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Abstract

Time synchronization between computers within a very large, highly dynamic network
is a challenging task. Current solutions operate mostly in a hierarchical client-server mode
based on a static configuration of logical connections, which tends to lack the scalability and
robustness to failures.

In this thesis, the author presents the Gossiping Time Protocol (GTP) — an approach to
time synchronization employing the theory of epidemics. GTP is a completely decentralized
solution in which all the hosts form a peer-to-peer network. They gossip with each other in
order to propagate accurate time. The algorithms constituting GTP have desired properties
of scalability and robustness, while offering fast and quite accurate synchronization. Exper-
imental results obtained with a prototype implementation on an emulated network of more
than 64,000 hosts scattered across the machines of a wide-area cluster computer confirm the
above claim.
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Chapter 1

Introduction

Considering the expansion of the Internet in the last few years as well as the variety of
applications being used, one may observe a gradual shift from the traditional client-server
model towards peer-to-peer (P2P) systems. The key feature of these systems is symmetrical
distribution of data and control among peers. The peers collaborate in order to carry out
large-scale tasks in a simple manner. Moreover, the distribution is performed in such a way
that processes are highly autonomous — they can join or leave at any time without severely
disrupting the whole system. These factors clearly indicate scalability and robustness of P2P
technology and make it suitable for building large-scale, easy-to-manage applications.

Except for scalability and fault tolerance, synchronization between processes is also one
of the most crucial aspects of distributed systems. Despite the fact that many of them
utilize algorithms based on some variants of logical clocks [31, Chap. 5.2], there are a lot of
situations (especially in business) in which an accurate physical clock is required. Moreover,
the ability to synchronize time on a wide scale over the Internet encourages developing novel
techniques for solving well-known problems. Examples described in [16] include enforcing at-
most-once message delivery semantics in the face of failures, maintaining cache consistency,
using time-out tickets for authentication and achieving commitment in atomic transactions.

1.1. Contribution of the Thesis

Nowadays, a majority of time synchronization protocols (see Section 1.2.1) operate in a (hi-
erarchical) client-server mode. Such approaches tend to have drawbacks concerning fault
tolerance and scalability. Even the algorithms that are claimed to be adaptive to changes
in the environment — in particular, crashes of the time server or network connection — are
usually based on a static configuration of a logical network topology.

The author’s research was focused on exploring the potential of gossiping (see Sec-
tion 1.2.2) in the field of time synchronization. His main tasks included: designing, imple-
menting and testing a time protocol for P2P networks. The thesis presents a set of developed
algorithms based on different assumptions together with their properties. The implementa-
tions of the protocols were subsequently used to conduct a series of experiments emulating
large-scale operation in a real network.

The results described in the thesis constitute a part of the GlobeSoul project [7]. The
project aims at exploring possible applications of P2P technology for building large-scale
distributed systems. Current research activities include designing and experimenting with
scalable epidemic networks, super-peers, unstructured overlays and decentralized clustering.
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1.2. Related Work

1.2.1. Time Protocols

There are currently many algorithms for time synchronization in the network. They differ
in the techniques used, but the general principles usually remain similar. The time server is
responsible for maintaining accurate time which is propagated across the network by either
clients fetching the time (pull-based approach), or servers broadcasting the time (push-based
approach). Alternatively, a combination of both methods can be used — push-pull-based
approach.

The most popular time synchronization software is the Network Time Protocol ver. 3
(NTP) [20]. It can operate in several different modes — the most common one involves
a passive server and active clients. There is also a simplified version — the Simple Network
Time Protocol ver. 4 (SNTP) [22] — designed for end users. NTP distinguishes three types of
nodes: primary time servers (with the most accurate time), secondary time servers (synchro-
nize1 with primary time servers or other secondary time servers) and clients (can synchronize
with both types of servers, but do not provide their time information for other nodes). NTP
is described in detail in Section 2.2.

Another example of a time protocol is the Digital Time Service (DTS). According to [20,
19], DTS has similar functional objectives as NTP, but emphasizes configuration management
and correctness principles when used in a managed LAN or on a cluster, while NTP focuses
on the accuracy when operating in the Internet. In the terminology of DTS, the network
consists of time providers, couriers, servers and clerks. The time providers (primary time
servers in NTP nomenclature) maintain the most accurate time which is imported by couriers
(secondary time servers which are being synchronized with primary time servers in NTP) for
local redistribution. The task of the servers (secondary time servers in NTP nomenclature)
is to provide time for possibly many clerks (clients in NTP).

In the UNIX 4.3BSD, the time server (actually, a time daemon, called timed, of a mas-
ter host) [8] periodically polls every slave host to obtain its time. Based on the answers, it
computes a new time and tells all other machines to adjust their clocks. In this model, the
master host is determined by an election algorithm. The election process requires broadcast-
ing which is unavailable in WAN. Although the basic protocol was later adapted to work in
the Internet in a hierarchical way, it requires manual configuration of the host hierarchy.

Other time synchronization protocols exist, e.g. Time Protocol [25] — the ancestor of
NTP — or the protocol incorporated in the Fuzzball [18] routing algorithm, but they are not
described in this paper. Further information and examples can be found in [15], [20] and [31,
Chap. 5.1.2].

1.2.2. P2P Systems

Modern P2P systems usually consist of two or more layers. The lowest one is responsible
for managing the topology of the logical network and for routing messages, whereas higher
layers implement the functionality required by a specific application or group of applications.
Depending on the design principles of the lowest layer, P2P systems can be divided into three
categories.

The most popular one is dedicated to content-based searching (e.g. KaZaa [13]). The

1 For the purpose of this chapter — synchronizing A with B denotes an activity after which A will correct
its time to be equal (with given tolerance) to the time of B. The term to synchronize will be formally defined
later.
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majority of such systems operate with indexing peers that are dynamically constructed usually
in the form of super-peers [36].

A second group consisting of systems known as distributed hash tables aims at efficient
id-based routing of messages through a collection of intermediate peers. Examples include
CAN [26], Chord [30], Pastry [27] and Tapestry [37].

Finally, the epidemic (gossip-based) protocols [31, Chap. 6.4.3] try to exploit randomness
in order to disseminate some information across a large set of peers. Their origin comes from
the theory of spreading diseases [2], which states that with even only one initially infected
specimen, the whole population will be infected in an expected time proportional to the
logarithm of the number of population members.

The general concept of gossiping is that every peer repeatedly contacts another ’random’
peer to exchange information. A simple and scalable solution of choosing a peer to commu-
nicate with is allowing each peer to maintain a partial view of the network, which can be
changed from time to time.

Some examples of application of epidemic protocols cover aggregation computation [14,
11], broadcasting [4], dealing with hot spots [29], load balancing [10], network manage-
ment [33] and resource monitoring [32].

1.3. Overview

The rest of this thesis is organized as follows. The author starts with explaining the basic
theory of time synchronization in distributed systems and gives an overview of NTP in Chap-
ter 2. It is necessary to understand Chapter 3 describing the model of the system, Chapter 4
presenting developed time protocols and Chapter 5, which discusses the algorithms employed
for maintaining the logical network for the purpose of time dissemination. Chapter 6 contains
the analysis of the experimental results, in particular obtained by the large-scale emulation
of the environment, while the utilized implementation is described in Chapter 7. Chapter 8
lists examples of possible applications of the designed algorithms and discusses the work for
the nearest future. The thesis is concluded in Chapter 9.
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Chapter 2

Time Synchronization

Throughout this thesis a standard terminology is adopted. Following [21], the epoch of
an event is an abstraction which determines the ordering of events in some given frame of
reference or time-scale. An oscillator is a generator capable of precise frequency (relative
to the given time-scale) within a specified tolerance. A clock contains an oscillator and a
counter which records the number of cycles since being initialized with a given value at a
given epoch. The value of the counter at epoch t defines the time of that epoch T (t).1

Let T (t) be the time displayed by a clock at epoch t relative to the standard time-scale:

T (t) = T (t0) + R(t0)
(t− t0)

1!
+ D(t0)

(t− t0)2

2!
+ ρ(t),

where T (t0) is the time at some previous epoch t0, R(t0) is the frequency and D(t0) is the
drift (first derivative of frequency) per unit time. T and sometimes R are estimated in the
synchronization process, while D and ρ (characterizing the random nature of the real clock)
are assumed to be zero.

The stability of the clock indicates how well it can maintain a constant frequency, the
accuracy is how well its time compares with the reference time and the precision is the
granularity of the clock. The time offset (or simply offset) of clock A relative to clock B is
the time difference between them TAB(t) = TA(t)− TB(t) at a particular epoch t, while the
frequency offset (or just skew) is the frequency difference between them RAB(t) = RA(t) −
RB(t). For all t the following equations are true: TAB(t) = −TBA(t), RAB(t) = −RBA(t),
TAA(t) = 0 and RAA(t) = 0.

As the reference time, the Universal Coordinated Time (abbreviated as UTC) [31, Chap. 5.1]
is assumed. It is later denoted as TREF (t).

2.1. Synchronization Theory

Synchronization of the clocks in the network requires a way to compare them — directly or
indirectly — in time and, possibly, in frequency. There are many ways of doing this com-
parison. The one presented here was widely adopted (e.g. NTP) and is similar to Cristian’s
algorithm [31, Chap. 5.2.1]. Again following a standard nomenclature, to synchronize the
time of the clocks means to set them to agree at a particular epoch with respect to UTC, to
synchronize their frequency means to adjust the clocks to run with the same frequency. To
synchronize clocks means to synchronize them in both time and frequency.

1 In general, time is not continuous and depends on the precision of the counter.
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The time server is a host with authoritative time. Such time can be maintained with spe-
cial, commercially available hardware and by means of short-wave radio broadcasts or satellite
services for UTC. Alternatively, depending on the required accuracy, standard crystal-based
oscillator, which requires manual adjustments from time to time, can be used. Parameters of
the most popular technologies are presented in [20, Appendix E].

Other (slave) hosts in the network own their local clocks.

2.1.1. Basic Algorithm

A time server (B) is passive. Each slave host (A), on the other hand, periodically sends a
synchronization request message to the time server and also records a timestamp TA

1 (see Fig-
ure 2.1) according to its local clock.

A

B

time

T1
A

T2
B T3

B

T4
A

dTreq dTres

Figure 2.1: Measuring round-trip delay and offset.

Immediately after reception of a synchronization message the time server records a time
TB

2 according to its clock and starts to prepare a response message containing the recorded
time. When the message is ready, the time server records a time TB

3 , stores it within the
response (together with TB

2 ) and sends the message back to the slave host.
As soon as the synchronization response is delivered to the host, the latter records a time

TA
4 according to its clock. At that point, slave host A has the following times: TA

1 , TB
2 , TB

3

and TA
4 . These values allow A to compute the offset of B and a round-trip delay.

Let:

TA
1 = TA(t1), TB

2 = TB(t2), TB
3 = TB(t3) and TA

4 = TA(t4),

where t1 ≤ t2 ≤ t3 ≤ t4 indicate epochs of appropriate events. Without loss of generality,
assume TA(t1) ≤ TA(t4) and TB(t2) ≤ TB(t3) (time is not running backwards). Also, for
the moment assume that both clocks are stable and run at the same rate (which implies
TA(t4)− TA(t1) ≥ TB(t3)− TB(t2)). In addition, as shown in Figure 2.1:

dTreq = TREF (t2)− TREF (t1) and dTres = TREF (t4)− TREF (t3).

If the difference between propagation delays from A to B and from B to A, called differ-
ential delay, is small (dTreq ' dTres), the round-trip delay δ and clock offset θ of B relative
to A at time TA

4 (epoch t4) are close to:

δ = TA
4 − TA

1 − (TB
3 − TB

2 ) = TA
4 − TA

1 + TB
2 − TB

3 (2.1)
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θ = TB
3 +

δ

2
− TA

4 =
TB

2 − TA
1 + TB

3 − TA
4

2
(2.2)

Based on the θ value, host A can adjust its time in order to synchronize with host B
by either changing the frequency of its clock for a certain amount of time, or resetting the
clock immediately to the appropriate time. The value of δ provides the capability to send
a message to arrive at B at a specified time. It is sometimes also used for estimating a
dispersion (denoted as ε), which represents the expected maximal error of the local clock
relative to the reference clock.

2.1.2. Synchronization Errors

Exhaustive analysis of errors for the presented algorithm is part of the work of D.L. Mills.
Because of its length, it is not repeated here. The details and further references can be found,
for example in [20, Appendix H] and [21]. However, important issues are the types and the
reasons of errors that are listed below.

1. Errors in reading clocks of both hosts, which depend on the precision of the clocks and
the method of adjustment.

2. Errors due to the frequency tolerance of the clocks since their time was last set.

3. Errors contributed by delay variations in the network and in the operating system on
the path to the time server.

4. Errors contributed by multiple time servers used for synchronizing the local clock, which
depend upon the differences between members of the time servers set.

According to [21], in practice, errors due to network delays dominate all others. Moreover,
if a hierarchical synchronization network is assumed — host A is a time server for host B,
host B is a time server for host C, and so on — the errors accumulate — the time of B will
be influenced by errors in synchronization with A, the time of C will be influenced by the
previous errors of B and errors in synchronization with B, and so on.

2.2. Application Example: NTP

The Network Time Protocol [20] evolved from the Time Protocol [25]. It operates on top of
UDP and can run in several modes, e.g. unicast and broadcast, private workstations, public
servers, etc. The accuracy of time provided by NTP varies from 1 to 10 milliseconds in local
area networks to tens or even hundreds of milliseconds in the Internet [21].

The model of NTP introduces a synchronization subnet — a network consisting of primary
and secondary time servers, clients and transmission paths. A primary time server is directly
synchronized to a reference time source — usually a UTC radio clock. A secondary time
server synchronizes, possibly via other secondary servers, with one or more primary servers
over network transmission paths, possibly shared with other services. Clients can synchronize
with both types of servers. The synchronization subnet assumes a hierarchical master-slave
configuration with primary servers at the root and secondary servers of decreasing accuracy
at successive levels towards the leaves.

An example of a synchronization subnet is shown in Figure 2.2a, in which the nodes
represent servers and the edges transmission paths. The accuracy of the server is defined by
a stratum, which indicates the hop count from the primary (stratum 1) server. Bold lines

7



indicate active transmission paths with time information flow marked with arrows. Normal
lines represent backup synchronization paths.

2

1

2 2

3 3

2

1

2 3

3 3

(a) Before crash (b) After crash

Figure 2.2: Sample synchronization subnet.

Figure 2.2b shows the same subnet after a crash of a communication path (dashed line).
NTP reconfigures itself to use backup paths, which results in one of the servers having
increased its stratum from 2 to 3.

In order to improve the quality of time provided by a secondary server to its users, the
server usually synchronizes with many other primary or secondary servers. Moreover, the syn-
chronization samples estimated by the algorithm described in Section 2.1.1 are examined for
possible errors by estimating their dispersion. This value allows NTP to reject samples that
might have experienced excessive network delay and should not be used for synchronization.
After filtering the data (per transmission path) the intersection and clustering algorithms are
used to select from among all servers a suitable subset capable of providing the most accu-
rate and trustworthy time. That process tries to divide the servers into two disjoint sets of
truechimers, which own correct clocks, and falsetickers, which may not. Finally, the samples
from selected servers are combined and the clock adjustment can be started.

All these steps correspond to building a directed acyclic graph (DAG) from primary time
servers to a given secondary server or client, with edge weights minimizing the estimated
synchronization error. More information about these algorithms, which are too elaborate to
be repeated in the thesis, can be found in [21] and [20].

For the same reason, the simplified version of NTP called the Simple Network Time
Protocol [22] was designed. It can cooperate with NTP or be utilized on its own. However,
it is strongly recommended to use SNTP only for the end nodes (the highest stratum) of the
synchronization subnet.
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Chapter 3

System Model

The model of the system for the developed time protocols assumes a logical network formed
by nodes. In this network there is at least one node maintaining accurate time, called a time
source. Other nodes are equipped with local clocks capable of time-keeping with a reasonable
accuracy and stability, e.g. default crystal-based oscillator timers.

According to the system architecture invented by the author, the protocol-related software
of a node consists of layers (see Figure 3.1), described in detail later in this chapter.

NODE
Local Clock

Network Transport Layer Protocol

Time Synch. Protocol Other Applications

Membership Management Protocol

Figure 3.1: Layers of a single node.

The lowest layer is formed by an operating-system-level protocol designed for message
passing. The middle layer is responsible for membership management of the logical network.
Finally, the time synchronization protocol resides in the highest (application) layer. Such
design is very common in distributed systems and allows sharing or replacing some parts
without affecting the others [31, Chap. 1].

3.1. Local Clock Model

The local clock model assumed for the system is a standard one — described in Chapter 2.
The clock consists of an oscillator and a counter. However, two variants of adjustment
methods, called immediate and gradual, are distinguished. They differ in the way the time
correction is applied to the clock. Although both methods can be utilized interchangeably,
the thesis introduces two distinct clock models which are named after the methods used for
time correction.
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3.1.1. Immediate Adjustment

The programming interface of the immediate model consists of two operations1 which are
specified in Listing 3.1.

1 interface Clock ;
2 begin
3 function getTime ( ) : integer ;
4 procedure correctTimeIm ( offset : integer ) ;
5 end ;

Listing 3.1: Interface for the immediate clock model.

Function getTime() returns the current time, while procedure correctTimeIm(offset) in-
creases the value of the current time by the value of the parameter offset2. Such functionality
can be easily implemented with basic arithmetic operations on the counter of the clock.

3.1.2. Gradual Adjustment

The gradual model was designed to meet the requirement that time cannot be set backwards.
Such an assumption is crucial for some applications (e.g. the make program). The adjustment
complying with the above specification can be performed in a variety of ways, therefore this
section presents only a solution implemented by the author.

Instead of moving the clock directly, the method simulates either slowing the clock down
or speeding it up for a period of time necessary for the time changes to be completed. More
specifically, the clock adjustment period indicates the number of time units during which one
time unit will be either added (simulating a fast clock) or subtracted (simulating a slow clock)
from the time. This operation is performed during the last time unit of the clock adjustment
period. For the user of the clock it seems like that time unit was lasting for half of a normal
time unit (fast clock) or two normal time units (slow clock). If time correction requires to
move a clock by N time units, N clock adjustment periods are required.

normal frequency

accelerated

slowed down0 1 2 3 4 5 6 7 8 9 109

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 11 1210

Figure 3.2: Gradual clock adjustment (only one clock adjustment period of the length of 10
time units is depicted). Because of limited precision of the clock, value 10 of the accelerated
clock will not appear.

1 In all specifications and algorithms it is assumed that the time is represented by an integer type of a
size capable of storing all required values. It can for example denote the number of milliseconds since the
beginning of the millennium.

2Which can be negative.
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Figure 3.2 shows an example of gradual time adjustment and the interface of a gradually-
adjustable clock is presented in Listing 3.2.

1 interface Clock ;
2 begin
3 function getTime ( ) : integer ;
4 procedure correctTimeGr ( offset : integer ) ;
5 function getCorrection ( ) : integer ;
6 end ;

Listing 3.2: Interface for the gradual clock model.

Function getTime() returns the current time, like in the immediate model, procedure
correctTimeGr(offset) starts the adjustment process of offset time units and function
getCorrection() returns the number of time units by which the time has to be further cor-
rected (0 indicates that no adjustment process is active). If operation correctTimeGr(offset)
is called when the clock is being adjusted then the number of time units remaining to adjust
is overwritten with the offset value.

That adjustment mode can be implemented with a supplementary counter storing the
number of time units to be either added or removed from the normal counter.

3.2. Membership Management

One of the major assumptions concerning the system is that the logical network connecting
the nodes can be very large and dynamic. Therefore information about all nodes should
be distributed across the system — solutions using centralized components for membership
management or forcing every node to store information about all other members are unac-
ceptable. Moreover, crashes of nodes (including time sources) or communication paths are
considered normal and should not disrupt the operation of the system.

The problem is easily solvable if the P2P protocols, described in Section 1.2.2, are em-
ployed for handling membership. In particular, a node is assumed to know some number of
other nodes called its neighbors. It can directly exchange information (gossip) only with these
nodes in a P2P fashion. The neighborhood relation is represented by a directed graph called
the overlay graph (or, simply, the overlay). Because of the fact that the time synchronization
protocols designed by the author operate in an epidemic manner, the overlay graph can be
either structured (e.g. a multidimensional torus in CAN [26], or a lattice in Chord [30]), or
unstructured (e.g. CYCLON [35], SCAMP [6]) — the important issue being that it has good
data dissemination properties (see Chapter 5).

The neighborhood information has to be supplied for the time synchronization protocol
(and possibly other applications). To accomplish that task the author extended the concept
of a peer sampling service [12]. The peer sampling service acts as a connection between the
membership/overlay management layer and the application layer. Its original interface is
presented in Listing 3.3.

1 interface PeerSamplingService ;
2 begin
3 function getNeighbor ( ) : NeighborData ;
4 end ;

Listing 3.3: Basic interface for the peer sampling service.

11



The sole function getNeighbor() is to be called by the application whenever it is willing
to exchange data with another node. The result of this function (NeighborData) contains
information necessary to contact that node (e.g. an IP address and a port number of the
application). The task of the membership management layer is to choose one of the node’s
neighbors and pass its data to the requesting application. The operation of the peer sampling
service depends only on the implementation of the overlay layer. It can, for example, choose
a random neighbor or the first neighbor from the list (with the ordering enforced by the
overlay management protocol).

The extended version (see Figure 3.3) proposed by the author allows to store within the
neighborhood information not only data necessary to contact a given node, but also some
(small) amount of application-specific data.

Extended Peer
Sampling Service

Selected Neighbor

All Neighbors

Peer Sampling
Strategy

Membership Management Protocol

Application

Figure 3.3: Overview of the extended peer sampling service. The bold arrows show informa-
tion flow, while the dashed arrows show dependencies.

This approach allows to implement different peer sampling strategies. The peer sampling
strategy, based on the application data, may choose the best suited neighbor to be contacted
(by the application) from the set of neighbors currently maintained by the membership man-
agement protocol. The new interface of the peer sampling service is presented in Listing 3.4.

1 interface PeerSamplingServiceEx ;
2 begin
3 function getNeighbor ( ) : NeighborDataEx ;
4 procedure setSamplingStrategy (
5 strategy : PeerSamplingStrategy ) ;
6 callback getApplicationData ( ) : Object ;
7 end ;

Listing 3.4: Interface for the extended peer sampling service.

Function getNeighbor() using the current peer sampling strategy chooses a neighbor to be
contacted and returns its contact information and application-specific data to the caller. Pro-
cedure setSamplingStrategy(strategy) changes the current sampling strategy. The strategy

object can be both overlay management layer and application specific. Finally, callback
getApplicationData() is implemented by a given application. Its task is to provide the mem-
bership management protocol with current application data of the same node. That callback
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is usually called when information about the node is to be sent to one of its neighbors as a
part of the overlay protocol message.

In further chapters of the thesis, the extended peer sampling service is assumed. The peer
sampling strategy and application-specific data utilized by described time synchronization
protocols are always stated explicitly.

3.3. Time Synchronization Protocol

The goal of the time synchronization protocol is to keep time synchronized with the time
source. A node does not, in general, have information allowing it to contact the time source
directly. It may only establish its time by gossiping with, the possibly changing, set of its
neighbors accessible via the peer sampling service.

It should be noted that clock synchronization requires by nature long periods and many
comparisons in order to maintain accurate time-keeping. While only a few measurements
are usually adequate to reliably determine local time to a reasonable accuracy, periods of
many hours and tens of measurements (involving exactly the same nodes) are required to
resolve oscillator skew [20]. This is the main reason that protocols designed by the author
do not aim at synchronizing frequency. Another reason is the fact that services provided by
operating systems usually do not contain functions allowing to change the frequency of the
system clock.3

From now on the term to synchronize clocks denotes synchronizing clocks in time, but
not in frequency.

3 Of course such operations can be simulated by a user-space software layer that is placed on top of kernel
services, but applications using kernel functions directly would not benefit from it.
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Chapter 4

Gossiping Time Protocol

The time synchronization algorithm designed by the author has been called the Gossiping
Time Protocol (GTP). There are three major variants of GTP, presented later in this chapter.
For the purpose of clarity, the thesis does not describe precisely every aspect of the protocol
(e.g. order of fields in the messages, unified format of time for heterogeneous environments,
ways of dealing with different time zones or handling errors). It aims at explaining the
algorithms developed for synchronization along with their properties.

Gossiping in GTP follows a timestamp exchange pattern similar to the algorithm described
in Section 2.1.1. However, simple application of that algorithm would result in the pull-based
only information dissemination strategy. To achieve the push-pull-based approach, which
has much better properties [12], additional actions are required. More specifically, node A
initializes a timestamp exchange (gossiping) by sending a request message to node B. Upon
reception of a request by node B, it performs all necessary operations and sends a response
back to node A. Node A, based on the sample estimated from the response, may either
synchronize its clock to the clock of B, send a feedback message to B, or ignore the sample.
If node B receives the feedback message, it may use it to synchronize its clock to the clock
of node A. Such a solution, among other things, allows a time source to be pro-active, which
increases the speed of time dissemination — the time source may initiate gossiping with other
nodes and then always send feedback messages.

4.1. Common Elements

All algorithms involve two separate paths of execution1 called active and passive. For the
purpose of the description of GTP, the following symbols are used:

• CLOCK — a module providing access to the local clock with one of the interfaces specified
in Section 3.1 (exact clock version is stated for each algorithm separately);

• PSS — a module implementing extended peer sampling service conforming to the in-
terface described in Section 3.2 (peer sampling strategy and application-specific data
utilized are a part of a particular GTP variant);

• GOSSIPING_DELAY — a variable storing the current delay (in time units) between con-
secutive GTP gossiping attempts;

1 The author avoids using the word thread, because the algorithms can be implemented in both single-
threaded and multi-threaded manner. Moreover, an efficient implementation would preferably utilize a pool
of threads for handling synchronization requests from other nodes on multi-processor machines.
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• TIME_SOURCE — a boolean value2 which is true if, and only if, the given node is a time
source.

Additionally the following operations are available:

• procedure sleep(n:integer);
— suspends execution of the current path for n time units;

• procedure send(m:Message;a:NetworkAddress);
— sends message m to the network address specified by a;

• function receive(out m:Message; out a:NetworkAddress);
— waits for a message and, when it arrives, stores it in m (variable a receives address
of the sender).

The algorithms do not require neither reliable, nor ordered message delivery. It is assumed
that the type Message contains a flag that can be equal to one of the following values:
MSG_REQUEST, MSG_RESPONSE or MSG_FEEDBACK. This flag is referred to by a field msgType. De-
pending on the value of the flag, the message may contain up to four timestamps denoted by
fields: t1, t2, t3 and t4, corresponding to the symbols used in the synchronization algorithm
described in Section 2.1.1.

The active execution path is responsible for initiating gossiping with another node. Its
pseudo-code is presented in Listing 4.1.

1 var
2 target : NeighborData ;
3 request : Message ;
4

5 while true do
6 begin
7 sleep ( GOSSIPING_DELAY ) ;
8 target := PSS . getNeighbor ( ) ;
9 i f target <> null then

10 begin
11 request . msgType := MSG_REQUEST ;
12 PrepareRequest ( request ) ;
13 request . t1 := CLOCK . getTime ( ) ;
14 send ( request , target . gtpAddress ) ;
15 end ;
16 end ;

Listing 4.1: GTP active execution path.

In the infinite loop, first, GTP waits for GOSSIPING_DELAY time units (7) before start-
ing synchronization. After waking up, it retrieves a neighbor to gossip with from the peer
sampling service (8). If the node is connected to the network (9), the message with GTP
request is prepared (11-12), timestamped (13) and sent (14) to the address of the GTP layer
of the chosen neighbor.

Procedure PrepareRequest(m:Message) is responsible for setting supplementary message
fields that depend on a particular variant of GTP.

The pseudo-code of the passive execution path, whose task is handling requests from other
nodes and responses to the node’s own requests, is presented in Listing 4.2.

2 Although presented versions of GTP do not modify this value, it can be used as a variable if the fault
tolerance is considered. More specifically, if the time source crashes, another node can take over its role.
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1 var
2 sender : NetworkAddress ;
3 message : Message ;
4 timestamp : integer ;
5

6 while true do
7 begin
8 receive ( message , sender ) ;
9 timestamp := CLOCK . getTime ( ) ;

10 case message . msgType of
11 MSG_REQUEST : (∗ t1 i s s e t ∗)
12 begin
13 message . t2 := timestamp ;
14 message . msgType := MSG_RESPONSE ;
15 PrepareResponse ( message ) ;
16 message . t3 := CLOCK . getTime ( ) ;
17 send ( message , sender ) ;
18 end ;
19 MSG_RESPONSE : (∗ t1 , t2 and t3 are s e t ∗)
20 begin
21 message . t4 := timestamp ;
22 i f ExamineSample ( message ) then
23 begin
24 message . msgType := MSG_FEEDBACK ;
25 PrepareFeedback ( message ) ;
26 send ( message , sender ) ;
27 end ;
28 end ;
29 MSG_FEEDBACK : (∗ t1 , t2 , t3 and t4 are s e t ∗)
30 begin
31 ExamineSample ( message ) ;
32 end ;
33 end ;
34 end ;

Listing 4.2: GTP passive execution path.

Inside the infinite loop, GTP waits for a message from an arbitrary node (8). Immediately
after reception, it records the current time (9). If the message contains a synchronization
request sent by an active path of another node (11), then the response is prepared (13-15),
timestamped (16) and returned to the sender (17). On the other hand, if the message is a re-
sponse to the request of the current node (19), it is examined for possible application for clock
adjustment (22), based on criteria described in detail for each version of the algorithm sep-
arately. If the information from the message can be utilized by the sender to synchronize
its clock3, a feedback message is prepared (24-25) and returned to the sender (26). Finally,
if the received message is a feedback sent by another node (29), it is examined, in a similar
way, for possible synchronization usage (31).

Procedures PrepareResponse(m:Message) and PrepareFeedback(m:Message) are responsible
for setting fields specific to a GTP variant. The task of the function
ExamineSample(m:Message):boolean is to estimate whether a given message can be used for

3 Such situation implies that the current node does not use the received message for synchronization of its
clock.

17



synchronization purposes, and, if so, to apply the computed offset to the local clock. If the
information cannot be used by the current node, but there is a possibility that the sender
can use it, the function returns true. Otherwise, false is returned.

To sum up, all versions of GTP follow the framework presented above. To fully describe
a given algorithm, the following issues have to be specified:

1. Chosen clock adjustment model.

2. Application-specific data for the overlay layer and a peer sampling strategy.

3. Additional variables and objects.

4. Additional fields in the Message type.

5. Procedures PrepareRequest, PrepareResponse and PrepareFeedback.

6. Function ExamineSample.

The following sections discuss GTP in detail, starting from the simplest algorithm to the most
elaborate one.

4.2. Simple Algorithm

The initial approach (denoted as basic version of GTP) is based on the immediate clock
adjustment model. It does not require any application-specific data for the overlay layer.
The neighbor to gossip with is always chosen as a random one from the neighbor set provided
by the membership management protocol, which corresponds to the classical definition of
gossiping.

In order to have a mechanism allowing for estimating quality of time provided by nodes,
an additional integer variable TS_DISTANCE is employed. It records the distance (hop count)
of a given node from the time source, which is similar to a stratum number in NTP. In
particular, the value of TS_DISTANCE is always equal to zero for a node that is a time source.
For other nodes it is initially set to infinity. Whenever node A adjusts its clock after gossiping
with node B, its TS_DISTANCE value is set to the value of this variable for node B incremented
by one. This solution requires an additional field in the message (denoted as tsDistance),
containing the TS_DISTANCE value of the sender.

Moreover, the time displayed by the clock of a node may be adjusted during the exchange
of synchronization messages between two nodes, if one of them is contacted by some other
node. Such situations cause timestamps carried by a message to be useless and the algorithm
must be able to detect it. This is one of the reasons for introducing the variable LAST_UPDATE

(of type integer) storing the time of the last update of the clock according to the new local
time of a node. This variable can also be used for different purposes, as described later in
this section. In addition, the message is extended by two integer fields denoted as luSender

and luReceiver storing the values of LAST_UPDATE for appropriate nodes.
The implementations of procedures PrepareRequest, PrepareResponse and PrepareFeedback,

presented in Listing 4.3, are straightforward. The only operation they perform is copying the
values of TS_DISTANCE and LAST_UPDATE of the node to the appropriate message fields.

The most important part of the algorithm is the function ExamineSample, whose goal is
to decide whether to synchronize the clock and send a feedback message. Its pseudo-code is
presented in Listing 4.4.
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1 procedure PrepareRequest (m : Message ) ; (∗ executed by A ∗)
2 begin
3 m . luSender := LAST_UPDATE ;
4 end ;
5

6 procedure PrepareResponse (m : Message ) ; (∗ executed by B ∗)
7 begin
8 m . luReceiver := LAST_UPDATE ;
9 m . tsDistance := TS_DISTANCE ;

10 end ;
11

12 procedure PrepareFeedback (m : Message ) ; (∗ executed by A ∗)
13 begin
14 m . tsDistance := TS_DISTANCE ;
15 end ;

Listing 4.3: Message preparation procedures for basic GTP.

In the beginning (6-8), the algorithm determines if the samples have any synchronization
value, i.e. whether the clock of the node was adjusted during the message exchange. If
this is the case, the function returns indicating that received information cannot be used
as a feedback message.

Otherwise, the node checks whether it is a time source (10) and, if so, it leaves the function
informing that the feedback message can be sent to the other node.

The goal of the next statements is to determine whether the node is going to synchronize
its clock. First (12), it is checked whether the other node was synchronized before. After
that the node checks whether its hop count is smaller than or equal to the hop count of
the other node (13), effectively, evaluating the quality of the time provided by that node.
Alternatively, it may turn out that the node has not been synchronized for a long time and it
is willing to accept the sample, even despite the fact that it may degrade its time quality (14-
15). The reason for the last heuristic is the ability to deal with skewed clocks that require
periodical corrections.

If the node decides to accept the sample, it synchronizes its clock (17-19), updates other
variables (20-21) and returns indicating that a feedback message is not needed.

Otherwise, it checks if its time was synchronized before and, based on the result, it
indicates whether a feedback message can be sent (25).

Table 4.1 summarizes the contents of the particular messages exchanged during a single
gossiping process. As stated before, the feedback message is optional.

msgType MSG_REQUEST MSG_RESPONSE MSG_FEEDBACK

t1 TA
1 TA

1 TA
1

t2 - TB
2 TB

2

t3 - TB
3 TB

3

t4 - - TA
4

tsDistance - TS_DISTANCEB TS_DISTANCEA

luSender LAST_UPDATEA LAST_UPDATEA -
luReceiver - LAST_UPDATEB LAST_UPDATEB

Table 4.1: Contents of different messages of basic GTP.
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1 function ExamineSample (m : Message ) : boolean ;
2 var
3 msglu : integer ;
4 offset : integer ;
5 begin
6 msglu := m . msgType = MSG_RESPONSE ?
7 m . luSender : m . luReceiver ;
8 i f msglu <> LAST_UPDATE then return fa l se ;
9

10 i f TIME_SOURCE then return true ;
11

12 i f ( m . tsDistance < ∞ and
13 ( TS_DISTANCE > m . tsDistance or
14 CLOCK . getTime () − LAST_UPDATE >=
15 _STANDALONE_PERIOD_ ) ) then
16 begin
17 offset := ( m . t2 − m . t1 + m . t3 − m . t4 ) / 2 ;
18 i f m . msgType = MSG_FEEDBACK then offset := −offset ;
19 CLOCK . correctTimeIm ( offset ) ;
20 TS_DISTANCE := m . tsDistance + 1;
21 LAST_UPDATE := CLOCK . getTime ( ) ;
22 return fa l se ;
23 end ;
24

25 return TS_DISTANCE < ∞ ;
26 end ;

Listing 4.4: Basic clock synchronization procedure for basic GTP.

4.2.1. Observations

For the simple theoretical analysis assume that all nodes gossip with the same frequency and
let ti (where i = 0, 1, 2, ...) denote some epoch before the i + 1-st gossiping period, but after
the i-th gossiping period (if such exists). Moreover, let SA(ti) represent the state of node A
at epoch ti. Function

SA(ti).ERROR = |SA(ti).CLOCK.getT ime()− TREF (ti)| (4.1)

indicates an absolute error in time displayed by a clock of node A at epoch ti. If the node A
is a time source, the following condition is met:

SA(t0).ERROR = 0 and SA(t0).TS DISTANCE = 0, (4.2)

otherwise:
SA(t0).TS DISTANCE = ∞. (4.3)

Additionally, for all A:
SA(t0).LAST UPDATE = −∞. (4.4)

Without loss of generality, assume that nodes A and B gossip with each other during the
i + 1-st gossiping period. If the message delivery is reliable, the algorithm ensures that:

SA(ti).TS DISTANCE < ∞ or SB(ti).TS DISTANCE < ∞ =⇒ (4.5)

SA(ti+1).TS DISTANCE < ∞ and SB(ti+1).TS DISTANCE < ∞.
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If the network differential delay is equal to zero, the offsets calculated using the timestamps
from exchanged synchronization messages are equal to the real offsets between the clocks. If,
additionally, the clock frequencies of all nodes are equal to the perfect frequency, then for all
i ≤ j:

SA(ti).ERROR = 0 =⇒ SA(tj).ERROR = 0 (4.6)

and also:

SA(ti).TS DISTANCE < ∞ =⇒ SA(ti).ERROR = 0. (4.7)

It should be noted, that the formulas above allow to estimate the speed of time dissemina-
tion in a perfect environment. By combining them together, one may notice that if during a
gossiping cycle two nodes, one of which has already been synchronized, exchange timestamps,
then both of them will be synchronized afterwards. Such behavior is similar to the model
of spreading infectious diseases, mentioned earlier. On the assumption that the peer sampling
service provides GTP with an overlay graph of appropriate properties, the expected time of
network synchronization should depend logarithmically on the size of the network.

Experiments conducted by the author (see Chapter 6) indicate that, indeed, the latter
statement is true. However, the assumption of small network differential delays is not very
realistic and special measures have to be taken to alleviate the influence of these errors
on the accuracy of a time synchronization algorithm.

4.2.2. Improvements

The approach to dealing with network differential delays, introduced in basic GTP utilizes
sample filtering. To be specific, each node owns a cyclic buffer (called filter) of size N holding
round-trip delays of the last N samples that could have been potentially used for synchro-
nization. Initially, the buffer is filled with infinite values.

For each sample that passes lines 6-10 of the ExamineSample function (see Listing 4.4),
the round-trip delay is estimated and stored within the filter, before checking the conditions
in lines 12-15. Later, if the sample satisfies these conditions, a value of some statistical
function (e.g. a median or an average) on the round-trip delays stored within the buffer is
estimated. That value is then compared to the round-trip delay of the current sample (pos-
sibly with some weights). If this (weighted) round-trip delay is smaller than or equal to
the (weighted) value of the statistical function, then the sample can be used for synchroniza-
tion purposes (lines 17-21). Otherwise, function ExamineSample exits without synchronizing
the clock, but returning true — although the sample was not appropriate for the current
node, it may be utilized by the other node, so it can be sent as a feedback message.

Despite its simplicity, the sample filtering solution addresses two important problems.
Firstly, it is capable of rejecting the samples with round-trip delays higher than usual. This
does not have to be equivalent to rejecting samples with high differential delays. However,
without well-synchronized clocks it is not possible to measure differential delays during time-
stamp exchange. On the other hand, high differential delays may be caused by a packet being
slowed down on its way (in one direction), which leads to a higher round-trip delay. More-
over, the filter is adaptive. When round-trip delays increase because of high network load,
the buffer is gradually filled with these increasing values and after some time (depending on
the size of the buffer and function used) a sample will pass filtering conditions.
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4.3. Refined Algorithm

The next algorithm (referred to as gradual version of GTP) aims at improving the accuracy of
time synchronization in the presence of network differential delays. Like the previous version,
it does not require any application-specific data for the overlay management layer and em-
ploys random selection as the peer sampling strategy. The meaning of variables LAST_UPDATE

and TS_DISTANCE remains unchanged.
The first major modification to basic GTP is using the gradual clock adjustment model,

fulfilling the requirement of constant time flow.
Another problem the algorithm addresses is improving the granularity of the time quality

information maintained by nodes. In the previous version of GTP, the quality of time of a
node is determined only by the value of the TS_DISTANCE variable — the nodes with higher
values are considered to be less useful for synchronization. However, this is not always
the case, because if during synchronization between nodes A and B (with a small hop count)
an undetected (by the filter) error caused by the network differential delay occurs, the time
of node A may be much worse than the time of some other node with higher hop count.
Moreover, there is a high probability that many nodes will become unsynchronized due to
such an error and errors accumulating on the synchronization paths from node A to these
nodes.

The solution requires every node to store an additional integer variable, called DISPERSION,
which contains the quality of the last sample used by the node for synchronization. Addi-
tionally, GTP messages are extended by a field dispersion of the same type.

It is also assumed that the frequency and the tolerance of the clock are known4. In
particular, during _TD_ time units the error of the clock may change by at most _TN_ time
units. Message preparation procedures in Listing 4.5 present the usage of the new elements
(procedure PrepareRequest is empty).

1 procedure PrepareResponse (m : Message ) ; (∗ executed by B ∗)
2 begin
3 m . tsDistance := TS_DISTANCE ;
4 m . dispersion := CalculateDispersion ( ) ;
5 end ;
6

7 procedure PrepareFeedback (m : Message ) ; (∗ executed by A ∗)
8 begin
9 m . tsDistance := TS_DISTANCE ;

10 m . dispersion := CalculateDispersion ( ) ;
11 end ;
12

13 function CalculateDispersion ( ) : integer ;
14 begin
15 return DISPERSION + abs ( CLOCK . getCorrection ( ) ) +
16 ceil ( ( _TN_ ∗ ( CLOCK . getTime () − LAST_UPDATE ) ) / _TD_ ) ;
17 end ;

Listing 4.5: Message preparation procedures for gradual GTP.

Function CalculateDispersion tries to estimate an expected error that the time of given
node may exhibit under the nominal operating conditions.5 That error incorporates the

4 Such information is usually a part of a clock specification.
5 The formulas used for estimating errors have been inspired by the research concerning NTP.
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estimated error of the last sample used by the node for synchronization, the time correction,
that has still to be applied to the clock in the gradual adjustment process, and a possible
error due to the clock skew. For simplicity of the algorithm description, it is assumed that
infinity is an ordinary value. Comparisons of ∞ with other values have intuitive results.
Moreover, x±∞ = ±∞ for all x and x · ±∞ = sign(x)±∞ for all x except 0.

Listing 4.6 shows the clock adjustment function ExamineSample. In the beginning of the
synchronization process, the value of DISPERSION is zero for the time source and infinity
for other nodes.

1 function ExamineSample (m : Message ) : boolean ;
2 var
3 offset , roundtripDelay : integer ;
4 ourDispersion , msgDispersion : integer ;
5 begin
6 i f TIME_SOURCE then return true ;
7

8 i f m . dispersion = ∞ then
9 return DISPERSION < ∞ ;

10

11 roundtripDelay := m . t4 − m . t1 + m . t2 − m . t3 ;
12 ourDispersion := CalculateDispersion ( ) ;
13 msgDispersion := m . dispersion + roundtripDelay / 2 ;
14

15 i f ( ( msgDispersion − ourDispersion ) ∗ _TD_ <=
16 ( CLOCK . getTime () − LAST_UPDATE ) ∗ _TN_ and
17 ( TS_DISTANCE > m . tsDistance or
18 CLOCK . getCorrection ( ) = 0 ) ) then
19 begin
20 offset := ( m . t2 − m . t1 + m . t3 − m . t4 ) / 2 ;
21 i f m . msgType = MSG_FEEDBACK then offset := −offset ;
22 CLOCK . correctTimeGr ( offset ) ;
23 TS_DISTANCE := m . tsDistance + 1;
24 LAST_UPDATE := CLOCK . getTime ( ) ;
25 DISPERSION := msgDispersion ;
26 return fa l se ;
27 end ;
28

29 return DISPERSION < ∞ ;
30 end ;

Listing 4.6: Basic clock synchronization procedure for gradual GTP.

Initially, the node checks whether it is a time source (6) and, if so, the function finishes
without synchronizing the clock, but informing that a feedback message should be sent.
The next statement (8-9) is responsible for abandoning the clock adjustment if the dispersion
of the sample received is infinite — the other node has not been synchronized yet.

After that the dispersions of the node’s time and the sample are estimated (11-13). For
calculating the dispersion of the sample its round-trip delay is utilized as an additional source
of error, together with a dispersion of the other node.

Lines 15-18 determine whether the sample should be used for synchronization purposes.
The first condition checks whether a possible error of the node’s time after using the given
sample for synchronization would be smaller than or equal to the error without correcting
the clock at that moment. The second heuristic is responsible for preventing multiple clock
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correction processes to be held at the same time, unless the second sample comes from a node
with a smaller hop count.

If the sample is accepted, the clock synchronization begins (20-22) and the variables are
updated (23-25). The value returned by the function is similar to that from the previous
version of GTP.

Table 4.2 summarizes the contents of particular messages exchanged during a single gos-
siping process.

msgType MSG_REQUEST MSG_RESPONSE MSG_FEEDBACK

t1 TA
1 TA

1 TA
1

t2 - TB
2 TB

2

t3 - TB
3 TB

3

t4 - - TA
4

dispersion - εB εA

tsDistance - TS_DISTANCEB TS_DISTANCEA

Table 4.2: Contents of different messages of gradual GTP.

4.3.1. Observations

The first issue that can be easily noticed is the difference in the time the network needs in
order to synchronize the clocks, caused by using the gradual clock adjustment method. The
speed no longer depends only on the number of nodes, but also on the length of the clock
adjustment period (see Section 3.1.2) and the initial offsets between the time of different
nodes.

The algorithm constantly tries to decrease the error of the node’s clock, which, on the
other hand, is increasing due to the clock skew. The dispersion mechanism provides the
capability to estimate the accuracy of time maintained by a given node at a given moment.
Such information allows other nodes to make a decision about adjusting their clocks based on
more precise data concerning the quality of samples. This solution has much better accuracy
than the one based solely on hop count, which is confirmed by the results of experiments
(see Chapter 6).

One may argue that gradual GTP is similar to basic GTP with the filter of an appropriate
length and the minimum function for deciding whether to accept a sample or not. That
statement, however, is not true — such a filter would choose only the samples with a minimal
round-trip delay during the last gossiping, whereas in gradual GTP the dispersion represents
the cumulated error of a sample on a path from the time source to a given node. As an
example consider a basic GTP node (called A) contacting another node (B). Assume that B
has its hop count much smaller than A and its filter contains only samples with high round-
trip delays. This probably indicates that the time error of B is high. Furthermore, assume
that the synchronization sample between A and B has very small round-trip delay, so that A
decides to use it for clock adjustment — the sample is not rejected by the filter of A and the
hop count of A is much higher than the one of B. Such behavior is different from the behavior
of gradual GTP, which would reject the sample, effectively avoiding error propagation.

So far all the algorithms assumed constant frequency of gossiping. Although the time-
stamp exchange may be implemented to be inexpensive, it nevertheless, consumes resources.
One may notice that after the network is synchronized the frequency may be lower than
in the beginning of the synchronization process. It should, however, change when a sudden
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event, like reseting the time in the time source or joining of a large number of unsynchronized
nodes, occurs in the network. After returning to the normal network synchronization state,
the gossiping frequency may be decreased again.

4.3.2. Improvements

The improvements to gradual GTP target mainly at a dynamic control of gossiping fre-
quency. More specifically, in the proposed solution two constants: _MAX_GOSSIPING_DELAY_

and _MIN_GOSSIPING_DELAY_, store the maximal and minimal, respectively, cycle lengths
in which the active execution path of GTP initiates gossiping. Furthermore, each node
is equipped with a cyclic buffer storing absolute values of offsets calculated for the last
N samples and a variable SAMPLES_COUNTER counting the number of samples used to syn-
chronize the clock. Initially, for each node, the buffer is filled with zeros, the value of
SAMPLES_COUNTER is zero and the value of the variable GOSSIPING_DELAY (see Section 4.1) is
equal to _MIN_GOSSIPING_DELAY_.

For each sample that failed the tests of conditions in lines 6-9 of the EstimateSample

function (see Listing 4.6), the absolute value of the clock offset is calculated and inserted
into the buffer. When a given sample is used to adjust the clock (19-24), the counter is
incremented. If it reaches the value m (m ≤ N), it is set back to zero and the following
actions are performed.

The minimal (denoted as Omin) and maximal (Omax) values from the buffer are selected.
Additionally, the value Of of some function (e.g. a weighted average or a median) over the
last M (m ≤ M ≤ N) values recorded in the buffer is computed. If Omin < Omax then the
value of variable GOSSIPING_DELAY is modified to:

(_MAX_GOSSIPING_DELAY_ − _MIN_GOSSIPING_DELAY_) · x + _MIN_GOSSIPING_DELAY_,

where x is the fractional number:

x =
Omax −Of

Omax −Omin
.

On the other hand, if Omin = Omax, then GOSSIPING_DELAY is set to _MAX_GOSSIPING_DELAY_.
The purpose of all these actions is obtaining a linear mapping of the Of value, which represents
some recent ’average’ absolute offset, from the interval [Omin...Omax] to an appropriate gos-
siping delay within the specified bounds [_MAX_GOSSIPING_DELAY_ ... _MIN_GOSSIPING_DELAY_].6

The described solution is not the only one possible. Its advantages include simplicity,
adaptability to changes in the environment and many available configurations of values m,
M and N influencing the behavior. One may consider a simple modification that delays
inserting a sample to the buffer untill the moment the sample is used for clock adjustment.
The other way to deal with the gossiping frequency problem is defining values of ’small’
and ’large’ offsets, which can be subsequently used for adjusting the current gossiping delay.

4.4. Further Enhancements

Both previous versions of GTP conform to the traditional gossiping scheme — a node to
gossip with is chosen in a ’random’ way from all nodes forming the network. The next

6 For clarification see the mapping of some values of Of : Omin is mapped to _MAX_GOSSIPING_DELAY_,
Omax is mapped to _MIN_GOSSIPING_DELAY_, 1

2
· (Omin + Omax) is mapped to

1
2
· (_MAX_GOSSIPING_DELAY_ + _MIN_GOSSIPING_DELAY_).
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version of the protocol (denoted as selective version of GTP) has been designed to explore
the possibilities of changing the gossiping scheme in order to improve the properties of time
dissemination. In particular, it aims at further decreasing the dispersion of samples used for
synchronization.

The base of the algorithm is gradual GTP with one modification — introducing application-
specific data for the overlay layer. The data consists of the current dispersion and the hop
count value of a node. The callback getApplicationData for the peer sampling service is
straightforward (see Listing 4.7).

1 class SelectiveGTPData extends Object ;
2 var
3 dispersion : integer ;
4 tsDistance : integer ;
5 end ;
6

7 callback getApplicationData ( ) : Object ;
8 var
9 result : SelectiveGTPData ;

10 begin
11 result := new SelectiveGTPData ;
12 result . dispersion := CalculateDispersion ( ) ;
13 result . tsDistance := TS_DISTANCE ;
14 return result ;
15 end ;

Listing 4.7: Callback for the peer sampling service for selective GTP.

Such information is utilized by the peer sampling strategy (the getNeighbor function),
which now works as follows:

1. From the neighborhood set choose nodes with the minimal dispersion.

2. From the nodes selected in the previous point, choose a set of nodes with minimal hop
count.

3. If the set contains at least one element, then pick and return a random node from it.

All other aspects of the protocol remain unchanged compared to gradual GTP.
It should be noted that for the two previous versions of GTP all nodes are stateless,

according to the definition proposed in [31, Chap. 3]. However, in selective GTP a node
maintains some state of other nodes that is used by the protocol. The management of that
state is the responsibility of the overlay layer. If the latter is able to keep the state of nodes’
neighbors up-to-date, GTP always selects the nodes with the smallest dispersion and hop
count. Such an algorithm is similar to NTP, described in Section 2.2, but loops during the
synchronization process are not forbidden, as long as they lead to smaller errors. An example
of such a situation involves three nodes A, B and C (see Figure 4.1a). B synchronizes its clock
with A, which has the most accurate time at a certain epoch (Figure 4.1b), and C, which has
the most accurate and stable local clock, synchronizes with B (Figure 4.1c). Assume that
due to the clock skew A has had to synchronize in order to correct its time (Figure 4.1d), but
because of the high round-trip delay of a new sample, its new dispersion is high (Figure 4.1e).
If B is to synchronize due to the skew of its clock, it may select C, since its clock is more
accurate and the dispersion may be still lower than the new dispersion of A (Figure 4.1f).
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(a) A synchronizes with some node (b) B synchronizes with A

CA B

(1) (3) (4)

CA B

(10) (12) (5)

(c) C synchronizes with B (d) Clocks of the nodes after some time

CA B

(8) (12) (5)

CA B

(8) (6) (5)

(e) A synchronizes again (f) B chooses C (synchronization loop)

Figure 4.1: An example of a synchronization loop in GTP. The values in parentheses indicate
dispersion of nodes. The clock of the node C is the most stable and has the smallest skew.

There is, however, a possible drawback of selective GTP. Traditional gossiping ensures
even load balancing of work among the nodes. In selective GTP the nodes with smaller
dispersion and hop count are more likely to be contacted than the nodes with greater values
of these attributes. In other words, they have more work to do, which may result in decrease
of the synchronization accuracy. Possible improvements are discussed in Section 8.2.

4.5. Remarks

The outline of the earlier sections presenting consecutive versions of GTP has been designed
in order to explain the reasoning that influenced the development of the protocol. Although
the naming convention is meant to be descriptive, it may be confusing due to the variety of
modifications and improvements introduced for the algorithms. For the purpose of clarifica-
tion, whenever the author refers to a certain version of the protocol later in this thesis, all
proposed improvements are assumed, unless otherwise specified. As a reminder:

• basic version of GTP denotes the algorithm presented in Section 4.2 (using immediate
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clock adjustment and based solely on the hop count value) with the sample filtering
improvement described in Section 4.2.2;

• gradual version of GTP is the algorithm from Section 4.3, employing gradual clock
adjustment and the dispersion mechanism, with the gossiping frequency control en-
hancement described in Section 4.3.2;

• selective version of GTP denotes the algorithm utilizing application-specific data for
the selection of neighbors (see Section 4.4).
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Chapter 5

Overlay Management

In order to propagate the time among the nodes, GTP requires logical connections allowing
direct communication between pairs of nodes. As stated in Section 3.2, such a network is
maintained by means of a P2P protocol for membership management. The topology of the
network is modeled as an overlay graph. More specifically, let G = 〈V,E〉 denote the overlay
graph, where V is the set of all nodes forming the network and E represents the set of edges.
The condition 〈u, v〉 ∈ E (where u, v ∈ V ) is true if, and only if, the neighbor set of u contains
v. Both sets V and E are continuously changing in time, either due to arrivals and departures
of nodes, changes in the physical network or operation of the overlay management protocol.

Although it may not be obvious, certain properties (presented in detail in the next section)
of both the shape of G and the protocol used to maintain this shape influence the way the
data is disseminated across the network.

5.1. Overlay Properties

For simplicity of analyzing the overlay the undirected graph G∗ = 〈V,E∗〉, where, for all
u, v ∈ V :

{u, v} ∈ E∗ ⇐⇒ (〈u, v〉 ∈ E or 〈v, u〉 ∈ E) and v 6= u

is considered (unless otherwise specified). The reason for this choice is that even though the
links described by the E relation are one-way, the actual information flow from the point
of view of the applications is potentially two-way, since during gossiping the passive party
learns about the active party as well.

The shortest path length between u and v (u, v ∈ V ) is the minimal number of edges that
are necessary to be traversed in order to reach v from u. The average shortest path length is
the average of the shortest path lengths over all pairs of elements of V .

The motivation of examining this property is that, in any information dissemination
application, the shortest path length defines a lower bound on the communication cost and
the time necessary to reach nodes from a given information source.

Let:
Vu = {v ∈ V |{u, v} ∈ E∗}

denote a set of neighbors1 of u and:

E∗
u = {{v, w} ∈ E∗|v, w ∈ Vu}

1 In the undirected graph.
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denote a set of edges between the neighbors of u. The clustering coefficient of u is defined as
follows:

|E∗
u|(

|Vu|
2

) ,

which indicates the proportion of the number of edges between the neighbors of u to the
number of the possible edges between them. The clustering coefficient of G∗ is the average
clustering coefficient of all u ∈ V . For a complete graph, it is 1, for a tree it is 0 and for an
undirected graph that was created by dropping the direction of edges of a random directed
graph in which all nodes have c neighbors, it is equal to 2·c

|V | (in case |V | � c).
The purpose of analyzing this property is that a high clustering coefficient has a negative

effect on information dissemination (by increasing the number of redundant messages) and
on the robustness (see later in this section for an explanation) by weakening the connection
of a cluster to the rest of the graph and therefore increasing the probability of partitioning.

The degree of u in G∗ is defined as |Vu|. In G one may distinguish between the number
of nodes known by the given node u (the out-degree of u):

|{v ∈ V |〈u, v〉 ∈ E}|

and the number of nodes that know about u (the in-degree of u):

|{v ∈ V |〈v, u〉 ∈ E}|.

The out-degree of a node provides information about the amount of data that is main-
tained by the node for the purpose of the overlay management protocol. It is usually bound
by the specification of the protocol to a constant value or a value that depends logarithmically
on the size of V .

The in-degree (and especially its distribution) allows to determine how well the work load
is balanced among the nodes and the way the information is disseminated. The nodes with
higher in-degree (the hot spots) are usually contacted more often, so even distribution of this
property is a very important task of the overlay management protocol.

Another important issue is whether the protocol ensures connectivity of the overlay graph
in a fail-free environment. That is, whether the overlay graph can be partitioned due to
the actions taken by the protocol, assuming the lack of failures. An associated term —
the robustness to a (potentially massive) node failure — allows to estimate the number of
random nodes that must be removed simultaneously in order to partition the network, while
the self-healing capacity shows how the protocol can repair the overlay graph after a (severe)
damage.

Finally, the convergence (speed) describes whether (and how fast) the overlay management
protocol is able to achieve the desired shape of the overlay graph after statically configuring
the network to a given initial topology or joining of a node.

5.2. Protocols

Due to the epidemic nature of GTP, the overlay graph does not have to be structured. More-
over, the research presented in the thesis was based on protocols for managing unstructured
overlays. The following sections describe the overlay protocols used by the author for exam-
ining the properties of GTP.

They solve the membership management problem by providing each node in a network
with a small, continuously changing neighbor set, called the overlay cache. The size of the
cache may be fixed or adjustable depending on the protocol.
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5.2.1. Newscast

Newscast [9, 34] has been designed as a protocol for communication in a large-scale agent-
based system. It defines a system model consisting of two layers: the application layer that
runs the agents and the news agency that runs the, so called, correspondents responsible for
communication. The agent-specific information is disseminated together with membership
management data, but, for the purpose of compatibility with the model presented in Chap-
ter 3, the author of this thesis decided to separate these two issues by extracting the overlay
management protocol from the system.

Each node in the Newscast system maintains the fixed-size overlay cache. A single cache
entry consists of contact information of a neighbor node (e.g. an IP address and a port
number2) and a timestamp.

The nodes regularly exchange caches as follows. Assume that the size of the cache is c.
Every node executes the following steps once every ∆T time units (∆T is called the gossiping
delay for the overlay layer3).

1. Randomly select a node to gossip with from the cache.

2. Create a message containing the whole cache.

3. Substitute (in the message) the cache entry of the node selected in point 1, by your
own contact data with the current timestamp.4

4. Send the message to the selected node and, in turn, receive a message with all its cache
entries.

5. Merge the received cache entries into the local cache discarding the oldest ones. Only
at most c cache entries of other different nodes may remain in the cache.

Upon reception of the cache exchange message, the selected node executes the steps below:

1. Send back all your cache entries.

2. Merge the received cache entries into the local cache discarding the oldest ones. At
most c cache entries may remain in the cache.

After the exchange both nodes have the same cache, except for a pointer to each other.
However, as soon as any of them executes the protocol again selecting a different node, their
respective caches will most likely be different again.

The protocol does not require the clocks of the nodes to be synchronized, but only that
the timestamps of cache entries in a single cache are mutually consistent5. It is assumed that
communication time between two nodes is negligible in comparison to ∆T . The messages
exchanged between the nodes, apart from their caches, contain the current local time. When
a node A receives the cache entries and a local timestamp TB from a node B, it subsequently
adjusts the timestamp of each received entry with a value TA − TB, effectively normalizing
the time of each new entry to those already cached.

2 Actually, because the model described in Chapter 3 assumes the independence of the application layer
on the overlay management layer, multiple ports may be required, based on the implementation.

3 Which is, in general, different than the gossiping delay for GTP.
4 In the system model designed by the author (see Chapter 3), this is also the moment when the overlay

management layer calls the getApplicationData callback to obtain application-specific data that will be
sent to the selected node.

5 This is an example of one more situation where gradual clock adjustment is required.
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5.2.2. Lpbcast

The Lightweight Probabilistic Broadcast (abbr. as Lpbcast) [4] is an approach for solving
the problem of broadcasting in a large-scale distributed system. Instead of a common solu-
tion based on multicasting, Lpbcast employs a probabilistic gossip-based algorithm. Gossip
messages are used not only to disseminate event notifications and to propagate information
about received notifications, but also to propagate membership data. The protocol also in-
troduces a heuristic for purging out-of-date event notifications and membership management
information.

Again, for the purpose of the research the author separated the overlay management
algorithm from the broadcasting service. Moreover, since the system model from Chapter 3
assumes that intentional disconnection of a node from a network cannot be distinguished
from a failure of that node, the unsubscription mechanisms of Lpbcast (see [4] for more
details) have been ignored. Additionally, in the protocol description below the frequency-
based optimizations for membership purging (see [4] for explanation) are assumed.

The node executing the protocol has two fixed-size sets: a cache of neighbors (as in
Newscast) and a set of subscriptions. The single element of both sets consists of contact
information of a node and a number denoting a frequency value.

Assume that the size of the cache is c and the size of the subscription set is equal to s.
Additionally let f denote the fanout indicating the number of nodes to gossip with during
one gossiping attempt. Each node executes the following steps once every ∆T time units.

1. Randomly select f neighbors from the cache.

2. Prepare a message containing the whole subscription set.

3. Insert your contact data to the subscription set of the message with frequency equal to
zero.6

4. Send the message to the neighbors selected in point 1.

Upon reception of the gossiping message, the node executes the following algorithm.

1. For all received subscriptions not pointing at you:

(a) If the node represented by the subscription is in your cache, then increase the
frequency of that node in the cache. Otherwise, add the node to the cache after
increasing its frequency.

(b) If the node represented by the subscription is in your subscription set, then in-
crease the frequency of the node within the set. Otherwise, add the node to the
subscription set after increasing its frequency.

2. While the cache size is greater than c:

(a) Select the cache entry using a function described below.

(b) Remove the selected element from the cache and add it to your subscription set if
it is not there.

3. While the size of the subscription set is greater than s:

6 Similarly to Newscast, at this moment the overlay management layer calls the getApplicationData
callback to obtain application-specific data of the node.
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(a) Select the subscription set element using a function described below.

(b) Remove the selected element from the subscription set.

The function (mentioned in points 2a and 3a) used for selecting elements to be purged from
the cache or the subscription set operates as follows.

1. Compute the average frequency of all elements.

2. Select a random element.

3. If the frequency of the selected element is greater than k multiplied by the average
frequency of all elements (0 < k ≤ 1), then return this element. Otherwise, increment
its frequency and go to point 2.

The frequency optimization applied is particularly useful for dynamic networks, since it lowers
the propagation delay of membership information.

In contrast to Newscast, in which the nodes exchange their caches, Lpbcast is a push-
based protocol — the membership information during one gossiping process is propagated
only in one direction.

5.2.3. Shuffling

The Shuffling protocol is a part of the PROOFS system [29]. PROOFS (the P2P Randomized
Overlays to Obviate Flashcrowd Symptoms) has been designed in order to deal with, so called,
Internet flash crowds (or hot spots) — a phenomenon that results from a sudden, unpredicted
increase in an on-line object’s popularity. Clients running the system form a P2P overlay
network that allows those clients that have received copies of popular content to forward the
content to the clients that desire it but have not yet received it.

PROOFS consists of two protocols. The first one is responsible for managing the overlay
network, while the second one participates in searches of objects in this network. The overlay
management protocol runs continuously, in contrast to the location protocol, which runs only
when flash crowd phenomena exist within the network. For the purpose of GTP, only the
overlay management protocol is interesting.

Each node has a fixed-size cache containing contact information of its neighbors. The
nodes periodically perform what is called a shuffle operation. The shuffle is an exchange
of a subset of neighbors between a pair of nodes that can be initiated by any node. More
specifically, assume that the cache size is c and the size of the subset used during the shuffle
operation (called the shuffle length) is l. Every ∆T time units the node performs the following
activities.

1. Select a random subset of l neighbors (1 ≤ l ≤ c) from the cache and a random node
within this subset.

2. Create a message containing the selected neighbors.

3. Replace the contact information of the node selected in point 1 within the message with
your contact information.7

4. Send the message to the selected node.

7 Again, at this moment the overlay management layer calls the getApplicationData callback in the
system model designed by the author.
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5. Receive a subset of no more than l neighbors from the selected node.

6. Update your cache by including the received neighbors. The replacement is done ac-
cording to the four rules:

(a) No neighbor appears more than once within the cache.

(b) A node is never its own neighbor.

(c) If the size of the cache lies below the bound c, new entries are added without
overwriting previous entries (until the number of entries in the cache reaches c).

(d) Entries in the cache can only be overwritten (i.e. removed) if they were sent to
the selected node during the shuffle.

Upon reception of a shuffle request, the node executes the following steps.

1. Randomly select a subset of l neighbors from the cache.

2. Send the selected subset to the node that initiated the shuffle.

3. Update your cache including the received entries, according to the rules listed earlier.

A sample shuffle operation is shown in Figure 5.1.
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(a) Before the shuffle (b) After the shuffle

Figure 5.1: An example of a shuffle operation.

The nodes are represented by numbered circles. Directed edges indicate the neighborhood
relation, where an arrow pointing from A to B means that B is a neighbor of A. Neighbors
are depicted only for the grey nodes numbered 3 and 12. These nodes start with the cache
shown in Figure 5.1a, and, after the shuffle operation initiated by node 3, they end with the
cache shown in Figure 5.1b.

Two important points need to be noted. First, if a node A is B’s neighbor and B initiates
a shuffle with A, then after the shuffle, B is A’s neighbor (i.e. the edge reverses direction).
Second, in a fail-free environment no client becomes disconnected after the shuffle operation
— it simply moves from being the neighbor of one node to being the neighbor of another.

It may happen that two nodes start the shuffle operation simultaneously forming a cycle.
Since there are two execution paths that can modify the cache, the conflicts may appear
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when l > b c
2c.

8 The original solution to the problem (called later the optimistic one) states
that a node may reject the shuffle request if it initiated one on its own and has not received
a response. Upon reception of a rejection message, a node chooses the next time to initiate
the shuffle from a uniform distribution.

The experiments conducted for the purpose of the thesis indicate that this situation is
not uncommon. Therefore, the author designed and applied a different solution called the
pessimistic one. Because the research concerning Shuffling [35] shows that the overlay formed
by the protocol is independent of the shuffle length l, the pessimistic solution utilizes locking.
More specifically, let N denote the number of instances of execution paths that may modify
the cache concurrently. The instance may lock up to l cache entries (l ≤ b c

N c) that can be
later replaced with entries received from another node. Such an approach limits the shuffle
length to at least b c

2c, in case each execution path has one instance, but also eliminates the
need for the shuffle rejection messages.

5.2.4. CYCLON

CYCLON [35] is a novel protocol designed specifically for inexpensive unstructured overlay
management. It is also based on the shuffle operation, but due to some changes described
later, the overlay graph has different properties. Additionally, it introduces a mechanism of
random walks that allows joining nodes to have their caches fully filled without initiating
shuffle operations.

The main difference between Shuffling and CYCLON is that in case of the latter one,
nodes do not randomly choose which neighbor to shuffle caches with. Instead, they select
the node whose information was the earliest one to have been injected in the network. The
first goal of this enhancement is to limit the time the entry can be passed around until it is
chosen by some node for a cache exchange. Another motivation is to impose a predictable
lifetime on each pointer, in order to control the number of existing pointers to a given node
at any time.

These objectives are accomplished by extending a single cache entry of a node with a
number indicating the age of the entry. Assume that the cache size is c and the size of
the subset used during the shuffle length is l. Every ∆T time units the node executes the
following steps.

1. Increase by one the age of all neighbors in the cache.

2. Select the neighbor with the highest age among all cache entries.

3. Select l − 1 other entries randomly and store them in the shuffle request message.

4. Add your own contact information with age equal to zero to the message.9

5. Send the message to the node selected in point 2.

6. Receive a subset of no more than l neighbors from the selected node.

7. Update the cache by including the received neighbors using the same rules as for Shuf-
fling.

8 For the implementation purposes the execution paths may have many (N) instances (threads) executing
them. In this case the conflicts may appear when l > b c

N
c.

9 Like for the other protocols, at this moment the getApplicationData callback is called.
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The activities performed during the reception of the shuffle request are exactly the same as
in the Shuffling protocol. Also the pessimistic solution is used for the resolution of the shuffle
conflicts.

5.2.5. Other Solutions

The author does not claim that the choice of the overlay management protocols used for the
purpose of the experiments with GTP is exhaustive. This was not a goal of the conducted
research. However, the protocols presented earlier have been designed for many different
purposes: agent-based computations, broadcasting, dealing with hot spots or specifically for
membership management, and thereby constitute an interesting test group. Other solutions
that were considered include, among the others, SCAMP [6] and Saxons [28].

SCAMP, similarly to Lpbcast, has been developed for membership management in large-
scale systems that require efficient broadcasting. Its properties considering capability of
information dissemination are comparable to the properties of other protocols. The distin-
guishing feature of SCAMP is that it is reactive, in the sense that cache exchanges take place
only when nodes join, leave, or a failure is detected. Such an approach, although reason-
able for information dissemination, without any special enhancements seems inappropriate
for selective GTP, where the caches of nodes should be kept up-to-date.

Saxons is another example of a general-purpose overlay management protocol. It aims
at constructing an overlay graph that has low path latency, low shortest path length and
high path bandwidth. Its model consists of six modules. The bootstrap process determines
how new nodes join the network. The structure quality maintenance component maintains
an overlay mesh of desired properties while the (optional) connectivity support component
aims at detecting and repairing overlay partitions. They run periodically to accommodate
dynamic changes in the system. The above Saxons components are all supported by the
membership management module whose goal is to track a random subset of nodes. The
structure quality maintenance is further supported by two other components responsible for
acquiring performance measurement data for network links and finding nearby nodes. The
shape of the overlay meeting the design objectives of Saxons might be an interesting solution
for GTP.

5.3. Comparison

Due to the lack of the space required in the thesis in order to fully describe all aspects of
the presented overlay management protocols, this section focuses only on the most important
issues. More extensive analysis can be found in the papers cited earlier. The results presented
in this section come from these papers as well as from the experiments that have been
conducted by the author in order to verify the correctness of the system implementation
introduced in Chapter 7.

One of the most important requirements for the overlay protocol is the ability to keep the
network connected during normal operation. Both Shuffling and CYCLON guarantee con-
nectivity in a fail-free environment, independent of the values of protocols’ parameters. The
experiments show that Lpbcast also keeps the network connected with very high probability.
Unfortunately, during the tests involving 1500 nodes it turned out that Newscast is unstable
for cache sizes less than 20, which leads to overlay partitions independent of the initial (or
bootstrapping) topology of the network. Such an observation was confirmed by the people
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who developed Newscast10 and was a main reason for increasing the size of the cache for
this protocol during further experiments. After that step the connectivity has always been
preserved.

The speed of convergence for Shuffling, CYCLON and Newscast is high, e.g. less than
100 gossiping cycles is required for a network of 1500 nodes with a bidirectional ring as a
bootstrapping topology (assuming the cache size of 10, or 20 in case of Newscast, and the
shuffle length of 5). On the other hand, Lpbcast needs almost 200 gossiping cycles, in spite
of the fanout greater than one (which means that during one cycle a node is allowed to gossip
with more than one node), in order to fully converge. This behavior is caused by the fact
that the latter protocol is push-based only while the first three are push-pull-based solutions.

After having converged, the network is stable. In case of Shuffling and CYCLON, the
average clustering coefficient and the average shortest path length is almost equal to the
appropriate values for a random graph. For Newscast and Lpbcast the average shortest path
length is slightly higher, but the clustering coefficient is significantly bigger than for a random
graph. Examples of these values for a network of 1500 nodes with the cache size equal to 10
(20 for Newscast) are shown in Table 5.1.

Protocol Avg. Clust. Coeff. Avg. Shortest Path Len. Avg. In-Deg.
Newscast 0.295921990 2.718564409 20.0
Lpbcast 0.118435210 2.951563876 10.0
Shuffling 0.012477643 2.769968958 10.0
CYCLON 0.012381255 2.757673446 10.0

random graph 0.012530221 2.793862575 10.0

Table 5.1: The properties of a sample overlay graph for various protocols.

Another important issue is the change of these values when the size of the network or
of the cache changes. For all presented protocols the average shortest path length depends
logarithmically on the network size. The size of the cache influences the base of the logarithm
in this dependence. The clustering coefficient drops rapidly with the increase of the network
size for CYCLON and Shuffling. Newscast and Lpbcast show rather small changes.

The distribution of the in-degree in a network of 1500 nodes and the cache size set to 10
(or 20 in case of Newscast) is depicted in Figure 5.2.

As can be easily observed, the most even distribution is provided by CYCLON, where
almost one of three nodes has an in-degree equal to the size of the cache. On the other hand,
the distribution achieved by Newscast introduces many hubs (nodes with high in-degrees),
which has negative effect on load balancing. Shuffling and Lpbcast are characterized by
distributions closer to that of a random graph. The shape of the distribution charts look
similar when the size of the network or of the cache changes.

The protocols, in general, are very robust. With the cache size equal to 20 above 90%
of nodes from a 100,000-node network have to be removed at once in order to partition the
overlay managed by CYCLON. For Newscast this value is about 75%. Moreover, even if
partitioning occurs, most nodes form a single large connected cluster.

The next advantage of the protocols is the self-healing capacity. After massive failures of
nodes, they are able to gradually repair the overlay graph by removing the links pointing to
the dead nodes. The speed of healing depends on a particular protocol. For example after
a sudden crash of 50% of nodes from a 100,000-node network Newscast and Shuffling may

10 Private communication between the author and Maarten van Steen.
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require about 500 and 300 gossiping cycles respectively in order to clean all dead links, while,
due to the design goals, CYCLON can heal even up to four times faster than Shuffling.

To sum up, Shuffling and CYCLON have the average clustering coefficient and the av-
erage shortest path length very similar to a random graph, while offering better in-degree
distribution (especially in case of CYCLON) and robustness to massive nodes failures. The
topology of the overlay formed by Newscast or Lpbcast resembles complex networks observ-
able in nature, biology, sociology and computer science called the small-world topologies [1,
Chap. VI]. They are characterized by the average shortest path length almost as small as for
random graphs, but at the same time, a significantly higher clustering coefficient.

The most important observation is that all described protocols provide scalable, fully-
decentralized, robust and inexpensive ways to manage a (highly) dynamic overlay network.
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Chapter 6

Experimental Results

The theoretical reasoning presented in Chapter 4 concerning GTP reveals certain properties
of particular versions of the protocol. Nevertheless, it should be noted that in the world
of large-scale systems, theory and practice often diverge. In order to examine how GTP
(and the whole system model) behave in practice and to verify the correctness of theoretical
assertions, the author performed various emulation experiments with GTP. Emulation, in
contrast to simulation, involves implementing the protocols and conducting the experiments
on a real network of computers. In the case of GTP, they have been performed with a set of
up to 64,500 nodes distributed across a 200-machine wide-area cluster of workstations.

The implementation utilized for the purpose of the experiments is described in Chapter 7.
It should be emphasized, that not only for GTP, but also for some of the overlay man-

agement protocols presented in Chapter 5, the experiments conducted by the author have
been the first emulations, since the results presented in the papers concerning the overlay
protocols are usually based on simulations.

The rest of this chapter is organized as follows. The next section describes the test
environment. After that the properties of GTP revealed by the experiments on networks
up to 1500 nodes are discussed. The following section describes the results obtained by the
large-scale experiments. Finally, the summary of the results is given.

6.1. Test Environment

The experiments with small networks (up to 1500 nodes) have been performed on a 2.4-GHz
Pentium 4 workstation with 0.5GB of RAM running Windows XP Professional (SP1) and
using the standard Sun JVM 1.4.2. For the communication purposes the local object passing
implementation (see Chapter 7) has been used.

The environment utilized for large-scale tests constitutes a part of the DAS-2 (the Dis-
tributed ASCI Supercomputer [3]) — a wide-area system consisting of five clusters of PCs
located at different sites across the Netherlands.

For the purpose of the experiments only the cluster belonging to the Vrije Universiteit
has been used. It consists of 72 machines. Each machine contains two 1-GHz Pentium III
processors and at least 1GB of RAM. Machines within the cluster are connected by a Fast
Ethernet (100Mbps) network, which, in addition, is used for the file transport. The system
runs Red Hat Linux (version 7.2). Machines’ clocks are synchronized with NTP (version 3).
All tests have been performed using Sun JVM 1.4.2 with UDP as the transport-level protocol.
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6.2. Properties of GTP

The small-network experiments aimed at exploring GTPs’ capability of propagating and
maintaining accurate time. In order to examine these issues many properties have been
analyzed including: error in the time displayed by the node’s clock (average absolute error,
maximal positive error, maximal negative error, error distribution, changes in error values),
hop count of a node from a time source (average and maximal value, hop count distribution),
changes in gossiping frequency.

All results presented in this section come from tests on the networks of 1500 nodes. The
GTP layer was always activated after the overlay layer had fully converged. The gossiping
delay of the overlay management protocol was set to 250 seconds (unless otherwise specified),
the cache sizes were equal to 10 (20 for Newscast), the shuffle length for Shuffling and CY-
CLON was 5, the subscription set size and the fanout for Lpbcast were equal to 10 and 2
respectively. Other parameters were changed on a per-test basis.

6.2.1. Basic GTP

The first interesting question is how fast the time information can be disseminated across
the network. More specifically, assume that there is only one time source. Initially, all other
nodes do not know which one is the time source and whether there is any (the TS_DISTANCE

variable of a node is set to infinity). A node becomes aware of the time source existence
when its TS_DISTANCE variable changes to a finite value. Furthermore, it should be examined
whether the overlay management protocol utilized influences awareness speed.

To answer the question the experiments involving all the membership management pro-
tocols have been performed. The gossiping delay for GTP (GOSSIPING_DELAY variable) and
_STANDALONE_PERIOD_ were both set to 25 seconds and no sample filtering was used. The
results of the tests for CYCLON and Newscast as the overlay management protocols are
depicted in Figure 6.1.
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Figure 6.1: Speed of discovering the time source existence (no sample filtering).

The charts look almost identical, which is also the case for other protocols. Such an
observation allows to claim that the overlay management protocol (from the set described
in Section 5.2) does not influence the information dissemination speed. In every test scenario
GTP usually required 8 gossiping cycles (200 seconds) to propagate information about the
presence of the time source and the number of aware nodes grew exponentially.
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However, the opposite relation is observable when Newscast is employed with some nodes
having their initial time greater than the time of the time source — during synchronization
their time is set backwards which causes inconsistencies with the timestamps of entries within
the overlay cache. Due to this factor, the average clustering coefficient of the network grows
rapidly to almost 0.95 (cf. Table 5.1), since the caches of nodes become similar — containing
entries with future timestamps. Although during the experiments conducted by the author
the network remained unpartitioned and the clustering coefficient returned to its normal
value rather fast (depending on the initial time offset distribution), this behavior confirms
the claim that Newscast should not be used in practice with basic GTP.

The next interesting issue is the speed the network needs to reach the stable state of
the clocks and the time accuracy in such a state. Figure 6.2 shows the results derived from
the tests described above. The initial time error of all nodes except for the time source was
chosen randomly with a uniform distribution from the sum of intervals: 10 to 60 seconds and
-10 to -60 seconds. All clocks were ticking with the same frequency.
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Figure 6.2: Synchronization speed and quality of unfiltered basic GTP.

The chart from Figure 6.2a indicates that the speed of reaching the stable state1 by the
system is exactly the same as the speed of discovering the presence of the time source. This
fact is consistent with the theoretical analysis presented in Section 4.2.1, more specifically,
with the formula (4.7).

Unfortunately, in the stable state the time errors are very high. The distribution depicted
in Figure 6.2b contains arbitrary data after about three hours of operation. After discovering
the presence of the time source by all nodes the errors range from -277 ms to 152 ms. Not
even 50 of the nodes maintain accurate time. Such an observation challenges the legitimacy
of using the term ’stable’ for describing the state of the network.

The reason for this behavior is the influence of network differential delays appearing during
the gossiping. The filtering improvement introduced in Section 4.2.2 allows to decrease the
number of such errors. Figure 6.3 illustrates the relationship between sample filtering and
the number of asymmetric deliveries2 (the values in square brackets denote the length of the
filter used). Because the tests were run on one machine, measuring the differential delays was
easy due to access to a global clock. The charts show only differential delays of the samples

1 For a moment assume that the stable state definition is intuitive and denotes the state corresponding to
the almost flat absolute clock error line in Figure 6.2a.

2 Asymmetric delivery denotes a situation in which the time of delivering the GTP request from A to B is
different from the time of delivering the GTP response from B to A.
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that passed the filter (if it was used) and were tested for possible synchronization usage.
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Figure 6.3: Influence of sample filtering on the asymmetric deliveries.

In Figure 6.3a the average absolute difference between the time required to deliver a
GTP request and the time required to deliver a GTP response is depicted. During the initial
synchronization phase the differences are high (reaching almost 350 ms), because all the nodes
are activated and start gossiping at the same time, which leads to network congestion. Later
the situation is more stable — the average and maximal differential delays for the unfiltered
GTP range between 1.14-24.31 ms and 32-876 ms respectively. For the filtered version the
maximal values of these numbers are equal to 0.51 ms and 32 ms for the filter length 8, and
0.35 ms and 32 ms for the filter length 16.

Additionally, Figure 6.3b shows the proportion between the asymmetric and all deliveries.
In the case of the unfiltered protocol version, this value oscillates between 5 and 30 percent,
while it significantly decreases with the increase of the filter length. Note that in the beginning
longer filters present worse properties, since they are not completely filled with historical data.
Such a problem however, may be dealt with easily if the filtering initially uses only the values
collected so far.

It should be obvious that sample filtering improves the quality of the time synchronization
algorithm. In order to confirm this claim a series of experiments have been conducted. The
results are depicted in Figure 6.4. During the tests the length of the filter was set to 8 and
the other parameters remained unchanged.

Due to filtering the speed of the network synchronization decreases slightly from 8 to
14-20 gossiping cycles (350-500 seconds). Moreover, very small differences in the speed of
convergence of GTP between different overlay management protocols are observable. In
particular, the overlay with a random graph topology provides better properties than the
overlay formed by Lpbcast.

On the other hand, the quality of synchronization improves significantly. The maximal
absolute errors are on average smaller than 16 ms and most of the nodes are perfectly syn-
chronized with the time source. However, despite the filtering, if long lasting network load
fluctuations occur, the systems tends to lose its accuracy.

Another important issue allowing to partially explain the reason for errors is the hop
count from a node to the time source. In basic GTP the neighbor to gossip with is chosen
randomly, so the average value of the TS_DISTANCE variable for a node is usually higher than
the shortest path length to the time source. Moreover, the interesting question concerns the
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Figure 6.4: Synchronization speed and quality of basic (filtered) GTP.

way these values change when the number of time sources increases.
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Figure 6.5: Convergence of the TS_DISTANCE variable.

Figures 6.5a and 6.5b show the change of the time source distance in time. The overlay
protocol does not significantly influence this property, although the difference between the
random graph and other protocols is visible. Moreover, changes in the time source distance
depend logarithmically on the number of time sources in the network. With only one time
source the average time source distance is equal to 9. Adding 9 more time sources reduces this
value to 6, while with 100 time sources the average distance is equal to 3. Such a phenomenon
is directly related to the properties of the overlay graph.

The distribution of the time source distance is depicted in Figure 6.6. For all overlay
management protocols, most of the nodes achieve a hop count in the range from 9 to 11,
which is quite a big value comparing to the average shortest path length in the overlay graph
equal to ∼2.8 (see Table 5.1). This behavior, which may have destructive effects in large-
scale systems, is caused by two facts: the random choice of the neighbor for gossiping and
the synchronization loops that occur in the network.
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The final series of experiments concerns the ability of basic GTP to maintain accurate
time in a system whose nodes’ clocks are skewed. More specifically, the clock skew of a node
was chosen randomly with a uniform distribution from the set {− 4

105 ,− 3
105 , ..., 3

105 , 4
105 }, the

other parameters remained the same. Note that these values are exaggerated, since in practice
default computer clocks have much better oscillator tolerance. It also means that in case of
a node having a clock with the skew equal to ± 4

105 , the error of one millisecond appears
between consecutive gossiping cycles, assuming that the sample from every cycle is used for
clock adjustment, i.e. the filter does not reject any of them. Moreover, as stated in Section 4.3,
if the time of a node with a small hop count has an error, the error is propagated among
many other nodes. In face of the aforementioned facts, the interesting question is whether
GTP is capable of maintaining the time within some bounds. The results of experiments are
presented in Figure 6.7.
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Figure 6.7: The synchronization speed and accuracy in the system with skewed clocks.

They indicate that the period of time needed for the network to synchronize increases
to 33 gossiping cycles (825 seconds). The most important observation however, is that the
offsets of the nodes are limited. In the stable state the maximal absolute error of a node is
equal to 28 ms and for the majority of nodes it does not exceed 5 ms. Such results allow
to claim that the protocol is able to limit the influence of the clock skew on the accuracy of
time.
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6.2.2. Gradual GTP

Gradual GTP utilizes gradual clock adjustment, which, in general, requires longer periods of
time to complete applied time changes. Therefore, the first issue to be examined is the speed
of network synchronization. The parameters of the experiments conducted by the author
were similar to the parameters for tests of basic GTP. All clocks had the same frequency
and the initial time error of all nodes (except for the time source) was chosen randomly with
a uniform distribution from the sum of intervals: 10 to 60 seconds and -10 to -60 seconds.
In order to obtain better knowledge on how the clock adjustment period (see Section 3.1.2)
influences the network synchronization speed, many tests with different values of this constant
have been performed. Figure 6.8 depicts the change of the average absolute error and the
number of synchronized nodes. The values in square brackets indicate the length of the clock
adjustment period, basic GTP is included for comparison.

 0

 10000

 20000

 30000

 40000

 0  3600  7200  10800  14400

ab
so

lu
te

 c
lo

ck
 e

rr
or

 [m
s]

time [s]

basic
gradual [1]

gradual [10]
gradual [100]

 0

 500

 1000

 1500

 0  3600  7200  10800  14400

nu
m

be
r 

of
 s

yn
ch

ro
ni

ze
d 

no
de

s

time [s]

basic
gradual [1]

gradual [10]
gradual [100]

(a) Avg. absolute error (Shuffling) (b) Number of synch. nodes (Shuffling)

Figure 6.8: Synchronization speed for gradual GTP with different clock adjustment periods.

Firstly, the experiments show that the speed of gradual GTP, similar to basic GTP, is
independent from the overlay protocol used and therefore these charts are not presented here.

Figure 6.8 clearly indicates that network synchronization is still fast. If the clock adjust-
ment period is equal to 1 the network requires 910 seconds for convergence (cf. 560 seconds
in case of basic GTP). Increasing this period to 10 and 100 changes the above value to less
than 0.5 hour and about 3 hours respectively.

Another important observation is the quality of synchronization. All the nodes synchro-
nize perfectly with the time source — the errors are equal to zero — and such a state is
maintained during the whole time. These results show that the dispersion mechanism in-
troduced in gradual GTP, significantly improves the accuracy of the time synchronization
protocol.

The next issue to examine is the change in the distance of nodes from the time source and
the distribution of this value. Although it may not be obvious, the author has expected the
hop count to be smaller than in basic GTP. This idea is based on the observation that the
dispersion of a node depends on its distance from the time source, since the errors constituting
the node’s dispersion accumulate on the synchronization path. The results of experiments
targeting at exploring the properties of the hop count are shown in Figure 6.9.

The strange behavior of the time source distance is very easy to explain. In the beginning
of the synchronization process, when the nodes are discovering the presence of the time source,
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Figure 6.9: Properties of the TS_DISTANCE value. Note different time-scale for (a) and (b).

the hop count increases fast.
After initial communication the nodes try to correct their first time approximation using

only the samples that come from the nodes with the small dispersion. Such nodes have a
small hop count, since in the beginning both the offset and the dispersion are high. Moreover,
as stated multiple times here, the dispersion is cumulating on the synchronization path.
Therefore, a node which has a small dispersion must have estimated it during the direct
gossiping with the time source or one of the nodes ’near’ the time source. Due to this fact
after rapid initial growth of the time source distance, the value decreases gradually (depending
on the clock adjustment period) as nodes correct their time.

When the whole network is synchronized (cf. Figure 6.8), all the nodes have their disper-
sion on a comparable level, so they can synchronize with each other, which explains the later
slow growth of the hop count to a stable value.

As can be easily observed the time source distance in gradual GTP is almost two times
smaller than in the previous protocol version. Adding time sources to the network decreases
the value in the same manner as in basic GTP, however, the constants are smaller in this
case. Furthermore, the distribution of hop count is more even — nearly one out of three

48



nodes has its value equal to the average.
Another question concerns the operation of the gossiping frequency adjustment improve-

ments. In the experiments, whose results are shown in Figure 6.10, the values
of _MIN_GOSSIPING_DELAY_ and _MAX_GOSSIPING_DELAY_ were equal to 25 and 100 seconds re-
spectively. The clock adjustment period was set to 10 ms. Other parameters remained
unchanged. The symbol m-M -N in the legend of the chart denotes values of appropriate
parameters as described in Section 4.3.2. As a reminder, N denotes the length of the buffer
storing absolute offset values of the last N samples, M is the number of the last samples
utilized for calculating gossiping delay, while m specifies how often (considering the number
of samples) the gossiping delay can be changed.
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Figure 6.10: Convergence of the gossiping frequency.

The graphs clearly indicate that the synchronization of the network is accompanied by
the gradual decrease of the gossiping frequency. The setting denoted as 1-4-32 corresponds
to the scenario in which the gossiping frequency is modified after accepting each sample
for synchronization. To compute the new frequency 4 last samples are used, while the buffer
stores 32 last samples for bounds mapping. In the 8-16-16 the buffer holds the 16 last samples
which all are used for computation of the new frequency. The frequency is changed every 8
samples accepted for synchronization. The shape of the gossiping frequency curve depends
on the attributes of the algorithm. It is smoother when more historical data is used for
computation (8-16-16). Also the influence of the gossiping frequency on the synchronization
speed is visible — decreasing the frequency sooner when using 1-4-32 setting increases the
period necessary for the network to synchronize.

The capability of the network to adapt this value when some change in the system occurs
is directly associated with the gossiping frequency. The next experiments show the reaction
of the network to the change of time in the time source. More specifically, after the network
synchronizes, the time in the time source is changed by 30 seconds. The results of conducted
tests are depicted in Figure 6.11.

One may observe that the setting 1-4-32 has better adaptation properties. The system
reacts almost immediately which makes the time required for synchronization shorter. Us-
ing 8-16-16 configuration slows down the reaction and therefore increases the time required
for synchronization, which is quite obvious. It should, however, be noted that the average
gossiping frequency of the whole network does not reach the value of the maximal gossiping
frequency, although if analyzing the behavior of a single node, such a situation is possi-
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Figure 6.11: A change of the gossiping frequency as a reaction to a change in the system.

ble. This is clearly a positive property, since it prevents network congestion while letting
some nodes, that require it at a given moment, the opportunity to gossip with the maximal
frequency.

The final experiments concern the operation of gradual GTP in a system with skewed
clocks. The clock settings were similar to the settings for the corresponding tests of the
previous version of the protocol — exaggerating the clock frequency errors. Figure 6.12
presents the results of these tests.
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Figure 6.12: The synchronization accuracy in the system with skewed clocks.

The experiments revealed that the clock skew does not influence the speed of network
synchronization. In the stable state the absolute errors are limited to 18 ms. The charts
indicate that slightly more errors lean towards positive values, but such a behavior is caused
by the fact that there were 32 more clocks with positive skew during the experiments.

The most important conclusion is that gradual GTP is able to maintain the time within
reasonable bounds even in the presence of very poor clocks. Furthermore, the dispersion
mechanism provides the ability to estimate the accuracy of time provided by a given node.
Such a value may be used by applications to examine to what extent the local time is con-
sistent with the reference one.
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6.2.3. Selective GTP

The difference between selective GTP and the previous version of the protocol is the usage
of application-specific data in the overlay management protocol. The latter one should keep
the information about neighbors in the cache as fresh as possible in order to provide reliable
data for the peer sampling service. For all protocols presented in Section 5.2, the update
of neighborhood information is a result of gossiping of the overlay management protocol.
Therefore, the first interesting question is the relationship between the gossiping frequency
of the overlay, the gossiping frequency of GTP and the freshness of the overlay cache entries.
The answer can be found by analyzing the distribution of values of the TS_DISTANCE variable,
because the peer sampling strategy for selective GTP chooses the neighbor with the smallest
dispersion and hop count. It is expected that increasing the gossiping frequency of the
overlay should decrease the age of the cache entries and thereby improve the freshness of
data provided for the peer sampling strategy.

During the tests the parameters’ values were exactly the same as for the previous version of
the protocol. The only thing modified was the gossiping frequency of the overlay management
protocol (more specifically, ∆T value). The results are presented in Figure 6.13.
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Figure 6.13: The influence of the ∆T value on the freshness of the application-specific data
for the peer sampling service.

It can be easily observed that if the gossiping frequency of the overlay management
protocol is equal to the maximal possible gossiping frequency of GTP (∆T equal to 25
seconds) then the data is really fresh. For the majority of nodes the hop count value is smaller
than or equal to the shortest path length property of the overlay graph (cf. Table 5.1), which
is consistent with the theoretical reasoning presented in Section 4.4. On the other hand,
if the overlay gossiping frequency used is the same as for gradual GTP tests (∆T equal to
250 seconds which is 2.5 times higher than minimal gossiping frequency bound of GTP) the
distribution is almost unaffected (cf. Figure 6.9c).

Furthermore, the decrease of the TS_DISTANCE value increases the speed of the network
synchronization, as depicted in Figure 6.13b. Such behavior can be explained by that the
nodes pick the neighbors with the smallest dispersion (which usually means the most accu-
rate time) to gossip with. The slow-down in the synchronization speed at the end of the
synchronization process is caused by the fact that although the nodes contact the neighbors
with the optimal dispersion value getting the most accurate time, they still have to adjust
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their clocks in the gradual adjustment process. Note that correcting the error of 60 seconds,
using the parameters selected for the test, requires 60,000 clock adjustment periods which
accounts for 600 seconds.

For the rest of the tests described in this section the value of ∆T parameter is equal to 25
seconds. In other words, the overlay management protocol gossips with the maximal allowed
gossiping frequency for GTP.

The next issue to examine is the influence of the overlay management protocol on the
freshness of application-specific data. Some of the presented protocols try to limit the time
the entry remains in the cache by using timestamps or other similar methods and the question
is how their heuristics work in practice. During the experiments the methodology remained
the same — the distribution of hop count was analyzed. The results are shown in Figure 6.14.

It turns out that the timestamp mechanism utilized in Newscast ensures the best proper-
ties. The implemented frequency-based optimization of Lpbcast also provides good freshness
of data. CYCLON, although presenting relatively high number of nodes with hop count equal
to 1 (the neighbors of the time source), has worse properties than the latter two. Finally, as
expected, Shuffling, which does not use any algorithms to control the time the entry remains
in the cache, performs the worst.

It should be noted that the good distribution of the time source distance is not the only
factor that influences the quality of time provided by GTP. It may even cause some problems
concerning load balancing (as stated in Section 4.4). However, during the experiments with
the small networks, the author has not observed any decrement in the quality of time provided
by selective GTP when operating with any of the overlay management protocols, comparing
to gradual GTP.

6.3. Large-Scale Experiments

The large-scale experiments have been carried out for systems of 10,500 nodes (denoted later
as the medium network/system) and 64,500 nodes (denoted as the large network/system)
distributed among machines of DAS-2 (see Section 6.1). The author focused on analyzing
the properties of different GTP versions in large networks as well as examining the influence
of the underlying physical network’s heterogeneity on the behavior of the protocols. Due to
the latter issue, the deployment of nodes across machines of the cluster is described further.

6.3.1. Experimental Setting

During the tests each DAS-2 machine was running two instances of JVM (one instance per
processor). One JVM was acting as the RMI registry for the system utilities (see Section 7.2
for explanation). All other instances were hosting 500 nodes each (the medium and large
systems were using 11 and 65 machines respectively). The observed errors between the time
displayed by the physical clocks of different machines were smaller than or equal to ∼1 ms.

The above mapping of nodes to the machines provides physical network heterogeneity.
More specifically, the following communication types depending on the relative location of
gossiping nodes were involved:

• intraprocess communication — between the threads of the nodes running within the
same instance of JVM,

• interprocess communication — for nodes hosted by different JVMs, but on the same
DAS-2 machine,

• network communication — between nodes residing on different machines.
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Figure 6.14: Hop count distribution for the protocols for selective GTP.
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It should be noted that even though 1000 nodes were running on a single DAS-2 machine,
more than 98%, in case of the large system, and more than 90%, in case of the medium
system, of the communication between nodes was carried through the network links. For any
given node, at most 999 other nodes were running on the same machine and at least 63,500,
in case of the large system, were running on different machines, which account for 1.55%
and 98.45% respectively. As observed during the tests and in the other similar large-scale
experiments concerning overlay management [34], the entries in the overlay cache of a node
are distributed over all nodes constituting the system, irrespective of their physical locations.
Therefore, the expected communication between the nodes on the same machine for the large
system was equal only to 1.55%.

As the overlay management protocol CYCLON was chosen. The reason for such a decision
was that Newscast should not be used with basic GTP and although Lpbcast has better
properties maintaining the cache entries fresh than CYCLON, it has much worse in-degree
distribution which might have lead to overflowing some nodes with requests. The cache size
was set to 30 and the shuffle length to 10. As the initial topology the random graph was
selected to shorten the period required for the convergence of the overlay. The gossiping
delay for CYCLON was set on a per-test basis: 25 seconds for the medium systems and 250
seconds for the large systems.

In all scenarios there was only one time source. All clocks were ticking with the same
frequency and the initial offsets were chosen randomly with a uniform distribution from the
sum of intervals -10 to -60 seconds and 10 to 60 seconds. For basic GTP the values of
GOSSIPING_DELAY variable and _STANDALONE_PERIOD_ were set to 100 seconds and the sample
filter buffer length was equal to 8. For gradual and selective GTP the clock adjustment period
was set to 10 ms and the values of _MIN_GOSSIPING_DELAY_ and _MAX_GOSSIPING_DELAY_ were
equal to 25 and 100 seconds respectively. Moreover, 8-16-16 was selected as the setting for
the buffer controlling the changes of the gossiping frequency.

6.3.2. Results

The tests involving medium systems (10,500 nodes) aimed at checking the results of the
experiments presented earlier when a heterogeneous environment is used. More specifically,
the author was interested mostly in the speed and accuracy of the synchronization as well as
in the statistical data concerning the hop count value.

The results concerning the quality of GTP are depicted in Figure 6.15.
They indicate that the speed of convergence remains high despite the network growth:

20-76 gossiping cycles are required for a full convergence of selective GTP (the value cannot
be estimated perfectly due to the gossiping frequency adjustment mechanism). Basic GTP
requires only 22 gossiping cycles (note that the real time is longer than for gradual or selective
GTP, because the gossiping delay of basic GTP — 100 s — is four times as high as the minimal
gossiping delay of gradual and selective GTP — 25 s).

Unfortunately, the error distribution for basic GTP indicates that the algorithm has
serious problems with maintaining the accurate time. The errors are unstable and oscillate
leaning towards either positive or negative (as in Figure 6.15a) values, despite of sample
filtering.

The tests revealed also that selective GTP suffers from a load imbalance. During the
whole operation most of the nodes have (rather small) positive errors indicating that sending
a request lasts shorter than receiving a response. The explanation of such a phenomenon is
that the overloaded node processes incoming requests faster than the operating system is able
to send responses through the network. Therefore, they are waiting in the outgoing buffer
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Figure 6.15: The quality of synchronization in the medium network.

for the physical network interface to be ready for transmission. Disabling outgoing message
buffering results in an opposite situation. Because the author’s implementation does not
have any operating system support for timestamping incoming messages, the message sent
to an overloaded node, which now has to wait for each processed request to be transmitted
by the network interface, resides for a long time in the incoming message buffer before being
timestamped. This, however, is a reason for artificial differential delays occurring not due
to the physical network behavior, but because of the message path length from the network
interface to the processing application. Even the quality of in-degree distribution provided
by CYCLON does not solve the problem.

Gradual GTP performs the best. The errors in the stable state do not exceed 12 ms and
most of the nodes have the error in the range of the clock precision.

Figure 6.16 presents the distribution of the TS_DISTANCE value.
As can be easily observed, the distribution shape is similar to the small networks. Again,

selective GTP provides good theoretical properties, which, however, in practice lead to a load
imbalance.

Due to administrative issues concerning the DAS-2 cluster and the fact that gradual and
selective GTP are similar, but the latter one provides worse synchronization quality, during
the experiments with large networks (64,500 nodes) the author has tested only the first two
versions of the protocol. These experiments were focused on analyzing the scalability of GTP.
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Figure 6.17 depicts the interesting properties.
The results of the experiments confirm the claim that, concerning the synchronization

speed, both versions of GTP are scalable. Gradual GTP requires 26-100 gossiping cycles
for the full convergence whereas the previous version of the protocol about 40 cycles. The
behavior of the hop count value is consistent with earlier measurements.

The predictions about the accuracy of basic GTP based on the previous results turn out
to be true. The errors are very unstable and exceed high values ranging even to 322 ms in
extreme situations. On the other hand, in the case of the second version of GTP they do
not differ from the results of the tests involving medium systems (actually they are better,
because the maximal absolute error noticed is 11 ms).

6.4. Summary

From the beginning, the design of basic GTP assumed the simplicity of the algorithm. This
is the main reason for rather poor accuracy of time maintained by the system, when oper-
ating in large networks. It has however, some advantages including high speed of network
synchronization. The results constitute good deal of information on what to expect from
similar, simple solutions.

Gradual GTP targets at improving the accuracy of time-keeping and it achieves this ob-
jective performing the best of all presented algorithms. It has fine synchronization properties
while still being highly scalable. Moreover, when an appropriate overlay management proto-
col is utilized (e.g. CYCLON), the system is capable of self-organization and is very robust
to massive nodes failures.

The experiments conducted with selective GTP show that sometimes when trying to
improve a certain property of some protocol, one may meet serious problems with some other
issues that have not occurred before. Obtaining better theoretical properties of the time
propagation paths, results in a load imbalance, which ironically, in case of large systems,
leads to decrease in the accuracy of synchronization — the main goal of the time protocol.

Finally, the results as a whole show one more important issue concerning the procedure of
conducting experiments. It should be noted that many properties of the presented algorithms
could not be revealed only with simulations, as the number of different aspects that are
necessary to be simulated is enormous. Furthermore, emulations conducted only with small
networks do not emphasize some intricacies of the presented work that appear only in case
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Figure 6.17: The properties of synchronization in the large network.

of the large-scale systems (e.g. load imbalance in selective GTP or error propagation despite
of using sample filtering in basic GTP).

The author does not claim that the conducted experiments are exhaustive and thereby
Section 8.2 presents possible additional research.
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Chapter 7

Implementation

For the purpose of the experiments the author has developed an environment capable of
emulating the system on a single machine, a cluster-based computer with a job submissions
software (e.g. PBS [24]) or, possibly, in the Internet. The implementation has been created
in Java 1.4.2, mainly because of the portability reasons. It is divided into two logical parts:
the core implementation and the utilities, described in detail later in this chapter.1

The overview of the environment architecture is presented in Figure 7.1.

Local Object Passing

Network Abstraction Layer

TCP UDP

Lightweight
Probabilistic
Broadcast

ShufflingNewscastCYCLON
Idle

Protocol

Overlay Abstraction Layer

Peer Sampling Service

Basic GTP

Bootstrapping Overlays

Synchronization

Logging and Analysis

Configuration

Clocks

Utilities

Selective GTP

Runtime Modifications

Gossiping Time Protocol Abstraction Layer

Gradual GTP

Figure 7.1: The overview of the implementation architecture.

7.1. Core

The core of the environment implements the system model described in Chapter 3. It consists
of three layers: networking layer, overlay layer and application (GTP) layer.

The networking layer aims at providing higher layers with uniform communication primi-
tives, that are independent of the underlying protocols. For this reason, a network abstraction

1 Because of the size of the implementation (about 600KB of source code), the description focuses only
on the most important issues.
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layer has been designed. Its goal is to specify the following abstract definitions:

• network address — used for unique identification of an instance of an application/a pro-
tocol in the whole system (e.g. an IP address and a port number in the UDP imple-
mentation);

• network endpoint — supplies methods for sending and receiving objects from other
nodes (e.g. a socket in the UDP implementation);

• network allocator — used for transparent allocation of various network-related re-
sources.

The network abstraction layer assumes unreliable (best-effort), connection-less, object-based2

communication model.
There are three implementations of the networking layer: UDP, TCP and local. UDP

and TCP implementations use standard Java classes for network communication. The local
implementation utilizes Java synchronization primitives (wait, notify, notifyAll methods
and synchronized keyword). It can be applied only for communication in the environment
run within one instance of JVM and has been developed mainly because of high speed and
small resource consumption. All implementations utilize Java serialization mechanism. One-
copy semantics for the local implementation is preserved for compatibility reasons with other
implementations. Switching between various implementations can be done without any mod-
ifications to the source code, by changing a value of one property in the test configuration
file.

The overlay layer is responsible for running a membership management protocol. Again,
an abstraction layer approach has been used in order to unify access to the peer data by the
peer sampling service and classes responsible for starting the environment.

The author has implemented four sample membership management protocols described
in Chapter 5: CYCLON, Newscast, Shuffling and Lpbcast. Additionally, an idle protocol,
that does not change the overlay shape during the whole test, has been developed — mainly
for testing GTP with networks based on random graphs. All protocols (except for idle) utilize
one endpoint for communication and two threads: active and passive. The active thread is
responsible for periodical initialization of neighborhood information exchanges with other
nodes, while the passive thread handles such requests from other nodes and responses to
node’s own requests. In protocols that employ the shuffle operation, instead of the optimistic
solution for handling cyclic exchanges, pessimistic locking has been applied. Additionally,
simple mechanisms for recovering after isolation of a node have been incorporated into the
implementation.

Switching between various overlay management protocols can be performed by chang-
ing the property storing the name of the protocol and setting additional protocol-specific
parameters in the test configuration.

The peer sampling service is implemented directly on top of the overlay abstraction layer.
The dependence on particular application is exposed only in implementations of various peer
sampling strategies.

Finally, the GTP layer has also been built with the design principle involving an ab-
straction layer for management purposes. All versions of GTP described in Chapter 4 have
been implemented. The implementations use one endpoint and two threads — similar to the
implementations of the overlay layer. Switching between them is performed by changing the

2 Basic unit of information that can be sent through the network is a Java object.
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protocol version and setting all necessary protocol-specific parameters in the configuration
file.

All layers, for measuring time, suspending threads, etc. use time services provided by
clock implementations from the utilities components, described in the next section.3

7.2. Utilities

The utilities have been intended to automate some parts of experiments and allow almost
transparent execution independent of the hardware used (e.g. a single machine or a clus-
ter). They consist of the following packages: clocks, configuration, logging, synchronization,
bootstrapping overlays and runtime modifications.

The clocks package includes software implementation of various clock types (perfect clocks,
skewed clocks, etc.). Each clock version is based on the functionality provided by Java, in
particular, System.currentTimeMillis method. This implies the theoretical precision of
the clock equal to 1 millisecond.

The configuration package is responsible for loading the configuration of both hardware
used for emulation and the test parameters supplied by the user.

For the logging purposes, Log4J library [17] has been incorporated into the system. Each
layer on each machine used for emulation owns one file for messages. The logging of system
state intended for later analysis is performed by the main thread. Other messages, like
warnings or errors, can be logged by an arbitrary thread. In case of emulation on more than
one machine, all machines are synchronized before logging a sample. After the experiments,
the logs can be processed by classes and scripts designed for analysis of properties of a
particular layer.

The synchronization package contains primitives for threads synchronization,
e.g. barriers. To optimize the communication during experiments conducted on multiple
machines, hierarchical synchronization objects have been developed. Threads within one
JVM synchronize locally (without any network communication) and, after that, the JVMs
spawned on different machines synchronize by the means of RMI, leading to only one remote
method invocation per JVM, instead of one per thread.

Bootstrapping of the initial overlay topology is performed by means of a topology man-
ager. Each JVM, after loading the configuration file and spawning nodes, communicates via
RMI with the topology manager which generates neighborhood lists for nodes of that JVM.

Finally, custom runtime modifications, like changing time of the nodes’ clocks, adding
nodes to the system or other user-defined operations, may be scheduled for an experiment.

3 This implies that for example sleeping for a certain amount of time lasts an amount of time dependent
on the clock skew of a given node.
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Chapter 8

Applications and Future Work

Due to the provided functionality, GTP can be applied in many domains of distributed
systems, not necessarily associated with P2P networks. The protocol does not require any
specific clock services to be supplied by the operating system. In the extreme case, like in
the implementation presented before, only one function responsible for returning some form
of local time is required. This portability and inherent simplicity of GTP allow to easily
incorporate it as a time service into large applications.

8.1. Applications of GTP

As the first trivial use-case one may consider synchronizing clocks of machines forming a large
system (e.g. a P2P network) for the purpose of statistical logging or computation of some
aggregate function. A similar example involves synchronizing processes in large-scale exper-
iments conducted using resources reserved worldwide, for instance, through PlanetLab [23].

Another application of GTP is associated with systems dealing with distribution by using
timestamps for caching or leases [31, Chap. 6.4]. Consider the cache system designed for
HTTP/1.1 [5] as an example. It is based on a hierarchy of proxy servers and clients’ caches
to support documents replication. The documents sent within HTTP messages can be ac-
companied by some tags, among which the following are of special interest here: Expires,
Last-Modified, If-Modified-Since and If-Unmodified-Since. Their values allow to make a deci-
sion, either by a client’s browser or a proxy server, whether a cached copy of a document is
still up-to-date. These tags, especially Expires, assume that time within the cache hierarchy
is synchronized. Instead of depending on this assumption, one can employ GTP to ensure
the synchronization. More specifically, the proxies may form an overlay network which can
be used by GTP in order to keep accurate time on all machines.

The field of GRID computing, that is recently successfully applying P2P technology, may
also benefit from solutions based on GTP. In particular, let the computations be performed
by a highly dynamic network of nodes, e.g. idle PCs of many people spread worldwide. The
resource reservation system should support allocation of a number of machines for a given
period at specific time. In order to provide such functionality, the clocks of the computers (or
at least the processes responsible for local reservation of resources) have to be synchronized,
which is the task for GTP. Moreover, the error estimation by the means of the dispersion
value can be utilized by the parallel application as a part of fault tolerance mechanisms.

The few examples described above should give an idea of possible applications of the
developed solutions. One may easily think of many more, including even some misusing GTP
(e.g. coordination, in a difficult-to-detect way, of the denial of service attacks by computer
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viruses). In face of the aforementioned facts, the need of further research concerning the
designed algorithms seems obvious.

8.2. Future Work

The nearest research will target at overcoming the load balancing problem of selective GTP.
The solution being currently worked out by the author introduces some randomness in the
peer sampling strategy and gossiping frequency calculation alleviating the results of massive
requests aimed at nodes with low hop count.

Moreover, further cooperation between the overlay layer and GTP is considered. Time
synchronization protocols are usually not the only processes active, even in the case of time
sources. It may happen that a time source may be heavily loaded due to the operation of some
other service. The interesting question is whether the system can react to such situations by
letting GTP to monitor the incoming samples and changing the peer sampling strategy on
demand to choose a different node for gossiping.

Directly associated with the above ideas is the utilization of the overlay management
protocols that form the logical network based on some properties of the physical connections
between the nodes (e.g. Saxons described in Section 5.2.5). The time service can influence
behavior of such a protocol by supplying it with the data collected during the gossiping (e.g.
round-trip delay on the path between nodes). Such an approach should further improve the
adaptation speed in situations described above.

The protocols should also be extended with mechanisms capable of detecting truechimers
and falsetickers (see Section 2.2), which is connected to the problem of reputation in P2P
networks. However, in case of the time service the solutions may be different. Some fault
tolerance algorithms should also be considered to deal with the crashes of time sources.

Finally, after all proposed improvements, large-scale real-life-operation experiments of
GTP have to be conducted. They cause some further problems concerning measurements
of the synchronization quality, but surely will give a better picture of the advantages and
disadvantages of GTP.
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Chapter 9

Conclusions

Many applications require reliable and fairly accurate local time in order to operate properly.
Currently utilized time synchronization algorithms are capable of fulfilling this task, however,
they are often lacking the properties of robustness and scalability. Therefore, the developers
of distributed systems may be forced to seek for alternative solutions.

The Gossiping Time Protocol suite, presented in this thesis has been designed to be robust
and scalable, while providing good quality of time synchronization. The algorithms operate in
an epidemic style which makes them easy to implement, extend and maintain. Moreover, as
shown before, they do not require any operating system support in order to have a reasonable
time service accuracy.

The introduced system model extending previous research [10, 12], especially the new
peer sampling service designed by the author for the purpose of GTP, forms a flexible en-
vironment for building layered large-scale distributed applications. Such systems separate
common functionality, like managing group membership and forming a logical network, from
application-specific issues allowing for sharing or replacing the (parts of) layers. The ex-
amples on how to port existing solutions, which usually incorporate application data in the
membership-related messages, are also described here.

Another important contribution of the thesis are the large-scale experiments of the pro-
posed algorithms. Their advantage is the fact that the protocol operation was emulated using
a real implementation. Many test configurations have been used to make the results suitable
for verifying the claims concerning the behavior of the system in the real-life networks. The
research shows that the theoretical reasoning is correct in most cases, while revealing some
additional interesting matters.

The consecutive versions of GTP have been being developed in an incremental manner.
The author started with the simplest solution and throughout the analysis of the properties of
a given version, particular improvements and enhancements dealing with appearing problems
were proposed. As noted earlier, some of them turn out to be important and some, in
spite of being interesting from the theoretical point of view, are probably useless in practice.
Nevertheless, the author believes that the reasoning presented here constitutes a sort of a
guide or a starting point for optimizations on the existing time synchronization techniques,
or may be even the motivation for designing new ones, with better desired properties.
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