
Beyond Replicated Storage:
Eventually-Consistent Distributed Data Structures

Konrad Iwanicki ∗

University of Warsaw
Warsaw, Poland

iwanicki@mimuw.edu.pl

Abstract
While our understanding of eventual consistency for repli-
cated data has improved considerably over the past few
years, relatively little work focused on eventually-consistent
distributed data structures. By revisiting PL-GOSSIP, our
self-managed, decentralized algorithm for maintaining clus-
ter hierarchies in wireless sensor networks, this paper il-
lustrates sample problems one is likely to encounter when
dealing with such structures. Given the growing interest in
analyzing huge, dynamic, inter-dependent data sets, we be-
lieve that the paper will inspire research to facilitate under-
standing and devising eventually-consistent distributed data
structures.

1. Original Problem
Systems based on wireless sensor networks are often clas-
sified as extreme distributed systems. On the one hand, it is
not uncommon for such systems to consist of hundreds or
even thousands of nodes, which have to collaborate to pro-
vide a desired functionality. On the other hand, the nodes
are severely constrained in resources, namely RAM, ROM,
computing power and network throughput, and the wireless
communication they employ is highly dynamic and unreli-
able, not to mention mobility in some scenarios.

While in the past the functionality of such systems typ-
ically boiled down to fine-grained monitoring of physical
spaces, increasingly it corresponds to an entire feedback
loop encompassing sensing, decision making, and actuation.

∗ Supported by the (Polish) National Science Center under grant
no. DEC-2012/05/D/ST6/03582.

c© ACM, 2014. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
presented at PaPEC14: The First Workshop on the Principles and Practice of Eventual
Consistency on April 13, 2014, in Amsterdam, the Netherlands, and was published in
the workshop proceedings. You can access it by following the DOI link below.
PaPEC’14, April 13–16, 2014, Amsterdam, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2716-9/14/04. . . $15.00.
http://dx.doi.org/10.1145/2596631.2596639

Considering that they also have to deal with the resource
constraints of the nodes, as well as with potentially high
loss rates, low correlation time, and partitions of the wireless
links, the distributed algorithms implementing the function-
ality are becoming more and more intricate.

An approach taken by some of such algorithms re-
lies on the nodes being organized in a hierarchical over-
lay network on top of the physical topology induced by
the wireless inter-node links. An example of such an or-
ganization, employed among others by efficient point-to-
point routing algorithms, spatial distributed hash tables,
and multi-resolution in-network aggregation schemes, is an
area/group/landmark/cluster hierarchy.

A sample cluster hierarchy is depicted in Figure 1. At
level 0, each node corresponds to a singleton cluster: in
Figure 1(a), nodes A, B, C, . . . correspond to level-0 clusters
C0

A, C0
B , C0

C , . . ., respectively (omitted in the figure for
clarity). Proximate level-0 clusters form larger clusters at
level 1 (C1

B , C1
E , and C1

M in the figure), which in turn form
yet larger clusters at level 2, and so on at higher levels,
so that typically a single top-level cluster covers the entire
network (C2

B in the figure). Each such cluster has a head
node, H , which, in combination with the level, L, uniquely
identifies the cluster, CL

H . Based on the clusters it belongs
to, each node can thus be given a unique label that is a
concatenation of the node’s cluster head identifiers at every
level. In particular, the label of node D is D.E.B. The
labels of all nodes can be viewed as a tree, such as the
one depicted in Figure 1(b). Finally, based on its label, each
node maintains information on its siblings in the hierarchy,
as in Figure 1(c). The information can be a routing entry
and a value of an aggregate to name just two examples. The
advantage of organizing the network in such a hierarchy is
that the amount of state maintained and exchanged by the
nodes can scale poly-logarithmically with the network size.

Although utilizing such a hierarchy for routing, aggrega-
tion, or in-network storage is fairly straightforward, a ma-
jor problem is building and maintaining it in the presence
of network dynamics. Due to connectivity changes as well
as node failures and arrivals, some clusters at different levels

(a) cluster hierarchy vs. physical connectivity

(b) node labels as a tree

(c) routing table of node D (label D.E.B)

Figure 1. A sample cluster hierarchy.

must be dissolved and new ones must be formed. As a sensor
network should normally operate unattended, the entire pro-
cess is expected to be self-managed and decentralized, that
is, autonomous decisions of individual nodes should—on the
global scale—yield a consistent hierarchy.

2. Consistency Perspective
Prior algorithms for hierarchy maintenance rely on each
cluster head periodically flooding the network with adver-
tisements, up to a radius that depends on the level of the
cluster. Albeit simple, such an approach is costly in wireless
sensor networks [14].

In many algorithms for wireless sensor networks, flood-
ing is thus abandoned in favor of more efficient local gos-
siping. In essence, each node periodically broadcasts its lo-
cal state to its neighbors (i.e., other nodes within its radio
range). Likewise, it receives the states of the neighbors and

merges them with its local state. The repeated broadcasts and
merges allow information to propagate with less traffic than
in the case of flooding [13]. Therefore, in the remainder of
our discussion, we assume local gossiping as the base of a
cluster hierarchy maintenance algorithm.

However, with gossiping, it is difficult to control precisely
when a bit of information reaches a particular node, espe-
cially in the face of network dynamics. It is common for
bits of information to be merged into a node’s state in a dif-
ferent order than the one in which they are produced. Like-
wise, a bit of information can be merged multiple times. In
other words, local gossiping guarantees that information will
eventually have a chance to reach every node, but only if
the state merging operation is designed properly. Combined
with the autonomous node decisions on how the hierarchy
should look like at a given moment, these assumptions bear
some resemblance to highly-available, eventually-consistent
storage systems.

This observation has motivated us to look at the problem
of cluster hierarchy maintenance not from the networking,
but rather consistency perspective. We treat the cluster hier-
archy as a distributed data structure. The state of each node,
that is, its label and routing table, is a part of this structure.
Each node can autonomously update its local state, thereby
altering the distributed structure. The nodes exchange and
merge their states through gossiping, which should ensure
that eventually the structure is globally consistent.

3. Eventually-Consistent Distributed State
However, compared to traditional models for eventual con-
sistency, what is different in our model is that the local state
of each node is not a replica. On the contrary, the state rep-
resents a piece of the distributed structure: some of its parts
are globally unique; some others, in turn, are replicas of the
corresponding parts at other nodes. Recall, for instance, the
label tree from Figure 1(b). Consider the label of node D:
D.E.B. The first part of D’s label, D.E, informs that clus-
ter C0

D is a subcluster of C1
E . It is stored only at node D.

The second part, E.B, informs in turn that C1
E is a sub-

cluster of C2
B . It is replicated in the labels of nodes D, E,

and I . Therefore, when it changes due to an autonomous
decision of some node, all the three nodes must eventually
learn about the change and update their states accordingly.
The difficulty is that updates to different or same parts of
the structure can be concurrent, are often not independent,
and propagate lazily through gossiping, not to mention the
bandwidth and memory constraints of the nodes.

To cope with these problems, a hierarchy maintenance al-
gorithm must address the following issues: How to decide
that a given piece of the distributed structure should be up-
dated? How such updates should be performed and which
node(s) should do them? How can other nodes detect and
merge the updates to their corresponding pieces of the dis-
tributed structure? Whereas the complete PL-GOSSIP al-

gorithm addressing these issues, including proofs and real-
world experiments, can be found, for instance, in an earlier
article [9] and Ph.D. dissertation [7], here we just give a brief
overview of its major design features.

To begin with, the properties of the distributed structure
are formalized as invariants. Sample invariants can be as
follows:

Invariant 1 Level-0 clusters correspond to individual
nodes.

Invariant 2 There exists a single, top-level (H) cluster
containing all nodes.

Invariant 3 Level-i+1 clusters (where 0 ≤ i < H) are com-
posed out of level-i clusters, such that each level-i cluster is
nested in exactly one level-i+1 cluster.

Invariant 4 Each level i+1 cluster (where 0 ≤ i < H)
has a central subcluster that is adjacent (in terms of the
neighbor relation between nodes) to all other subclusters of
this cluster.

Maintaining the hierarchy boils down to detecting viola-
tions of the invariants and eliminating them. The invariants
are global, and hence, they have to be maintained collabo-
ratively by all nodes. However, each node is concerned with
only those invariants that are relevant to its part of the dis-
tributed structure. To this end, it autonomously examines its
local state whenever it changes and corrects it upon an in-
variant violation. As mentioned previously, the state com-
prises the node’s routing table, which contains one entry for
each sibling cluster, the node’s label, and additional meta-
data.

A routing entry stored by a node for a cluster includes,
among others, the length of the shortest path from the node
to the cluster, the identifier of the next-hop neighbor on this
path, and a flag indicating if the cluster is adjacent to the
present node’s same-level cluster. The creation and merge
operations for the entries are arguably the most complex
ones in the algorithm. In particular, to avoid update conflicts,
the entry for a cluster can be created only by the cluster head.
Moreover, to enable determining whether an entry a node re-
ceives in a gossip message is fresher than the node’s own en-
try, the cluster head assigns a monotonic timestamp to each
new version of the entry. Merging two entries is nevertheless
far more intricate than merely comparing the timestamps,
as it also has to minimize the routing path length, correctly
compute the adjacency flag, and choose the next-hop neigh-
bor, not to mention handling route poisoning that facilitates
detecting failures of cluster heads.

Changes to the local routing entries, as resulting from the
merges, enable detecting invariant violations and repairing
them by changing the cluster hierarchy. There are two local
operations for such changes, label cut and extension, which
correspond to, respectively, removing a subcluster from a
cluster and to joining a subcluster to a cluster. Again, to

avoid update conflicts, these operations are executed only by
cluster heads, while other nodes just adopt them. A major
problem is again a label merge operation. In particular, a
node with label D.E.B, seeing a label I.E.C, has to decide
whether its label should stay as is or become D.E.C. To
solve this problems, we devised a custom structure, update
vectors, that enforces causal order of label operations albeit
in a scalable manner as compared to, for instance, classic
vector clocks.

4. General Lessons and Future Agenda
All in all, our PL-GOSSIP algorithm, resulting from aban-
doning flooding in favor of eventually-consistent gossiping,
outperforms prior algorithms for cluster hierarchy mainte-
nance in wireless sensor networks [9]. In particular, by em-
ploying it, we demonstrated scalable hierarchical routing
[10] and aggregation [8] schemes.

More importantly, however, we hope that the lessons
learned and problems encountered when devising our even-
tually-consistent distributed cluster hierarchy can inspire so-
lutions in other areas. For example, in the field of big data,
there is a growing interest in analyzing graphs represent-
ing social networks or tweets. Due to their sheer size, such
graphs must be distributed across many machines. More-
over, they are changing constantly. A major challenge is
thus to perform the analysis incrementally, by updating the
data structures used for the analysis (e.g., clusters) together
with the changes in the graphs, rather than rebuilding them
from scratch [4, 12]. We believe that the ideas we touched
upon in this paper can inspire such novel solutions relying
on eventual consistency.

Furthermore, we believe that there is yet a lot of work
ahead to fully understand eventually-consistent distributed
data structures. The progress on eventual consistency in the
context of replicated storage has given us replicated data
types [1, 15, 16], formal models [2, 3, 6], and different
merge techniques [5, 11, 17], to name just a few exam-
ples. The understanding of eventually-consistent distributed
data structures is far inferior. In particular, formal models
are lacking that would allow for proving the properties of
such structures not only in quiescent states, but also dur-
ing continuous changes. Likewise, solutions such as these in
PL-GOSSIP have yet to be generalized and classified. Over-
all, eventually-consistent distributed data structures may
constitute an exciting research agenda.

References
[1] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Ba-

quero, V. Balegas, and S. Duarte. Brief announcement: Se-
mantics of eventually consistent replicated sets. In Proceed-
ings of the 26th International Conference on Distributed Com-
puting, DISC’12, pages 441–442, Berlin, Heidelberg, 2012.
Springer-Verlag. ISBN 978-3-642-33650-8. .

[2] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Even-
tually consistent transactions. In Proceedings of the 21st Eu-
ropean Conference on Programming Languages and Systems,
ESOP’12, pages 67–86, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-28868-5. .

[3] S. Burckhardt, A. Gotsman, and H. Yang. Understanding
eventual consistency. Technical Report MSR-TR-2013-39,
Microsoft Research, March 2013.

[4] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: Taking
the pulse of a fast-changing and connected world. In Proceed-
ings of the 7th ACM European Conference on Computer Sys-
tems, EuroSys ’12, pages 85–98, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1223-3. .

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07,
pages 205–220, New York, NY, USA, 2007. ACM. ISBN 978-
1-59593-591-5. .

[6] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvarts-
man. Eventually-serializable data services. In Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’96, pages 300–309, New York,
NY, USA, 1996. ACM. ISBN 0-89791-800-2. .

[7] K. Iwanicki. Hierarchical Routing in Low-Power Wireless
Networks. PhD thesis, Vrije Universiteit Amsterdam, Ams-
terdam, the Netherlands, June 2010.

[8] K. Iwanicki and M. van Steen. Using area hierarchy for
multi-resolution storage and search in large wireless sensor
networks. In Communications, 2009. ICC ’09. IEEE Interna-
tional Conference on, pages 1–6, June 2009. .

[9] K. Iwanicki and M. van Steen. Gossip-based self-management
of a recursive area hierarchy for large wireless sensornets.
Parallel and Distributed Systems, IEEE Transactions on, 21
(4):562–576, April 2010. ISSN 1045-9219. .

[10] K. Iwanicki and M. Van Steen. A case for hierarchical routing
in low-power wireless embedded networks. ACM Trans. Sen.
Netw., 8(3):25:1–25:34, Aug. 2012. ISSN 1550-4859. .

[11] P. R. Johnson and R. Thomas. Maintenance of duplicate
databases, 1975.

[12] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-
scale graph mining system implementation and observations.
In Data Mining, 2009. ICDM ’09. Ninth IEEE International
Conference on, pages 229–238, Dec 2009. .

[13] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-
regulating algorithm for code propagation and maintenance in
wireless sensor networks. In Proceedings of the 1st Confer-
ence on Symposium on Networked Systems Design and Im-
plementation - Volume 1, NSDI’04, pages 2–2, Berkeley, CA,
USA, 2004. USENIX Association.

[14] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broad-
cast storm problem in a mobile ad hoc network. In Proceed-
ings of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, MobiCom ’99, pages

151–162, New York, NY, USA, 1999. ACM. ISBN 1-58113-
142-9. .

[15] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A
comprehensive study of Convergent and Commutative Repli-
cated Data Types. Technical Report RR-7506, INRIA, Jan-
uary 2011.

[16] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proceedings of the 13th
International Conference on Stabilization, Safety, and Secu-
rity of Distributed Systems, SSS’11, pages 386–400, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-24549-
7.

[17] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. In
Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 172–182, New York,
NY, USA, 1995. ACM. ISBN 0-89791-715-4. .

	Original Problem
	Consistency Perspective
	Eventually-Consistent Distributed State
	General Lessons and Future Agenda

