Nominal Process Calculi
 and Modal Logics

Johannes Borgström
Uppsala University

Based on joint work since 2015 with
Ramūnas Gutkovas
Lars-Henrik Eriksson
Joachim Parrow
Tjark Weber

Introduction to Nominal Process Calculi

CCS with restriction

Nominal Process Calculi

- Process calculus: modelling language for systems of communicating processes.
- Three main traditions:
- CSP (Hoare 1978)
- CCS (Milner ~1980)
- ACP (1982) process algebra

Calculus of Communicating Systems

- Binary synchronization
- Action (input) and coaction (output)

$$
\begin{array}{cl}
0 & \text { Nil } \\
& \\
a . P & \text { Input } \\
\bar{a} . P & \text { Output } \\
P+Q & \text { Choice } \\
P \mid Q & \text { Parallel } \\
(\nu a) P & \text { Restriction }
\end{array}
$$

Example 1a

Beverage machine $\mathrm{M}($ tea, coffee, coin $)$
$\mathrm{M}($ tea, coffee, coin $):=$ coin. $\overline{\text { tea }} \mathrm{M}($ tea, coffee, coin $)+$ coin.coin.coffee. $\mathrm{M}(t e a, ~ c o f f e e, ~ c o i n) ~$

Example 1b

Dining philosophers Philo(left,right,eat)
$\operatorname{Philo}(l e f t$, right,eat $):=$ left.right.eat.left.right. $\operatorname{Philo}(. .$.
$(\nu c s 1)(\nu \quad c s 2)(\nu \quad c s 3)(\operatorname{Philo}(c s 1, c s 2, e a t 1)|\operatorname{Philo}(c s 2, c s 3, e a t 2)|$ Philo(cs3,cs1,eat3) $|\overline{c s 1}| \overline{c s 2} \mid \overline{c s 3})$

We write a for $a .0$, and \bar{a} for $\bar{a} .0$

Labelled Semantics

$$
\begin{gathered}
\text { In } \frac{\text { OuT }}{a . P \xrightarrow{a} P} \quad \begin{array}{c}
\bar{a} \cdot P \xrightarrow{\bar{a}} P \\
\text { Sum-L } \frac{P \xrightarrow{\alpha} P^{\prime}}{P+Q \xrightarrow{\alpha} P^{\prime}} \quad \text { PAR-L } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \\
\text { Com-L } \frac{P \xrightarrow{a} P^{\prime} \quad Q \xrightarrow{\bar{a}} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \\
\text { ScOPE } \frac{P \xrightarrow{\alpha} P^{\prime}}{(\nu b) P \xrightarrow{\alpha}(\nu b) P^{\prime}} b \# \alpha
\end{array}
\end{gathered}
$$

Example 2

Dining philosophers Philo(left,right,eat)
$\operatorname{Philo}(l e f t$, right,eat $):=$ left.right.eat.left.right.Philo(...)
$(\nu c s 1)(\nu c s 2)(\nu \quad c s 3)(\operatorname{Philo}(c s 1, c s 2, e a t 1)|\operatorname{Philo}(c s 2, c s 3, e a t 2)|$ Philo(cs3,cs1,eat3) $|\overline{c s 1}| \overline{c s 2} \mid \overline{c s 3})$

Philo2(left, right, eat) $:=$ left. (right. $\overline{\text { eat. }} \overline{(\text { left }} \overline{\mid \text { right } \mid} \operatorname{Philo}(. .$. $+\overline{\text { left.Philo(...)) }}$

Observational Equivalence

- When can an external observer distinguish between two systems?
- Idea: when either of them can perform an action
- that the other one cannot perform; or
- that leads the other system into a state that can be distinguished from the new state of the first system.
- An inductive definition!
- Its negation is coinductive: bisimulation (Park I98I)

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation R on processes satisfying: if $R(P, Q)$ then
if $P \xrightarrow{\alpha} P^{\prime}$ then

$$
\exists Q^{\prime} \cdot Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(P^{\prime}, Q^{\prime}\right)
$$

Simulation

$P \dot{\sim} Q$ if $R(P, Q)$ for some bisimulation R

Examples 3

- Check that $\mathrm{M}($ tea, coffee, coin $)$
and M2(tea, coffee, coin) below are not bisimilar.
$\mathrm{M} 2($ tea, coffee, coin $):=$ coin. $\overline{\text { tea }} . \mathrm{M} 2($ tea, coffee, coin $)+$ coin.coffee.M2(tea, coffee, coin))
- Check that the system below is weakly bisimilar to Spec(eat1,eat2,eat3) := eat1.Spec (...) +eat2.Spec (...) +eat3.Spec(...)
$(\nu c s 1)(\nu c s 2)(\nu c s 3)($ Philo2 $(c s 1, c s 2, e a t 1)$
| Philo2(cs2,cs3,eat2) | Philo2(cs3,cs1,eat3) $\overline{c s 1}|\overline{c s 2}| \overline{c s 3})$

Com-po-si-tio-na-li-ty

- Bisimilarity is an equivalence relation, and a congruence for all operators
- Allows to substitute bisimilar processes in any context: compositional reasoning
- Structural congruence \equiv
- The smallest congruence relation on processes containing commutative monoid laws for | (parallel) and + (choice) with 0 as unit.
- 三 is a bisimulation

The π-calculus

Scope extension, scope extrusion, and residuals

Milner, Parrow, Walker: A calculus of mobile processes. Information and Computation 100(1) 1992.

The π-calculus

- An extension of CCS with name communication
- Value-passing can be encoded in CCS using summation
- General name-passing needs infinite summation: not finitely supported!
- Turing-complete, can easily encode the untyped lambda-calculus
- Current research on behavioural (session) types

Syntax of π

$$
\begin{array}{cl}
0 & \text { Nil } \\
a(x) . P & \text { Input } \\
\bar{a} b . P & \text { Output } \\
P+Q & \text { Choice } \\
P \mid Q & \text { Parallel } \\
(\nu a) P & \text { Restriction }
\end{array}
$$

Examples 1

Truth values (at location $!$)
True $(l):=l(t, f) \cdot(\bar{t} \mid \operatorname{True}(l))$
False $(l):=l(t, f) \cdot(\bar{f} \mid$ False $(l))$

Let's do lists!
$\operatorname{Nil}(l):=l(n, c) .(\bar{n} \mid \operatorname{Nil}(l))$
$\operatorname{Cons}(l$, value,tail $):=l(n, c) .(\bar{c}$ value,tail $\mid \operatorname{Cons}(\ldots))$

What does $(\nu b) \bar{a} b . P$ do?

We write \bar{a} for $\bar{a} a .0$ and $\bar{a} b, c$ for $\bar{a} b \cdot \bar{a} c$ and $a(b, c)$ for $a(b) \cdot a(c)$

Labelled Semantics

$$
\begin{aligned}
& \text { OUठ } \overline{\overline{a T} \cdot \overline{P_{a}^{\bar{a}}} \vec{a}} \\
& \text { But what about }(\nu b) \bar{a} b . P \text { ? } \\
& \text { Sum-L } \xrightarrow[{P+Q \xrightarrow{\alpha} P^{\prime}}]{P} \\
& \text { PAR-L } \xrightarrow[{P\left|Q \xrightarrow{\alpha} P^{\prime}\right|} Q]{ } \\
& \text { Com-L } \frac{P \xrightarrow{a b} P P^{\prime} \quad Q Q^{\frac{\bar{a}}{a} \rightarrow} Q^{\prime} Q^{\prime}}{P P \mid Q Q^{\tau \tau} \rightarrow P \nmid Q Q^{\prime}} \\
& \operatorname{SCOPE} \frac{P \xrightarrow{\alpha} P^{\prime}}{(\nu b) P \xrightarrow{\alpha}(\nu b) P^{\prime}} b \# \alpha
\end{aligned}
$$

Structural congruence

- The smallest congruence relation containing
- commutative monoid laws for
| (parallel) and + (choice) with 0 as unit;
- and the scope extension laws

$$
\begin{aligned}
P \mid(\nu b) Q & \equiv(\nu b)(P \mid Q) \text { when } b \# P \\
P+(\nu b) Q & \equiv(\nu b)(P+Q) \text { when } b \# P \\
(\nu a)(\nu b) P & \equiv(\nu b)(\nu a) P
\end{aligned}
$$

Reduction Semantics

$$
\begin{gathered}
\text { Red } \frac{\left(a(x) . P+P^{\prime}\right)\left|\left(\bar{a} b \cdot Q+Q^{\prime}\right) \rightarrow P\{b / x\}\right| Q}{P \rightarrow Q^{\prime}} \\
\text { StRUCT } \frac{P \equiv P^{\prime} \quad P^{\prime} \rightarrow Q \quad Q \equiv Q^{\prime}}{\text { CtX-PAR } \frac{P \rightarrow P^{\prime}}{P\left|Q \rightarrow P^{\prime}\right| Q} \quad \text { CtX-Res } \frac{P \rightarrow P^{\prime}}{(\nu b) P \rightarrow P^{\prime}}}
\end{gathered}
$$

Examples 2

if true then P else Q
$(\nu \mathrm{l})(\nu \mathrm{t})(\nu \mathrm{f})(\operatorname{True}(\mathrm{l})|\mathrm{l}(\mathrm{t}, \mathrm{f})| \mathrm{t} . \mathrm{P} \mid \mathrm{f} . \mathrm{Q})$
case l of Nil -> P | Cons(v,l') -> Q
$(\nu \mathrm{n})(\nu \mathrm{c})\left(\mathrm{l}(\mathrm{n}, \mathrm{c})|\mathrm{n} . \mathrm{P}| \mathrm{c}\left(\mathrm{v}, \mathrm{l}^{\prime}\right) \cdot \mathrm{Q}\right)$

Set binders

$$
\begin{aligned}
& (a s, x) \approx{ }_{s e t}^{R, f a, p(b s, y) \stackrel{\text { def }}{=}} \\
& \text { (i) fax-as=fay-bs} \\
& \text { (ii) fax-as \#* } \\
& \text { (iii) } \quad(p \bullet x) R y \\
& \text { (iv) } p \bullet a s=b s
\end{aligned}
$$

Urban, Kaliszyk: General Bindings and Alpha-Equivalence in Nominal Isabelle. ESOP 2011

$$
\text { Sum-L } \frac{P \rightarrow S}{P+Q \rightarrow S} \quad \text { Par-L } \frac{P \rightarrow\langle C\rangle\left(\alpha, P^{\prime}\right)}{P \mid Q \rightarrow\langle C\rangle\left(\alpha, P^{\prime} \mid Q\right)} C \# Q
$$

$$
\begin{gathered}
\text { Com-L } \frac{P \rightarrow\langle\emptyset\rangle\left(a b, P^{\prime}\right) \quad Q \rightarrow\langle\emptyset\rangle\left(\bar{a} b, Q^{\prime}\right)}{P \mid Q \rightarrow\langle\emptyset\rangle\left(\tau, P^{\prime} \mid Q^{\prime}\right)} \\
\text { Scope } \frac{P \rightarrow\langle C\rangle\left(\alpha, P^{\prime}\right)}{(\nu b) P \rightarrow\langle C\rangle\left(\alpha,(\nu b) P^{\prime}\right)} b \# \alpha
\end{gathered}
$$

$$
\begin{gathered}
\text { Com-L } \frac{P \rightarrow\langle\emptyset\rangle\left(a b, P^{\prime}\right) \quad Q \rightarrow\langle\emptyset\rangle\left(\bar{a} b, Q^{\prime}\right)}{P \mid Q \rightarrow\langle\emptyset\rangle\left(\tau, P^{\prime} \mid Q^{\prime}\right)} \\
\text { SCOPE } \frac{P \rightarrow\langle C\rangle\left(\alpha, P^{\prime}\right)}{(\nu b) P \rightarrow\langle C\rangle\left(\alpha,(\nu b) P^{\prime}\right)} b \# \alpha
\end{gathered}
$$

$$
\text { Close-L } \frac{P \rightarrow\langle\emptyset\rangle\left(a b, P^{\prime}\right) \quad Q \rightarrow\langle\{b\}\rangle\left(\bar{a} \underline{b}, Q^{\prime}\right)}{P \mid Q \rightarrow\langle\emptyset\rangle\left(\tau,(\nu b)\left(P^{\prime} \mid Q^{\prime}\right)\right)} b \# P
$$

$$
\text { Open } \frac{P \rightarrow\langle\emptyset\rangle\left(\bar{a} b, P^{\prime}\right)}{(\nu b) P \rightarrow\langle\{b\}\rangle\left(\bar{a} \underline{b}, P^{\prime}\right)} b \# a
$$

Based on Gabbay: The π-Calculus in FM, in "Thirty Five Years of Automating Mathematics", Kluwer 2004

Examples 3

if true then a else b
$(\nu l)(\nu t)(\nu f)(\operatorname{True}(l)|l(t, f)| t \cdot \bar{a} \mid f . \bar{b})$

Connect $(c, P(l)):=(\nu l) \bar{c} l . P(l)$
Connect $(c,(\bar{l} a)(l)) \mid c(b) . b(x) . \bar{x}$

What are the transitions of $(\nu a) \bar{c} a \mid(\nu c) \bar{c} a$?

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation R on processes satisfying: if $R(P, Q)$ then

$$
\begin{aligned}
& \text { If } P \xrightarrow{\alpha} P^{\prime} \text { and } \operatorname{bn}(\alpha) \# Q \text { then } \\
& \quad \exists Q^{\prime} \cdot Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(P^{\prime}, Q^{\prime}\right)
\end{aligned}
$$

Simulation

$P \dot{\sim} Q$ if $R(P, Q)$ for some bisimulation R

Examples 4

- Check that $(\nu c) \bar{c} a$ is bisimilar to 0 .
- Check that ($\mathrm{\nu a}) \bar{c} a$ is bisimilar to $(\nu a) \bar{c} a \mid(\nu c) \bar{c} a$

Com-po-si-tio-na-li-ty

- Bisimilarity is an equivalence relation, and a congruence for all operators except input
- Allows to substitute bisimilar processes in any non-input context: compositional reasoning
- Structural congruence \equiv is a bisimulation

Nominal Transition Systems

Based on slides by Joachim Parrow, OPCT 2017 (I omit predicates for now.)

Nominal Transition Systems

What are NTS? Why?

NTS are a general framework that fits almost all advanced process algebras,
by generalising standard transition systems to include binders in actions

States

\bigcirc

Transitions

Actions

Binding names

${ }_{\bar{a}(i)}^{\text {Actions contain names }}$

$$
\overline{c h}(i) M \text { names }
$$

States and actions

	ACT: A nominal set
ay	$\mathrm{bn}: \mathrm{ACT} \rightarrow P_{\text {fin }}(\mathcal{N})$ equivariant
	$\mathrm{bn}(\alpha) \subseteq \operatorname{supp}(\alpha)$

Transitions

$\rightarrow \subseteq$ STATES $\times\left[P_{\text {fin }}(\mathcal{N})\right](\operatorname{ACT} \times \operatorname{STATES}) \quad$ equivariant $(P,<\tilde{b}>(\alpha, Q)) \in \rightarrow \quad$ implies $\quad \tilde{b}=\operatorname{bn}(\alpha)$

We write $P \xrightarrow{\alpha} Q$ for $(P,\langle\operatorname{bn}(\alpha)\rangle(\alpha, Q)) \in \rightarrow$

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation R on processes satisfying: if $R(P, Q)$ then

$$
\begin{aligned}
& \text { If } P \xrightarrow{\alpha} P^{\prime} \text { and bn }(\alpha) \# Q \text { then } \\
& \quad \exists Q^{\prime} \cdot Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(P^{\prime}, Q^{\prime}\right)
\end{aligned}
$$

Simulation

$P \dot{\sim} Q$ if $R(P, Q)$ for some bisimulation R

Summary

- Three process calculi: CCSish, pi, fusion
- Reduction semantics
- Residual-based labelled semantics
- Bisimulation
- Generalization: Nominal Transition Systems (NTS)
- Saturday: Psi-calculi, modal logic for NTSs
- Weak bisimilarity, weak logic, effects

The Ψ-calculus

Jesper Bengtson, Magnus Johansson, Joachim Parrow, Björn Victor, Johannes Åman Pohjola, et al.

From pi to psi

$(\nu z)(\bar{a} z) \mid a(x) .[x=b] P$
arbitrary set of data
$(\nu z)(\widehat{a} \widehat{M}) \mid a(x) \cdot[x=b] P$
$(\nu z)(\bar{a} M) \mid a \overparen{a}(\bar{x}) N \cdot[x=b] P$
$(\nu z)(\widehat{K} M) \mid \stackrel{\rightharpoonup}{L}(\lambda \tilde{x}) N \cdot \underbrace{[x=b]} P$
arbitrary logic $\quad(\nu z)(\bar{K} M) \mid L(\lambda \tilde{x}) N$. if $\widehat{\varphi}$ then P new construct
$(\nu z)(\bar{K} M) . \widehat{(\Psi)} \mid L(\lambda \tilde{x}) N$. if φ then P

Ordinary pi-calculus
Data structures can be sent

Pattern matching
Channels can be arbitrary structures
Tests can be arbitrary predicates

Facts about data

Cook a psi-calculus

Define terms T (data terms, channels) $\quad M, N$ and conditions C (used in case stmt) $\quad \varphi$ and assertions A (facts about data) Ψ can be any nominal set (not syntactic)

Define term substitution, and operators:
$\dot{\leftrightarrow}: \mathbf{T} \times \mathbf{T} \rightarrow \mathbf{C} \quad$ Channel equivalence
$\otimes: \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{A} \quad$ Composition
1: A
$\vdash \subseteq \mathbf{A} \times \mathbf{C}$
Unit assertion

Entailment

Axioms for substitution

Assume all the \tilde{a} distinct, all the \tilde{b} distinct.

$$
\begin{aligned}
& \text { if } \tilde{a} \subseteq \mathrm{n}(X) \text { and } b \in \mathrm{n}(\tilde{T}) \text { then } b \in \mathrm{n}(X[\tilde{a}:=\tilde{T}]) \\
& \text { if } \tilde{b} \# X, \tilde{a} \text { then } X[\tilde{a}:=\tilde{T}]=((\tilde{b} \tilde{a}) \cdot X)[\tilde{b}:=\tilde{T}]
\end{aligned}
$$

Easy as pi!

$$
\begin{aligned}
& \text { In } \frac{\Psi \vdash M \dot{\leftrightarrow} K}{\Psi \triangleright \underline{M}(\lambda \widetilde{y}) N . P \xrightarrow{\underline{K} N[\tilde{y}:=\widetilde{L}]} P[\widetilde{y}:=\widetilde{L}]} \quad \text { Out } \frac{\Psi \vdash M \dot{\leftrightarrow} K}{\Psi \triangleright \bar{M} N . P \xrightarrow{\bar{K} N} P} \\
& \mathrm{CASE} \frac{\Psi \triangleright P_{i} \xrightarrow{\alpha} P^{\prime} \quad \Psi \vdash \varphi_{i}}{\Psi \triangleright \operatorname{case} \widetilde{\varphi}: \widetilde{P} \xrightarrow{\alpha} P^{\prime}} \\
& \Psi \otimes \Psi_{P} \otimes \Psi_{Q} \vdash M \dot{\leftrightarrow} K \\
& \operatorname{Com} \frac{\Psi_{Q} \otimes \Psi \triangleright P \xrightarrow{\bar{M}(\nu \widetilde{a}) N} P^{\prime} \quad \Psi_{P} \otimes \Psi \triangleright Q \xrightarrow{\underline{K} N} Q^{\prime}}{\Psi \triangleright \# Q} \\
& \operatorname{PAR} \frac{\Psi_{Q} \otimes \Psi \triangleright P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \operatorname{bn}(\alpha) \# Q \quad \text { Scope } \frac{\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright(\nu b) P \xrightarrow{\alpha}(\nu b) P^{\prime}} b \# \alpha, \Psi \\
& \text { Open } \frac{\Psi \triangleright P \xrightarrow{\bar{M}(\nu \widetilde{a}) N} P^{\prime}}{\Psi \triangleright(\nu b) P \xrightarrow{\bar{M}(\nu \widetilde{a} \cup\{b\}) N} P^{\prime}} \begin{array}{c}
b \# \widetilde{a}, \Psi, M \\
b \in \mathrm{n}(N)
\end{array} \quad \operatorname{REP} \frac{\Psi \triangleright P \mid!P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright!P \xrightarrow{\alpha} P^{\prime}}
\end{aligned}
$$

Results

Machine-checked

- Generic results for all ir stances: proofs

LICS'09
LICS'IO
LMCS 201I

- compositional semantics
- bisimulation theory (strong and weak)
- algebraic properties, congruence
- Results for many instances
- symbolic semantics and bisimulation
- procedure for computing bisimilarity constraint

Algebraic properties

The usual structural laws, in particular Scope extension

$$
P \mid(\nu a) Q \quad \sim(\nu a)(P \mid Q) \quad a \# P
$$

The usual congruence properties, in particular
Compositionality, congruence Machine-checked

$$
P \dot{\sim}_{\Psi} Q \Longrightarrow P\left|R \dot{\sim}_{\Psi} Q\right| R \quad \text { proofs }
$$

$\left(\forall \widetilde{L} . P[\widetilde{a}:=\widetilde{L}] \dot{\sim}_{\Psi} Q[\widetilde{a}:=\widetilde{L}]\right)$

$$
\Longrightarrow \underline{M}(\lambda \widetilde{a}) N \cdot P \dot{\sim}_{\Psi} \underline{M}(\lambda \widetilde{a}) N \cdot Q
$$

Nominal Isabelle Formalization

Mainly by
Jesper Bengtson and Johannes Åman Pohjola

Making it this simple is hard work!

- Easy to get things wrong, even when they are "obviously right"
- Easy to miss a requirement
- Easy to miss generalisations
- Especially true when (name) binding is involved

> Easy to get worried!

Isabelle from day I

- use Interactive theorem prover Isabelle with Nominal package
- supports nominal datatypes, under active development, produces readable proofs
- use during development, not only afterwards!

Adaptable proofs: case example

Original rule, tau action: easy induction proofs

$$
\text { Old-CASE } \frac{\Psi \vdash \varphi_{i}}{\Psi \triangleright \operatorname{case} \widetilde{\varphi}: \widetilde{P} \xrightarrow{\tau} P_{i}}
$$

New rule: more standard, can express the above

$$
\text { CASE } \frac{\Psi \triangleright P_{i} \xrightarrow{\alpha} P^{\prime} \quad \Psi \vdash \varphi_{i}}{\Psi \triangleright \text { case } \widetilde{\varphi}: \widetilde{P} \xrightarrow{\alpha} P^{\prime}}
$$

Change requires re-checking all proofs!
With Isabelle: took a day

Adaptable proofs: higher-order

To get higher-order psi-calculi, just add the following:

Invocation agent	run M	
Clauses	$M \Leftarrow P \quad \mathrm{n}(M) \supseteq \mathrm{n}(P)$	

Invocation rule

$$
\frac{\Psi \vdash M \Leftarrow P \quad \Psi \triangleright P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright \operatorname{run} M \xrightarrow{\alpha} P^{\prime}}
$$

With Isabelle: meta-theory took a day and a night More effort: locales, canonical instances, encodings

Broadcast: harder

To get broadcast communication:

Output connectivity
Input connectivity

$$
\begin{aligned}
& M \underset{\prec}{\prec} K \\
& K \dot{\succ} M
\end{aligned}
$$

Five new semantics rules, two new actions

Even with Isabelle: two years, seven coauthors

$$
\begin{aligned}
& \text { BrMerge } \xrightarrow[{\Psi_{Q} \otimes \Psi \triangleright P \xrightarrow{? \underline{K} N} P^{\prime} \quad \Psi_{P} \otimes \Psi \triangleright Q \xrightarrow{? \underline{K} N} Q^{\prime}}]{\Psi \triangleright P\left|Q \xrightarrow{? \underline{K} N} P^{\prime}\right| Q^{\prime}} \\
& \text { BRCom } \frac{\Psi_{Q} \otimes \Psi \triangleright P \xrightarrow{\mid \underline{K}(\nu \tilde{a}) N} P^{\prime} \quad \Psi_{P} \otimes \Psi \triangleright Q \xrightarrow{? \underline{K} N} Q^{\prime}}{\tilde{a} \# Q}
\end{aligned}
$$

The power of Isabelle

What about combining higher-order and broadcast?

Re-prove all the meta-theory...

With Isabelle: took HALF a day, mostly waiting!
"could be done by a clever shell script"

Effort

It must take a lot of time to use Isabelle, surely?

- Theory development is not only about doing proofs - most time spent elsewhere
- Doing false proofs is a waste of time
- Correct proofs make it worthwhile!

No worries!

Nominal Transition Systems

Based on slides by Joachim Parrow, OPCT 2017

Nominal Transition Systems

What are NTS? Why?

NTS are a general framework that fits almost all advanced process algebras,
by generalising standard transition systems to include binders in actions

States

-

State predicates

$$
\begin{aligned}
& x=1 \\
& y>z \\
& \text { Oprime(} x \text {) }
\end{aligned}
$$

Transitions

Actions

Binding names

Actions ${ }^{\top}{ }^{\bar{a}}{ }^{\circ}$.
${ }^{\bar{u}}($ Actions contain names Predicates contain names

States contain names $g(a, b)\rangle$

States, predicates, and actions

$x=1$	$x=2$
$y>z$	

prime (x)
$c=\operatorname{encrypt}(m, k)$
$\forall m, k . c \neq \operatorname{encrypt}(m, k)$

τ	\bar{a}	b
$\bar{a} b$		$a(x)$
$a(x, y, z)$		$\bar{a}(\nu b)$

$\overline{\operatorname{ch}(i)} M \quad \bar{a}\langle f(g(a), b)\rangle$

PRED: A nominal set
$\vdash \subseteq$ STATES \times PRED equivariant φ

ACT: A nominal set α
bn: ACT $\rightarrow P_{\text {fin }}(\mathcal{N}) \quad$ equivariant $\operatorname{bn}(\alpha) \subseteq \operatorname{supp}(\alpha)$

Transitions

$\rightarrow \subseteq$ STATES $\times\left[P_{\text {fin }}(\mathcal{N})\right]($ ACT \times STATES $) \quad$ equivariant $(P,<\tilde{b}>(\alpha, Q)) \in \rightarrow \quad$ implies $\quad \tilde{b}=\operatorname{bn}(\alpha)$

We write $P \xrightarrow{\alpha} Q$ for $(P,\langle\operatorname{bn}(\alpha)\rangle(\alpha, Q)) \in \rightarrow$

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation R on processes satisfying: if $R(P, Q)$ then

If $P \xrightarrow{\alpha} P^{\prime}$ and $\operatorname{bn}(\alpha) \# Q$ then

$$
\exists Q^{\prime} \cdot Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(P^{\prime}, Q^{\prime}\right)
$$

Simulation

If $P \vdash \varphi$ then $Q \vdash \varphi \quad$ Static implication
$P \dot{\sim} Q$ if $R(P, Q)$ for some bisimulation R

Modal Logics for Nominal Transition Systems

Presentation based on slides by Joachim Parrow

Based on CONCUR 2015 paper with
Ramūnas Gutkovas
Lars-Henrik Eriksson
Joachim Parrow
Tjark Weber

Our objectives:

A set of formulas A, B
A satisfaction relation between states and formulas $\quad P \models A$

Expressive wrt existing work
Fully formal
Simple
Not objectives: decidability, model checking

Formulas

$$
A:=\varphi|\langle\alpha\rangle A| \neg A \mid \bigcap_{i \in I} A_{i}
$$

Four basic constructors

State Predicates

$P \models \varphi \quad$ P satisfies the formula
holds if
$P \vdash \varphi \quad$ the state predicate holds in P

Action modality

P can do α and then satisfy A

$$
P \models\langle\alpha\rangle A
$$

holds if

$$
\exists P^{\prime} . P \xrightarrow{\alpha} P^{\prime} \text { and } P^{\prime} \models A
$$

we consider formulas up to alpha equivalence, ie
If $a \in \operatorname{bn}(\alpha), b \# \alpha, A$
then $\langle\alpha\rangle A=(a b) \cdot(\langle\alpha\rangle A)$

Negation

$$
P \models \neg A
$$

holds if

$$
\text { not } \quad P \models A
$$

Conjunction

Assume A_{i} a formula for each $i \in I$
$P \models \bigwedge_{i \in I} A_{i} \quad$ if for all $i \in I$ it holds $P \models A_{i}$

The million dollar question: which such conjunctions should be allowed?

$$
P \models \bigwedge_{i \in I} A_{i} \quad \begin{aligned}
& \text { Allowed only for finite I } \\
& \text { Same as binary conjunction } A_{1} \wedge A_{2}
\end{aligned}
$$

Easy to make fully formal
Quite limited expressiveness
(suitable only for finite-branching transition systems)

$$
P \models \bigwedge_{i \in I} A_{i} \quad \text { Allowed for any I }
$$

Enormous expressiveness: greater than the systems we study!

Formulas might not be finitely supported, alpha-conversion might be impossible
$P \models \bigwedge_{i \in I} A_{i}$
Allowed for any I such that conjuncts have common finite support
for some finite set of names S

$$
\forall i \in I . \operatorname{supp}\left(A_{i}\right) \subseteq S
$$

Still of limited expressiveness
OK to make fully formal?

Example: quantifiers

$$
P \models \forall x \in \mathcal{N} . A
$$

holds if

for all $z \in \mathcal{N}$ it holds $P \models A[x:=z]$

Can this be represented as

$$
\forall x \in \mathcal{N} . A=\bigwedge_{z \in \mathcal{N}} A[x:=z] \quad ?
$$

$$
\forall x \in \mathcal{N} . A=\bigwedge A[x:=z]
$$

 uniformly bounded?
No. At least not if

$$
z \in \operatorname{supp}(A[x:=z])
$$

Quantification cannot be expressed by uniformly bounded conjunction!

Finitely supported conjunctin ation n

> $\bigwedge A_{i}$ requires that the set of formulas
> $i \in I \quad\left\{A_{i} \mid i \in I\right\}$ has finite support S

Assume \boldsymbol{F} is the set of formulas supported by S.
Consider the different formulas $\wedge\{A \mid A \in \boldsymbol{B}\}$ where \boldsymbol{B} ranges over the subsets of \boldsymbol{F}.

By Cantor's Theorem, we have a contradiction.

Solution: cardinality bound on conjunction width

Yes!
Assuming substitution is equivariant.

Expressiveness

Dualities

$$
\begin{aligned}
& \bigvee_{i \in I} A_{i}=\neg \bigwedge_{i \in I} \neg A_{i} \\
& {[\alpha] A=\neg\langle\alpha\rangle \neg A}
\end{aligned}
$$

Expressiveness

Quantifiers

$$
\begin{aligned}
& \forall x . A=\bigwedge_{z \in V} A[x:=z] \\
& \exists x . A=\bigvee_{z \in V} A[x:=z]
\end{aligned}
$$

Assumes V is finitely supported and substitution is equivariant

Expressiveness

Fresh Quantifier

$$
P \models И x . A \text { if for some } n \# P \text { it holds } P \models(x n) \cdot A
$$

$$
И x \cdot A=\bigvee_{S \in \mathrm{CoF}} \bigwedge_{n \in S}(x n) \cdot A
$$

COF is the set of cofinite sets of names

> There is a cofinite set such that A holds for all its members

Expressiveness

Next step modality

$$
\begin{array}{r}
\left\rangle A=\bigvee_{\alpha \in \mathrm{ACT}}\langle\alpha\rangle A\right. \\
\operatorname{bn}(\alpha) \# A
\end{array}
$$

Fixpoints minimal fixpoint defined as disjunction of all unfoldings

With next and fixpoints
we get all of CTL* Emerson 1997

Application

Hennessy, Milner 1985
Hennessy-Milner Logic for CCS Milner 1989 A
for pi-calculus
for value passing for spi-calculus for applied pi-calculus Pedersen, 2006 F for fusion calculus Haugstad, Terkelsen, Vindum 2006 A
for multi-labelled systems De Nicola, Loreti $2008 \mathrm{~F}+$ quantifiers
for concurrent constraint calculus
for psi-calculi
Bengtson et al 2011

logic

Adequacy

A kind of sanity check:

If two states "behave the same" then they satisfy exactly the same formulas

If two states do not "behave the same" then there is a formula satisfied by one and not the other

Bisimulation

$$
\begin{aligned}
& \text { DEFINITION (Bisimulation) } \\
& \text { A symmetric relation } R \text { on states satisfying: } \\
& \text { if } R(P, Q) \text { then } \\
& \qquad \text { If } P \xrightarrow{\alpha} P^{\prime} \text { and } \operatorname{bn}(\alpha) \# Q \text { then } \exists Q^{\prime} \cdot Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(P^{\prime},\right. \\
& \quad \text { If } P \models \varphi \text { then } Q \models \varphi \\
& P \dot{\sim} Q \text { if } R(P, Q) \text { for some bisimulation } Q
\end{aligned}
$$

THEOREM (Adequacy)
$P \dot{\sim} Q$ iff for all formulas $A: P \models A$ iff $Q \models A$
$P \dot{\sim} Q$ iff for all formulas $A: P \models A$ iff $Q \models A$
In direction \Leftarrow show that
logical equivalence
\doteq defined as $\{(P, Q) \mid \forall A . P \models A$ iff $Q \models A\}$
is a bisimulation.
Assume not, then P has an α-transition to P^{\prime} that Q cannot simulate:

For each α-derivative Q^{\prime} 'there is a distinguishing formula A between P^{\prime} and Q^{\prime}.

Let B be the conjunction of all these A (one for each Q^{\prime})
Then $P \models\langle\alpha\rangle B$ and not $Q \models\langle\alpha\rangle B$

Let B be the conjunction of all these A (one for each Q^{\prime})
Can this conjunction be defined in the logic?
If the transition system is finitely branching
then there are finitely many Q^{\prime} so finite conjunction suffices

Eg CCS with guarded recursion

If all the formulas A have
a common finite support then

Eg picalculus uniformly bounded conjunction suffices

In general use finitely supported conjunction
Arbitrary nominal transition systems

In general use finitely supported conjunction

$$
\begin{aligned}
& \text { Lemma: If } P^{\prime} \models A \wedge Q^{\prime} \not \models A \text { then } \\
& \quad \exists B . \quad P^{\prime} \models B \wedge Q^{\prime} \not \vDash B \wedge \operatorname{supp}(B) \subseteq \operatorname{supp}\left(P^{\prime}\right)
\end{aligned}
$$

If there is a distinguising formula for P^{\prime} and Q^{\prime}, then there is one with the support bounded by P '

Proof idea:

Let PERM be the name permutations that fix P,

$$
B=\bigwedge_{\pi \in \mathrm{PERM}} \pi \cdot A
$$

Formalisation

All definitions and the adequacy theorem formalised in Nominal Isabelle (~2700 loc)

Significant new ideas for alpha-equivalence and finite support in data types with infinitary constructors.

First ever mechanisation of an infinitely branching nominal datatype.

Equivalences and Modal Logics for Unobservable Actions

Presentation based on slides by Joachim Parrow

Based on FORTE 2017 paper with Ramūnas Gutkovas
Lars-Henrik Eriksson Joachim Parrow

Tjark Weber

Weak = disregard silent transitions

τ action with empty support (implies $\mathrm{bn}(\tau)=\varnothing$) representing an unobservable action

$$
P \xrightarrow{\tau} P^{\prime}
$$

P can evolve to P^{\prime}
without the environment noticing without interacting with the environment spontaneously
silently

Weak transitions

$P \Rightarrow P^{\prime} \quad$ defined inductively as

$$
P=P^{\prime} \vee P \xrightarrow{\tau} 0 \Rightarrow P^{\prime}
$$

$P \stackrel{\alpha}{\Rightarrow} P^{\prime} \quad$ defined as $\quad P \Rightarrow \circ \xrightarrow{\alpha} 0 \Rightarrow P^{\prime}$
$P \stackrel{\hat{\alpha}}{\Rightarrow} P^{\prime} \quad$ defined as $\quad \begin{cases}P \Rightarrow P^{\prime} & \text { if } \alpha=\tau \\ P \stackrel{\alpha}{\Rightarrow} P^{\prime} & \text { otherwise }\end{cases}$
P can evolve to P ' through zero or more transitions with observable content α

Simulation

DEFINITION (simulation)
A relation R on states satisfying: if $R(P, Q)$ then

$$
\text { If } P \xrightarrow{\alpha} P^{\prime} \text { and } \operatorname{bn}(\alpha) \# Q \text { then } \exists Q^{\prime} \cdot Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(P^{\prime},\right.
$$

Weak simulation

DEFINITION (weak simulation)

A relation R on states satisfying: if $R(P, Q)$ then

If $P \xrightarrow{\alpha} P^{\prime}$ and $\operatorname{bn}(\alpha) \# Q$ then $\exists Q^{\prime} \cdot Q \stackrel{\hat{\alpha}}{\Rightarrow} Q^{\prime}$ and $R\left(P^{\prime}, Q^{\prime}\right.$

Static implication?

Can we re-use the static implication NO!

$$
\text { If } P \vdash \varphi \text { then } Q \vdash \varphi
$$

Should P and Q be equivalent?

YES!

Weak static implication?

$$
\begin{equation*}
\text { If } P \vdash \varphi \text { then } Q \Rightarrow Q^{\prime} \vdash \varphi \tag{*}
\end{equation*}
$$

Yes

Are P and Q observationally equivalent?
Observe φ_{1} and then observe φ_{0}

Weak static implication!

S is a weak static implication if $S(P, Q)$ implies
If $P \vdash \varphi$ then $Q \Rightarrow Q^{\prime} \vdash \varphi$ and $S\left(P, Q^{\prime}\right)$

$$
\begin{array}{r}
P_{\substack{\varphi_{0} \\
\varphi_{1}}} \xrightarrow[\varphi_{1}]{R} \underset{\varphi_{0}}{Q} \stackrel{\tau}{\longleftrightarrow} \\
\{(P, Q),(P, R)\} \text { NOT a WSI }
\end{array}
$$

Weak static implication

If $P \vdash \varphi$ then $Q \Rightarrow Q^{\prime} \vdash \varphi$ and $S\left(P, Q^{\prime}\right)$

Not enough by itself!

P and Q are weakly similar and the relation $\left\{(P, Q),\left(P, P_{1}\right)\right\}$ satisfies (*)

Are P and Q observationally equivalent?
Observe φ and then perform α

Weak static implication!

$$
\begin{array}{ll}
\left\{(P, Q),\left(P_{0}, P_{0}\right),\left(P_{1}, P_{1}\right)\right\} & \text { is a weak simulation } \\
\text { is NOT a WSI }
\end{array}
$$

$$
\left\{(P, Q),\left(P, P_{1}\right)\right\}
$$

is a WSI
is NOT a weak simulation
Must require the relation to be both WSI and weak simulation!

Weak bisimulation

DEFINITION

A weak bisimulation is a symmetric relation R on states which is both a weak simulation and a weak static implication
$R(P, Q)$ implies:
If $P \xrightarrow{\alpha} P^{\prime}$ and $\mathrm{bn}(\alpha) \# Q$ then $\exists Q^{\prime} . Q \stackrel{\hat{\alpha}}{\Rightarrow} Q^{\prime}$ and $R\left(P^{\prime}, Q^{\prime}\right)$
If $P \vdash \varphi$ then $Q \Rightarrow Q^{\prime} \vdash \varphi$ and $R\left(P, Q^{\prime}\right)$
$P \approx Q$ if $R(P, Q)$ for some weak bisimulation R

$$
P \xrightarrow[\varphi]{\tau} \begin{gathered}
Q \\
\varphi
\end{gathered} \quad P \dot{\sim} Q
$$

$$
P \not \approx Q
$$

No relation is a WSI

$P \not ̈ Q$
No relation is both a weak simulation and a WSI

Exercise

Which of the three states are weakly bisimilar?
Note: $\varphi_{0} \wedge \varphi_{1}$ is not a state predicate
All of them!
Let U be the universal relation on all three states
U is a weak simulation
U is a weak static implication

Eliminating state predicates

Eliminating state predicates

Transformation on transition systems Replace state predicates by self-loop transitions

Result

THEOREM (State predicate elimination)

$$
P \dot{\approx}_{\mathbf{T}} Q \text { iff } P \dot{\approx}_{\mathcal{S}(\mathbf{T})} Q
$$

For a corresponding transformation on formulas, replacing predicates by actions

$$
P \models_{\mathcal{S}(\mathbf{T})} A \quad \text { iff } \quad P \models_{\mathbf{T}} \mathcal{S}^{-1}(A)
$$

- Generic HML
- Suitable for embedding other logics in
- Guaranteed soundness!
- A sublogic characterises weak bisimulation
- A uniform extension/encoding for
- early bisimulation, early congruence, late bisimulation, late congruence, open bisimulation, hyperbisimulation

