
Andrzej Murawski
UNIVERSITY OF OXFORD

NOMINAL GAME 
SEMANTICS

PART I



09/09/2019, 11(17Winners of the 2019 Alonzo Church Award – ACM Special Interest Group on Logic and Computation

Page 1 of 2https://siglog.org/winners-of-the-2019-alonzo-church-award/

 By siglog    April 17, 2019

Winners of the 2019 Alonzo Church Award

The 2019 Alonzo Church Award for Outstanding Contributions to Logic and Computation is given jointly to Murdoch J.

Gabbay and Andrew M. Pitts for their ground-breaking work introducing the theory of nominal representations.

The ACM Special Interest Group on Logic (SIGLOG), the European Association for Theoretical Computer Science

(EATCS), the European Association for Computer Science Logic (EACSL), and the Kurt Gödel Society (KGS) are pleased

to announce that Murdoch J. Gabbay (Heriot-Watt University, UK) and Andrew M. Pitts (Cambridge University, UK) have

been selected as the winners of the 2019 Alonzo Church Award for Outstanding Contributions to Logic and Computa-

tion. The award recognizes their ground-breaking work introducing the theory of nominal representations, a powerful

and elegant mathematical model for computing with data involving atomic names, described in the following papers:

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable binding, Formal

Aspects of Computing 13(3):341– 363, 2002.

Andrew M. Pitts. Nominal logic, a !rst order theory of names and binding, Information and Computation

186(2):165–193, 2003.

Nominal techniques have had a major impact on a number of areas of computing and logic as a powerful framework

for reasoning about formal languages for programming and modelling. The 2019 Church Award was selected by a pan-

el consisting of Thomas Eiter, Javier Esparza, Radha Jagadeesan, Catuscia Palamidessi, and Natarajan Shankar.

! " #  00



09/09/2019, 11(20Winners of the 2017 Alonzo Church Award – ACM Special Interest Group on Logic and Computation

Page 1 of 2https://siglog.org/winners-of-the-2017-alonzo-church-award/

 By siglog    May 4, 2017

Winners of the 2017 Alonzo Church Award

The 2017 Alonzo Church Award for Outstanding Contributions to Logic and Computation is given jointly to Samson

Abramsky, Radha Jagadeesan, Pasquale Malacaria, Martin Hyland, Luke Ong, and Hanno Nickau for providing a fully-

abstract semantics for higher-order computation through the introduction of game models, thereby fundamentally

revolutionising the !eld of programming language semantics, and for the applied impact of these models.

Their contributions appeared in three papers:

S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Information and Computation, Vol.

163, No. 2, pp. 409–470, 2000.

J.M.E. Hyland and C.-H.L. Ong. On Full Abstraction for PCF: I, II, and III. Information and Computation, Vol.

163, No. 2, pp. 285–408, 2000.

H. Nickau. Hereditarily sequential functionals. Proc. Symp. Logical Foundations of Computer Science: Logic

at St. Petersburg (eds. A. Nerode and Yu.V. Matiyasevich), Lecture Notes in Computer Science, Vol. 813, pp.

253–264. Springer-Verlag, 1994.

Description of the Contribution

These papers made two fundamental contributions to our understanding of programming languages and logic. First,

! " #  00



DISCLAIMERS

• computer games

• game theory

• games logicians play

• parity games



OLYMPIC SPIRIT



NOMINAL GAME SEMANTICS

• Semantics

• Game semantics

• Nominal game semantics



(! 1J 

TOWARD A MATHEMATICAL  
SEMANTICS FOR  

COMPUTER LANGUAGES  

by  

Dana Scott  

and  

Christopher Strachey  -
Oxford University 
Computing Laboratory 
Programming Research Group-Library 
8-11 Keble Road 
Oxford OX, 3QD 
Oxford (0865) 54141 

Oxford University Computing Laboratory  

Programming Research Group  

ABSTRACT 

Compilers for high-level languages aTe generally constructed 
to give the complete translation of the programs into machme 
language. As machines merely juggle bit patterns, the concepts 
of the original language may be lost or at least obscured during 
this passage. The purpose of a mathematical semantics is to give 
a correct and meaningful correspondence between programs and 
mathematical entities in a way that is entirely independent of an 
implementation. This plan is illustrated in a very elementary 
way in the introduction. The first section connects the general 
method wi th the usual idea of state transformations. The next 
section shows why the mathematics of functions has to be modified 
to accommodate recursive commands. Section 3 explains the modifi-
cation. Section 4 introduces the environments for handling variables 
and identifiers and shows how the semantical equations define 
equivalence of programs. Section 5 gives an exposition of the new 
type of mathematical function spaces that are required fOl the 
semantics of procedures when these are allowed in assignment state-
ments. The conclusion traces some of the background of the project 
and points the way to future work. 



MATHEMATICAL SEMANTICS

function

continuous 
function

strategy

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M ] �! E[M 0]

E ::= [ ] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.
Given � ` M : ✓, we write J� ` MK.

In particular, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

1



PCF (SCOTT/MILNER/PLOTKIN)

• Programming Computable Functions

• Prototypical purely functional language

• Features integer arithmetic, higher-order 
functions and recursion

• Inspired early research on semantics



PCF TYPES

✓ ::= int | ✓ ! ✓

1



PCF TERMS✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M ] �! E[M 0]

E ::= [ ] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.
Given � ` M : ✓, we write J� ` MK.

In particular, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

1



TYPING JUDGMENTS

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

1



PCF TYPING JUDGMENTS

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

1



TOWARDS MEANINGFUL 
CORRESPONDENCES

• Operational semantics                                            

• We shall focus on several meaningful 
correspondences between mathematical and 
operational semantics.

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M ] �! E[M 0]

E ::= [ ] | E �M | i� E | if E thenM elseM | EM

1



REDUCTION

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M ] �! E[M 0]

E ::= [ ] | E �M | i� E | if E thenM elseM | EM

1



1. CORRECTNESS

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M ] �! E[M 0]

E ::= [ ] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.

For instance, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

1

✓ ::= int | ✓ ! ✓

M ::= i | x
| M �M | ifM thenM elseM

| �x✓.M | MM | div✓

x1 : ✓1, · · · , xn : ✓n ` M : ✓

i 2 Z
� ` i : int

(x : ✓) 2 �

� ` x : ✓

� ` M : int � ` N : int
� ` M �N : int

� ` M : int � ` N0 : ✓ � ` N1 : ✓
� ` ifM thenN1 elseN0 : ✓

� ] {x : ✓ } ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0

� ` div✓ : ✓

M �! M 0

i� j �! k (k = i� j)
if 0 thenM elseM 0 �! M 0

if i thenM elseM 0 �! M (i 6= 0)
(�x.M)N �! M [N/x]

M �! M 0

E[M ] �! E[M 0]

E ::= [ ] | E �M | i� E | if E thenM elseM | EM

If M �! M 0 then JMK = JM 0K.

In particular, if ` M : int and M �! i then JMK = JiK.

The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

1



2. ADEQUACY
The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

Weaker variants of definability are also of interest: for “finitary” or “com-
putable” elements.

—–

• Plotkin’s domain-theoretic model of PCF uses the
following partial order to model int.

· · · �1 0 1 · · ·

?

• Terms are interpreted by monotone functions.

• The model is correct and adequate, but does not
have the definability property.

2

The following converse would be too strong:

if JMK = JM 0K then M �! M 0.

Instead one aims for:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

Weaker variants of definability are also of interest: for “finitary” or “com-
putable” elements.

—–

• Plotkin’s domain-theoretic model of PCF uses the
following partial order to model int.

· · · �1 0 1 · · ·

?

• Terms are interpreted by monotone functions.

• The model is correct and adequate, but does not
have the definability property.

2



3. DEFINABILITY (NO JUNK)

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

2

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

2



DOMAIN-THEORETIC 
SEMANTICS

if JMK = JM 0K then M �! M 0.

Instead we aim for adequacy:

Given ` M : int, if JMK = JiK then M �! i.

Suppose J✓K is the mathematical object corresponding to ✓,
i.e. terms J ` M : ✓K can be thought of as elements of J✓K.

Definability asks whether

8x2J✓K 9`Mx:✓ x = J ` Mx : ✓K.

Weaker variants of definability are also of interest: for “finitary” or “com-
putable” elements.

—–

• Plotkin’s domain-theoretic model of PCF uses the
following partial order to model int.

· · · �1 0 1 · · ·

?

• Terms are interpreted by monotone functions.

• The model is correct and adequate, but does not
have the definability property.

—— The parallel or function

por x y =

8
<

:

1 x 6= 0 or y 6= 0
0 x = 0 and y = 0
? otherwise

Parallel-or is undefinable: there is no PCF term M
such that

M divint 1 �! 1
M 1 divint �! 1

M 0 0 �! 0

2



FAILURE OF DEFINABILITY
Consider the parallel-or function

por x y =

8
<

:

0 x = 0 and y = 0
1 x 6= 0,? or y 6= 0,?
? otherwise

E.g. por 0 0 = 0 and por 1? = por ? 1 = 1.

por turns out to be undefinable:
there is no PCF term M such that

M div 1 �! 1 M 1 div �! 1 M 0 0 �! 0

3



TOWARDS FULL 
ABSTRACTION

While loop (while(M))

• Recall that sequences from L� ` �x
unit

.M : int M match

the pattern

X (r#, †)(c, ?)X1 (r, `1)(c, ?) · · · (r, `k�1)(c, ?)Xk (r, `k).

• To interpret � ` while(M) : unit we select only those

sequences above where the induced sequence `1 · · · `k
satisfies `k = 0 and `j > 0 (1  j  k).

• Subsequently, we erase all moves with tags c, r, r# and
add the move (r#, ?) at the end. This yields the se-

quence:

XX1 · · ·Xk(r#, ?).

In the above we have omitted stores, which simply

need to be copied over from one sequence to the

other.

Application (xy)
L� ` xy : �

0 M contains all complete plays of the shape

i
S
(cx, iy)

S
(rx, `)

S0
(r#, `)

S0
.

• P does not change the store in any of the plays, but

O can play a di↵erent store S
0
.

• We must have dom(S) ✓ dom(S
0
) and the inclusion

can be proper if ` 2 A \ dom(S).

JM1K = JM2K?

18



4. FULL ABSTRACTION

JM1K = JM2K if and only if M1
⇠= M2

Robin Milner (1977)

8



CONTEXTUAL TESTING
• Contexts

C ::= [ ] | C �M | M � C

| if C thenM elseM | ifM thenC elseM | ifM thenM elseC

| �x✓.C | MC | CM

• Testing of M : ✓

C[M ] : int

If there exists i such that C[M ] �!⇤ i, we write
C[M ] + (success!).

4



CONTEXTUAL EQUIVALENCE
Intuitively, two programs should be viewed as equivalent
if they behave in the same way in any context, i.e. they
can be used interchangeably.

• � ` M1 : ✓ approximates � ` M2 : ✓ if

C[M1]+ implies C[M2]+

for any context C such that ` C[M1], C[M2] : int.
Then we write � ` M1 v M2.

• Two terms are equivalent if one approximates the
other, written � ` M1

⇠= M2.

5



SOUNDNESS
Correctness and adequacy turn out to imply:

if JM1K = JM2K then M1
⇠= M2.

Assume JM1K = JM2K and suppose M1 6⇠= M2,
i.e. C[M1] + and C[M2] 6+ for some context C
(or C[M2] + and C[M1] 6+).

• Correctness implies JC[M1]K = JiK for some i.

• Adequacy implies JC[M2]K 6= JiK for any i.

This is a contradiction, because JM1K = JM2K
implies JC[M1]K = JC[M2]K by compositionality.

7



NO FULL ABSTRACTION
(FOR THE DOMAIN-THEORETIC MODEL)

M1 ⌘ �f int!int!int. if (f 1 div) then
(if (f div 1) then

(if (f 0 0) then div else 1)
else div)

else div

M2 ⌘ �f int!int!int. div

• Because por is not definable, we have M1
⇠= M2.

• JM1K(por) 6= JM2K(por), so JM1K 6= JM2K.

6



INTRINSIC QUOTIENT
In the presence of definability (as well as correctness

and adequacy) one can construct fully abstract models
by quotienting.

This boils down to recasting the idea of contextual
testing inside the model.

Given x1, x2 2 J✓K,

x1 ⇠ x2 () “8y2J✓!intKy(x1) = y(x2)”.

Then J· · ·K/ ⇠ is fully abstract.

This kind of quotienting may be an obstacle in rea-
soning about equivalence, so one should attempt to find
more direct characterizations.

9



09/09/2019, 12(00PII: S0304-3975(00)00194-8 | Elsevier Enhanced Reader

Page 1 of 25https://reader.elsevier.com/reader/sd/pii/S0304397500001948…13BDF3BE07300063AFD88D38CC2A71A5960A86655E62084FE2E195C1BB



AWARD ANNOUNCEMENTS

The 2017 Alonzo Church Award

Prakash Panangaden, School of Computer Science, McGill University

SIGLOG is delighted to announce that the 2017 Church Award goes to 6 people:
Samson Abramsky, Martin Hyland, Radha Jagadeesan, Pasquale Malacaria, Hanno
Nickau and Luke Ong for [Quoting from the official citation] “providing a fully-abstract
semantics for higher-order computation through the introduction of games models,
thereby fundamentally revolutionising the field of programming language semantics,
and for the applied impact of these models.”

These results appeared in three papers:

— S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Information
and Computation, Vol. 163, No. 2, pp. 409–470, 2000.

— J.M.E. Hyland and C.-H.L. Ong. On Full Abstraction for PCF: I, II, and III. Informa-
tion and Computation, Vol. 163, No. 2, pp. 285–408, 2000.

— H. Nickau. Hereditarily sequential functionals. Proc. Symp. Logical Foundations of
Computer Science: Logic at St. Petersburg (eds. A. Nerode and Yu.V. Matiyasevich),
Lecture Notes in Computer Science, Vol. 813, pp. 253–264. Springer-Verlag, 1994.

The official citation gives a succinct summary of the contributions. The following
paragraphs are taken from the official citation.

These papers made two fundamental contributions to our understanding
of programming languages and logic. First, they provided significant insi-
ght into the longstanding and fundamental “full abstraction problem” for
the paradigmatic higher-order language PCF by giving a compositional se-
mantic account of sequentiality, via an elegant cartesian-closed category of
games and strategies. In the mid-1970s Milner posed the full-abstraction
problem for PCF and Plotkin showed the difficulty of the problem, which
essentially lies in the fact that the standard Scott-Strachey model permits
non-sequential functions, although PCF itself is sequential.
The papers constructed models for PCF from games, leading to the first
fully abstract models of PCF whose construction made no reference to the
syntax of PCF. The elements of the models are strategies for certain kinds
of interactive dialogues between two players (or between system and envi-
ronment). These dialogue games are required to follow certain conventions
concerning when questions are posed or answered; these conventions reflect
constraints on the information available to the players of the game. The pa-
pers give new insight into the fundamental work in higher-type recursion
theory of such logicians as Kleene, Gandy, Normann, and Hyland.
Second, and perhaps more importantly, game semantics has provided a new
framework for the semantics of programming languages. Games can be used
as a flexible and modular modelling tool, as a wide variety of programming
language features can be understood as corresponding to different restric-
tions placed on allowed strategies. Thus there are fully abstract games mo-
dels for call-by-value and call-by name languages; for languages with state,
with control, with references, with exceptions, with nondeterminism, and

ACM SIGLOG News 3 July 2017, Vol. 4, No. 3

AWARD ANNOUNCEMENTS

The 2017 Alonzo Church Award

Prakash Panangaden, School of Computer Science, McGill University

SIGLOG is delighted to announce that the 2017 Church Award goes to 6 people:
Samson Abramsky, Martin Hyland, Radha Jagadeesan, Pasquale Malacaria, Hanno
Nickau and Luke Ong for [Quoting from the official citation] “providing a fully-abstract
semantics for higher-order computation through the introduction of games models,
thereby fundamentally revolutionising the field of programming language semantics,
and for the applied impact of these models.”

These results appeared in three papers:

— S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Information
and Computation, Vol. 163, No. 2, pp. 409–470, 2000.

— J.M.E. Hyland and C.-H.L. Ong. On Full Abstraction for PCF: I, II, and III. Informa-
tion and Computation, Vol. 163, No. 2, pp. 285–408, 2000.

— H. Nickau. Hereditarily sequential functionals. Proc. Symp. Logical Foundations of
Computer Science: Logic at St. Petersburg (eds. A. Nerode and Yu.V. Matiyasevich),
Lecture Notes in Computer Science, Vol. 813, pp. 253–264. Springer-Verlag, 1994.

The official citation gives a succinct summary of the contributions. The following
paragraphs are taken from the official citation.

These papers made two fundamental contributions to our understanding
of programming languages and logic. First, they provided significant insi-
ght into the longstanding and fundamental “full abstraction problem” for
the paradigmatic higher-order language PCF by giving a compositional se-
mantic account of sequentiality, via an elegant cartesian-closed category of
games and strategies. In the mid-1970s Milner posed the full-abstraction
problem for PCF and Plotkin showed the difficulty of the problem, which
essentially lies in the fact that the standard Scott-Strachey model permits
non-sequential functions, although PCF itself is sequential.
The papers constructed models for PCF from games, leading to the first
fully abstract models of PCF whose construction made no reference to the
syntax of PCF. The elements of the models are strategies for certain kinds
of interactive dialogues between two players (or between system and envi-
ronment). These dialogue games are required to follow certain conventions
concerning when questions are posed or answered; these conventions reflect
constraints on the information available to the players of the game. The pa-
pers give new insight into the fundamental work in higher-type recursion
theory of such logicians as Kleene, Gandy, Normann, and Hyland.
Second, and perhaps more importantly, game semantics has provided a new
framework for the semantics of programming languages. Games can be used
as a flexible and modular modelling tool, as a wide variety of programming
language features can be understood as corresponding to different restric-
tions placed on allowed strategies. Thus there are fully abstract games mo-
dels for call-by-value and call-by name languages; for languages with state,
with control, with references, with exceptions, with nondeterminism, and

ACM SIGLOG News 3 July 2017, Vol. 4, No. 3



FULL ABSTRACTION FOR PCF

• Abramsky, Jagadeesan, Malacaria
• Hyland, Ong
• Nickau

Follow-up work extended the techniques to state, 
control, concurrency, exceptions and more. 



GAME SEMANTICS

★ Two players:  O (System) and P (Program)

★ Types are interpreted by games. 

★ Programs are interpreted as strategies for P.

★ No winners or losers.

★ The dialogue is the central object of study.



REFML

main challenge is to identify conditions ensuring that higher-
order values not accessible to one of the strategies will not be
covertly modified during composition.

On the structural level, our proof of full abstraction follows
the well-established pattern of proving such results. Soundness
(Section ??) is obtained by showing conformance with a
categorical framework [?], already known to guarantee sound-
ness. Completeness (Section ??) follows from a definability
result, which is interesting in its own right, as the new
structure of plays enables one to perform rather unexpected
transformations on plays to reduce the problem to simpler
and smaller instances. Altogether we obtain a model in which
program approximation (contextual preorder) corresponds to
inclusion of the induced complete3 plays. This immediately
implies effective presentability, i.e. a decidable presentation
of the compact elements of the model. We believe our model
to provide a definitive game semantics for general references
in absence of polymorphism and recursive types.

Related and future work. As already described, our model
rectifies problems present in a previous game model due to
Abramsky, Honda and McCusker [?]. The structure of their
model was subsequently studied by Levy [?] and Melliès [?]
with the aim of understanding its structure in more abstract
terms.

Otherwise the most closely related work is Laird’s fully
abstract trace semantics of essentially the same language [?].
Our model can be viewed as a game-semantic counterpart
of his work: traces are derived from terms through an op-
erational semantics, whereas our strategies are defined in
a compositional and syntax-free manner. This illustrates a
recent convergence of complementary results in the two fields
(cf. [?] and [?]) that promises to lead, in the long run, to an
operational account of game semantics, which will ultimately
make it possible to move smoothly between (syntax-directed,
non-compositional) labelled transition system semantics and
(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-
ered in this paper has already been presented by one of us [?].
Grounded in monadic semantics for store, it did not however
offer an explicit characterization of program equivalence due
to reliance on innocent strategies (which had to be quotiented
for full abstraction). The present work can thus also be seen
as a refinement of that work towards a model that captures the
behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our
work offers a new foundation for compositional analysis of
general references. Modular verification of programs with
general references is a topical problem, which was already
attacked through a variety of approaches, e.g. separation
logic [?]. In future, we hope to apply our model to model-
checking and control-flow analysis in the spirit of algorithmic
game semantics [?, ?]. Although higher-order references are
an expressive paradigm, quickly resulting in undecidability,
decidable properties can sometimes be identified [?] and

3A play is complete if any questions occurring in it has been answered.

u,Γ ⊢ () : unit
i ∈ Z

u,Γ ⊢ i : int
a ∈ (u ∩ Aθ)
u,Γ ⊢ a : ref θ

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢ M1 : int u,Γ ⊢ M2 : int
u,Γ ⊢ M1 ⊕M2 : int

u,Γ ⊢ M : int u,Γ ⊢ N0 : θ u,Γ ⊢ N1 : θ
u,Γ ⊢ ifM thenN1 elseN0 : θ

u,Γ ⊢ M : ref θ
u,Γ ⊢ !M : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : θ
u,Γ ⊢ M :=N : unit

u,Γ ⊢ M : θ
u,Γ ⊢ refθ(M) : ref θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : ref θ
u,Γ ⊢ M = N : int

u,Γ ⊢ M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢ MN : θ′

u,Γ ∪ {x : θ} ⊢ M : θ′

u,Γ ⊢ λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

we will be in a good position to approach such from a
new perspective. We would also like to make an impact on
the automated or machine-checkable verification of program
equivalences and understand the relationship between game
semantics and other methods used to the same end, such as
step-indexing [?] and bisimulation-based techniques [?]. On
the semantic front, as a next step, we would like to extend
our work to polymorphism, so as to eliminate the bad-variable
problem in [?].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best
described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary
integer functions) and higher-order reference manipulation
(reference names, dereferencing, assignment, memory alloca-
tion, reference equality testing). The typing rules are given
in Figure ??, where A =

⊎

θ Aθ stands for a countable set of
reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able
to compare integer variables with integer constants and act
on the result. In the above and in what follows, we write
M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for
(λxθ .N)M in general. The values of the language are given
by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to
introduce a notion of store. A store will simply be a function
from a finite set of names to values such that the type of

2



TYPING RULES 1

main challenge is to identify conditions ensuring that higher-
order values not accessible to one of the strategies will not be
covertly modified during composition.

On the structural level, our proof of full abstraction follows
the well-established pattern of proving such results. Soundness
(Section ??) is obtained by showing conformance with a
categorical framework [?], already known to guarantee sound-
ness. Completeness (Section ??) follows from a definability
result, which is interesting in its own right, as the new
structure of plays enables one to perform rather unexpected
transformations on plays to reduce the problem to simpler
and smaller instances. Altogether we obtain a model in which
program approximation (contextual preorder) corresponds to
inclusion of the induced complete3 plays. This immediately
implies effective presentability, i.e. a decidable presentation
of the compact elements of the model. We believe our model
to provide a definitive game semantics for general references
in absence of polymorphism and recursive types.

Related and future work. As already described, our model
rectifies problems present in a previous game model due to
Abramsky, Honda and McCusker [?]. The structure of their
model was subsequently studied by Levy [?] and Melliès [?]
with the aim of understanding its structure in more abstract
terms.

Otherwise the most closely related work is Laird’s fully
abstract trace semantics of essentially the same language [?].
Our model can be viewed as a game-semantic counterpart
of his work: traces are derived from terms through an op-
erational semantics, whereas our strategies are defined in
a compositional and syntax-free manner. This illustrates a
recent convergence of complementary results in the two fields
(cf. [?] and [?]) that promises to lead, in the long run, to an
operational account of game semantics, which will ultimately
make it possible to move smoothly between (syntax-directed,
non-compositional) labelled transition system semantics and
(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-
ered in this paper has already been presented by one of us [?].
Grounded in monadic semantics for store, it did not however
offer an explicit characterization of program equivalence due
to reliance on innocent strategies (which had to be quotiented
for full abstraction). The present work can thus also be seen
as a refinement of that work towards a model that captures the
behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our
work offers a new foundation for compositional analysis of
general references. Modular verification of programs with
general references is a topical problem, which was already
attacked through a variety of approaches, e.g. separation
logic [?]. In future, we hope to apply our model to model-
checking and control-flow analysis in the spirit of algorithmic
game semantics [?, ?]. Although higher-order references are
an expressive paradigm, quickly resulting in undecidability,
decidable properties can sometimes be identified [?] and

3A play is complete if any questions occurring in it has been answered.

u,Γ ⊢ () : unit
i ∈ Z

u,Γ ⊢ i : int
a ∈ (u ∩ Aθ)
u,Γ ⊢ a : ref θ

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢ M1 : int u,Γ ⊢ M2 : int
u,Γ ⊢ M1 ⊕M2 : int

u,Γ ⊢ M : int u,Γ ⊢ N0 : θ u,Γ ⊢ N1 : θ
u,Γ ⊢ ifM thenN1 elseN0 : θ

u,Γ ⊢ M : ref θ
u,Γ ⊢ !M : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : θ
u,Γ ⊢ M :=N : unit

u,Γ ⊢ M : θ
u,Γ ⊢ refθ(M) : ref θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : ref θ
u,Γ ⊢ M = N : int

u,Γ ⊢ M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢ MN : θ′

u,Γ ∪ {x : θ} ⊢ M : θ′

u,Γ ⊢ λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

we will be in a good position to approach such from a
new perspective. We would also like to make an impact on
the automated or machine-checkable verification of program
equivalences and understand the relationship between game
semantics and other methods used to the same end, such as
step-indexing [?] and bisimulation-based techniques [?]. On
the semantic front, as a next step, we would like to extend
our work to polymorphism, so as to eliminate the bad-variable
problem in [?].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best
described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary
integer functions) and higher-order reference manipulation
(reference names, dereferencing, assignment, memory alloca-
tion, reference equality testing). The typing rules are given
in Figure ??, where A =

⊎

θ Aθ stands for a countable set of
reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able
to compare integer variables with integer constants and act
on the result. In the above and in what follows, we write
M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for
(λxθ .N)M in general. The values of the language are given
by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to
introduce a notion of store. A store will simply be a function
from a finite set of names to values such that the type of

2

main challenge is to identify conditions ensuring that higher-
order values not accessible to one of the strategies will not be
covertly modified during composition.

On the structural level, our proof of full abstraction follows
the well-established pattern of proving such results. Soundness
(Section ??) is obtained by showing conformance with a
categorical framework [?], already known to guarantee sound-
ness. Completeness (Section ??) follows from a definability
result, which is interesting in its own right, as the new
structure of plays enables one to perform rather unexpected
transformations on plays to reduce the problem to simpler
and smaller instances. Altogether we obtain a model in which
program approximation (contextual preorder) corresponds to
inclusion of the induced complete3 plays. This immediately
implies effective presentability, i.e. a decidable presentation
of the compact elements of the model. We believe our model
to provide a definitive game semantics for general references
in absence of polymorphism and recursive types.

Related and future work. As already described, our model
rectifies problems present in a previous game model due to
Abramsky, Honda and McCusker [?]. The structure of their
model was subsequently studied by Levy [?] and Melliès [?]
with the aim of understanding its structure in more abstract
terms.

Otherwise the most closely related work is Laird’s fully
abstract trace semantics of essentially the same language [?].
Our model can be viewed as a game-semantic counterpart
of his work: traces are derived from terms through an op-
erational semantics, whereas our strategies are defined in
a compositional and syntax-free manner. This illustrates a
recent convergence of complementary results in the two fields
(cf. [?] and [?]) that promises to lead, in the long run, to an
operational account of game semantics, which will ultimately
make it possible to move smoothly between (syntax-directed,
non-compositional) labelled transition system semantics and
(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-
ered in this paper has already been presented by one of us [?].
Grounded in monadic semantics for store, it did not however
offer an explicit characterization of program equivalence due
to reliance on innocent strategies (which had to be quotiented
for full abstraction). The present work can thus also be seen
as a refinement of that work towards a model that captures the
behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our
work offers a new foundation for compositional analysis of
general references. Modular verification of programs with
general references is a topical problem, which was already
attacked through a variety of approaches, e.g. separation
logic [?]. In future, we hope to apply our model to model-
checking and control-flow analysis in the spirit of algorithmic
game semantics [?, ?]. Although higher-order references are
an expressive paradigm, quickly resulting in undecidability,
decidable properties can sometimes be identified [?] and

3A play is complete if any questions occurring in it has been answered.

u,Γ ⊢ () : unit
i ∈ Z

u,Γ ⊢ i : int
a ∈ (u ∩ Aθ)
u,Γ ⊢ a : ref θ

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢ M1 : int u,Γ ⊢ M2 : int
u,Γ ⊢ M1 ⊕M2 : int

u,Γ ⊢ M : int u,Γ ⊢ N0 : θ u,Γ ⊢ N1 : θ
u,Γ ⊢ ifM thenN1 elseN0 : θ

u,Γ ⊢ M : ref θ
u,Γ ⊢ !M : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : θ
u,Γ ⊢ M :=N : unit

u,Γ ⊢ M : θ
u,Γ ⊢ refθ(M) : ref θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : ref θ
u,Γ ⊢ M = N : int

u,Γ ⊢ M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢ MN : θ′

u,Γ ∪ {x : θ} ⊢ M : θ′

u,Γ ⊢ λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

we will be in a good position to approach such from a
new perspective. We would also like to make an impact on
the automated or machine-checkable verification of program
equivalences and understand the relationship between game
semantics and other methods used to the same end, such as
step-indexing [?] and bisimulation-based techniques [?]. On
the semantic front, as a next step, we would like to extend
our work to polymorphism, so as to eliminate the bad-variable
problem in [?].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best
described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary
integer functions) and higher-order reference manipulation
(reference names, dereferencing, assignment, memory alloca-
tion, reference equality testing). The typing rules are given
in Figure ??, where A =

⊎

θ Aθ stands for a countable set of
reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able
to compare integer variables with integer constants and act
on the result. In the above and in what follows, we write
M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for
(λxθ .N)M in general. The values of the language are given
by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to
introduce a notion of store. A store will simply be a function
from a finite set of names to values such that the type of

2



TYPING RULES II

main challenge is to identify conditions ensuring that higher-
order values not accessible to one of the strategies will not be
covertly modified during composition.

On the structural level, our proof of full abstraction follows
the well-established pattern of proving such results. Soundness
(Section ??) is obtained by showing conformance with a
categorical framework [?], already known to guarantee sound-
ness. Completeness (Section ??) follows from a definability
result, which is interesting in its own right, as the new
structure of plays enables one to perform rather unexpected
transformations on plays to reduce the problem to simpler
and smaller instances. Altogether we obtain a model in which
program approximation (contextual preorder) corresponds to
inclusion of the induced complete3 plays. This immediately
implies effective presentability, i.e. a decidable presentation
of the compact elements of the model. We believe our model
to provide a definitive game semantics for general references
in absence of polymorphism and recursive types.

Related and future work. As already described, our model
rectifies problems present in a previous game model due to
Abramsky, Honda and McCusker [?]. The structure of their
model was subsequently studied by Levy [?] and Melliès [?]
with the aim of understanding its structure in more abstract
terms.

Otherwise the most closely related work is Laird’s fully
abstract trace semantics of essentially the same language [?].
Our model can be viewed as a game-semantic counterpart
of his work: traces are derived from terms through an op-
erational semantics, whereas our strategies are defined in
a compositional and syntax-free manner. This illustrates a
recent convergence of complementary results in the two fields
(cf. [?] and [?]) that promises to lead, in the long run, to an
operational account of game semantics, which will ultimately
make it possible to move smoothly between (syntax-directed,
non-compositional) labelled transition system semantics and
(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-
ered in this paper has already been presented by one of us [?].
Grounded in monadic semantics for store, it did not however
offer an explicit characterization of program equivalence due
to reliance on innocent strategies (which had to be quotiented
for full abstraction). The present work can thus also be seen
as a refinement of that work towards a model that captures the
behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our
work offers a new foundation for compositional analysis of
general references. Modular verification of programs with
general references is a topical problem, which was already
attacked through a variety of approaches, e.g. separation
logic [?]. In future, we hope to apply our model to model-
checking and control-flow analysis in the spirit of algorithmic
game semantics [?, ?]. Although higher-order references are
an expressive paradigm, quickly resulting in undecidability,
decidable properties can sometimes be identified [?] and

3A play is complete if any questions occurring in it has been answered.

u,Γ ⊢ () : unit
i ∈ Z

u,Γ ⊢ i : int
a ∈ (u ∩ Aθ)
u,Γ ⊢ a : ref θ

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢ M1 : int u,Γ ⊢ M2 : int
u,Γ ⊢ M1 ⊕M2 : int

u,Γ ⊢ M : int u,Γ ⊢ N0 : θ u,Γ ⊢ N1 : θ
u,Γ ⊢ ifM thenN1 elseN0 : θ

u,Γ ⊢ M : ref θ
u,Γ ⊢ !M : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : θ
u,Γ ⊢ M :=N : unit

u,Γ ⊢ M : θ
u,Γ ⊢ refθ(M) : ref θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : ref θ
u,Γ ⊢ M = N : int

u,Γ ⊢ M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢ MN : θ′

u,Γ ∪ {x : θ} ⊢ M : θ′

u,Γ ⊢ λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

we will be in a good position to approach such from a
new perspective. We would also like to make an impact on
the automated or machine-checkable verification of program
equivalences and understand the relationship between game
semantics and other methods used to the same end, such as
step-indexing [?] and bisimulation-based techniques [?]. On
the semantic front, as a next step, we would like to extend
our work to polymorphism, so as to eliminate the bad-variable
problem in [?].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best
described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary
integer functions) and higher-order reference manipulation
(reference names, dereferencing, assignment, memory alloca-
tion, reference equality testing). The typing rules are given
in Figure ??, where A =

⊎

θ Aθ stands for a countable set of
reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able
to compare integer variables with integer constants and act
on the result. In the above and in what follows, we write
M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for
(λxθ .N)M in general. The values of the language are given
by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to
introduce a notion of store. A store will simply be a function
from a finite set of names to values such that the type of

2



• A store is a function from a finite set of names to
values such that the type of each name matches the
type of its assigned value.

• We write S[a !→ V ] for the store obtained by updat-
ing S so that a is mapped to V (this may extend the
domain of S).

• Given a store S and a term M we say that the pair
(S,M) is compatible if all names occurring in M are
from the domain of S.

• The small-step reduction rules are given as judg-
ments of the shape (S,M) → (S ′,M ′), where (S,M),
(S ′,M ′) are compatible and dom(S) ⊆ dom(S ′).

45



VALUES AND EVALUATION 
CONTEXTS

(S, if 0 thenN1 elseN0) → (S,N0) (S, a = b) → (S, 0)

(S, if i thenN1 elseN0) → (S,N1) (S, a = a) → (S, 1)

(S, (λx.M)V ) → (S,M [V/x]) (S, a :=V ) → (S[a "→ V ], ())

(S, !a) → (S, S(a)) (S, refθ(V )) → (S[a′ "→ V ], a′)

(S,M) → (S′,M ′) =⇒ (S,E[M ]) → (S′, E[M ′])

Notes: i ̸= 0, a ̸= b, a′ /∈ dom(S).

Fig. 2. Small-step operational semantics of RefML.

each name matches the type of its assigned value. We write
S[a "→ V ] for the store obtained by updating S so that a is
mapped to V (this may extend the domain of S). Given a store
S and a term M we say that the pair (S,M) is compatible if
all names occurring in M are from the domain of S.

The small-step reduction rules are given as judgments of
the shape (S,M) → (S′,M ′), where (S,M), (S′,M ′) are
compatible and dom(S) ⊆ dom(S′). We present them in
Figure ??, where we let a, b range over names. Evaluation
contexts are given by

E ::= (λx.N) | N | ⊕N | i⊕ | = N | a =

| ! | :=N | a := | refθ( ) | if thenN1 elseN0.

We say that (S,M) evaluates to (S′, V ) if (S,M) →→
(S′, V ), with V a value. For ⊢ M : unit we say that M
converges, written M ⇓, if (∅,M ) evaluates to some (S′, ()).

Example 1: Let circ be the circular reference defined by:

⊢ letx = refunit→unit(λyunit.y) in
x :=(λyunit.(!x)y); x : ref (unit → unit)

We shall write Ωunit for the divergent term (!circ) (). Using
Ωunit it is easy to define analogous divergent terms Ωθ at any
type. Also, for any type θ, we define the terms newθ by:

newunit = refunit() newθ→θ′ = refθ→θ′(λxθ .Ωθ′)

newint = ref int(0) newrefi θ′′ = ref (ref (· · · ref (newθ′′)))

where θ′′ is one of unit, int or a function type. These terms
create new names and initialise them with default values. We
shall write new x inM for letx = newθ inM .

Definition 2: We say that the term-in-context Γ ⊢ M1 : θ
approximates Γ ⊢ M2 : θ (written Γ ⊢ M1

!
∼ M2) if

C[M1] ⇓ implies C[M2] ⇓ for any context C[−] such that
⊢ C[M1], C[M2] : unit. Two terms-in-context are equivalent

if one approximates the other (written Γ ⊢ M1
∼= M2).

Example 3: • Let Inc be the term

⊢ letn = ref int(0) inλx
unit.n := !n+ 1; !n : unit → int

that reports the number of times the function has been
invoked. Let Γ = {x : ref (unit → int), y : ref (unit →
int)}. The first two terms listed below turn out to be

equivalent, but the third one can be distinguished from
the two, because 2 is returned.

Γ ⊢ x := Inc; y := !x; ((!x)() + (!y)()) : int
Γ ⊢ x := Inc; y := !x; 3 : int
Γ ⊢ x := Inc; y := Inc; ((!x)() + (!y)()) : int

The equivalence is borrowed from [?] and, like the equiv-
alences listed in the introduction, cannot be confirmed in
the game model of [?] due to the bad variable problem.

• RefML is not a conservative extension of Reduced
ML [?], in which the only reference type available is
ref int. Let Γ = {f : unit → unit}. The terms

Γ ⊢ letn = ref int(0) inλyunit.if !n then () else (n :=1; f())
Γ ⊢ letn = ref int(0) inλyunit.if !n then () else (f();n :=1)

are equivalent in Reduced ML4, but inequivalent when
tested with RefML contexts. For instance, take C[−] to
be the context below.

letR = refunit→unit(λx
unit.x) in

let f = λyunit.(!R)() in (R := [−]; (!R)())

III. GAME SEMANTICS

Our game model will be constructed using mathematical
objects (moves, plays, strategies) that feature names drawn
from the set A =

⊎

θ Aθ . We set Aφ =
⊎

θ,θ′ Aθ→θ′ , these
are the names of functional type. Although names underpin
various elements of our model, we do not want to delve into
the precise nature of the sets containing them. Hence, all of
our definitions preserve name-invariance, i.e. our objects are
(strong) nominal sets [?, ?]. Note that we do not need the full
power of the theory but mainly the basic notion of name-
permutation. Here permutations are bijections π : A → A

with finite support which respect the indexing of name-sets.
For an element x belonging to a (nominal) set X we write
ν(x) for its name-support, which is the set of names occurring
in x. Moreover, for any x, y ∈ X , we write x ∼ y if
there is a permutation π such that x = π · y. Our model
is couched in the Honda-Yoshida style of modelling call-by-
value computation [?]. Before we define what it means to play
our games, we introduce the auxiliary concept of an arena.

Definition 4: An arena A = ⟨MA, IA,λA,⊢A⟩ is given by:

• a set of moves MA and a subset IA ⊆ MA of initial ones,
• a labelling function λA : MA → {O,P}× {Q,A},
• a justification relation ⊢A ⊆ MA × (MA \ IA);

satisfying, for each m,m′ ∈ MA, the conditions:

• m ∈ IA =⇒ λA(m) = (P,A),
• m ⊢A m′ ∧ λQA

A (m) = A =⇒ λQA
A (m′) = Q,

• m ⊢A m′ =⇒ λOP
A (m) ≠ λOP

A (m′).

We range over moves by m,n and use i, q, a to refer to
initial moves, question-moves and answer-moves respectively.
We also use o and p to stress ownership of moves. Let λA be

4This can be established by mapping them to the corresponding strategies
in [?] or [?].

3

main challenge is to identify conditions ensuring that higher-
order values not accessible to one of the strategies will not be
covertly modified during composition.

On the structural level, our proof of full abstraction follows
the well-established pattern of proving such results. Soundness
(Section ??) is obtained by showing conformance with a
categorical framework [?], already known to guarantee sound-
ness. Completeness (Section ??) follows from a definability
result, which is interesting in its own right, as the new
structure of plays enables one to perform rather unexpected
transformations on plays to reduce the problem to simpler
and smaller instances. Altogether we obtain a model in which
program approximation (contextual preorder) corresponds to
inclusion of the induced complete3 plays. This immediately
implies effective presentability, i.e. a decidable presentation
of the compact elements of the model. We believe our model
to provide a definitive game semantics for general references
in absence of polymorphism and recursive types.

Related and future work. As already described, our model
rectifies problems present in a previous game model due to
Abramsky, Honda and McCusker [?]. The structure of their
model was subsequently studied by Levy [?] and Melliès [?]
with the aim of understanding its structure in more abstract
terms.

Otherwise the most closely related work is Laird’s fully
abstract trace semantics of essentially the same language [?].
Our model can be viewed as a game-semantic counterpart
of his work: traces are derived from terms through an op-
erational semantics, whereas our strategies are defined in
a compositional and syntax-free manner. This illustrates a
recent convergence of complementary results in the two fields
(cf. [?] and [?]) that promises to lead, in the long run, to an
operational account of game semantics, which will ultimately
make it possible to move smoothly between (syntax-directed,
non-compositional) labelled transition system semantics and
(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-
ered in this paper has already been presented by one of us [?].
Grounded in monadic semantics for store, it did not however
offer an explicit characterization of program equivalence due
to reliance on innocent strategies (which had to be quotiented
for full abstraction). The present work can thus also be seen
as a refinement of that work towards a model that captures the
behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our
work offers a new foundation for compositional analysis of
general references. Modular verification of programs with
general references is a topical problem, which was already
attacked through a variety of approaches, e.g. separation
logic [?]. In future, we hope to apply our model to model-
checking and control-flow analysis in the spirit of algorithmic
game semantics [?, ?]. Although higher-order references are
an expressive paradigm, quickly resulting in undecidability,
decidable properties can sometimes be identified [?] and

3A play is complete if any questions occurring in it has been answered.

u,Γ ⊢ () : unit
i ∈ Z

u,Γ ⊢ i : int
a ∈ (u ∩ Aθ)
u,Γ ⊢ a : ref θ

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢ M1 : int u,Γ ⊢ M2 : int
u,Γ ⊢ M1 ⊕M2 : int

u,Γ ⊢ M : int u,Γ ⊢ N0 : θ u,Γ ⊢ N1 : θ
u,Γ ⊢ ifM thenN1 elseN0 : θ

u,Γ ⊢ M : ref θ
u,Γ ⊢ !M : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : θ
u,Γ ⊢ M :=N : unit

u,Γ ⊢ M : θ
u,Γ ⊢ refθ(M) : ref θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : ref θ
u,Γ ⊢ M = N : int

u,Γ ⊢ M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢ MN : θ′

u,Γ ∪ {x : θ} ⊢ M : θ′

u,Γ ⊢ λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

we will be in a good position to approach such from a
new perspective. We would also like to make an impact on
the automated or machine-checkable verification of program
equivalences and understand the relationship between game
semantics and other methods used to the same end, such as
step-indexing [?] and bisimulation-based techniques [?]. On
the semantic front, as a next step, we would like to extend
our work to polymorphism, so as to eliminate the bad-variable
problem in [?].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best
described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary
integer functions) and higher-order reference manipulation
(reference names, dereferencing, assignment, memory alloca-
tion, reference equality testing). The typing rules are given
in Figure ??, where A =

⊎

θ Aθ stands for a countable set of
reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able
to compare integer variables with integer constants and act
on the result. In the above and in what follows, we write
M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for
(λxθ .N)M in general. The values of the language are given
by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to
introduce a notion of store. A store will simply be a function
from a finite set of names to values such that the type of

2

• A store is a function from a finite set of names to
values such that the type of each name matches the
type of its assigned value.

• We write S[a !→ V ] for the store obtained by updat-
ing S so that a is mapped to V (this may extend the
domain of S).

• Given a store S and a term M we say that the pair
(S,M) is compatible if all names occurring in M are
from the domain of S.

• The small-step reduction rules are given as judg-
ments of the shape (S,M) → (S ′,M ′), where (S,M),
(S ′,M ′) are compatible and dom(S) ⊆ dom(S ′).

(S, if 0 thenN1 elseN0) → (S,N0)

(S, if i thenN1 elseN0) → (S,N1) i ≠ 0

(S, a = b) → (S, 0) a ≠ b

(S, a = a) → (S, 1)

(S, (λx.M)V ) → (S,M [V/x])

(S, a :=V ) → (S[a !→ V ], ())

(S, !a) → (S, S(a))

(S, refθ(V )) → (S[a′ !→ V ], a′) a′ /∈ dom(S)

(S,M) → (S ′,M ′)

(S,E[M ]) → (S ′, E[M ′])

45



OPERATIONAL SEMANTICS

• A store is a function from a finite set of names to
values such that the type of each name matches the
type of its assigned value.

• We write S[a !→ V ] for the store obtained by updat-
ing S so that a is mapped to V (this may extend the
domain of S).

• Given a store S and a term M we say that the pair
(S,M) is compatible if all names occurring in M are
from the domain of S.

• The small-step reduction rules are given as judg-
ments of the shape (S,M) → (S ′,M ′), where (S,M),
(S ′,M ′) are compatible and dom(S) ⊆ dom(S ′).

(S, if 0 thenN1 elseN0) → (S,N0)

(S, if i thenN1 elseN0) → (S,N1) i ≠ 0

(S, a = b) → (S, 0) a ≠ b

(S, a = a) → (S, 1)

(S, (λx.M)V ) → (S,M [V/x])

(S, a :=V ) → (S[a !→ V ], ())

(S, !a) → (S, S(a))

(S, refθ(V )) → (S[a′ !→ V ], a′) a′ /∈ dom(S)

(S,M) → (S ′,M ′)

(S,E[M ]) → (S ′, E[M ′])

45



OPERATIONAL SEMANTICS

• A store is a function from a finite set of names to
values such that the type of each name matches the
type of its assigned value.

• We write S[a !→ V ] for the store obtained by updat-
ing S so that a is mapped to V (this may extend the
domain of S).

• Given a store S and a term M we say that the pair
(S,M) is compatible if all names occurring in M are
from the domain of S.

• The small-step reduction rules are given as judg-
ments of the shape (S,M) → (S ′,M ′), where (S,M),
(S ′,M ′) are compatible and dom(S) ⊆ dom(S ′).

(S, if 0 thenN1 elseN0) → (S,N0)

(S, if i thenN1 elseN0) → (S,N1) i ≠ 0

(S, a = b) → (S, 0) a ≠ b

(S, a = a) → (S, 1)

(S, (λx.M)V ) → (S,M [V/x])

(S, a :=V ) → (S[a !→ V ], ())

(S, !a) → (S, S(a))

(S, refθ(V )) → (S[a′ !→ V ], a′) a′ /∈ dom(S)

(S,M) → (S ′,M ′)

(S,E[M ]) → (S ′, E[M ′])

45



EVALUATION

(S, if 0 thenN1 elseN0) → (S,N0) (S, a = b) → (S, 0)

(S, if i thenN1 elseN0) → (S,N1) (S, a = a) → (S, 1)

(S, (λx.M)V ) → (S,M [V/x]) (S, a :=V ) → (S[a "→ V ], ())

(S, !a) → (S, S(a)) (S, refθ(V )) → (S[a′ "→ V ], a′)

(S,M) → (S′,M ′) =⇒ (S,E[M ]) → (S′, E[M ′])

Notes: i ̸= 0, a ̸= b, a′ /∈ dom(S).

Fig. 2. Small-step operational semantics of RefML.

each name matches the type of its assigned value. We write
S[a "→ V ] for the store obtained by updating S so that a is
mapped to V (this may extend the domain of S). Given a store
S and a term M we say that the pair (S,M) is compatible if
all names occurring in M are from the domain of S.

The small-step reduction rules are given as judgments of
the shape (S,M) → (S′,M ′), where (S,M), (S′,M ′) are
compatible and dom(S) ⊆ dom(S′). We present them in
Figure ??, where we let a, b range over names. Evaluation
contexts are given by

E ::= (λx.N) | N | ⊕N | i⊕ | = N | a =

| ! | :=N | a := | refθ( ) | if thenN1 elseN0.

We say that (S,M) evaluates to (S′, V ) if (S,M) →→
(S′, V ), with V a value. For ⊢ M : unit we say that M
converges, written M ⇓, if (∅,M ) evaluates to some (S′, ()).

Example 1: Let circ be the circular reference defined by:

⊢ letx = refunit→unit(λyunit.y) in
x :=(λyunit.(!x)y); x : ref (unit → unit)

We shall write Ωunit for the divergent term (!circ) (). Using
Ωunit it is easy to define analogous divergent terms Ωθ at any
type. Also, for any type θ, we define the terms newθ by:

newunit = refunit() newθ→θ′ = refθ→θ′(λxθ .Ωθ′)

newint = ref int(0) newrefi θ′′ = ref (ref (· · · ref (newθ′′)))

where θ′′ is one of unit, int or a function type. These terms
create new names and initialise them with default values. We
shall write new x inM for letx = newθ inM .

Definition 2: We say that the term-in-context Γ ⊢ M1 : θ
approximates Γ ⊢ M2 : θ (written Γ ⊢ M1

!
∼ M2) if

C[M1] ⇓ implies C[M2] ⇓ for any context C[−] such that
⊢ C[M1], C[M2] : unit. Two terms-in-context are equivalent

if one approximates the other (written Γ ⊢ M1
∼= M2).

Example 3: • Let Inc be the term

⊢ letn = ref int(0) inλx
unit.n := !n+ 1; !n : unit → int

that reports the number of times the function has been
invoked. Let Γ = {x : ref (unit → int), y : ref (unit →
int)}. The first two terms listed below turn out to be

equivalent, but the third one can be distinguished from
the two, because 2 is returned.

Γ ⊢ x := Inc; y := !x; ((!x)() + (!y)()) : int
Γ ⊢ x := Inc; y := !x; 3 : int
Γ ⊢ x := Inc; y := Inc; ((!x)() + (!y)()) : int

The equivalence is borrowed from [?] and, like the equiv-
alences listed in the introduction, cannot be confirmed in
the game model of [?] due to the bad variable problem.

• RefML is not a conservative extension of Reduced
ML [?], in which the only reference type available is
ref int. Let Γ = {f : unit → unit}. The terms

Γ ⊢ letn = ref int(0) inλyunit.if !n then () else (n :=1; f())
Γ ⊢ letn = ref int(0) inλyunit.if !n then () else (f();n :=1)

are equivalent in Reduced ML4, but inequivalent when
tested with RefML contexts. For instance, take C[−] to
be the context below.

letR = refunit→unit(λx
unit.x) in

let f = λyunit.(!R)() in (R := [−]; (!R)())

III. GAME SEMANTICS

Our game model will be constructed using mathematical
objects (moves, plays, strategies) that feature names drawn
from the set A =

⊎

θ Aθ . We set Aφ =
⊎

θ,θ′ Aθ→θ′ , these
are the names of functional type. Although names underpin
various elements of our model, we do not want to delve into
the precise nature of the sets containing them. Hence, all of
our definitions preserve name-invariance, i.e. our objects are
(strong) nominal sets [?, ?]. Note that we do not need the full
power of the theory but mainly the basic notion of name-
permutation. Here permutations are bijections π : A → A

with finite support which respect the indexing of name-sets.
For an element x belonging to a (nominal) set X we write
ν(x) for its name-support, which is the set of names occurring
in x. Moreover, for any x, y ∈ X , we write x ∼ y if
there is a permutation π such that x = π · y. Our model
is couched in the Honda-Yoshida style of modelling call-by-
value computation [?]. Before we define what it means to play
our games, we introduce the auxiliary concept of an arena.

Definition 4: An arena A = ⟨MA, IA,λA,⊢A⟩ is given by:

• a set of moves MA and a subset IA ⊆ MA of initial ones,
• a labelling function λA : MA → {O,P}× {Q,A},
• a justification relation ⊢A ⊆ MA × (MA \ IA);

satisfying, for each m,m′ ∈ MA, the conditions:

• m ∈ IA =⇒ λA(m) = (P,A),
• m ⊢A m′ ∧ λQA

A (m) = A =⇒ λQA
A (m′) = Q,

• m ⊢A m′ =⇒ λOP
A (m) ≠ λOP

A (m′).

We range over moves by m,n and use i, q, a to refer to
initial moves, question-moves and answer-moves respectively.
We also use o and p to stress ownership of moves. Let λA be

4This can be established by mapping them to the corresponding strategies
in [?] or [?].

3



CONTEXTUAL TESTING

We say that Γ ⊢ M1 : θ approximates Γ ⊢ M2 : θ
(written Γ ⊢ M1

!
∼ M2) if

C[M1] ⇓ implies C[M2] ⇓

for any context C[−] such that ⊢ C[M1], C[M2] : unit.

Two terms-in-context are equivalent if one approxi-
mates the other (written Γ ⊢ M1

∼= M2).

46

x : ref (int → int) ⊢ !x : int → int

n(n,⋆) †(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

x : ref (int → int) ⊢ λhint.(!x)h : int → int

n(n,⋆) ⋆(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

ref int ref (ref int) ref (ref (ref int)) · · ·

C[M ] ⇓?

69



FULL ABSTRACTION

JM1K = JM2K if and only if M1
⇠= M2

Robin Milner (1977)

8



SHORTHANDS

• letx = M inN stands for

(λxθ.N)M

• M ;N stands for

letx = M inN

where x does not occur in N .

47



EQUIVALENCE?

204 GroundML

(i ⊕ j, S) −→ (k, S) (k = i ⊕ j)
((λx.M)V, S) −→ (M [V/x], S)

(π1⟨V1, V2⟩, S) −→ (V1, S)
(π2⟨V1, V2⟩, S) −→ (V2, S)

(if 0 then M else M ′, S) −→ (M ′, S)
(if i then M else M ′, S) −→ (M, S) (i > 0)

(while(M), S) −→ (if M then while(M) else (), S)
(a = b, S) −→ (0, S) (a ≠ b)
(a = a, S) −→ (1, S)

(!a, S) −→ (S(a), S)
(a := V, S) −→ ((), S[a '→ V ])
(ref(V ), S) −→ (a′, S[a′ '→ V ]) (a′ /∈ dom(S))

(M, S) −→ (M ′, S′)

(E[M ], S) −→ (E[M ′], S′)

Figure 3.2: Operational semantics of GroundML.

Next we take a closer look at some examples of GroundML terms
and their behaviour.

Example 3.4 (Name generators). Consider the following (closed) terms
that generate integer references.

gen ≡ λzint. let x = ref(0) in (x := z; x) : int → ref int

gen′ ≡ let x = ref(0) in λzint.(x := z; x) : int → ref int

The two terms differ in one crucial aspect: while gen returns a fresh
reference name each time it is called, gen′ always returns the same name
(which is indeed fresh the first time it is called).

Example 3.5 (Name channels). The fact that names can be stored in
GroundML enables us to simulate the behaviour of channels, in the style
of the π-calculus. Consider the following term trmit.

f : ref ref int → unit, g : unit → ref ref int ⊢

let c1 = ref(ref(0)) in (fc1; let c2 = g() in λ_unit. c2 := !c1) : unit → unit

3.2. Operational semantics 205

The term creates an input channel c1 and passes it to its context (via
fc1); then receives an output channel c2 from the context; and finally
returns a process that listens at c1 and transmits back to c2.

The operational semantics allows us to evaluate terms to values.
For closed terms of ground type, this will be sufficient to reveal all
there is to their behaviour. However, the case of higher-order terms
is much more complicated. In order to understand their computational
potential, not only does one need to evaluate the term, but also consider
the behaviour of the resultant value in future interactions. It is worth
remarking that these subsequent uses cannot be restricted to single
applications, because the behaviour of GroundML terms may evolve over
time and different results can be returned for the same arguments if a
function is applied to them repeatedly. This highlights the challenges
inherent in analysing higher-order programs with state. In order to
compare terms formally, one tests their behaviour in arbitrary contexts
whose shape is given below.

C ::= [ ] | if C then M else M | if M then C else M | if M then M else C

| while(C) | λxθ.C | MC | CM | ⟨C, M⟩ | ⟨M, C⟩ | πiC | C ⊕ M

| M ⊕ C | C = M | M = C | ref(C) | !C | C := M | M := C

Contexts are also used to define what it means for the terms to be
equivalent.

Definition 3.6. We say that the term-in-context Γ ⊢ M1 : θ approxi-
mates Γ ⊢ M2 : θ (written Γ ⊢ M1 ⊑ M2) if C[M1] ⇓ implies C[M2] ⇓
for any context C such that ⊢ C[M1], C[M2] : unit.

Two terms-in-context are equivalent if one approximates the other
(written Γ ⊢ M1

∼= M2).

For instance, the name generators of Example 3.4 are not equiva-
lent, as they can be distinguished by any context that calls the gener-
ator twice and compares the results. For instance, setting

C ≡ (λf int→ref int. if (f0 = f0) then () else div) [ ]

we obtain C[gen] ̸⇓ and C[gen′] ⇓. On the other hand, proving that
two terms are equivalent is trickier since picking a specific context (or



EQUIVALENCE?

206 GroundML

a bounded class of them) is not enough: rather, one needs to prove
equi-termination in every enclosing context.

Game semantics sets out to provide a semantic characterisation of
equivalence. We shall see that, for all terms Γ ⊢ M, N : θ:

Γ ⊢ M ∼= N ⇐⇒ comp(!Γ ⊢ M") = comp(!Γ ⊢ N")

that is, to show Γ ⊢ M ∼= N , it will suffice to calculate the game-
semantic denotations of terms and compare them for equality on “com-
plete” plays.

Example 3.7 (Equivalences). Terms in GroundML can create reference
names that are fresh and private (cannot be guessed by the environ-
ment). Next we consider three equivalences that explore these capabil-
ities. Our first equivalence is between the terms:

M1 ≡ let x = ref(0) in λyref int. x = y : ref int → int,

M2 ≡ λyref int. 0 : ref int → int.

In the former case, y has no chance of being equal to x as the latter is
never exposed outside of M1.

In the next example, the name x is wrapped into a function that
is passed to the environment. However, the environment will still be
unable to discover it, because it is protected by the fact that the value
of c is 0 when the environment has access to the function:

M3 ≡ let x = ref(0) in let c = ref(0) in

f(λ_. if !c = 0 then div else x); c := 1; λyref int. x = y

M4 ≡ f(λ_. div); λyref int. 0

with types f : (unit → ref int) → unit ⊢ M3, M4 : ref int → int. Note
that this equivalence would not hold if our language supported higher-
order references. The environment could then store the function and
delay its use until the value of c becomes 1. In the game semantic
setting, the equivalence will rely on a combinatorial condition called
visibility.

In our final example, the term M5 retains a secret name of type
ref int in a private reference of type ref ref int. If the secret is guessed



COMPOSITIONAL 
INTERPRETATION

• Types interpreted by games between O and P.

• Terms interpreted by strategies for P.

• Each syntactic construct interpreted through 
special strategies, constructions on strategies and 
composition.

• We start with a few concrete examples.



⊢ 2019 : int

O What is the result?

P 2019

⋆ 2019

O P

⊢ int0

O ⋆

P 20190

51

⊢ 2019 : int

O What is the result?

P 2019

⋆ 2019

O P

⊢ int0

O ⋆

P 20190

51

⊢ 2019 : int

O What is the result?

P 2019.

⋆ 2019

O P

⊢ int0

O ⋆

P 20190

51

⊢ 2019 : int

O What is the result?

P 2019.

⋆ 2019

O P

⊢ int0

O ⋆

P 20190

51



⊢ λxint.x+ 1 : int → int

O What is the result?

P A function.

O What is the result if the argument is 3?

P 4.

O What is the result if the argument is 1?

P 2.

⋆ † 31 40 11 20

O P O P O P

⊢ int1 → int0

O ⋆

P †

O 31

P 40

O 11

P 20

52

⊢ λxint.x+ 1 : int → int

O What is the result?

P A function.

O What is the result if the argument is 3?

P 4.

O What is the result if the argument is 1?

P 2.

⋆ † 31 40 11 20

O P O P O P

⊢ int1 → int0

O ⋆

P †

O 31

P 40

O 11

P 20

52

⊢ λxint.x+ 1 : int → int

O What is the result?

P A function.

O What is the result if the argument is 3?

P 4.

O What is the result if the argument is 1?

P 2.

⋆ † 31 40 11 20

O P O P O P

⊢ int1 → int0

O ⋆

P †

O 31

P 40

O 11

P 20

52



⊢ λxint.x+ 1 : int → int

O What is the result?

P A function.

O What is the result if the argument is 3?

P 4.

O What is the result if the argument is 1?

P 2.

⋆ † 31 40 11 20

O P O P O P

⊢ int1 → int0

O ⋆

P †

O 31

P 40

O 11

P 20

52

⊢ λxint.x+ 1 : int → int

O What is the result?

P A function.

O What is the result if the argument is 3?

P 4.

O What is the result if the argument is 1?

P 2.

⋆ † 31 40 11 20

O P O P O P

⊢ int1 → int0

O ⋆

P †

O 31

P 40

O 11

P 20

52

⊢ λxint.x+ 1 : int → int

O What is the result?

P A function.

O What is the result if the argument is 3?

P 4.

O What is the result if the argument is 1?

P 2.

⋆ † 31 40 11 20

O P O P O P

⊢ int1 → int0

O ⋆

P †

O 31

P 40

O 11

P 20

52



⊢ λxint.λyint.x+ y + 1 : int → int → int

⋆ † 32 †′

O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

⋆ † 32 †′ 51 90

O P O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

O 51

P 90

53

⊢ λxint.λyint.x+ y + 1 : int → int → int

⋆ † 32 †′

O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

⋆ † 32 †′ 51 90

O P O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

O 51

P 90

53

⊢ λxint.λyint.x+ y + 1 : int → int → int

⋆ † 32 †′

O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

⋆ † 32 †′ 51 90

O P O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

O 51

P 90

53



⊢ λxint.λyint.x+ y + 1 : int → int → int

⋆ † 32 †′

O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

⋆ † 32 †′ 51 90

O P O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

O 51

P 90

53

⊢ λxint.λyint.x+ y + 1 : int → int → int

⋆ † 32 †′

O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

⋆ † 32 †′ 51 90

O P O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

O 51

P 90

53

⊢ λxint.λyint.x+ y + 1 : int → int → int

⋆ † 32 †′

O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

⋆ † 32 †′ 51 90

O P O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

O 51

P 90

53



⊢ λxint.λyint.x+ y + 1 : int → int → int

⋆ † 32 †′

O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

⋆ † 32 †′ 51 90

O P O P O P

⊢ int2 → int1 → int0

O ⋆

P †

O 32

P †′

O 51

P 90

53

⋆ † 32 †′ 42 †′ 51 90 51 100

O P O P O P O P O P

54



⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55

⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55

⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55



⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55

⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55

⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55

⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55



⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55

⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55

⊢ λf int→int.f(0) + 1 : (int → int) → int

⋆ † †′ 02

O P O P

let g = [ ] in g(λxint.x+ 3)

⋆ † †′ 02 31 40

O P O P O P

let g = [ ] in g(λxint.g(λyint.x+ y + 3) + 4)

⋆ † †′ 02 †′ 02 31 40 81 90

O P O P O P O P O P

⊢ (int2 → int1) → int0

O ⋆

P †

O †′

P 02

O 31

P 40

55


