NOMINAL GAME SEMANTICS

PART $\|$

Andrzej Murawski
UNIVERSITY OF OXFORD

Winners of the 2019 Alonzo Church Award

By siglog © April 17, 2019

The 2019 Alonzo Church Award for Outstanding Contributions to Logic and Computation is given jointly to Murdoch J. Gabbay and Andrew M. Pitts for their ground-breaking work introducing the theory of nominal representations.

The ACM Special Interest Group on Logic (SIGLOG), the European Association for Theoretical Computer Science (EATCS), the European Association for Computer Science Logic (EACSL), and the Kurt Gödel Society (KGS) are pleased to announce that Murdoch J. Gabbay (Heriot-Watt University, UK) and Andrew M. Pitts (Cambridge University, UK) have been selected as the winners of the 2019 Alonzo Church Award for Outstanding Contributions to Logic and Computation. The award recognizes their ground-breaking work introducing the theory of nominal representations, a powerful and elegant mathematical model for computing with data involving atomic names, described in the following papers:

Winners of the 2017 Alonzo Church Award

```
@By siglog (1) May 4,2017
The 2017 Alonzo Church Award for Outstanding Contributions to Logic and Computation is given jointly to Samson Abramsky, Radha Jagadeesan, Pasquale Malacaria, Martin Hyland, Luke Ong, and Hanno Nickau for providing a fullyabstract semantics for higher-order computation through the introduction of game models, thereby fundamentally revolutionising the field of programming language semantics, and for the applied impact of these models.
Their contributions appeared in three papers:
```


DISCLAIMERS

- computer games
- game theory
- games logicians play
- parity games

OLYMPIC SPIRIT

NOMINAL GAME SEMANTICS

- Semantics
- Game semantics
- Nominal game semantics

TOWARD A MATHEMATICAL SEMANTICS FOR COMPUTER LANGUAGES

this passage. The purpose of a mathematical semantics is to give a correct and meaningful correspondence between programs and mathematical entities in a way that is entirely independent of an implementation. This plan is illustrated in a very elementary

Dana Scott
and
Christopher Strachey

Oxtord University
Computing Laboratory
Programming Research Group-Library
8-11 Keble Road
Oxford OXI 30 D
Oxford (0865) 54141

MATHEMATICAL SEMANTICS

function

continuous function

strategy

PCF (SCOTT/MILNERPLOTKIN)

- Programming Computable Functions
- Prototypical purely functional language
- Features integer arithmetic, higher-order functions and recursion
- Inspired early research on semantics

PCFTYPES

$\theta::=\operatorname{int} \mid \theta \rightarrow \theta$

PCFTERMS

$$
\begin{aligned}
M:: & =i \mid x \\
& |M \oplus M| \text { if } M \text { then } M \text { else } M \\
& \left|\lambda x^{\theta} \cdot M\right| M M \mid \operatorname{div}_{\theta}
\end{aligned}
$$

TYPING JUDGMENTS

$$
x_{1}: \theta_{1}, \cdots, x_{n}: \theta_{n} \vdash M: \theta
$$

PCFTYPING JUDGMENTS

$$
\frac{i \in \mathbb{Z}}{\Gamma \vdash i: \mathrm{int}} \quad \frac{(x: \theta) \in \Gamma}{\Gamma \vdash x: \theta}
$$

$$
\begin{array}{cc}
\frac{\Gamma \vdash M: \text { int } \quad \Gamma \vdash N: \text { int }}{\Gamma \vdash M \oplus N: \text { int }} & \frac{\Gamma \vdash M: \text { int } \quad \Gamma \vdash N_{0}: \theta \quad \Gamma \vdash N_{1}: \theta}{\Gamma \vdash \text { if } M \text { then } N_{1} \text { else } N_{0}: \theta} \\
\frac{\Gamma \uplus\{x: \theta\} \vdash M: \theta^{\prime}}{\Gamma \vdash \lambda x^{\theta} \cdot M: \theta \rightarrow \theta^{\prime}} & \frac{\Gamma \vdash M: \theta \rightarrow \theta^{\prime} \quad \Gamma \vdash N: \theta}{\Gamma \vdash M N: \theta^{\prime}}
\end{array}
$$

$$
\overline{\Gamma \vdash \operatorname{div}_{\theta}: \theta}
$$

TOWARDS MEANINGFUL CORRESPONDENCES

- Operational semantics

$$
M \longrightarrow M^{\prime}
$$

- We shall focus on several meaningful correspondences between mathematical and operational semantics.

REDUCTION

$$
\begin{array}{rllr}
i \oplus j & \longrightarrow & k & (k=i \oplus j) \\
\text { if } 0 \text { then } M \text { else } M^{\prime} & \longrightarrow & M^{\prime} & (i \neq 0) \\
\text { if } i \text { then } M \text { else } M^{\prime} & \longrightarrow & M & \\
(\lambda x . M) N & \longrightarrow & M[N / x] &
\end{array}
$$

$$
\frac{M \longrightarrow M^{\prime}}{E[M] \longrightarrow E\left[M^{\prime}\right]}
$$

$$
E::=[]|E \oplus M| i \oplus E \mid \text { if } E \text { then } M \text { else } M \mid E M
$$

I. CORRECTNESS

If $M \longrightarrow M^{\prime}$ then $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket$.

In particular, if $\vdash M$: int and $M \longrightarrow i$ then $\llbracket M \rrbracket=\llbracket i \rrbracket$.

2.ADEQUACY

The following converse would be too strong:

$$
\text { if } \llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \text { then } M \longrightarrow M^{\prime} .
$$

Instead one aims for:

Given $\vdash M:$ int, if $\llbracket M \rrbracket=\llbracket i \rrbracket$ then $M \longrightarrow i$.

3. DEFINABILITY (NO JUNK)

Suppose $\llbracket \theta \rrbracket$ is the mathematical object corresponding to θ, i.e. terms $\llbracket \vdash M: \theta \rrbracket$ can be thought of as elements of $\llbracket \theta \rrbracket$.

$$
\forall_{x \in \llbracket \theta \rrbracket} \quad \exists \vdash M_{x}: \theta \quad x=\llbracket \vdash M_{x}: \theta \rrbracket
$$

DOMAIN-THEORETIC SEMANTICS

- Plotkin's domain-theoretic model of PCF uses the following partial order to model int.

- Terms are interpreted by monotone functions.
- The model is correct and adequate, but does not have the definability property.

FAILURE OF DEFINABILITY

Consider the parallel-or function

$$
\text { por } x y= \begin{cases}0 & x=0 \text { and } y=0 \\ 1 & x \neq 0, \perp \text { or } y \neq 0, \perp \\ \perp & \text { otherwise }\end{cases}
$$

E.g. por $00=0$ and por $1 \perp=\operatorname{por} \perp 1=1$.
por turns out to be undefinable: there is no PCF term M such that
$M \operatorname{div} 1 \longrightarrow 1 \quad M 1 \operatorname{div} \longrightarrow 1 \quad M 00 \longrightarrow 0$

TOWARDS FULL ABSTRACTION

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket ?
$$

4. FULL ABSTRACTION

$\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \quad$ if and only if $\quad M_{1} \cong M_{2}$

Robin Milner (1977)

CONTEXTUALTESTING

- Contexts

$$
\begin{aligned}
C::= & {[]|C \oplus M| M \oplus C } \\
& \mid \text { if } C \text { then } M \text { else } M \mid \text { if } M \text { then } C \text { else } M \mid \text { if } M \text { then } M \text { else } C \\
& \left|\lambda x^{\theta} . C\right| M C \mid C M
\end{aligned}
$$

- Testing of $M: \theta$

$$
C[M]: \mathrm{int}
$$

If there exists i such that $C[M] \longrightarrow^{*} i$, we write $C[M] \Downarrow$ (success!).

cONTEXTUAL EQUIVALENCE

Intuitively, two programs should be viewed as equivalent if they behave in the same way in any context, i.e. they can be used interchangeably.

- $\Gamma \vdash M_{1}: \theta$ approximates $\Gamma \vdash M_{2}: \theta$ if

$$
C\left[M_{1}\right] \Downarrow \text { implies } C\left[M_{2}\right] \Downarrow
$$

for any context C such that $\vdash C\left[M_{1}\right], C\left[M_{2}\right]$: int. Then we write $\Gamma \vdash M_{1} \sqsubseteq M_{2}$.

- Two terms are equivalent if one approximates the other, written $\Gamma \vdash M_{1} \cong M_{2}$.

sOUNDNESS

Correctness and adequacy turn out to imply:

$$
\text { if } \llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { then } M_{1} \cong M_{2} \text {. }
$$

Assume $\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket$ and suppose $M_{1} \neq M_{2}$, i.e. $C\left[M_{1}\right] \Downarrow$ and $C\left[M_{2}\right] \Downarrow$ for some context C (or $C\left[M_{2}\right] \Downarrow$ and $C\left[M_{1}\right] \Downarrow$).

- Correctness implies $\llbracket C\left[M_{1}\right] \rrbracket=\llbracket i \rrbracket$ for some i.
- Adequacy implies $\llbracket C\left[M_{2}\right] \rrbracket \neq \llbracket i \rrbracket$ for any i.

This is a contradiction, because $\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket$ implies $\llbracket C\left[M_{1}\right] \rrbracket=\llbracket C\left[M_{2}\right] \rrbracket$ by compositionality.

NO FULL ABSTRACTION (FORTHE DOMAIN-THEORETIC MODEL)

$M_{1} \equiv \lambda f^{\text {int } \rightarrow \text { int } \rightarrow \text { int }}$. if $(f 1$ div $)$ then
(if $(f \operatorname{div} 1)$ then
(if $(f 00)$ then div else 1)
else div)
else div

$$
M_{2} \equiv \lambda f^{\mathrm{int} \rightarrow \mathrm{int} \rightarrow \mathrm{int}} . \quad \operatorname{div}
$$

- Because por is not definable, we have $M_{1} \cong M_{2}$.
- $\llbracket M_{1} \rrbracket($ por $) \neq \llbracket M_{2} \rrbracket($ por $)$, so $\llbracket M_{1} \rrbracket \neq \llbracket M_{2} \rrbracket$.

INTRINSIC QUOTIENT

In the presence of definability (as well as correctness and adequacy) one can construct fully abstract models by quotienting.

This boils down to recasting the idea of contextual testing inside the model.

Given $x_{1}, x_{2} \in \llbracket \theta \rrbracket$,

$$
x_{1} \sim x_{2} \Longleftrightarrow " \forall y \in \llbracket \theta \rightarrow \text { int } \rrbracket 1\left(x_{1}\right)=y\left(x_{2}\right) " .
$$

Then $\llbracket \cdots \rrbracket / \sim$ is fully abstract.
This kind of quotienting may be an obstacle in reasoning about equivalence, so one should attempt to find more direct characterizations.

Theoretical Computer Science

Finitary PCF is not decidable

Ralph Loader
Merton College, Oxford, UK

Received October 1996; revised March 2000; accepted April 2000
Communicated by G.D. Plotkin

Abstract

The question of the decidability of the observational ordering of finitary PCF was raised (Jung and Stoughton, in: M. Bezem, J.F. Groote (Eds.), Typed Lambda Calculi and Applications, Lecture Notes in Computer Science, vol. 664, Springer, Berlin, 1993, pp. 230-244) to give mathematical content to the full abstraction problem for PCF (Milner, Theoret. Comput. Sci. 4 (1977) 1-22). We show that the ordering is in fact undecidable. This result places limits on how explicit a representation of the fully abstract model can be. It also gives a slight strengthening of the author's earlier result on typed λ-definability (Loader, in: A. Anderson, M. Zeleny (Eds.), Church Memorial Volume, Kluwer Academic Press, Dordrecht, to appear). (c) 2001 Published by Elsevier Science B.V.

The 2017 Alonzo Church Award

SIGLOG is delighted to announce that the 2017 Church Award goes to 6 people: Samson Abramsky, Martin Hyland, Radha Jagadeesan, Pasquale Malacaria, Hanno Nickau and Luke Ong for [Quoting from the official citation] "providing a fully-abstract semantics for higher-order computation through the introduction of games models, thereby fundamentally revolutionising the field of programming language semantics, and for the applied impact of these models."

FULL ABSTRACTION FOR PCF

- Abramsky, Jagadeesan, Malacaria
- Hyland, Ong
- Nickau

Follow-up work extended the techniques to state, control, concurrency, exceptions and more.

GAME SEMANTICS

\star Two players: \mathbf{O} (System) and \mathbf{P} (Program)
\star Types are interpreted by games.
\star Programs are interpreted as strategies for P .

* No winners or losers.
* The dialogue is the central object of study.

REFML

$\theta, \theta^{\prime}::=$ unit $\quad \mid \quad$ int $\quad \operatorname{ref} \theta \quad \mid \quad \theta \rightarrow \theta^{\prime}$

TYPING RULES | $\mathbb{A}=\biguplus_{\theta} \mathbb{A}_{\theta}$

$$
\begin{array}{lcc}
\overline{u, \Gamma \vdash(): \text { unit }} & \frac{i \in \mathbb{Z}}{u, \Gamma \vdash i: \mathrm{int}} & \frac{a \in\left(u \cap \mathbb{A}_{\theta}\right)}{u, \Gamma \vdash a: \operatorname{ref} \theta} \\
\frac{(x: \theta) \in \Gamma}{u, \Gamma \vdash x: \theta} & \frac{u, \Gamma \vdash M_{1}: \text { int }}{u, \Gamma \vdash M_{1} \oplus M_{2}: \mathrm{int}} \\
\frac{u, \Gamma \vdash M: \text { int }}{u, \Gamma \vdash \text { if } M \text { then } N_{1} \text { else } N_{0}: \theta} \\
\end{array}
$$

TYPING RULES II

$$
\begin{gathered}
\frac{u, \Gamma \vdash M: \operatorname{ref} \theta}{u, \Gamma \vdash!M: \theta} \quad \frac{u, \Gamma \vdash M: \operatorname{ref} \theta \quad u, \Gamma \vdash N: \theta}{u, \Gamma \vdash M:=N: \text { unit }} \\
\frac{u, \Gamma \vdash M: \theta}{u, \Gamma \vdash \operatorname{ref}_{\theta}(M): \operatorname{ref} \theta} \quad \frac{u, \Gamma \vdash M: \operatorname{ref} \theta \quad u, \Gamma \vdash N: \operatorname{ref} \theta}{u, \Gamma \vdash M=N: \operatorname{int}} \\
\frac{u, \Gamma \vdash M: \theta \rightarrow \theta^{\prime} u, \Gamma \vdash N: \theta}{u, \Gamma \vdash M N: \theta^{\prime}} \frac{u, \Gamma \cup\{x: \theta\} \vdash M: \theta^{\prime}}{u, \Gamma \vdash \lambda x^{\theta} \cdot M: \theta \rightarrow \theta^{\prime}}
\end{gathered}
$$

- A store is a function from a finite set of names to values such that the type of each name matches the type of its assigned value.
- We write $S[a \mapsto V]$ for the store obtained by updating S so that a is mapped to V (this may extend the domain of S).
- Given a store S and a term M we say that the pair (S, M) is compatible if all names occurring in M are from the domain of S.
- The small-step reduction rules are given as judgments of the shape $(S, M) \rightarrow\left(S^{\prime}, M^{\prime}\right)$, where (S, M), $\left(S^{\prime}, M^{\prime}\right)$ are compatible and $\operatorname{dom}(S) \subseteq \operatorname{dom}\left(S^{\prime}\right)$.

VALUES AND EVALUATION CONTEXTS

$$
\begin{aligned}
& \mid!]_{-}|\quad:=N| a:={ }_{-}\left|\operatorname{ref}_{\theta}\left(_\right)\right| \text {if_then } N_{1} \text { else } N_{0} \text {. }
\end{aligned}
$$

$$
\frac{(S, M) \rightarrow\left(S^{\prime}, M^{\prime}\right)}{(S, E[M]) \rightarrow\left(S^{\prime}, E\left[M^{\prime}\right]\right)}
$$

$$
V::=()|i| a|x| \lambda x^{\theta} . M
$$

OPERATIONAL SEMANTICS

$\left(S\right.$, if 0 then N_{1} else $\left.N_{0}\right) \rightarrow\left(S, N_{0}\right)$
$\left(S\right.$, if i then N_{1} else $\left.N_{0}\right) \rightarrow\left(S, N_{1}\right) \quad i \neq 0$
$(S, a=b) \rightarrow(S, 0)$
$a \neq b$
$(S, a=a) \rightarrow(S, 1)$

OPERATIONAL SEMANTICS

$(S,(\lambda x . M) V) \rightarrow(S, M[V / x])$
$(S, a:=V) \rightarrow(S[a \mapsto V],())$
$(S,!a) \rightarrow(S, S(a))$
$\left(S, \operatorname{ref}_{\theta}(V)\right) \rightarrow\left(S\left[a^{\prime} \mapsto V\right], a^{\prime}\right) \quad a^{\prime} \notin \operatorname{dom}(S)$

EVALUATION

We say that (S, M) evaluates to $\left(S^{\prime}, V\right)$ if $(S, M) \rightarrow$ $\left(S^{\prime}, V\right)$, with V a value. For $\vdash M$: unit we say that M converges, written $M \Downarrow$, if (\emptyset, M) evaluates to some $\left(S^{\prime},()\right)$.

CONTEXTUALTESTING

 $C[M] \Downarrow ?$We say that $\Gamma \vdash M_{1}: \theta$ approximates $\Gamma \vdash M_{2}: \theta$ (written $\Gamma \vdash M_{1} \check{\sim} M_{2}$) if

$$
C\left[M_{1}\right] \Downarrow \text { implies } C\left[M_{2}\right] \Downarrow
$$

for any context $C[-]$ such that $\vdash C\left[M_{1}\right], C\left[M_{2}\right]$: unit.
Two terms-in-context are equivalent if one approximates the other (written $\Gamma \vdash M_{1} \cong M_{2}$).

FULL ABSTRACTION

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \quad \text { if and only if } \quad M_{1} \cong M_{2}
$$

SHORTHANDS

- let $x=M$ in N stands for

$$
\left(\lambda x^{\theta} \cdot N\right) M
$$

- $M ; N$ stands for

$$
\text { let } x=M \text { in } N
$$

where x does not occur in N.

EQUIVALENCE?

$$
\begin{aligned}
\text { gen } & \equiv \lambda z^{\text {int }} . \text { let } x=\operatorname{ref}(0) \text { in }(x:=z ; x): \text { int } \rightarrow \text { ref int } \\
\operatorname{gen}^{\prime} & \equiv \text { let } x=\operatorname{ref}(0) \text { in } \lambda z^{\text {int }} \cdot(x:=z ; x): \text { int } \rightarrow \text { ref int }
\end{aligned}
$$

$$
C \equiv\left(\lambda f^{\text {int } \rightarrow \text { ref int }} . \text { if }(f 0=f 0) \text { then }() \text { else div }\right)[]
$$

EQUIVALENCE?

$M_{1} \equiv$ let $x=\operatorname{ref}(0)$ in $\lambda y^{\text {ref int }} . x=y:$ ref int \rightarrow int, $M_{2} \equiv \lambda y^{\text {ref int }} .0:$ ref int \rightarrow int.

COMPOSITIONAL INTERPRETATION

- Types interpreted by games between O and P.
- Terms interpreted by strategies for P.
- Each syntactic construct interpreted through special strategies, constructions on strategies and composition.
- We start with a few concrete examples.

$\vdash 2019$: int

O What is the result?
P 2019.

* 2019
$O \quad P$

$$
\begin{array}{llll}
& & \vdash & \text { int }_{0} \\
O & \star & \\
P & & & 2019
\end{array}
$$

$\vdash \lambda x^{\text {int }} . x+1:$ int \rightarrow int

O What is the result?
P A function.
O What is the result if the argument is 3 ?
$P \quad 4$.
O What is the result if the argument is 1 ?
P 2.

$\begin{array}{llllll}O & P & O & P & O & P\end{array}$

$\vdash \lambda x^{\text {int }} . x+1:$ int \rightarrow int

O	*
P	
O	31
P	
O	11
P	

$$
\vdash \lambda x^{\mathrm{int}} \cdot \lambda y^{\mathrm{int}} \cdot x+y+1: \text { int } \rightarrow \text { int } \rightarrow \text { int }
$$

$$
\begin{array}{llll}
\star^{\prime} & \dagger^{\prime} & 3_{2} & \dagger^{\prime} \\
O & P & O &
\end{array}
$$

O *
P
\dagger
O
32
P
\dagger^{\prime}

$$
\vdash \lambda x^{\mathrm{int}} \cdot \lambda y^{\mathrm{int}} \cdot x+y+1: \text { int } \rightarrow \text { int } \rightarrow \text { int }
$$

$$
\vdash \lambda x^{\mathrm{int}} \cdot \lambda y^{\mathrm{int}} \cdot x+y+1: \text { int } \rightarrow \text { int } \rightarrow \text { int }
$$

$$
\vdash \lambda f^{\text {int } \rightarrow \text { int }} \cdot f(0)+1:(\text { int } \rightarrow \text { int }) \rightarrow \text { int }
$$

$$
\begin{aligned}
& *^{\prime} \quad \dagger^{\prime} \\
& t^{\prime}
\end{aligned} O_{2}
$$

$$
\begin{array}{lllll}
& \vdash\left(\text { int }_{2} \rightarrow \text { int }_{1}\right) & \rightarrow \text { int }_{0} \\
O & \star & & \\
P & & & & \\
O & & & & \\
P & \dagger^{\prime} & \\
P & & 0_{2} & &
\end{array}
$$

$$
\vdash \lambda f^{\text {int } \rightarrow \text { int }} \cdot f(0)+1:(\text { int } \rightarrow \text { int }) \rightarrow \text { int }
$$

$$
\text { let } g=[] \text { in } g\left(\lambda x^{\text {int }} \cdot x+3\right)
$$

$$
\vdash \lambda f^{\text {int } \rightarrow \text { int }} \cdot f(0)+1:(\text { int } \rightarrow \text { int }) \rightarrow \text { int }
$$

O P
$O P O P$
$O \quad P$
$O \quad P$
let $g=[]$ in $g\left(\lambda x^{\text {int }} \cdot g\left(\lambda y^{\text {int }} \cdot x+y+3\right)+4\right)$

