnit tests can be organized into suites, and historic results of those tests
can be archived and presented in user-friendly reports.

MUnit aims to improve upon TUnit by changing the programming language of test logic: from a
language for resource-constrained nodes, nesC, to a high-level language, Python. More specifically,
although a module to be tested is still written in nesC, tests for the module are written in Python.
The nesC code of the module runs on a node; the Python test code runs on a PC. To combine the
two environments, MUnit exports all nesC functions of the tested module into Python prototypes,
such that each invocation of a Python function prototype on the PC is transformed into an invocation
of the corresponding nesC function on a sensor node through an embedded remote procedure call
(ERPC) [Whitehouse et al. 2006]. In other words, a sensor node acts as an ERPC server, whereas
the actual testing takes place on the PC and boils down to remotely invoking subsequent functions
of the server and checking their results. The transformation of the tested module into a node image
implementing the ERPC server is largely automated by the MUnit framework. Apart from that, the
overall testing model of MUnit is open.

Taking everything into account, when it comes to test management and execution, TUnit and
MUnit offer excellent support. The management functionality runs on PCs, and hence, can be im-
plemented with traditional out-of-the-box solutions, such as databases, code repositories, etc. The
solutions for scheduling, running, and coordinating tests between resource constrained sensor nodes
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and PCs, in turn, draw from a decade of experience with sensornet testbeds [Ertin et al. 2006;
Werner-Allen et al. 2005]. In effect, the functionality offered by TUnit and MUnit for test manage-
ment and execution is comparable to that of testing frameworks for traditional computer software.

In contrast, when it comes to test development and assessment, TUnit and MUnit lag behind mod-
ern unit testing frameworks for computer software. Although they define testing models to ease test
development, those models are rather generic, allowing even for system testing. Many aspects are
thus left open to test developers, which often implies an additional programming overhead. How-
ever, a major development-related drawback of TUnit and MUnit—to some extent recognized by
their authors [Okola and Whitehouse 2010]—is a lack of support for isolating code. The frameworks
simply require that the tested code is self-contained, which forces developers to deal with any de-
pendencies manually. As we show in Section 8, this incurs a considerable overhead. Likewise, apart
from the possibility of manually inserting debug statements, developers have little support from the
frameworks when assessing tests. In particular, the frameworks offer no automated means for mea-
suring how well tests exercise the various control flow paths in the code. Overall, the lacking support
for test development and assessment likely discourages adopting unit testing at scale in sensornets.
Put it simple, before being able to execute tests, one has to develop them; in order to develop sub-
sequent tests, in turn, one should be able to measure if the ones already existing indeed exercise the
appropriate pieces of the tested software. The solutions in our framework, notably embedded mock
modules and embedded code coverage tools, address these issues.

Modern frameworks for traditional computer software, such as as googlemock [Google 2008] for
C++ or mockito [Faber 2008] for Java, handle the code isolation problem with the aforementioned
mock objects [Freeman et al. 2004]. However, the dynamic language features necessary to support
mock objects are absent in the predominant programming languages for sensornets. Replacing the
entire language of a system for the sake of testing may not be an option either, especially considering
the resource constraints of sensor nodes. Our embedded mock modules thus demonstrate how such
inherently dynamic functionality can be supported on resource-constrained architectures.

The assessment problem for traditional computer software is in turn typically addressed by em-
ploying standard code coverage tools, such as gcov [Gough 2004] for GCC or Cobertura [Doliner
2006] for Java. However, as we demonstrate in this article, such tools are based on code instru-
mentation algorithms that are unsuitable for resource-constrained nodes. Our embedded coverage
coverage algorithms thus again illustrate how by employing dedicated solutions and exploiting some
trade-offs one can alleviate the resource constraints of sensornets.

3. FRAMEWORK OVERVIEW
Although currently unit testing is not common among sensornet developers, it fits well into a sen-
sornet software development process. There are several ways in which a development team can
employ our framework. To illustrate, suppose that the team has to build a (sub)system composed of
a number of modules. Assume that before each module is started being developed, interfaces for this
module and modules on which it depends are in place. Moreover, there exists a design specifying
the semantics of the interactions through those interfaces between the module and its dependencies.
In other words, when writing a module, a developer knows what functionality the module has to
provide and what functionality it can use, which is a reasonable assumption in our view.

An example of a conservative method of integrating our framework into a development process
can be as follows (a corresponding developer’s workflow is depicted in Fig. 1). A developer imple-
ments a module that provides certain interfaces according to the design. Modules that the module
uses to provide its functionality may not exist yet, but their interfaces and behavior are specified by
the design, as we assumed previously. When the module (or even just one of its aspects) is ready, the
developer can start unit testing. To this end, she first runs a command-line script that generates an
empty test suite for the module. Using another script, she generates a template of the first test case,
which is automatically added to the suite. At this point, she can start test development by filling in
the template with code that exercises a particular usage scenario of the module: typically a particular
control flow path within the module’s code.

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 25, Publication date: July 2014.



25:6 K. Iwanicki et al.

NO

generate an empty

test suite for the module

write a new module's

skeleton with specs

of the provided and

used interfaces

implement an aspect

of the module's

functionality

generate a test-case

template for the

implemented (and yet

untested) aspect

fill in the test-case

template with test logic

assuming that the

module's dependencies

are mocked

run the test suite

test suite

passes?

debug and fix the error

in the module

(or the test logic itself)

run the coverage tool

to identify untested

control flow paths in

the module

coverage fine?

module

complete?

YES

YES

NO

NO YES

Fig. 1: A conservative development workflow with our framework (a developer’s perspective)

The only code the developer has to write for the test case is test logic. The logic boils down to
invoking functions of the interfaces provided by the tested module and asserting that these functions
behave as specified by the module’s design. However, each function of the tested module can invoke
functions of the modules on which the tested module depends, and the behavior of the tested function
may be determined by the results returned by those invocations. To deal with such dependencies,
our framework automatically synthesizes embedded mock modules, which act as replacements of
those dependencies, and links them to the test suite. The developer, in turn, just specifies in the
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test case which mock functions are expected to be invoked by the tested function and how, and
what their behavior should be. In other words, for each test scenario, the developer dynamically
configures mock functions to act as their design prescribes in this particular scenario. We elaborate
on embedded mock modules in Section 4.

When the test case is ready, the developer deploys and runs it on a node or in a simulator. In fact,
she can run the entire test suite with a single command. However, the tested module or the test logic
itself may have flaws that manifest as failures during the execution. In particular, the test case may
block, some code may incorrectly access memory, a tested function may return an invalid value, fail
to invoke the expected mock function, or invoke one that is not expected, to name a few examples.
Our framework strives to intercept such failures and provide meaningful feedback to the developer,
as we discuss in more detail in Section 5. Presented with such feedback, the developer fixes the
flaws and reattempts test execution. This often (albeit not always) saves a lot of time that would
otherwise be spent on tracking the flaw with a hardware or software debugger.

After running the test case, the developer should also assess whether it indeed tests the selected
control flow path of her module. To this end, she executes our command-line coverage tool for the
module, which produces a report with the selected coverage metric, as we explain in Section 6. The
line coverage metric identifies all source code lines of the module that were executed in the test,
thereby allowing the developer to infer the flow of control in the module during the test. The branch
coverage metric, in turn, becomes useful when a given control flow can be triggered by several
conditions (e.g., an alternative in a conditional statement), and the developer wants to confirm that
the flow was triggered by a particular condition. If the coverage report confirms that the test case
exercises the selected control flow path, the developer proceeds to write another test case; otherwise,
she revises the current one. Moreover, the developer can use the coverage report to verify that
she is not missing a test for any corner case in the module: the source code lines or conditions
corresponding to such a corner case would simply be marked as uncovered in the report.

Finally, the framework is also used to facilitate test management, which is especially important
considering that a code repository is dynamic: new code is introduced, existing code is modified
and removed, and even module designs change. Since embedded mock modules reduce the testing
code that must be written to pure test logic, the team may be required to produce unit tests for every
developed module. Upon committing any code to the repository, relevant test cases are triggered
automatically, and, if any of them fails, the changes are rejected with appropriate feedback. Sim-
ilarly, the embedded coverage tools may be used to verify that no committed code has fragments
uncovered by unit tests. The overall effect of such an approach is that the resulting software, even in
the face of constant changes, is less likely to have undetected defects, which is important for deeply
embedded sensornet systems. We elaborate on test management with our framework in Section 7.

Another sample approach to employing our framework in sensornets, which is far more radical
than the one discussed hitherto, is test-driven development (TDD) [Astels 2003]. TDD is an agile
methodology that turns the conservative software development process around. It relies on the fol-
lowing short cycle, potentially involving more than one developer (cf. Fig. 2). Rather than writing
the code of her module, a developer first writes an (initially failing) test case that defines a single de-
sired aspect of the module’s interface. Only then does she (or another developer) produce a minimal
amount of code for the module to pass this test case. Finally, the code is polished to meet the team’s
standards and the process is repeated (possibly with a different developer configuration) until all
aspects of the module have been implemented. Intuitively, TDD may be viewed as a game between
test and module developers in which the test developers are always the first ones to move.

TDD is heralded for encouraging the simplest possible implementations and reinforcing devel-
opers’ confidence in their code. It has thus recently been gaining popularity in businesses where
software reliability is at stake. However, it is neither effective nor economic unless supported by
a holistic unit testing framework, such as ours. In particular, embedded mock modules ensure that
writing a test case requires a minimal effort, even when a large fraction of modules on which the
currently developed module depends have not yet been implemented. Highly automated test exe-
cution and descriptive failure feedback minimize in turn the time required to discover why a test
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Fig. 2: A test-driven development workflow with our framework (a developer’s perspective)

case does not pass. Finally, embedded code coverage tools allow for more informed decisions when
devising a next test case that should fail on an incomplete implementation of the module.

All in all, we believe that, rather than forcing a particular one, our framework can enable a variety
of software development methodologies in sensornets. It brings to sensornets a set of modern unit
testing mechanisms, which can be used in a development process tailored to individual users. We
elaborate on these mechanisms and the challenges they pose in sensornets in subsequent sections.
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4. DEVELOPMENT PERSPECTIVE
In our framework, unit tests are developed in the same language as normal code. We have noticed
that a single programming language is convenient, particularly for methodologies such as TDD,
which involve frequent switching between writing module and test code. Since the framework is
meant for TinyOS 2.x [Levis et al. 2005], this programming language is nesC [Gay et al. 2003].
Nevertheless, most of the presented problems are fundamental: they are inherent in other sensornet
development environments [Akhmetshina et al. 2003; Dunkels et al. 2004]. Likewise, while our
solutions are illustrated with examples in nesC, adapting them to other environments should be
fairly straightforward, as we explain throughout the article.

4.1. Basic Development Support
Like TUnit, MUnit, and frameworks for traditional computer software, as a starting point for devel-
opers, our framework specifies a test case interface. The interface defines an entry point to test code,
a startTest function, which acts much like the standard main function in C programs. Having
a custom entry point allows for combining multiple test cases into a single test application, a test
suite, thereby making test execution more efficient. Furthermore, before invoking the custom entry
point of a test case, the framework automatically initializes various commonly used components,
including node communication subsystems, error reporting libraries, and mock modules. Such an
approach spares developers the effort involved in manually configuring the execution environment
for each test case. Finally, the test case interface combined with a well defined execution model
allows for generating test case templates automatically by a command-line script. In effect, the
developer has to just fill in the templates with pure test logic.

When it comes to the test logic itself, it essentially boils down to invoking functions of the inter-
faces provided by the tested module, usually in a specific order, and asserting that these functions
behave as specified by the module’s design. One aspect of the tested behavior is the result returned
by a function. Another is how the function changes those of its parameters that are passed by refer-
ence. Finally, a change in the module’s internal state caused by the function is equally important.

Again like in TUnit, MUnit, and frameworks for traditional computer software, in our framework,
testing these aspects is facilitated by a family of assertion macros. Such a macro checks a given
condition at run time and, if the condition is not satisfied, terminates the current test case and reports
an appropriate error. Listing 1 presents sample uses of assertion macros. It shows that they allow for
succinctly expressing the tested property. However, as we discuss in Section 5, while conceptually
simple, assertion macros pose several implementation problems stemming from the combination of
resource constraints of sensor nodes and the run-time guarantees our framework provides.

1 / / Check ing r e t u r n v a l u e .
2 TM_CHECK_EQ (call Radio .start ( ) , SUCCESS ) ;
3

4 / / Check ing parame te r m o d i f i c a t i o n s .
5 call Mutex .init(&m_mutex ) ;
6 TM_CHECK ( ! m_mutex .lock ) ;
7 TM_CHECK_NULL (m_mutex .thread_queue .l .head ) ;
8

9 / / Check ing s t a t e m o d i f i c a t i o n s .
10 call Timer .startOneShot (16 ∗ 1 0 2 4 ) ;
11 TM_CHECK (call Timer .isRunning ( ) ) ;

Listing 1: Sample assertion macros facilitating testing function behavior

4.2. Embedded Mock Modules: Motivation
Even though the assertion macros and automatically generated test case templates help programmers
to some extent, they do not address the core problem of unit test development: isolating the tested
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module from the modules on which it depends. A quantitative study confirming the gravity of this
problem is given in Section 8. Here, in contrast, we focus on its nature and our solutions.

Consider a module that periodically reads a sensor, puts the reading into a packet, and transmits
the packet over the radio. If the transmission is successful (i.e., SUCCESS is returned by a send
operation), the entire process is repeated in the next iteration of an endless loop. However, if the
transmission times out, (i.e., a particular error code, ETIMEOUT, is returned by the send operation),
the module backs off for a random time interval and reattempts the transmission.

The send operation the module uses is implemented by lower-level modules that constitute the
radio subsystem. Consequently, the module depends on those modules. In particular, whenever it
is to be tested, these dependencies have to be dealt with. Without our framework, essentially two
options are available: testing the module together with the dependencies or implementing so-called
stub modules instead of the dependencies. Both these options have major drawbacks.

Testing the module with dependencies—integration testing—is difficult if all control flow paths
in the module are to be exercised. To visualize, let us refer to the left side of Fig. 3. Assume that
the dark gray box corresponds to the tested module. The remaining solid boxes represent in turn the
radio subsystem. Exercising the control flow path with a successful transmission is arguably easy
if the radio subsystem works as expected most of the time. In contrast, testing the timeout path is
far more involved. First, the test developer has to analyze the entire radio subsytem to check where
the send operation branches to return ETIMEOUT. Such an analysis may be laborious, because it
involves many modules and context switches on interrupts generated by radio hardware. Second,
the developer has to invent how to trigger the branch in the control flow. This may require preparing
a packet in a special way, which may be tricky, as the packet crosses many modules that can modify
it on the way. Worse yet, it may be necessary to bring the various modules into a certain state, which
may be arbitrarily difficult, as the modules interact with each other and hardware. By and large,
integration testing is costly and rarely covers all control flow paths. In addition, it can be used only
for modules for which dependencies have already been implemented, which impairs collaborative
development and is at odds with methodologies such as TDD.
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Fig. 3: Abstracting out dependency helps manage complexity when testing all control flow paths

In contrast, abstracting out dependencies eases testing all control flow paths considerably, as
visualized by the right side of Fig. 3. The entire logic of dependencies can be reduced just to the
paths relevant to the tested module, and the paths themselves can be the simplest possible. In our
example, the abstraction of the radio subsystem could be as simple as a returning either SUCCESS
or ETIMEOUT as the result of the send operation, perhaps from a different context, depending
on the underlying operating system. However, as we show in Section 8, manually implementing
the abstracted interfaces by means of stub modules is tedious and dominates the cost of unit test
development, effectively making unit testing uneconomic.
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4.3. Embedded Mock Modules: Principal Idea
Embedded mock modules, introduced here, abstract out dependencies but, at the same time, address
the issues of stub modules. However, before presenting them, let us slightly formalize the concepts
of interfaces and modules, which we have used intuitively hitherto.

In TinyOS, an interface is a nesC file that contains a list of function declarations describing given
functionality and preceded by keyword interface. However, the concept of interface is inherent
in virtually all other sensornet development environments. In particular, in C-based environments
[Akhmetshina et al. 2003; Dunkels et al. 2004], interfaces correspond to .h files with function
declarations.

In contrast, a module is a nesC file that starts with keyword module and contains actual code
implementing one or more interfaces. Each module explicitly declares the interfaces it provides and
uses with keywords provides and uses, respectively. It can also declare private state and func-
tions. Again, the concept of module is prevalent. In particular, in C-based sensornet development
environments [Akhmetshina et al. 2003; Dunkels et al. 2004], a module is a single .c file. It provides
those interfaces whose function implementations its contains. By symmetry, it uses those interfaces
whose header files it includes. Its private state and functions are those variables and functions that
are not declared as external.

Although throughout the article we use the word “module,” what the framework actually allows
for testing is components. In nesC, a component is either a module or a so-called configuration.
A configuration is a file that starts with keyword configuration and contains no code, but
just wires a collection of modules into a larger abstraction, such that an interface provided by one
module is wired to an interface used by another module in the configuration. The configuration can
also provide and use an interface externally by exporting a corresponding interface of one of its
modules. In other words, whether a component is a module or a configuration is largely transparent
in nesC. A similar effect of composing modules can be achieved in other environments. In particular,
in C-based ones, rather than a single .c file, multiple ones can be considered. The used functions
would be those ones that appear in the header files, but are not defined in any of the .c files. The
goal of such module composition is allowing for arbitrarily selecting the unit of testing: small units
corresponding to individual modules make it easier to test all control flow paths; in contrast, larger
ones enable testing interactions between modules. In the remainder of the framework description,
the word “module” thus in fact denotes a component.

In any case, rather than a particular convention, what is important for our ideas, and unit testing
in general, is that a system has to be decomposed into modules (components), which need not be
self-contained but for which the only means of interaction are interfaces. As a result, modules can be
substituted at compile time without affecting other modules. Since this is a fundamental idea behind
most programming languages, while the solutions we present here are implemented for TinyOS, the
ideas behind them are broadly applicable.

The operation of embedded mock modules can be summarized as follows:

(1) The developer fills in test case templates for a module with logic exercising the interfaces the
module provides. She assumes that the interfaces the module uses in its implementation have
been mocked, that is, they are implemented by embedded mock modules.

(2) Under this assumption, in each test case, the developer must be able to adapt the behavior of
the mock modules to the control flow path exercised by this test case. To this end, her test logic
sets expectations regarding the use of the mocked interfaces by the tested module and actions
the mock modules will perform in response to the invocations of their interfaces.

(3) The framework automatically identifies the interfaces used by the tested module and generates
implementations of mock modules that provide these interfaces.

(4) The framework also automatically generates additional (hidden) configuration and verification
interfaces of the mock modules, a subset of which the developer used in her test logic.

(5) The framework links everything, including the test case logic, the aforementioned generated
code, and other components into a test application that can be run on a node or in a simulator.
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(6) At run time, the test case logic invokes an interface of the tested module to verify its behavior.
The tested module may in turn invoke the interfaces provided by the mock modules.

(7) Upon an invocation of its interface, a mock module verifies the expectations for this interface.
If an expectation matches the invocation, the corresponding action is performed; otherwise, an
error is reported.

(8) At the end of the test case, the framework automatically verifies whether all the configured
expectations have been satisfied for all the mock modules.

Let us illustrate these principles with examples. Listing 2 presents a simplified start sequence for
the aforementioned module (Section 4.2). The code initializes a random number generator (line 2),
which is used, among others, for generating back-off delays, starts the radio (line 5), calibrates the
sensor with two coefficients (line 8), and starts a timer (line 11) that determines when the sensor is
read. Each of these operations may fail, in which case the entire start sequence should fail.

1 command error_t StdControl .start ( ) {
2 if (call Random .init ( ) != SUCCESS ) {
3 return FAIL ;
4 }
5 if (call Radio .start ( ) != SUCCESS ) {
6 return FAIL ;
7 }
8 if (call Sensor .calibrate (COEFF_A , COEFF_B ) != SUCCESS ) {
9 return FAIL ;

10 }
11 call Timer .startOneShot (1024UL ∗ 60UL ∗ 5UL ) ;
12 return SUCCESS ;
13 }

Listing 2: Initialization sequence of sample sense-and-send module from Section 4.2

Listing 3 presents the entire test code that has to be written to exercise the control flow path in
which an initialization failure of the random number generator causes a failure of the whole start
sequence. The new constructs for embedded mock modules are underlined.

1 expect command Random .init ( ) : WillOnce (Return (EINVAL ) ) ;
2 TM_CHECK_NE (call StdControl .start ( ) , SUCCESS ) ;

Listing 3: Entire test code for first failure path in code from Listing 2 involves one expectation

In line 2, the code invokes the sequence and checks with an appropriate assertion macro that the
sequence indeed fails. Before, however, it instructs the mocked random number generator that its
init function is expected to be invoked once and, as an action, it should return an error, EINVAL.
When the start sequence invokes the init function of the random number generator (line 2 of List-
ing 2), the mock module intercepts the invocation and returns the error. In effect, the initialization
sequence will indeed fail (line 3 of Listing 2), meaning that the test case will pass. If, in contrast, the
developer forgot to put the initialization code for the random number generator in the start sequence,
the expectation would be unsatisfied; each such expectation automatically causes a test case failure.

Listing 4 shows the test code for the second failure path. This time the random number generator
initializes correctly, but a failure starting the radio should terminate the sequence. The scenario
requires changing one expectation and adding another one.

Expectations can be more complex. To begin with, the invoked function may take arguments, and
a test case may require checking the values of these arguments. For example, Listing 5 presents the
test code for the third failure scenario, in which sensor calibration fails.
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1 expect command Random .init ( ) : WillOnce (Return (SUCCESS ) ) ;
2 expect command Radio .start ( ) : WillOnce (Return (EBUSY ) ) ;
3 TM_CHECK_NE (call StdControl .start ( ) , SUCCESS ) ;

Listing 4: Entire test code for second failure path in code from Listing 2 involves two expectations

1 expect command Random .init ( ) : WillOnce (Return (SUCCESS ) ) ;
2 expect command Radio .start ( ) : WillOnce (Return (SUCCESS ) ) ;
3 expect command Sensor .calibrate (UEq8 (COEFF_A ) , UEq8 (COEFF_B ) )
4 :WillOnce (Return (EINVAL ) ) ;
5 TM_CHECK_NE (call StdControl .start ( ) , SUCCESS ) ;

Listing 5: Use of argument matchers to test third failure path in code from Listing 2

The expectation for the sensor mock module (line 3) contains argument matchers, UEq8, for the
two sensor calibration coefficients. An argument matcher is a function that takes the actual value of
an argument and returns a boolean. In particular, UEq8 takes an unsigned 8-bit integer and compares
it with the value given in the expectation. If the values are equal, it returns true; otherwise, false. As
a result, if the initialization sequence calibrated the sensor with coefficients different than COEFF A
and COEFF B, no matching expectation would be found, and the test case would fail.

Apart from having correct arguments, it may also be vital that functions be invoked in a specific
order. Suppose that in our example the initialization of the random number generator must be done
first, the timer must be started last, and the radio and sensor must be started in between, but their
relative initialization order is irrelevant. To this end, expectations can be organized into sequences,
as shown in Listing 6. In the listing, if any of the expectations is triggered out of order in any of the
sequences to which it belongs, the entire test case fails.

1 Sequence ∗ s1 = NewSequence ( ) ;
2 Sequence ∗ s2 = NewSequence ( ) ;
3 expect command Random .init ( )
4 :AddToSequence (s1 ) : AddToSequence (s2 )
5 :WillOnce (Return (SUCCESS ) ) ;
6 expect command Radio .start ( )
7 :AddToSequence (s1 )
8 :WillOnce (Return (SUCCESS ) ) ;
9 expect command Sensor .calibrate (UEq8 (COEFF_A ) , UEq8 (COEFF_B ) )

10 :AddToSequence (s2 )
11 :WillOnce (Return (SUCCESS ) ) ;
12 expect command Timer .startOneShot (Any ( ) )
13 :AddToSequence (s1 ) : AddToSequence (s2 ) ;
14 TM_CHECK_EQ (call StdControl .start ( ) , SUCCESS ) ;

Listing 6: Use of sequences to ensure ordering on success path in code from Listing 2

If just one expectation is concerned, the number and ordering of invocations can also be controlled
with various modifiers. Listing 7 presents examples of selected modifiers. Example (a) illustrates
granting exclusive access to a resource. The reservation function is expected to be invoked at least
twice. The first reservation will be successful. The second one will inform that the resource is in use.
Any subsequent ones will not be treated as failures, but will also politely inform that the resource is
in use. Example (b) shows an output FIFO with a limited capacity. The expectation for the writing
function allows for at most 64 invocations, meaning that no more than 64 bytes can be written to the
FIFO. Any subsequent write will fail to match the expectation, thereby causing an error. Example
(c) involves two non overlapping expectations for the same function. The first one can be matched
an arbitrary amount of times, possibly zero; the second, at least once. Finally, example (d) shows
overlapping expectations for a timer setting function. The first invocation of the function will be
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correct and will match the second expectation. Any subsequent ones, will cause errors, because they
will always successfully match the second expectation, but the (default) action for that expectation
has already been triggered by the first invocation, and by default an action is triggered only once.
This differs from example (a) in which there is a single expectation, but with multiple actions.

1 / / Example ( a )
2 expect command Resource .reserve ( )
3 :WillOnce (Return (SUCCESS ) )
4 :WillOnce (Return (EBUSY ) )
5 :WillRepeatedly (Return (EBUSY ) ) ;
6

7 / / Example ( b )
8 expect command FIFO .writeByte (Any ( ) )
9 :AtMost ( 6 4 ) ;

10

11 / / Example ( c )
12 expect command Packet .getPayload (NonNull ( ) , UGt8 ( 1 0 8 ) )
13 :AnyNumber ( )
14 :WillRepeatedly (Return (NULL ) ) ;
15 expect command Packet .getPayload (NonNull ( ) , ULe8 ( 1 0 8 ) )
16 :AtLeast ( 1 )
17 :WillRepeatedly (Return(&m_payloadBuffer ) ) ;
18

19 / / Example ( d )
20 expect command Timer .startOneShot (UGt32 ( 1 0 2 4 ) ) ;
21 expect command Timer .startOneShot (Any ( ) ) ;

Listing 7: Examples of modifiers controlling number of times expectations are matched

While expectations, argument matchers, sequences, and modifiers are mechanisms for asserting
that the tested module correctly uses the modules on which it depends, actions are required to
make the interactions between the tested module and the dependencies bidirectional. Whenever an
invocation of a mocked function is correctly matched to an expectation, an action associated with
this expectation is invoked. A common action in the previous examples is the Return action,
which makes the mocked function return the value passed as a parameter to the action. In particular,
if no action is specified for a function’s expectation, Return with a default parameter is associated
with this expectation: 0 if the function’s result is integer; NULL if it is pointer; SUCCESS if it is
error t; and a zeroed structure or union if such a type is returned by value.

Apart from Return, the framework provides a few actions for frequently used testing patterns.
Many of these actions are inspired by the peculiarities of sensornet software, notably its low-level in-
teractions with hardware. For example, TinyOS, but also other sensornet development environments
[Akhmetshina et al. 2003; Dunkels et al. 2004], provide asynchronous (or split-phase) operations. A
split-phase operation is initiated by a function, which returns immediately. However, when the op-
eration completes, which is often signaled by a hardware interrupt, a special user-provided callback
function is invoked to continue processing with the result of the operation available. The callback
invocation is often done from a different context (e.g., thread) than the invocation that initiated the
operation, hence the name split-phase. In TinyOS, functions that can initiate operations are called
commands, callbacks are called events, and execution contexts correspond to tasks. For instance,
Listing 8 presents a low-level TinyOS frame sending interface. A user invokes the send command,
which initiates a frame transmission and returns immediately. When the frame has been physically
transmitted, an interrupt is signaled. The interrupt handler creates a new task. When the task is fi-
nally executed by a scheduler, it invokes the callback for the sendDone event, thereby allowing
the user to continue after the transmission.

There are at least three control flow paths that a module using the split-phase interface from List-
ing 8 should be prepared to handle. First, the send command may fail, meaning that no sendDone
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1 interface BareSend {
2 command error_t send (message_t ∗ msg ) ;
3 event void sendDone (message_t ∗ msg , error_t error ) ;
4 command error_t cancel (message_t ∗ msg ) ;
5 }

Listing 8: Example of interface for split-phase operations (with callbacks)

event will occur. Second, the send command may succeed, but the sendDone event may later re-
port a transmission error. Third, both send and sendDone may be successful. Testing whether a
module correctly handles these control flow paths, especially those involving the sendDone event,
would normally require a lot of code: initiating the sending operation, starting a task, and invoking
the callback. For this reason, our framework introduces special actions and constructs, which reduce
the amount of code to just a few lines. As an illustration, Listing 9 presents entire code that has to be
written to trigger the second control flow path. The essence is using a composite action, DoAll, that
contains two sub-actions: Return and GenerateEvent. Return will make the mocked send
command return SUCCESS, thereby informing the tested module that a send operation has been ini-
tiated successfully, and the module should later expect the sendDone event. GenerateEvent
will in turn start a task, which, when executed, will actually invoke the event with an appropriate
error code, ENOACK. A special modifier, PassArg, is introduced to pass the pointer to a message
buffer provided by the user as the first (zeroth) argument of the send command to the sendDone
event, which is required by the specification of the BareSend interface.

1 expect command BareSend .send (NonNull ( ) , UGt8 ( 0 ) )
2 :WillOnce (
3 DoAll (
4 GenerateEvent (BareSend .sendDone , PassArg ( 0 ) , ENOACK ) ,
5 Return (SUCCESS )
6 ) ) ;
7

8 call BareSend .send(&m_frameBuf , m_frameLen ) ;

Listing 9: Entire code to test control flow path that involves callbacks and context switches

There are many other constructs that our framework provides for embedded mock modules. Ta-
ble I contains selected examples. Moreover, as we explain next, the design of the framework facili-
tates adding new ones on demand. In fact, many of the constructs now available out of the box have
been introduced based on our experiences with the framework.

Table I: Examples of new constructs related to expectations for embedded mock modules

Type Examples Description
argument
matchers

Any, NonNull, UEq16,
UGt8, ULe32, Ptr

Verify whether the runtime parameters of a mocked function match an
expectation for that function.

actions Return,
Invoke, DoAll,
GenerateEvent,
PassArg

Perform various operations in response to an invocation of a mocked
function that matches an expectation.

action set-
ters

WillOnce,
WillRepeatedly

Associate one or more actions with an expectation.

modifiers Exactly, AtLeast,
AtMost, AnyNumber

Control how many times an expectation can be matched.

sequences NewSequence,
AddToSequence

Enable imposing an order of expectations and their actions.

In summary, the goal of the constructs, and embedded mock modules in general, is to encapsulate
versatile logic that can be configured with just a few lines of code, thereby making tests compact.
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As an exercise, imagine how much code it would take to test all control flow paths in the previous
examples of a start sequence and split-phase operation if mock modules were unavailable. Moreover,
mock modules allow for testing the internal behavior of a function, which is a major improvement
over frameworks that provide just assertion macros: by nature, such macros alone are capable of
testing functions only end to end. Finally, containing both expectations and invocations of tested
functions, tests utilizing mock modules are self-descriptive: the entire test scenario is in one file.

4.4. Embedded Mock Modules: Implementation
However, while convenient for test developers, the support for mock-based testing poses a number of
challenges for framework implementers. A major difficulty comes from the fact that, due to resource
constraints of sensor nodes, predominant sensornet programming languages do not natively provide
features that are the foundation of mocking frameworks for traditional computer software [Google
2008; Faber 2008], that is, the dynamic features in object-oriented and functional languages.

To illustrate, suppose that a tested module, mt , invokes a function, f oo, from a module, md ; mt
thus depends on md . In object-oriented software, mt and md would correspond to objects, ot and od
respectively, hence the invocation would correspond to invoking method f oo of object od by object
ot . Thanks to one of the foundations of object-oriented languages—polymorphism—object od can
be dynamically substituted with another object, om, that implements the same interface containing
method f oo. Not only can the substitution happen at run time, but also transparently to ot . In
other words, polymorphism enables dynamic binding between various system components (objects).
This is crucial, in particular, for object-oriented mock frameworks that dynamically substitute a
dependency, od , of an object with a mock object, om, whose f oo’s function behavior is configured
at run time via expectations. In contrast, for efficiency, the predominant languages for sensornets,
namely C and nesC, promote static binding: no later than at compile time, is mt ’s invocation of
f oo linked to the implementation of f oo in md . Transparently substituting md with a dynamically
configured embedded mock module, mm, thus requires special measures in these languages.

As another example, consider the argument matchers for expectations, such as Any, NonNull,
or UEq8. As we mention previously, an argument matcher is conceptually a function that takes
the run-time value of a mocked function’s argument and returns a boolean depending on whether
the value is as expected. However, argument matchers do not map directly to C (or nesC) functions.
While matchers such as Any or NonNull could in principle be represented as C functions, matchers
such as UEq8 require different treatment because they are configurable at run time with parameters.
More specifically, one or more parameters can be provided to a matcher as a part of an expectation
for a mocked function. Yet, these parameters are used later, when the function is invoked with the
actual arguments. For example, in Listing 6, UEq8(COEFF A) specifies COEFF A as the parameter
of matcher UEq8 for the first argument of function Sensor.calibrate. However, only when
the function is invoked, will the matcher check if the first argument passed to the function in the
invocation is equal to COEFF A. Note also the same matcher is configured with a different parameter
(COEFF B) for the second argument of the same function. Therefore, rather than corresponding to
C functions, argument matchers resemble lazy functions in functional programming languages. A
lazy function can be presented at run time with just some of its arguments, thereby yielding a new
function that takes the remaining arguments. Only when all arguments are provided, is the function
evaluated. Neither C nor nesC support lazy functions natively, though.

These are just some of the dynamic features that a typical mocking framework employs and that
are not elements of the predominant programming languages for sensornet systems. One possible
way to enable mock based testing of a system written in such a language could thus involve rewrit-
ing the system in a language that does support the dynamic features. However, doing so just for
the sake of testability is usually out of the question, especially considering the existing code base,
the overhead of such features, and the resource constraints of sensor nodes. Another solution could
involve emulating the dynamic features with the available programming constructs. In particular,
polymorphism and lazy functions can be emulated with a combination of C structures and calls by
function pointers. However, without support from the compiler, such a solution would be inconve-
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nient for programmers and would require redesigning and reimplementing significant portions of
the system, not to mention an increase in resource consumption. This suggests that embedded mock
modules require both compile- and run-time support.

Following this reasoning, the support for embedded mock modules in our framework comprises
two elements: language extensions and a run-time engine. The language extensions encompass au-
tomatically generated mock modules and the constructs presented in the previous listings (i.e., ex-
pectations); they can be used only from within test code. The run-time engine, in turn, emulates all
the dynamic features necessary for the generated code and these constructs. The interplay between
the language extensions and the run-time engine is illustrated in Fig. 4: a modified nesC compiler
generates code for mock modules and the extensions, and the code contains mainly invocations of
well-defined functions of the run-time engine. Let us discuss these ideas in more detail.

extended

nesC

compiler

run-time engine

emulating dynamic

features in plain C

nesC sources

containing tests with

language extensions

final software image

translated

language extensions

function-based

interface
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Fig. 4: Overview of implementation of embedded mock modules

Recall that a test developer creates or updates a test suite for a module with a command line
tool. One of the tasks of the tool is identifying all interfaces the tested module uses. For each
such interface, the tool generates a skeleton of an embedded mock module file that can later be
processed by the extended compiler (cf. Listing 10). Moreover, it creates linker rules (a makefile)
that assemble the tested module, the embedded mock modules, the run-time engine, and other run-
time components of the framework and TinyOS into a single code image that can be installed on
a node or run in a simulator. In essence, the rules isolate the tested module from the rest of the
system by statically binding all interfaces the tested module uses to provide its functionality to the
embedded mock modules rather than to the real modules on which the tested one depends. With this
solution, no existing module code has to be altered to enable mock-based unit tests.

1 mock module BareSendM {
2 provides interface BareSend ;
3 }

Listing 10: Example of automatically generated skeleton of embedded mock module

Upon compilation, when the extended nesC compiler encounters a skeleton mock module, it
generates an implementation for all the functions of the interface the module provides and allocates
structures for the internal module state. Each generated function can be invoked by the tested module
in different test scenarios and may be required to behave differently in these scenarios, depending on
the expectations set for this function in a given scenario. Due to the static binding between the tested
module and the function, substituting the function’s body at run time is impractical. Consequently,
instead, the expectations for the function are stored in the module’s state, and are used to alter the
run-time behavior of the function. From a high-level perspective, the body of each automatically
generated function essentially consists of scanning the expectations for the function to identify
one that matches the values of the function’s arguments and executing actions associated with this
expectation. The details are somewhat more intricate, because expectations can be accompanied

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 25, Publication date: July 2014.



25:18 K. Iwanicki et al.

by various modifiers, can belong to sequences, may not match at all or may have been matched
previously, in which case appropriate errors should be reported, to name just a few reasons.

An important aspect of the generated code is its size. A mocked interface may consist of multiple
functions. Moreover, the tested module may use multiple interfaces. As a result, without special
measures, the code that would have to be generated for all the mocked functions in a test suite
could be sizable, which might be problematic for some sensor node platforms. For this reason, our
framework strives to minimize the amount of the generated code by making use of the run-time
engine. Without getting into details, since the previous algorithm for a mocked function is largely
generic, we provide just a single generic implementation instance of it. This instance is a part of
the run-time engine and is shared by all mocked functions. With this solution, the code generated
for each function boils down to transforming aspects specific to this particular function into generic
constructs that can be fed to the algorithm in the run-time engine. In other words, the type-specific
arguments and return value of the function are wrapped into generic emulated objects, which the
algorithm within the run-time engine can handle. In effect, the code generated for each mocked
function is just several memory copy instructions and run-time engine function invocations.

Similarly, the new language constructs for setting expectations are translated into run-time engine
function invocations. The invocations resulting from an expectation essentially change the state of
the mock module for which the expectation is set. Their number may vary, depending on the number
of argument matchers, actions, modifiers, and sequences specified in the expectation. We omit the
details for brevity.

As to the run-time engine itself, it implements the functions for configuring expectations, and
the algorithm for matching them and triggering their associated actions. It does so by internally
emulating polymorphic objects by means of C structures and function pointers. To illustrate, let us
present the entire process of adding a new argument matcher, UBetween32, to the framework: a
matcher checking that an unsigned 32-bit argument of a mocked function is between a minimal and
maximal value. Listing 11 presents a sample use of the matcher in an expectation.

1 expect command Timer .startOneShot (UBetween32 (MIN_BACKOFF / 2 , MAX_BACKOFF ) ) ;

Listing 11: Sample use of new matcher in expectation

Recall that a matcher is conceptually a lazy function. For this reason, internally, the run-time
engine represents a matcher as a C structure whose first field is a pointer to the actual matching
function (cf. Listing 12). The structure can be thought of as the root of a polymorphic “class”
hierarchy representing various matchers. Any matcher invoked from within the framework is casted
to this structure and the function represented by the first field of the structure is invoked by pointer.
As a side note, the example also gives a hint of why mock-related constructs require framework
support to be convenient for programmers and how much the framework actually automates.

1 / / S t r u c t u r e r e p r e s e n t i n g l a z y matcher f u n c t i o n .
2 typedef struct BaseMatcher {
3 uint8_t (∗match ) (void ∗ , void ∗ ) ;
4 } BaseMatcher ;
5

6 / / Use o f t h e f u n c t i o n i n s i d e t h e run−t i m e e n g i n e .
7 BaseMatcher ∗ m = . . . ;
8 void ∗ wrappedFunctionArg = . . . ;
9 bool matches = m−>match (m , wrappedFunctionArg ) ;

Listing 12: Abstract matcher as emulated polymorphic object representing lazy function

To implement our matcher, UBetween32, three elements are necessary, as shown in Listing 13.
First, a matcher structure, UBetween32Matcher, represents the lazy matcher function with space
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for the two parameters, the minimal and maximal value. It is vital that the first field of the structure
is the same as in BaseMatcher, which allows for the aforementioned casting. Second, func-
tion UBetween32Matcher match is the implementation of the matching function. It takes the
matcher structure and the actual argument value of the mocked function that has to be matched.
As mentioned previously, the argument value is wrapped into a generic object. Therefore, before
it can be compared with the matcher’s minimal and maximal values, it has to be unwrapped. The
function returns a boolean denoting the result of the comparison. Finally, function UBetween32
is a constructor that creates the matcher structure and stores the two parameters in the appropriate
fields. As such, the constructor is precisely the narrow interface to the matcher that test developers
use in expectations (cf. Listing 11).

1 / / S t r u c t u r e r e p r e s e n t i n g l a z y matcher f u n c t i o n .
2 typedef struct UBetween32Matcher {
3 uint8_t (∗match ) (void ∗ , void ∗ ) ;
4 uint32_t minVal ;
5 uint32_t maxVal ;
6 } UBetween32Matcher ;
7

8 / / A c t u a l matcher f u n c t i o n .
9 uint8_t UBetween32Matcher_match (void ∗ mp , void ∗ wrappedFunctionArg ) {

10 UBetween32Matcher ∗ m = (UBetween32Matcher ∗ )mp ;
11 uint32_t actualFunctionArg = tm_unwrapUInt32 (wrappedFunctionArg ) ;
12 return actualFunctionArg >= m−>minVal && actualFunctionArg <= m−>maxVal ;
13 }
14

15 / / C o n s t r u c t o r ( used i n e x p e c t a t i o n s ) .
16 BaseMatcher ∗ UBetween32 (uint32_t minVal , uint32_t maxVal ) {
17 UBetween32Matcher ∗ m =
18 (UBetween32Matcher ∗ )tm_palloc (sizeof (UBetween32Matcher ) ) ;
19 m−>match = &UBetween32Matcher_match ;
20 m−>minVal = minVal ;
21 m−>maxVal = maxVal ;
22 return (BaseMatcher ∗ )m ;
23 }

Listing 13: Complete implementation of sample new matcher from Listing 11

By and large, creating new matchers (and other constructs in the run-time engine) may involve a
few lines of pointer-juggling code, but the scheme is fairly straightforward once understood. More-
over, using the new constructs requires hardly any effort. This degree of openness is an important
property of the run-time engine and embedded mock modules in general, because many of the con-
structs that are now provided out of the box emerged from our experiences with the framework, and
it is likely that future users will create even more constructs that best suit their testing patterns.

To sum up, the implementation of embedded mock modules consists of the compile-time lan-
guage extensions and the run-time engine. The language extensions are convenient means for suc-
cinctly expressing complex albeit common testing patterns. The run-time engine, in turn, encapsu-
lates the algorithms and constructs necessary to dynamically mock embedded code, and allows for
defining new constructs. Such a solution is motivated, on the one hand, by the convenience of test
developers, and on the other, by the resource constraints of sensor nodes and the related limitations
of predominant sensornet programming languages. With this solution, no changes to the existing
module code are necessary to make it unit-testable with embedded mock modules, hence adopting
unit testing need not lead to performance degradation or increase in resource usage of the code.
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5. EXECUTION PERSPECTIVE
While embedded mock modules minimize the overhead incurred by developing unit tests, similar
solutions are necessary to minimize the effort involved in executing the tests. Drawing from a decade
of experience with sensornet testbeds [Ertin et al. 2006; Werner-Allen et al. 2005], our framework
provides mechanisms that, triggered by a single command, compile a test suite and install and run
it on a node or in the TinyOS simulator, TOSSIM [Levis et al. 2003], thereby producing diagnostic
output that can be interpreted by developers. These mechanisms are thus fairly standard.

In contrast, a fundamental problem with test execution is that both the tested code and its test logic
may have defects, which manifest as failures during the execution. Our framework strives to handle
many different types of failures and to provide relevant diagnostic information. In effect, a single
test run is often sufficient to identify a failure and pinpoint its root cause, and rarely is the developer
forced to employ a hardware debugger. Such a solution is crucial especially for interactive software
development methodologies, such as TDD, in which unit tests are initially expected to fail, and the
developers must have means for identifying and fixing the causes of the failures on the fly. At the
same time, however, detecting and intercepting failures is not trivial in sensornets, because sensor
nodes lack the hardware and operating system support that is traditionally employed for containing
failures (e.g., privileged instructions, memory protection, exceptions).

Yet, compared to existing frameworks, our framework has an important advantage in containing
faults, that is, the isolation embedded mock modules provide for the tested module from other
modules, but also from hardware. Linking the interfaces used by the tested module to mock modules
rather than to real modules minimizes the amount of software that can potentially fail during test
execution: provided that the framework code is correct, potential flaws may exist only in the tested
module or the test logic itself. By additionally requiring that, rather than directly accessing I/O pins,
special registers, etc., the tested module refers to these low-level hardware components through
interfaces, the tested module can also be isolated from hardware, thereby yielding full control over
the hardware to the framework. Counterintuitively, such hardware isolation does not preclude testing
device drivers. This is because sensornet operating systems typically expose hardware via a thin,
“dumb” presentation layer, usually inlined during compilation [Levis et al. 2005]. In contrast, the
actual driver logic, which is often complex, is implemented in higher-layer modules that use these
interfaces. In fact, not abstracting hardware is a type of software flaw our framework aims to prevent.
Therefore, the only low-level code the framework is unable to test due to the isolation is a thin
hardware presentation layer. We believe that this is acceptable, considering that, in the absence of
the isolation, tracking many types of faults without a debugger would be a daunting task.

Apart from the isolation, another advantage of embedded mock modules is that they facilitate
catching many classes of failures early during execution. More specifically, mock modules facilitate
testing the interactions of a function with other functions. In particular, if the function invokes
those functions an unexpected number of times, in a wrong order, or with invalid arguments, an
appropriate mock module immediately intercepts and reports the failure. In other words, apart from
catching failures only end to end (e.g., by checking a result of a function), mock modules also
detect problems in the internal behavior of functions. Combined with problems that can be detected
by end-to-end assertions, problems detectable by mock modules thus already cover most classes of
software defects. As a result, we provision mechanisms for just two more types of defects.

First, a test case may block. One sample cause may be that, under some condition produced by
the test case, the tested module or the test logic itself enters an endless loop. A more elaborate
one is an invalid control path, for instance, in a corner case of the module or the logic, that lacks
an invocation of a callback completing an asynchronous operation. Our framework addresses this
issue with a dedicated hardware timer, which is restarted for each test case. An interrupt from the
timer indicates that the current test case has timed out. Since an interrupt preempts the regular-mode
execution of the tested code, a timed-out test case can always be stopped. In addition, the user is
given control over the value of the timeout, so that it can be adjusted to different test cases.
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Second, a test case may also corrupt node memory. Without memory protection, as is the case
for sensor nodes, an invalid pointer or out-of-bounds array access may arbitrarily disrupt the node’s
state, including the internal components of the framework. To alleviate such problems, the frame-
work relies on the memory safety extensions for TinyOS [Cooprider et al. 2007]. The extensions
comprise annotations and a toolchain based on the Deputy compiler [Condit et al. 2007] for the C
language. The annotations provide additional semantic information for potentially dangerous mem-
ory accesses. This information is translated at compile time into code that checks the correctness
of these accesses. Therefore, if at run time a potentially dangerous memory access fails to pass the
associated check, it can be intercepted before it corrupts memory. Such an approach allows for de-
tecting most types of memory access failures, but requires using the safety extensions in the module
code and itegrating them with our framework. Moreover, the internal framework constructs must be
trusted to operate correctly, as they do not use the safety extensions.

Being able to detect and intercept failures still requires means for reliably reporting the failures
to the user. The reporting is realized by means of serial or radio communication. Upon a failure, the
node sends an appropriate diagnostic message to a frontend application running on the user’s PC.
The application displays the received message on a console, so that it can be interpreted by the user.
While seemingly straightforward, this scheme also necessitates special measures.

More specifically, when a failure is intercepted by the failure handler within the framework, the
execution of the faulty code is stopped only for the period of executing the handler. Therefore, if the
handler returned, the execution of the faulty code would continue where it stopped, which could lead
to an arbitrary behavior and possible subsequent failures. This suggests that the execution of the test
code should be stopped permanently upon a failure. This is not trivial, though, because the faulty
code may have started threads (tasks in the TinyOS nomenclature) that will continue executing
despite stopping the execution of the failing thread. On the other hand, stopping all threads of the
node would essentially preclude reporting the failure, as the framework and operating system use
threads internally to implement the communication services. We address this problem by making
all error reporting operations blocking from the perspective of the tested code.

A simple solution is to introduce a blocking version of the embedded printf function, so that
after the function finishes execution, we are guaranteed that the diagnostic information has actu-
ally been sent to the PC. With such guarantees, a failure handler comprises invoking the printf
function with an appropriate error message and resetting or stopping the entire node, so that no sub-
sequent failures resulting from the intercepted one are reported. This solution works well for serial
communication, which typically requires no more than a few lines of code to provide the blocking
embedded printf function, and for TOSSIM, which supports printf natively.

A more general solution, in turn, comprises two mechanisms: a custom task scheduler and ex-
ceptions. The main idea behind the scheduler is to provide two classes of tasks: tasks spawned by
the tested code and the mock modules and tasks spawned by the operating system and framework
communication services. Tasks from the first class have a lower priority than tasks from the second
class: if there is any active task from the second class, it is always executed before any task from
the first class. The main purpose of an exception is in turn stopping the current execution context
and transferring control to the scheduling routine for the tasks of the second class, such that no
tasks from the first class will ever be executed again. The implementation of exceptions is based on
the setjmp and longjmp standard C functions, which makes it portable. An error handler thus
invokes the embedded printf function, which may now be nonblocking, and raises an exception.
The exception guarantees that no test code is ever executed again; the scheduler guarantees that
any communication resulting from invoking printf can be completed irrespective of whether the
communication is blocking or relies on spawning tasks. Such a solution works with serial and radio
communication, and even allows for implementing printf on top of network protocols, such as
Collection Tree Protocol (CTP) [Gnawali et al. 2009]. However, it requires changes in the commu-
nication drivers and services to make them explicitly spawn tasks from the second class. Therefore,
it is not fully supported at the time of writing.
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There are several other run-time issues the framework addresses, like arbitrating access to the
tested module or seamlessly supporting the same model on nodes and in TOSSIM. It also leverages
mechanisms provided out-of-the-box by nesC, such as race-condition detection [Gay et al. 2003].
Since, in contrast to the previous ones, many of those issues are specific to TinyOS, we omit them
for brevity. By and large, the aforementioned solutions strive to detect, intercept, and report many
classes of failures, so that cases when a debugger is necessary to diagnose flaws in the code are
infrequent.

6. ASSESSMENT PERSPECTIVE
Being able to develop and execute unit tests, one still needs solutions for assessing how well the
tests exercise code. Modern practices suggest employing code coverage tools to this end, like gcov
[Gough 2004] for GCC or Cobertura [Doliner 2006] for Java. Using such tools boils down to compil-
ing source code and running the resulting binary, which produces a report that contains the original
source code annotated depending on the run-time control flow. The annotations allow for precisely
identifying which pieces of the code have not been executed. Since such information is invaluable
for assessing the quality of tests, we implemented code coverage mechanisms in our framework.

6.1. Code Coverage
A popular code coverage metric is line coverage, which, for each line, specifies whether that line is
executed during a test. Figure 5 presents a fragment of a sample line coverage report obtained with
our framework for the TinyOS driver of the CC2420 radio chip (file CC2420ReceiveP.nc).
Each line annotated with “1” was executed at least once. Lines annotated with “#####” were not
executed at all. Finally, lines annotated with “-” were not considered for execution. In particular,
the report shows that during the test the driver assumed no hardware address recognition (line 830
was not executed), hence another test may be necessary. Likewise, no radio frames with extended
IEEE 802.15.4 addresses were received (lines 837-839 were not executed), which suggests that yet
another test may be a good idea to thoroughly exercise the driver.

1: 829: if(!(call CC2420Config.isAddressRecognitionEnabled())) {
#####: 830: return TRUE;

-: 831: }
-: 832:
1: 833: if (mode == IEEE154_ADDR_SHORT) {
1: 834: return (header->dest == call CC2420Config.getShortAddr()
-: 835: || header->dest == IEEE154_BROADCAST_ADDR);
1: 836: } else if (mode == IEEE154_ADDR_EXT) {

#####: 837: ieee_eui64_t local_addr = (call CC2420Config.getExtAddr());
#####: 838: ext_addr = TCAST(ieee_eui64_t* ONE, &header->dest);
#####: 839: return (memcmp(ext_addr->data, local_addr.data, IEEE_EUI64_LENGTH) == 0);

-: 840: } else {
-: 841: /* reject frames with either no address or invalid type */
1: 842: return FALSE;
-: 843: }

Fig. 5: Fragment of sample line coverage report generated by our framework

Another coverage metric the framework provides is branch coverage, which, for each condi-
tional instruction, explains why the instruction is executed in a test. Branch coverage is particularly
useful for complex conditional instructions. To illustrate, Fig. 6 presents a fragment of a sample
report obtained for the TinyOS route maintenance module (file CtpRoutingEngineP.nc) of
the Collection Tree Protocol (CTP) [Gnawali et al. 2009]. The presented code is a conditional in-
struction with an alternative of two basic conditions, so-called atoms: entry->info.parent
== INVALID ADDR and entry->info.parent == my ll addr. The corresponding line
coverage report would annotate all lines as executed during the test. However, without branch cov-
erage, we would not know why the lines inside the conditional instruction were executed: was it
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because entry->info.parent == INVALID ADDR or because entry->info.parent
== my ll addr in some control flow? The branch coverage report provides the explanation.

if (entry->info.parent == INVALID_ADDR || entry->info.parent == my_ll_addr) {
####--,-+

dbg("TreeRouting",
"routingTable[%d]: neighbor: [id: %d parent: %d etx: NO ROUTE]\n",
i, entry->neighbor, entry->info.parent);

continue;
}

Fig. 6: Fragment of sample branch coverage report generated by our framework

There were at least two different control flows in the depicted code. In one of the flows, annotated
by “--”, neither of the two atoms was true, hence the two “-”. However, in another flow, annotated
by “-+”, the first atom was false, but the second was true. In other words, the body of the conditional
instruction was executed, because in some control flow during the test entry->info.parent
== my ll addr. In contrast, the path with entry->info.parent == INVALID ADDRwas
not exercised in any flow of the test, hence another test case may be necessary to fully exercise the
code. More complex conditional instructions with many conjunctions and alternatives are equally
easy to analyze given a branch coverage report.

6.2. Initial Implementation Approach
Generating the aforementioned coverage reports requires compile- and run-time support for tracking
which pieces of code are executed. Many sensornet programming environments (including TinyOS)
rely on GCC to produce the final binary software images for sensor nodes. Since gcov is part of the
GCC toolkit, employing it to enable code coverage would be a natural approach.

Gcov requires passing two options to GCC when producing the software image for sensor nodes:
-fprofile-arcs and -ftest-coverage. They inform GCC that the generated image should
be instrumented as follows. Before being converted into target microcontroller instructions, the soft-
ware image is represented as a directed graph of so-called basic blocks. A basic block is a maximal
contiguous piece of microcontroller-oblivious, intermediate code, such that a jump out of the block
occurs only at the end of the block while any jumps into the block can lead only to the beginning of
the block. In other words, the code in a block is always executed entirely, and the jumps—the edges
in the block graph—reflect the possible control flow. The -fprofile-arcs option allocates in
the final image a 64-bit counter for every edge in the basic block graph and injects instructions that
increment the counter on the jump corresponding to this edge. The -ftest-coverage option,
in turn, has two roles. First, it stores the basic block graph into auxiliary files. Second, it links the
image with code dumping the counter values at runtime to another file. What gcov does is merge
the basic block graph file, obtained during compilation, with the counter values file, obtained by
running the image, into a human-readable coverage report.

While seemingly ideal for sensornets, gcov fails in practice. To start with, GCC is not the only
C compiler for sensornets, and the aforementioned instrumentation is not supported by many other
embedded C compilers; neither is it supported by all GCC platforms. More importantly, even on the
supported platforms, the instrumentation works poorly under the constrained resources of a sensor
node. The 64-bit counters consume lots of precious RAM. Likewise the code incrementing them on
jumps is large, as it uses merely 8- or 16-bit instructions. Yet, the counter width cannot be simply
reduced, because, apart from gcov, the very same instrumentation is used, for instance, by profiling
tools, like gprof, where the large width is important. Furthermore, the instrumentation unit is C
file, meaning that it is impossible to select at compile time which jumps are instrumented. This is
problematic for sensornet systems that often group multiple files into a single compilation unit to
enable aggressive optimizations. An extreme case is nesC, which produces a single C file containing
the entire node image. As we show in Section 8, the counter width and instrumentation granularity
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make it virtually impossible to test coverage of even simple sensornet applications. Finally, there is
no standardized way for accessing the counters at a node, for example, to send them to a frontend
application running on the user’s PC. The -ftest-coverage option simply assumes a classical
file system, which is not available on many node platforms.

6.3. Final Implementation
Although we could modify the open-source GCC to address these issues, this would introduce severe
maintenance and portability problems. For this reason, rather than patching GCC and adopting gcov,
we provide novel, practical coverage mechanisms, customized for resource-constrained devices.

To maximize portability, the mechanisms instrument code before it is passed to a C compiler.
More specifically, we have extended the nesC compiler such that the plain C code it produces from
nesC source files is already instrumented. Figure 7 illustrates these principles. First, nesC source
code is instrumented by the extended nesC compiler. The resulting C file is compiled normally (by
default, by GCC) into a binary software image. The image is then installed and executed on a node
or in TOSSIM. Finally, after the execution, a custom nesccov script produces human-readable
coverage reports for each of the original nesC source files. A similar solution could be implemented
for programming environments based on plain C rather than nesC. The role of the extended nesC
compiler in instrumenting the source code could be taken over by a custom C-to-C translator, for
example, one based on CIL [Necula et al. 2002].

modified
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nesC sources
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image

mapping of

instructions &

conditions 
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per module
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Fig. 7: Overview of implementation of code coverage mechanisms

Since the instrumentation is just plain C code without any low-level hardware-specific instruc-
tions, the solution is highly portable. Moreover, since we are in full control of the instrumentation,
we can also control its overhead. In particular, rather than forcing instrumentation of entire C files,
we provide a command-line option to the extended nesC compiler that takes a regular expression
specifying the names of the individual functions to be instrumented. Another option enables in turn
changing the width of counters used for instrumentation, even down to just one bit per counter,
which is sufficient for code coverage. Finally, additional options select the type of instrumentation
(i.e., line and/or branch) or prevent instrumenting time-critical code executed with disabled inter-
rupts or entire code directly reachable from interrupt handlers. All in all, the users are offered a rich
set of mechanisms for reducing the instrumentation overhead depending on their testing policies.

However, implementing the instrumentation at the high, source code level rather than at the lower,
intermediate code level is problematic. In particular, at the high level, there is no flat graph of basic
blocks, just a hierarchical abstract syntax tree that reflects the language constructs in the source
code. Operating at a different level thus requires revisiting the line and branch coverage algorithms.

When it comes to line coverage, a naı̈ve solution could involve associating a counter with every
C instruction and generating an instruction incrementing the counter before the instrumented in-
struction itself. However, this solution would lead to an explosion of the counter tables, effectively
precluding practical applications. Therefore, instead, source code lines always executed together
must be grouped into chunks, much like basic blocks, but at the abstract syntax tree level. To this
end, the abstract syntax tree is traversed to identify subtrees representing such chunks. For each
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such subtree, a static counter is allocated in the output C file, and the subtree is extended with an in-
struction incrementing the counter. In the basic block graph, this would correspond to instrumenting
vertices rather than edges, which further saves RAM.

For branch coverage, in turn, only subtrees representing boolean expressions, like in conditional
instructions and loops, are identified in the abstract syntax tree. Given such a subtree, a counter is
allocated for every possible evaluation of the corresponding expression. The subtree is also extended
with instructions incrementing appropriate counters, depending on the runtime evaluations of the
expression. For example, in expression a||b||c, there are three atoms, a, b, and c, each of which
can evaluate to true or false. For an unspecified evaluation order, the expression has 23 = 8 possible
evaluations, hence 8 counters are allocated. We have also implemented algorithms reducing the
number of counters by assuming lazy evaluation, but we omit them here for brevity.

To sum up, code coverage is popular for assessing the quality of tests. Measuring code cover-
age, however, requires instrumenting the tested software. Due to the resource constraints of sensor
nodes, such instrumentation necessitates dedicated solutions for sensornets. In contrast to traditional
ones, the presented solutions operate at the abstract syntax tree level. Not only does this facilitate
controlling the overhead of instrumentation, but also ensures portability. In effect, as we confirm
empirically in Section 8, the solutions enable measuring coverage of even large sensornet systems.

7. MANAGEMENT PERSPECTIVE
The features of our framework discussed hitherto are mechanisms supporting unit test develop-
ment, execution, and assessment. In contrast, test management is concerned mostly with defining
and enforcing appropriate policies. The definitions of the policies depend on a particular software
development organization and methodologies employed in that organization. Enforcing the poli-
cies, in turn, is typically realized with traditional mechanisms, such as test databases, code review
software, and, in general, development support software. No special test management mechanisms
are required for sensornet software. Consequently, the framework provides no additional dedicated
management mechanisms, and instead relies on integrating it with the mechanisms an organization
employs daily.

However, the mechanisms provided by the framework for test development, execution, and man-
agement allow for effectively enforcing new policies. For example, as embedded mock modules
greatly reduce the effort involved in developing unit tests, an organization may introduce a policy
requiring each module to be accompanied by such tests. To enforce this policy, whenever code is
committed to the code repository, execution of relevant test suites may be triggered automatically
with the code coverage measurement active. If too much of the new code is uncovered, the code may
be automatically rejected, and its author may be provided with feedback information. Likewise, if
any of the test fails, the code may be rejected with appropriate feedback to the author. Although such
policies are common in organizations developing reliable distributed systems, to date, adopting them
in sensornet communities has been largely hindered by the lack of the appropriate mechanisms.

8. EVALUATION
To date, evaluations of unit testing frameworks, if conducted at all, have focused on qualitative
rather than quantitative aspects [Moss 2007; Okola and Whitehouse 2010]. In contrast, apart from
demonstrating qualitative benefits, we aim to show as many quantitative ones as possible, because
we hope that they will stimulate adoption of our framework. To the best of our knowledge, this is
the first such an evaluation of unit testing in sensornets.

Since our framework is implemented in TinyOS, the evaluation inherently targets the TinyOS
code base. Nevertheless, as most of the problems the framework addresses are fundamental, we
believe that similar results could be obtained for other sensornet programming environments.
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8.1. Module Dependency Analysis
Let us start by demonstrating that module dependencies are a major obstacle for adopting unit testing
in sensornets. In effect, without embedded mock modules, as provided by our framework, testing
an average module in isolation is bound to be costly.

To perform the dependency analysis, we have extended our toolkit with a meter suite for nesC
software. We subsequently ran the suite on a recent revision (6001) of the TinyOS sources. Table II
presents the resulting statistics relevant to module dependencies.

Table II: Overview of module dependencies in TinyOS
GENERAL INFORMATION INTERFACES

#interfaces 661 avg. #commands 4.80
#configurations 1008 avg. #events 0.97

#modules 981

MODULES

avg. #used ifaces 4.46 avg. sum #cmds in used ifaces 23.57
avg. sum #evts in used ifaces 3.05

avg. #provided ifaces 2.12 avg. sum #cmds in provided ifaces 6.97
avg. sum #evts in provided ifaces 1.57

The TinyOS code base encompasses 981 modules that interact through subsets of 661 interfaces.
An average interface consists of nearly 5 commands and 1 event. An average module uses more than
4 and provides more than 2 interfaces. Therefore, to test a module in isolation from other modules,
more than 4 interfaces have to be abstracted out on average. Since abstracting an interface requires
implementing all its commands, a rough calculation shows that abstracting out dependencies of an
average module requires implementing more than 20 command stubs (functions). As some inter-
faces are more popular than others, the actual number of functions that have to be implemented to
abstract out an average module is even higher: 23.57. With such a large amount of work necessary
to isolate a single module, unit testing without mock modules becomes extremely laborious.

Figure 8 confirms that this result is not just due to a few modules having an exces-
sive number of dependencies. More than a half of the modules depend on at least 3 in-
terfaces, while only fewer than 15% have no dependencies. Likewise, isolating more than
a half of the modules requires implementing at least 15 functions. Importantly, modules
that have the most dependencies also implement a lot of logic that requires thorough
testing. In particular, both CC2520DriverLayerP, which uses the most interfaces, and
Msp430Adc12ImplP, whose dependencies involve the most functions, implement complex de-
vice driver logic (above the hardware presentation layer). The cost of testing this logic in isolation
is simply prohibitive without embedded mock modules.
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Fig. 8: Distribution of module dependencies in TinyOS
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Although one could imagine implementing interface stubs that can be shared among unit tests,
the 661 interfaces yield a total of 3170 command stubs to be implemented. Moreover, such shared
stubs would have to provide additional interfaces for configuring their behavior from within test
logic. Manually implementing stubs is thus uneconomic, thereby precluding testing the modules in
isolation without the automatically-provided embedded mock modules.

8.2. Test Coverage Analysis
Since manually abstracting out module dependencies is bound to be costly, it may be argued that
instead of testing the modules in isolation, one may combine them into relatively self-contained
subsystems and test those instead. This approach is followed in the TinyOS code base, which does
contain some tests of entire subsystems. However, although such integration tests are necessary to
test how the modules interact with each other and with hardware, they cannot replace unit tests. In
particular, past experiences suggest that integration tests fail to exercise all control flow paths and
corner cases of the tested modules [Barrenetxea et al. 2008; Langendoen et al. 2006; Ramanathan
et al. 2005; Tolle and Culler 2005], thereby increasing the likelihood of hidden software flaws.

Armed with our embedded code coverage solutions, we are finally able to verify this
hypothesis. To this end, we have instrumented the applications from the TinyOS apps
directory and its subdirectories (i.e., the aforementioned integration tests) and all the
TinyOS modules these applications utilize (e.g., hardware drivers, protocols, system com-
ponent, libraries). We managed to instrument the following applications: AdcSimple,
Blink, LplBroadcastCountToLeds, LplBroadcastPeriodicDelivery,
LplUnicastPeriodicDelivery, MultihopOscilloscope, MultiLedSingle,
Oscilloscope, RadioCountToLeds, RadioSenseToLeds, RadioStress,
RssiToSerial, Sense, TestAcks, TestAdc, TestAM, TestDissemination,
TestFcfsArbiter, TestLpl, TestNetwork, TestNetworkLpl, TestPacketLink,
TestPowerManager, TestPowerup, TestRoundRobinArbiter, TestScheduler,
TestSrp, TestTimerSync. The rest is unmaintained or failed to compile out-of-the-box for
the TelosB platform we had access to.

We then ran the instrumented code on our medium-scale testbed [Iwanicki et al. 2008]. The
testbed consisted of 55 TelosB nodes dispersed in 5 office rooms. For the employed radio transmis-
sion power, the nodes formed a network with a diameter of 5 hops, a nonuniform density ranging
from 8 to 31 neighbors per node, and many asymmetric links. All the applications were tested in
their default TelosB configurations for at least 15 minutes each, except for TestNetwork and
TestNetworkLpl that are more complex, incorporating among others the Collection Tree Proto-
col (CTP) [Gnawali et al. 2009] and the Four-Bit Wireless Link Estimator (4bitLE) [Fonseca et al.
2007], and were thus run for 24 hours each. In addition, for these two applications, we varied the
location of the sink to be on the edges and in the center of the testbed. This, combined with the
properties of the testbed, notably regions of high density and asymmetric links, and environmental
impact resulting in connectivity changes, increased the chances of triggering corner cases in those
applications. All in all, we believe that the setup should produce reasonable coverage numbers.

Nevertheless, Table III confirms the earlier hypothesis that integration tests alone are insuffi-
cient to achieve full coverage. In fact, the achievable coverage is considerably below what one can
encounter in quality-assurance requirements of companies concerned with reliable systems. In an
average module, only 72% lines of code are executed and only 57% branches are triggered.

Table III: Coverage of existing TinyOS integration tests
LINE COVERAGE BRANCH COVERAGE

#modules w/ >0% coverage 85 #modules w/ >0 cond. instr. 65
sum #lines in modules 5187 sum #branches in modules 1374

sum #covered lines 3918 sum #covered branches 836
median module coverage 82% median module coverage 61%

avg. module coverage 72% avg. module coverage 57%
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Moreover, note that Table III considers only modules in which at least one line or condition,
respectively, is executed, and that the coverage for each such module is a union of the coverage
from individual test applications. However, many modules are not covered by any standard test,
hence taking them into account would further decrease the average coverage. Likewise, even tests
dedicated for particular modules have a low coverage. For example, the TestNetwork appli-
cation, which aims to exercise CTP, for the core CtpRoutingEngineP and CtpForward-
ingEngineP modules achieves only 77% and 69% line coverage and 69% and 68% branch cov-
erage, respectively. These results confirm that a large number of control flow paths are indeed hardly
ever exercised by integration tests. Consequently, any potential defects they contain may not be de-
tected during testing, as suggested by past deployments.

The experiments also confirm that obtaining the code coverage data would be impossible without
our dedicated solutions. To illustrate, Table IV compares the memory overhead of our instrumenta-
tion (all modules, one bit per counter) and gcov. Gcov’s overheads, notably on RAM, are so large
that only simple test applications that use few hardware components can be instrumented. In partic-
ular, with gcov, we have not managed to compile any test that exercises the simplest TelosB radio
stack beyond periodically broadcasting a packet, TestAM. In contrast, with our mechanisms, the
overheads are small enough to enable instrumenting all modules of even large integration tests.
Moreover, for small tests, like those that gcov is also able to instrument, the most overhead is due to
the extra code for reporting counter values to a PC rather than due to the instrumentation itself. Our
solutions require less memory, because their counters are narrower (1 vs. 64 bits) and there are fewer
of them. More importantly, however, the solutions enable precisely selecting the code instrumented
for a test, which is crucial for resource-constrained devices.

Table IV: Memory overhead due to instrumentation

INSTRUMENTATION RELATIVE AVG. MEMORY GROWTH
FOR TELOSB ROM OVERHEAD RAM OVERHEAD

gcov ∗ § 204% / ? † 3,362% / ? †
our line 118% / 75% † 246% / 63% †

our branch 133% / 100% † 196% / 69% †
our line+branch 188% / 145% † 275% / 135% †

∗ Only 11 applications compile without exceeding the MCU memory limit.
§ Does not include code for reporting counter values by the node.
† Avg. over the 11 small apps that compile for gcov / avg. over all apps.

We have conducted other experiments, in particular, for the runtime overhead of the instrumen-
tation. In an average, uninstrumented, non-stress-test application, the MCU sleeps 96% of the time.
With our instrumentation (line and branch coverage), this value drops to 89%. The increase is not
drastic, meaning that it does not significantly change the MCU utilization characteristics, which
could in turn affect the coverage. Moreover, the runtime overhead, like memory, can be mini-
mized further with the options our solutions offer. For example, uninteresting modules and time-
sensitive interrupt code can be excluded from instrumentation. In any case, for development or
pre-deployment testing, the small increase in runtime overhead is by and large irrelevant. What
is important, in turn, is that our coverage solutions precisely identify untested control flow paths,
thereby automating test assessment.

8.3. Benefits of Framework-assisted Unit Testing
Hitherto, we have quantitatively shown that, even when only intermodule dependencies are con-
sidered, unit testing without support from a framework is bound to be costly, and that integration
testing does not sufficiently cover the tested code, thereby increasing the probability of undetected
software flaws. Demonstrating the benefits of framework-assisted unit testing in a similar, quantita-
tive manner is far more difficult, though, which is likely why it is rarely done. Therefore, rather than
the ultimate evaluation of our framework, we present preliminary small-scale studies that just aim to
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illustrate the most important advantages the framework offers. Nevertheless, to maximize interest in
our work, apart from qualitative results, we strive to provide as many quantitative ones as possible.

The studies involved three developer groups. The first group consisted of two graduate students
implementing a research prototype of an aggregation protocol for mobile networks [Gregorczyk
et al. 2014], employing a new link-layer primitive [Pazurkiewicz et al. 2014]. The students initially
lacked any TinyOS experience. The second group consisted of four people building a new sensornet
hardware-software platform, two of which had had no prior TinyOS experience. The third group
consisted of the four developers that have worked on the framework, the most junior one having six
months of TinyOS experience. Each of those diverse groups provided us with valuable feedback.

8.3.1. Quantitative results. A major obstacle to adopting unit testing is the overhead that unit
testing incurs on a software development process. To check if a module works as designed, unit tests
for the module have to be developed, executed, and assessed. Usually these activities are repeated
multiple times until all the tests pass and it has been ascertained that they sufficiently cover the
module’s code. While the solutions offered by our framework make test execution and assessment
as inexpensive as executing a single command, test development requires effort from programmers.
Since the development effort actually determines the overall cost of unit testing, we study to what
extent our testing model reduces the cost of test development.

Selecting the metric that best quantifies the development overhead is not trivial, though. We have
settled on a metric that is easily measurable and verifiable: the number of lines of code (LOC).1
However, in addition, we offer a discussion on the actual development time.

As the first example, we illustrate the amount of LOC that must be written to thoroughly test
a complete medium-scale subsystem. The study was performed in the first group working on an
aggregation protocol for mobile networks. The two developers were writing subsequent modules of
the protocol in parallel with unit tests that fully cover the control flow paths of the modules. Table V
illustrates the breakdown of LOC for the complete code, excluding applications demonstrating the
use of the protocol (de facto integration tests for the protocol).

Table V: Sample unit testing overhead of medium-scale protocol

SOFTWARE COMPONENT LINES OF CODE (LOC)
all tested protocol modules 1180(just modules w/o interfaces, etc.)
all test cases 2065
– parts written manually 1185
– parts generated automatically 880
mock skeletons 132∗(generated automatically)
remaining test code 2863(e.g., glue code, makefiles, scripts, etc.)
– parts written manually 21
– parts generated automatically 2842
total test code 5060
– parts written manually 1206
– parts generated automatically 3854

∗ Just mock skeletons are taken into account, such as the one in Listing 10. The actual code generated from the skeletons by
the extended nesC compiler is significantly larger.

The subsystem implementing the protocol consists of 14 modules that together contain 1180
LOC. The modules interact with each other and TinyOS through 31 interfaces, 8 of which are
standard TinyOS interfaces for packet manipulation, sending and receiving, for timer access, for
generating random numbers, and for activating and deactivating components. The unit tests for the
modules comprise 14 suites (one per module) amounting to 54 test cases. The test cases contain

1Measured with CLOC: http://cloc.sourceforge.net/.
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in total 2065 LOC, 1185 of which is test logic written by the programmers. The remaining test
code comprises automatically generated skeletons of embedded mock modules, test-suite glue code,
configurations, and scripts.

A major conclusion derivable from Table V is that the total amount of test code exceeds the
amount of the actual protocol code by more than a factor of four. This illustrates that unit testing
may indeed be expensive in terms of the test development effort. However, with the support from
our framework, only 1206 of the test code lines have to be implemented manually, which brings the
test development overhead to slightly more than a factor of one, or even less if we counted interface
definitions as the module code. Moreover, the programmers reported (albeit without providing us
with concrete numbers) that, compared to the module code, developing the test logic consumed
significantly less time than what the LOC results suggest. They attributed this phenomenon to the
fact that, in contrast to protocol code that must take actions in response to events, the test code
typically boils down to verifying the flow and effects of those actions. Whereas the actions can be
quite complex, the verification of their effects can often be done with just a few expectations and
assertion macros. By and large, the framework simplifies unit test development.

The next example illustrates to what extent the automatically generated embedded mock modules
reduce the test development overhead. The study was conducted by two of the people working on
the framework itself, and, in contrast to the previous one, involved a standard subsystem, namely
the popular Four-Bit Wireless Link Estimator (4bitLE) [Fonseca et al. 2007]. The TinyOS imple-
mentation of 4bitLE is a single 487-line module, LinkEstimatorP, that provides 7 and uses 6
interfaces, and encompasses link table maintenance, link quality arithmetic, estimation logic, bea-
con packet decoration and parsing, and counting received and missed packet acknowledgments. It
quickly became apparent that unit tests fully covering such a monolithic implementation would be
large and difficult to write. Consequently, the module was decomposed into six modules correspond-
ing to the aforementioned responsibilities and an extra glue module: 584 lines in total. In parallel,
unit tests for the module were developed in our framework.

With those tests in place, we asked the developers to write another set of tests that, rather than
relying on the automatically-generated embedded mock modules, employ manually-written stub
modules. The aim of the exercise was to compare the savings in LOC provided by embedded mock
modules alone. Note that we deliberately conducted the exercise in the group of developers working
on the framework. This was because the developers knew well the internals of embedded mock
modules and were in position to optimize the manually-written stubs to make the comparison as fair
as possible. Table VI presents the relevant LOC statistics.

Table VI: Sample LOC savings due to embedded mock modules

LINES OF CODE (LOC)
manually-written stub modules embedded mock modules

tested modules 584
manually-provided stubs 1430 0
test cases 940 834
overhead factor of only stubs 2.45 0

The results suggest that embedded mock modules indeed significantly reduce the cost of de-
veloping unit tests. In particular, in the considered example, the manually written stub modules
alone generate a factor of 2.45 testing overhead. Moreover, they entail an additional overhead
in the test logic itself, because instead of succinct expectations the developers must use invoca-
tions of functions for configuring the stubs. In analogous studies conducted for another popular
TinyOS protocol, the aforementioned Collection Tree Protocol (CTP) [Gnawali et al. 2009], we
obtained similar results. In particular, in the core modules of CTP, CtpRoutingEngineP and
CtpForwardingEngineP, after reaching a factor of four overhead due to just stub modules
alone, our developers simply refused writing any more stubs.
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The last example compares our framework with TUnit [Moss 2007]. The results were reported by
the group working on a new hardware-software platform. The comparison was performed on a small
standard UDP socket layer that consisted of a module implementing a socket and another module
managing allocation of ports to sockets. The modules had few (up to four) dependencies, which is
favorable for TUnit that does not automatically abstract out dependencies by means of embedded
mock modules. Table VII presents the LOC statistics.

Table VII: Sample comparison of our framework with TUnit

SOFTWARE COMPONENT LINES OF CODE (LOC)
OUR FRAMEWORK TUNIT

all tested protocol modules 216
mock/stub modules 12 281
- generated automatically 12 0
- written manually 0 281
test cases and remaining test code 476 296
– parts written manually 119 296
– parts generated automatically 357 0
total manually written test code 119 577
overhead factor 0.55 2.67

The example shows that, in terms of LOC, our framework outperforms TUnit by nearly a factor
of five: its overhead is just a factor of 0.55, whereas the overhead of TUnit is a factor of 2.67. The
manually-written stubs that TUnit requires alone contribute significantly to this overhead. Moreover,
note that the tested modules were simple, meaning that they involved relatively few control flow
paths and just 216 LOC. As a result, the stubs implemented for TUnit were also simple. Had there
been more control paths or dependencies in the tested code, the stubs would have also required more
LOC, thereby performing significantly worse than our framework (c.f. the previous example).

Another observation is that, if stub modules are ignored, our framework actually requires more
test code than TUnit (476 LOC vs. 296 LOC). This is an artifact of our testing model that assumes
isolation of the tested code and defines how test cases are implemented and executed. Supporting
our model thus may require more code than supporting a more general model of TUnit. At the same
time, however, because of being more stringent, our model allows for generating lots of the test code
automatically, including test case skeletons, glue code, makefiles, and execution scripts. In contrast,
generating such code for TUnit would be more complicated. In effect, the actual programming
overhead is in fact lower in our model (119 LOC vs. 296 LOC). Consequently, even modules that
lack any dependencies require more manually written test code in TUnit than in our framework.

All in all, although a larger-scale study would be necessary to produce more statistically accurate
numbers, there is every reason to believe that embedded mock modules indeed improve unit test de-
velopment in sensornets. To start with, writing stub code is no longer required, which is extremely
important considering the aforementioned number of dependencies of an average module. More-
over, the new language constructs associated with embedded mock modules facilitate concisely
expressing the verified properties of the tested code, which shortens test cases. Finally, the test case
model enabled by the isolation due to the mock modules allows for automatically generating lots
of support code and test case skeletons, which further reduces the test development overhead. What
remains to be implemented by developers is thus pure test logic, which in addition can usually be
expressed with succinct expectations and assertion macros. Such an extent of support for unit testing
has to date been missing in sensornet programming environments.

8.3.2. Qualitative results. Equally important as the quantitative benefits of our framework are
qualitative ones. We have gathered the qualitative results from interviews with the members of
the three aforementioned groups evaluating the framework. We were interested in their experience
adopting unit testing to sensornets and whether the framework actually helped in the process. Over-
all, the interviews confirmed all the aforementioned qualities of unit testing, though we were sur-
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prised to learn that some aspects were more important than we had initially assumed. Let us start
with case studies of software defects revealed by our framework.

Case study 1: Internal MCU flash storage. One of the tasks of the four developers working on
the new hardware-software platform was to build a storage system for the internal flash of an MCU.
The system uses segments of the flash that are unoccupied by the program running on the MCU
for storing a circular log of variable-sized records. The segments in which the records are stored are
known to the storage system, but need not be contiguous. Worse yet, they can be interleaved with the
program the MCU runs, thus also the code implementing the storage system itself. Consequently,
any flaw in the implementation of the system could cause an overwrite of the software image run by
the MCU, which could lead to an arbitrary behavior. For this reason, it was vital for the developers
to ensure that before actually writing anything to the flash, their implementation does not have any
flaws, to which end they employed our framework from the start of the development process.

The framework indeed helped avoid problems. In particular, in the initial implementation, the
logical format of a log record was as in Fig. 9(a). A record thus conceptually consisted of a one-
byte magic number, a payload of an arbitrary length, a two-byte record sequence number, a two-byte
CRC, and again the magic number. However, the magic-number byte was not allowed to appear
anywhere in the record apart from the two designated places. Therefore, special encoding-decoding
software components were necessary to escape any bytes equal to the magic number in the payload,
sequence number, and CRC, meaning that these fields could in practice occupy more bytes than
in the conceptual format (up to two times more). Without getting into details, such a format was
chosen to enable recovering a sequence of undamaged records for post-deployment analyses. What
is important is that the implementation was accompanied by unit tests with 100% coverage.

magic

no. [1B]

payload

[variable size]

rec. CRC

[2B]

rec. seq.

no. [2B]
magic

no. [1B]

escaped when necessary

(a) initial format

magic

no. [1B]

payload

[variable size]

rec. CRC

[2B]

rec. seq.

no. [2B]
magic

no. [1B]

escaped when necessary

rec. length

[2B]

(b) later format

Fig. 9: Format of records in log storage based on internal MCU flash

With the initial implementation operational, it turned out that appending to the log after a node
reboot would be useful functionality, for which, however, faster seeking for the end of the record
sequence was necessary. To this end, the conceptual record format was extended with a two-byte
record length field immediately following the leading magic number, as in Fig. 9(b).

Albeit seemingly simple, that change introduced two flaws. First, while the encoding and decod-
ing code correctly escaped the new record length field, the new seeking code assumed that the field
was two bytes. In effect, if there was a record with an escaped length, after a node reboot, log ap-
pending could start in an arbitrary place, thereby corrupting the existing data. Second, the code that
checked whether a appended record did not overflow the current flash fragment also did not take
into account the escaping of the record length field. In that case, the results of running such code
could be even more grave, as an overflowing record could overwrite up to two bytes of the node
program image. Both the flaws were detected early with the available unit tests.

Although in retrospect the flaws seem evident, they were not during the development process.
Moreover, they would be unlikely to be discovered with just, for instance, integration testing, be-
cause to be escaped, a byte in the record length field had to be equal to a specific value (either the
magic number or the escape symbol), and the likelihood of such an event was not high. Even if a
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flaw, notably the second one, occurred in integration testing, reproducing it would be a difficult task.
Diagnosing it would be equally daunting, as any modifications introduced to the program image to
perform the diagnosis would likely change the flash fragments available to the storage system. In
contrast, unit testing turned out to be ideal for detecting these types of implementation defects.

Case study 2: In-network aggregation protocol. Similar conclusions were reached by the group
working on the aforementioned aggregation protocol. Although the details of the protocol are out
of the scope of this article, at a high level, the operation of the protocol involves three phases
corresponding to the following software components: an initializer, an aggregator, and an evaluator.
The initializer checks if local node data satisfy a query and, if so, creates a partial aggregate for the
data. The aggregator is invoked whenever a node receives a partial aggregate from another node to
combine the received aggregate with the node’s local aggregate. The evaluator turns the local partial
aggregate into a human-friendly result of the query. In addition, there are several components that
run the distributed aggregation process, prepare the messages, etc.

Unit testing with our framework identified the following defects in the components:

(1) incorrect bit shifts in a custom fixed-point-arithmetic multiplication function of the evaluator,
which produced invalid query results for some classes of numbers;

(2) mixing messages from different aggregation epochs in the combiner, which produced wrong
partial aggregates;

(3) aggregating inconsistent data received from another node in the combiner, which on rare occa-
sions could disrupt partial aggregates;

(4) invoking a packet manipulation function from a wrong layer of the protocol stack, which could
lead to buffer overflows at run time;

(5) an epoch timer not being started;
(6) an equality instead of inequality operator in a conditional instruction in a corner case related to

neighbor selection, which could results in hard-to-detect suboptimal selections.

Had the developers skipped unit testing and immediately proceeded to integration testing, they
would have been able to observe only that the produced query results are wrong or that no results
are produced at all in some cases. Identifying the listed defects as the source of such behavior would
be extremely laborious, and it is not clear whether all of the defects would have been identified. For
example, according to the developers, an investigation of invalid query results (defect 1) would have
likely started from the components responsible for communication, and would have later followed
to the initializer and the combiner. Arithmetic operations in the evaluator, in contrast, would have
been one of the last places to look at, especially as the defect was triggered only for some classes
of numbers. Likewise, defects 3 and 6 would have been difficult to diagnose with only integration
testing, as they would have manifested only occasionally. In contrast, unit testing eliminated those
defects early: when some of the components were not even implemented. In effect, the resulting
protocol worked out-of-the-box in the first deployment, after parameter fine-tuning.

Note, however, that some of the defects, namely 2, 3, and 4, were detected by unit testing config-
urations that involved several modules rather than testing individual modules. In those cases, testing
configurations simply made more sense and required less effort than testing individual modules.

General observations. In summary, for all group members, the most important advantage of unit
testing was the confidence they gain when their code is accompanied by unit tests. The development
support offered by the framework allows for quickly assembling test cases that exercise arbitrary
control flow paths in the code. The assessment support, in turn, enables effectively checking if any
corner cases are not yet covered by tests. As a result, the developers could exercise every line and
branch in their modules, even when other modules were not ready.

Somewhat surprising is the fact that another most frequently reported advantage of unit test-
ing is the existence of tests themselves. Developers that joined the projects later reported that the
self-descriptive, expectation-based tests helped them understand code, and subsequently modify it
without breaking the entire systems. Likewise, developers maintaining mature code claimed that the

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 25, Publication date: July 2014.



25:34 K. Iwanicki et al.

existence of tests protected against introducing defects to the code when adding new features, like
in the first case study. In contrast, existing sensornet code bases contain relatively few tests that il-
lustrate how the more involved components work internally and collaborate with other components.
Had they been accompanied by unit tests, their learning curves might have been less steep.

Another major benefit of framework-assisted unit testing is the effects on the resulting software.
More specifically, in large, monolithic modules, it is hard to exercise all control flow paths. In con-
trast, designing for unit testability, be it by means of TDD or in a more traditional development
process, promotes small modules with well-defined functionality. To illustrate, recall the afore-
mentioned aggregation protocol which involved 1180 LOC. The protocol was implemented by 14
modules. In contrast, as the example of the 4BitLE illustrates, it is not uncommon for TinyOS mod-
ules to contain as much as 500 LOC. Understanding the behavior of such large modules need not
be easy. Likewise, reusing pieces of code becomes problematic with large modules. Small modules
accompanied by self-descriptive unit tests alleviate these issues.

The developers also greatly appreciated the support for test execution. The virtually immediate
feedback on test case failures allowed them to quickly diagnose and fix their software flaws, in most
cases without manually inserting debug statements or employing external debuggers. We learned
that most of the testing was done in TOSSIM, which made the execution process fast, and only
when tests passed in TOSSIM were they run on actual sensor nodes. The developers claimed that
the ability to quickly find and diagnose software defects allowed them to stay focused on the code
and accelerated the entire development process, which is important particularly for TDD.

Although many of the above conclusions correspond to good software engineering practices, the
existing code bases and past deployments evidence that we, as a community, have often failed to
apply these practices in our sensornet software development processes. We strongly believe that this
is a consequence of the lack of appropriate unit testing solutions, which made applying many of the
practices simply uneconomic. The goal of our work is to fill this gap by bringing state-of-the-art
unit testing techniques for traditional software to sensornets. The interviews suggest that the goal
has been achieved to a large extent, as all the developers reported that their experience with our
framework resembles what they were used to with modern frameworks for traditional software.

8.4. Limitations
Despite the aforementioned advantages, our framework has a few limitations. Whereas some of the
limitations are artifacts of our solutions, others stem from the very nature of unit testing itself. Let
us thus briefly review the most important ones.

To begin with, the isolation of tested code from the underlying hardware, which our framework
promotes, precludes testing the low-level hardware presentation layer of device drivers. This implies
that, for a fraction of code, no tests can be developed with our framework. Neither is the framework
able to detect situations in which the hardware is driven into violating its specification, which may
result in some unexpected behavior. We take the stand that complete device drivers should be tested
in integration tests, which, as mentioned throughout the article, our framework by no means aims
to replace. Nevertheless, as also mentioned previously and confirmed by the participants of our user
study who were involved in developing device drivers, the framework encourages thin hardware
presentation layers, without unnecessarily incorporating the logic of higher layers. As a result, most
of a driver’s logic resides in these higher layers and can thus be unit tested as ordinary modules.
For this reason, a lot of the driver’s code will typically already be correct before deployment on the
actual hardware, which overall reduces the time required to make the driver stable.

Moreover, the framework could benefit from being integrated with a development environment,
like Eclipse. Such integration could further simplify writing, executing, and assessing test cases,
thereby making the presented solutions more accessible, especially to novice users. Considering that
a particularly important drawback of unit testing itself is that it requires test code to be developed, an
integrated environment could reduce the costs of unit testing further beyond what is offered by our
framework. Nevertheless, we are aware that unit testing does require additional effort. Therefore,
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we envision that our framework will be adopted rather for new code. Existing code, in turn, may be
covered gradually with tests, as a side effect of refactoring or implementing new functionality.

All in all, despite its limitations, unit testing plays an important role in the spectrum of the soft-
ware quality assurance techniques. Our framework facilitates adopting it in sensornets.

9. CONCLUSIONS
To sum up, our work demonstrates that bringing modern unit testing techniques to sensornets poses
a number of challenges, but the benefits such techniques offer may be worth the effort. To begin
with, mocking functionality, a fundamental modern code isolation mechanism, in sensornets neces-
sitates language and compiler enhancements. However, it reduces the test development overhead
even by several factors and makes the resulting test cases self-descriptive. Likewise, in the absence
of traditional hardware-software support, intercepting and containing run-time failures to provide
meaningful feedback requires dedicated sensornet solutions. However, such solutions spare the ef-
fort involved in deploying debuggers to diagnose many classes of software defects. Similarly, code
coverage measurement, a popular test assessment method, is virtually impossible without dedicated
sensornet solutions. However, the solutions evidence, in particular, that integration tests, even care-
fully designed ones, fail to cover many control flow paths, thereby substantiating the claim about
a need for unit testing. Finally, the proposed solutions also facilitate effective management of the
quality of sensornet software. In particular, they allow for ensuring that, even in the face of constant
changes by multiple developers, the software is accompanied by thorough unit tests.

As a whole, our work finally enables modern software development methodologies, such as TDD,
in sensornets. Since these methodologies are particularly popular for building reliable systems soft-
ware, adopting them has the potential to greatly improve the quality of future sensornet systems,
which are likely to be more complex than any deployments to date. For this reason, we plan to make
the framework publicly available. It would be interesting to observe at scale how the proposed solu-
tions affect sensornet software development in the long term, in particular, whether they can make
the quality of sensornet software more predictable. Subsequent components of the framework will
gradually be made available for download from the corresponding author’s website.
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