
Nominal Process Calculi
and Modal Logics

Johannes Borgström
Uppsala University

 1

Based on joint work since 2015 with

 Ramūnas Gutkovas
 Lars-Henrik Eriksson

Joachim Parrow
 Tjark Weber

Introduction to
Nominal Process Calculi

CCS with restriction

 2

Nominal Process Calculi

• Process calculus: modelling language for systems of
communicating processes.

• Three main traditions:

• CSP (Hoare 1978)

• CCS (Milner ~1980)

• ACP (1982) process algebra

 3

What is nominal
process algebra?

Calculus of Communicating Systems

• Binary synchronization

• Action (input) and coaction (output)

 4

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

Example 1a

Beverage machine M(tea, coffee, coin)

M(tea, coffee, coin) := coin.tea.M(tea, coffee, coin) + 
 coin.coin.coffee.M(tea, coffee, coin)

 5

Dining philosophers Philo(left,right,eat)

Philo(left,right,eat) := left.right.eat.left.right.Philo(…)

(ν cs1)(ν cs2)(ν cs3)(Philo(cs1,cs2,eat1)|Philo(cs2,cs3,eat2)|  
 Philo(cs3,cs1,eat3) | cs1 | cs2 | cs3)

Example 1b

 6

We write a for a.0, and a for a.0

Labelled Semantics

 7

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

CCS
0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a | a

In

a.P
a�! P

Out

a.P
a�! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

1

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

CCS
0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a | a

In

a.P
a�! P

Out

a.P
a�! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

1

Example 2

Dining philosophers Philo(left,right,eat)

Philo(left,right,eat) := left.right.eat.left.right.Philo(…)

(ν cs1)(ν cs2)(ν cs3)(Philo(cs1,cs2,eat1)|Philo(cs2,cs3,eat2)|  
 Philo(cs3,cs1,eat3) | cs1 | cs2 | cs3)

Philo2(left,right,eat) := left.(right.eat.(left |right|Philo(…) 
 + left.Philo(…))

 8

Observational Equivalence

• When can an external observer  
distinguish between two systems? 

• Idea: when either of them can perform an action

• that the other one cannot perform; or

• that leads the other system into a state that can be
distinguished from the new state of the first system.  

• An inductive definition!

• Its negation is coinductive: bisimulation (Park 1981)

 9

Bisimulation

 10

A symmetric relation R on processes satisfying:

if R(P,Q) then

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

DEFINITION (Strong Bisimulation)

Simulation

P
·⇠ Q if R(P,Q) for some bisimulation R

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)
if then

Examples 3

• Check that M(tea, coffee, coin)  
and M2(tea, coffee, coin) below are not bisimilar. 
 
 

• Check that the system below is weakly bisimilar to 
Spec(eat1,eat2,eat3) :=  
 eat1.Spec(…) + eat2.Spec(…) + eat3.Spec(…)

 11

(ν cs1)(ν cs2)(ν cs3)(Philo2(cs1,cs2,eat1) 
 | Philo2(cs2,cs3,eat2) | Philo2(cs3,cs1,eat3) 
 | cs1 | cs2 | cs3)

M2(tea, coffee, coin) := coin.(tea.M2(tea, coffee, coin) + 
 coin.coffee.M2(tea, coffee, coin))

Com-po-si-tio-na-li-ty

• Bisimilarity is an equivalence relation,  
and a congruence for all operators

• Allows to substitute bisimilar processes in any
context: compositional reasoning 
 

• Structural congruence ≡

• The smallest congruence relation on processes 
containing commutative monoid laws for  
| (parallel) and + (choice) with 0 as unit.

• ≡ is a bisimulation

 12

The 𝜋-calculus

Scope extension, scope extrusion, and residuals

Milner, Parrow, Walker: A calculus of mobile processes.
Information and Computation 100(1) 1992.

 13

The 𝜋-calculus

• An extension of CCS with name communication

• Value-passing can be encoded in CCS using  
summation

• General name-passing needs infinite summation:  
not finitely supported!

• Turing-complete, can easily encode the untyped
lambda-calculus

• Current research on behavioural (session) types

 14

0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= a b | a b | a(b) | ⌧

In

a.P
a�! P

Out

a .P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

2

Syntax of 𝜋

 15

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

Examples 1
Truth values (at location l)

 True(l) := l(t,f).(t | True(l)) 
 False(l) := l(t,f).(f | False(l)) 

Let’s do lists!

Nil(l) := l(n,c).(n | Nil(l))

Cons(l,value,tail) := l(n,c).(c value,tail | Cons(…))

 
What does do?

 16

Pi-calculus
0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a b | a b | a b

In

a(x).P
a b��! P

�
b/x
 Out

a b.P
a b��! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

But what about (⌫b)a b.P?

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q
bn(↵)#Q

Close-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! (⌫b)(P 0 | Q0
)

b#P Open
P

a b��! P 0

(⌫b)P
a b��! P 0

b#a

2

We write a for a a.0 and a b,c for a b.a c and a(b,c) for a(b).a(c)

Labelled Semantics

 17

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

Pi-calculus
0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a b | a b | a b

In

a(x).P
a b��! P

�
b/x
 Out

a b.P
a b��! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

But what about (⌫b)a b.P?

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q
bn(↵)#Q

Close-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! (⌫b)(P 0 | Q0
)

b#P Open
P

a b��! P 0

(⌫b)P
a b��! P 0

b#a

2

Pi-calculus
0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a b | a b | a b

In

a(x).P
a b��! P

�
b/x
 Out

a b.P
a b��! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

But what about (⌫b)a b.P?

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q
bn(↵)#Q

Close-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! (⌫b)(P 0 | Q0
)

b#P Open
P

a b��! P 0

(⌫b)P
a b��! P 0

b#a

2

CCS
0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a | a

In

a.P
a�! P

Out

a.P
a�! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

1

Pi-calculus
0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a b | a b | a b

In

a(x).P
a b��! P

�
b/x
 Out

a b.P
a b��! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

But what about (⌫b)a b.P?

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q
bn(↵)#Q

Close-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! (⌫b)(P 0 | Q0
)

b#P Open
P

a b��! P 0

(⌫b)P
a b��! P 0

b#a

2

f

In

a.P
a�! P

Out

a.P
a�! P

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Sum-L

P
↵�! P 0

P +Q
↵�! P 0

Com-L
P

a�! P 0 Q
a�! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

0 Nil

a.P Input

a.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

1

Pi-calculus
0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a b | a b | a b

In

a(x).P
a b��! P

�
b/x
 Out

a b.P
a b��! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

But what about (⌫b)a b.P?

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q
bn(↵)#Q

Close-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! (⌫b)(P 0 | Q0
)

b#P Open
P

a b��! P 0

(⌫b)P
a b��! P 0

b#a

2

Structural congruence ≡
• The smallest congruence relation containing

• commutative monoid laws for  
| (parallel) and + (choice) with 0 as unit;

• and the scope extension laws

 18

⇡-calculus
0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a b | a b | a b

In

a(x).P
a b��! P

�
b/x
 Out

a b.P
a b��! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0

Par-L
P

↵�! P 0

P | Q ↵�! P 0 | Q
Com-L

P
a b��! P 0 Q

a b��! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵ Close-L

P
a b��! P 0 Q

a b��! Q0

P | Q ⌧�! (⌫b)(P 0 | Q0
)

b#P

Open
P

a b��! P 0

(⌫b)P
a b��! P 0

b#a

⇡-calculus, reduction style
P | (⌫b)Q ⌘ (⌫b)(P | Q) when b#P
P + (⌫b)Q ⌘ (⌫b)(P +Q) when b#P
(⌫a)(⌫b)P ⌘ (⌫b)(⌫a)P

Struct
P ⌘ P 0 P 0 ! Q Q ⌘ Q0

P ! Q0

Ctx-Par
P ! P 0

P | Q ! P 0 | Q
Ctx-Res

P ! P 0

(⌫b)P ! P 0

Red
(a(x).P + P 0

) | (a b.Q+Q0
) ! P

�
b/x

| Q

2

Reduction Semantics

 19

pi-calculus, reduction style
P | (⌫b)Q ⌘ (⌫b)(P | Q) when b#P

Struct
P ⌘ P 0 P 0 ! Q Q ⌘ Q0

P ! Q0

Ctx-Par
P ! P 0

P | Q ! P 0 | Q
Ctx-Res

P ! P 0

(⌫b)P ! P 0

Red
(a(x).P + P 0

) | (a b.Q+Q0
) ! P 0 �b/x

| Q0

3

pi-calculus, reduction style
P | (⌫b)Q ⌘ (⌫b)(P | Q) when b#P

Struct
P ⌘ P 0 P 0 ! Q Q ⌘ Q0

P ! Q0

Ctx-Par
P ! P 0

P | Q ! P 0 | Q
Ctx-Res

P ! P 0

(⌫b)P ! P 0

Red
(a(x).P + P 0

) | (a b.Q+Q0
) ! P 0 �b/x

| Q0

3

pi-calculus, reduction style
P | (⌫b)Q ⌘ (⌫b)(P | Q) when b#P

Struct
P ⌘ P 0 P 0 ! Q Q ⌘ Q0

P ! Q0

Ctx-Par
P ! P 0

P | Q ! P 0 | Q
Ctx-Res

P ! P 0

(⌫b)P ! P 0

Red
(a(x).P + P 0

) | (a b.Q+Q0
) ! P

�
b/x

| Q

3

Examples 2

if true then P else Q

(ν l)(ν t)(ν f)(True(l) | l(t,f) | t.P | f.Q)

case l of Nil -> P | Cons(v,l’) -> Q

(ν n)(ν c)(l(n,c) | n.P | c(v,l’).Q)

 20

Set binders

Urban, Kaliszyk: General Bindings and  
Alpha-Equivalence in Nominal Isabelle. ESOP 2011

 21

General Bindings and Alpha-Equivalence in Nominal Isabelle 485

3 General Bindings

In Nominal Isabelle, the user is expected to write down a specification of a term-calculus
and then a reasoning infrastructure is automatically derived from this specification (re-
member that Nominal Isabelle is a definitional extension of Isabelle/HOL, which does
not introduce any new axioms).

In order to keep our work with deriving the reasoning infrastructure manageable,
we will wherever possible state definitions and perform proofs on the “user-level” of
Isabelle/HOL, as opposed to write custom ML-code. To that end, we will consider first
pairs (as, x)of type (atom set)× β. These pairs are intended to represent the abstrac-
tion, or binding, of the set of atoms as in the body x.

The first question we have to answer is when two pairs (as, x)and (bs, y)are α-
equivalent? (For the moment we are interested in the notion of α-equivalence that is
not preserved by adding vacuous binders.) To answer this question, we identify four
conditions: (i) given a free-atom function fa of type β ⇒ atom set, then x and y need to
have the same set of free atoms; moreover there must be a permutation p such that (ii)
p leaves the free atoms of x and y unchanged, but (iii) “moves” their bound names so
that we obtain modulo a relation, say R , two equivalent terms. We also require that
(iv) p makes the sets of abstracted atoms as and bs equal. The requirements (i) to (iv)
can be stated formally as the conjunction of:

(as, x)≈set
R, fa, p (bs, y) def=

(i) fa x −as = fa y −bs (iii) (p·x)R y
(ii) fa x −as #∗ p (iv) p·as = bs

(7)

Note that this relation depends on the permutation p; α-equivalence between two pairs is
then the relation where we existentially quantify over this p. Also note that the relation
is dependent on a free-atom function fa and a relation R. The reason for this extra
generality is that we will use ≈set for both “raw” terms and α-equated terms. In the
latter case, R will be replaced by equality = and we will prove that fa is equal to supp.

The definition in (7) does not make any distinction between the order of abstracted
atoms. If we want this, then we can define α-equivalence for pairs of the form (as, x)
with type (atom list)× β as follows

(as, x)≈list
R, fa, p (bs, y) def=

(i) fa x −set as = fa y −set bs (iii) (p·x)R y
(ii) fa x −set as #∗ p (iv) p·as = bs

(8)

where set is the function that coerces a list of atoms into a set of atoms. Now the last
clause ensures that the order of the binders matters (since as and bs are lists of atoms).

If we do not want to make any difference between the order of binders and also
allow vacuous binders, that means restrict names, then we keep sets of binders, but
drop condition (iv) in (7):

(as, x)≈set+
R, fa, p (bs, y) def=

(i) fa x −as = fa y −bs (iii) (p·x)R y
(ii) fa x −as #∗ p

(9)

General Bindings and Alpha-Equivalence in Nominal Isabelle 485

3 General Bindings

In Nominal Isabelle, the user is expected to write down a specification of a term-calculus
and then a reasoning infrastructure is automatically derived from this specification (re-
member that Nominal Isabelle is a definitional extension of Isabelle/HOL, which does
not introduce any new axioms).

In order to keep our work with deriving the reasoning infrastructure manageable,
we will wherever possible state definitions and perform proofs on the “user-level” of
Isabelle/HOL, as opposed to write custom ML-code. To that end, we will consider first
pairs (as, x)of type (atom set)× β. These pairs are intended to represent the abstrac-
tion, or binding, of the set of atoms as in the body x.

The first question we have to answer is when two pairs (as, x)and (bs, y)are α-
equivalent? (For the moment we are interested in the notion of α-equivalence that is
not preserved by adding vacuous binders.) To answer this question, we identify four
conditions: (i) given a free-atom function fa of type β ⇒ atom set, then x and y need to
have the same set of free atoms; moreover there must be a permutation p such that (ii)
p leaves the free atoms of x and y unchanged, but (iii) “moves” their bound names so
that we obtain modulo a relation, say R , two equivalent terms. We also require that
(iv) p makes the sets of abstracted atoms as and bs equal. The requirements (i) to (iv)
can be stated formally as the conjunction of:

(as, x)≈set
R, fa, p (bs, y) def=

(i) fa x −as = fa y −bs (iii) (p·x)R y
(ii) fa x −as #∗ p (iv) p·as = bs

(7)

Note that this relation depends on the permutation p; α-equivalence between two pairs is
then the relation where we existentially quantify over this p. Also note that the relation
is dependent on a free-atom function fa and a relation R. The reason for this extra
generality is that we will use ≈set for both “raw” terms and α-equated terms. In the
latter case, R will be replaced by equality = and we will prove that fa is equal to supp.

The definition in (7) does not make any distinction between the order of abstracted
atoms. If we want this, then we can define α-equivalence for pairs of the form (as, x)
with type (atom list)× β as follows

(as, x)≈list
R, fa, p (bs, y) def=

(i) fa x −set as = fa y −set bs (iii) (p·x)R y
(ii) fa x −set as #∗ p (iv) p·as = bs

(8)

where set is the function that coerces a list of atoms into a set of atoms. Now the last
clause ensures that the order of the binders matters (since as and bs are lists of atoms).

If we do not want to make any difference between the order of binders and also
allow vacuous binders, that means restrict names, then we keep sets of binders, but
drop condition (iv) in (7):

(as, x)≈set+
R, fa, p (bs, y) def=

(i) fa x −as = fa y −bs (iii) (p·x)R y
(ii) fa x −as #∗ p

(9)

NTS Labelled Semantics

 22

Pi-calculus
0 Nil

a(x).P Input

a b.P Output

P +Q Choice

P | Q Parallel

(⌫a)P Restriction

↵ ::= ⌧ | a b | a b | a b

In

a(x).P
a b��! P

�
b/x
 Out

a b.P
a b��! P

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q

Com-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! P 0 | Q0

Scope
P

↵�! P 0

(⌫b)P
↵�! (⌫b)P 0 b#↵

But what about (⌫b)a b.P?

Sum-L
P

↵�! P 0

P +Q
↵�! P 0 Par-L

P
↵�! P 0

P | Q ↵�! P 0 | Q
bn(↵)#Q

Close-L
P

a b��! P 0 Q
a b��! Q0

P | Q ⌧�! (⌫b)(P 0 | Q0
)

b#P Open
P

a b��! P 0

(⌫b)P
a b��! P 0

b#a

2

⇡-calculus, residual style

In
a(x).P ! h;i(a b, P

�
b/x

)

Out
a b.P ! h;i(a b, P)

Sum-L
P ! S

P +Q ! S
Par-L

P ! hCi(↵, P 0
)

P | Q ! hCi(↵, P 0 | Q)
C#Q

Com-L
P ! h;i(a b, P 0

) Q ! h;i(a b, Q0
)

P | Q ! h;i(⌧, P 0 | Q0
)

Scope
P ! hCi(↵, P 0

)

(⌫b)P ! hCi(↵, (⌫b)P 0
)
b#↵

Close-L
P ! h;i(a b, P 0

) Q ! h{b}i(a b, Q0
)

P | Q ! h;i(⌧, (⌫b)(P 0 | Q0
))

b#P

Open
P ! h;i(a b, P 0

)

(⌫b)P ! h{b}i(a b, P 0
)
b#a

Lemma:

1. If P ! h;i(⌧, Q) then P ! Q.

2. If P ! Q then there exists Q0 ⌘ Q such that P ! h;i(⌧, Q0
).

Proof: by rule induction.

4

⇡-calculus, residual style

In
a(x).P ! h;i(a b, P

�
b/x

)

Out
a b.P ! h;i(a b, P)

Sum-L
P ! S

P +Q ! S
Par-L

P ! hCi(↵, P 0
)

P | Q ! hCi(↵, P 0 | Q)
C#Q

Com-L
P ! h;i(a b, P 0

) Q ! h;i(a b, Q0
)

P | Q ! h;i(⌧, P 0 | Q0
)

Scope
P ! hCi(↵, P 0

)

(⌫b)P ! hCi(↵, (⌫b)P 0
)
b#↵

Close-L
P ! h;i(a b, P 0

) Q ! h{b}i(a b, Q0
)

P | Q ! h;i(⌧, (⌫b)(P 0 | Q0
))

b#P

Open
P ! h;i(a b, P 0

)

(⌫b)P ! h{b}i(a b, P 0
)
b#a

Lemma:

1. If P ! h;i(⌧, Q) then P ! Q.

2. If P ! Q then there exists Q0 ⌘ Q such that P ! h;i(⌧, Q0
).

Proof: by rule induction.

4

NTS Labelled Semantics

 23

Based on Gabbay: The 𝜋-Calculus in FM,  
in "Thirty Five Years of Automating Mathematics", Kluwer 2004

Examples 3

 24

if true then a else b

(ν l)(ν t)(ν f)(True(l) | l(t,f) | t.a | f.b)

Connect(c,P(l)) := (ν l)c l.P(l)

Connect(c,(l a)(l)) | c(b).b(x).x

What are the transitions of (νa)c a | (νc)c a ?

Bisimulation

A symmetric relation R on processes satisfying:

if R(P,Q) then

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

DEFINITION (Strong Bisimulation)

Simulation

P
·⇠ Q if R(P,Q) for some bisimulation R

 25

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

Examples 4

• Check that (νc)c a is bisimilar to 0.

• Check that (νa)c a is bisimilar to (νa)c a | (νc)c a

 26

Com-po-si-tio-na-li-ty

• Bisimilarity is an equivalence relation,  
and a congruence for all operators except input

• Allows to substitute bisimilar processes in any  
non-input context: compositional reasoning 
 

• Structural congruence ≡ is a bisimulation

 27

Nominal Transition
Systems

Based on slides by Joachim Parrow, OPCT 2017
(I omit predicates for now.)

 28

Nominal Transition Systems

What are NTS? Why?

NTS are a general framework that fits
almost all advanced process algebras,

by generalising standard transition systems to
include binders in actions

 29

States

 30

Transitions

 31

Actions

⌧ a
b

ab a(x)

ahf(g(a), b)i

a(⌫b)

a(⌫b, c, d)

a(x, y, z)

ch(i)M

 32

Binding names

⌧ a
b

ab a(x)

ahf(g(a), b)i

a(⌫b)

a(⌫b, c, d)

a(x, y, z)

ch(i)M

Actions contain names

States contain names

 33

States and actions

STATES: A nominal set P, Q

 34

ACT: A nominal set ↵

bn(↵) ✓ supp(↵)

bn : act ! Pfin(N) equivariant

⌧ a b

ab a(x)

ahf(g(a), b)i

a(⌫b)

a(⌫b, c, d)

a(x, y, z)

ch(i)M

Transitions

! ✓ states ⇥ [Pfin(N)](act⇥ states) equivariant

(P,<b̃> (↵, Q)) 2 ! implies b̃ = bn(↵)

 35

⌧ a
b

ab a(x)

ahf(g(a), b)i

a(⌫b)

a(⌫b, c, d)

a(x, y, z)

ch(i)M

Nominal Transition Systems
We write P

↵�! Q for (P, hbn(↵)i(↵, Q)) 2 !

5

Bisimulation

A symmetric relation R on processes satisfying:

if R(P,Q) then

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

DEFINITION (Strong Bisimulation)

Simulation

P
·⇠ Q if R(P,Q) for some bisimulation R

 36

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

Summary

• Three process calculi: CCSish, pi, fusion

• Reduction semantics

• Residual-based labelled semantics

• Bisimulation

• Generalization: Nominal Transition Systems (NTS)

• Saturday: Psi-calculi, modal logic for NTSs

• Weak bisimilarity, weak logic, effects

 37

The 𝚿-calculus

Jesper Bengtson, Magnus Johansson, Joachim Parrow,
Björn Victor, Johannes Åman Pohjola, et al.

 38

(⌫z)(az) | a(x). [x = b]P

(⌫z)(aM) | a(�x̃)N. [x = b]P

(⌫z)(KM) | L(�x̃)N. [x = b]P

Ordinary pi-calculus

Data structures
can be sent

Pattern matching

Channels can be
arbitrary structures

Tests can be
arbitrary predicates(⌫z)(KM) | L(�x̃)N. if ' then P

arbitrary
set of
data

(⌫z)(aM) | a(x). [x = b]P

arbitrary
logic

(⌫z)(KM). (| |) | L(�x̃)N. if ' then P Facts about
data

new construct

From pi to psi

Cook a psi-calculus

Define terms T (data terms, channels)
and conditions C (used in case stmt)
and assertions A (facts about data)

can be any nominal set (not syntactic)

'
M,N

 40

Define term substitution, and operators:
.$: T⇥T ! C
⌦ : A⇥A ! A
1 : A

`✓ A⇥C

Channel equivalence
Composition
Unit assertion
Entailment

(p
ra

ct
ica

lly

an
yt

hi
ng

)

Axioms for substitution

 41

M. Johansson et al. / Journal of Logic and Algebraic Programming 81 (2012) 162–180 165

element of the same datatype as X . We need not define exactly what a substitution does; it is enough to assume the
following properties:

1: if ã ⊆ n(X) and b ∈ n(T̃) then b ∈ n(X[ã := T̃])
2: if b̃#X, ã then X[ã := T̃] = ((b̃ ã) · X)[b̃ := T̃]

The first says that a substitution X[ã := T̃] may not erase names in T̃ , and the second is a kind of alpha-conversion; see [7]
for further explanations.

2.2. Agents

A psi-calculus is defined by instantiating three nominal data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily disjoint) nominal data types:

T the (data) terms, ranged over byM,N

C the conditions, ranged over by ϕ

A the assertions, ranged over by "

and the four equivariant operators:

.↔: T × T → C Channel Equivalence

⊗ : A × A → A Composition

1 : A Unit

⊢ ⊆ A × C Entailment

and substitution functions [ã := M̃], substituting terms for names, on all of T, C, and A.

The binary functions above will be written in infix. Thus, if M and N are terms then M
.↔ N is a condition, pronounced

“M and N are channel equivalent” and if " and " ′ are assertions then so is "⊗" ′. Also we write " ⊢ ϕ, “" entails ϕ”, for
(", ϕ) ∈ ⊢.

The data terms are used to represent all kinds of data, including communication channels. Conditions are used as guards
in agents, and M

.↔ N is a particular condition saying that M and N represent the same channel. The assertions will be
used to declare information necessary to resolve the conditions. Assertions can be contained in agents and thus represent
information postulated by that agent; they can contain names and thereby be syntactically scoped and thus represent
information known only to the agents within that scope. The intuition of entailment is that " ⊢ ϕ means that given the
information in " , it is possible to infer ϕ. We say that two assertions are equivalent if they entail the same conditions:

Definition 2 (Assertion equivalence). Two assertions are equivalent, written " ≃ " ′, if for all ϕ we have that " ⊢ ϕ ⇔
" ′ ⊢ ϕ.

Apsi-calculus is formedby instantiating thenominaldata typesandoperators so that the following requisites are satisfied:

Definition 3 (Requisites on valid psi-calculus parameters).

Channel symmetry: " ⊢ M
.↔ N +⇒ " ⊢ N

.↔ M

Channel transitivity: " ⊢ M
.↔ N ∧ " ⊢ N

.↔ L +⇒ " ⊢ M
.↔ L

Composition: " ≃ " ′ +⇒ "⊗" ′′ ≃ " ′⊗" ′′

Identity: "⊗1 ≃ "

Associativity: ("⊗" ′)⊗" ′′ ≃ "⊗(" ′⊗" ′′)

Commutativity: "⊗" ′ ≃ " ′⊗"

Weakening: " ⊢ ϕ +⇒ "⊗" ′ ⊢ ϕ

Names are terms: N ⊆ T

Assume all the distinct, all the distinct.

M. Johansson et al. / Journal of Logic and Algebraic Programming 81 (2012) 162–180 165

element of the same datatype as X . We need not define exactly what a substitution does; it is enough to assume the
following properties:

1: if ã ⊆ n(X) and b ∈ n(T̃) then b ∈ n(X[ã := T̃])
2: if b̃#X, ã then X[ã := T̃] = ((b̃ ã) · X)[b̃ := T̃]

The first says that a substitution X[ã := T̃] may not erase names in T̃ , and the second is a kind of alpha-conversion; see [7]
for further explanations.

2.2. Agents

A psi-calculus is defined by instantiating three nominal data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily disjoint) nominal data types:

T the (data) terms, ranged over byM,N

C the conditions, ranged over by ϕ

A the assertions, ranged over by "

and the four equivariant operators:

.↔: T × T → C Channel Equivalence

⊗ : A × A → A Composition

1 : A Unit

⊢ ⊆ A × C Entailment

and substitution functions [ã := M̃], substituting terms for names, on all of T, C, and A.

The binary functions above will be written in infix. Thus, if M and N are terms then M
.↔ N is a condition, pronounced

“M and N are channel equivalent” and if " and " ′ are assertions then so is "⊗" ′. Also we write " ⊢ ϕ, “" entails ϕ”, for
(", ϕ) ∈ ⊢.

The data terms are used to represent all kinds of data, including communication channels. Conditions are used as guards
in agents, and M

.↔ N is a particular condition saying that M and N represent the same channel. The assertions will be
used to declare information necessary to resolve the conditions. Assertions can be contained in agents and thus represent
information postulated by that agent; they can contain names and thereby be syntactically scoped and thus represent
information known only to the agents within that scope. The intuition of entailment is that " ⊢ ϕ means that given the
information in " , it is possible to infer ϕ. We say that two assertions are equivalent if they entail the same conditions:

Definition 2 (Assertion equivalence). Two assertions are equivalent, written " ≃ " ′, if for all ϕ we have that " ⊢ ϕ ⇔
" ′ ⊢ ϕ.

Apsi-calculus is formedby instantiating thenominaldata typesandoperators so that the following requisites are satisfied:

Definition 3 (Requisites on valid psi-calculus parameters).

Channel symmetry: " ⊢ M
.↔ N +⇒ " ⊢ N

.↔ M

Channel transitivity: " ⊢ M
.↔ N ∧ " ⊢ N

.↔ L +⇒ " ⊢ M
.↔ L

Composition: " ≃ " ′ +⇒ "⊗" ′′ ≃ " ′⊗" ′′

Identity: "⊗1 ≃ "

Associativity: ("⊗" ′)⊗" ′′ ≃ "⊗(" ′⊗" ′′)

Commutativity: "⊗" ′ ≃ " ′⊗"

Weakening: " ⊢ ϕ +⇒ "⊗" ′ ⊢ ϕ

Names are terms: N ⊆ T

M. Johansson et al. / Journal of Logic and Algebraic Programming 81 (2012) 162–180 165

element of the same datatype as X . We need not define exactly what a substitution does; it is enough to assume the
following properties:

1: if ã ⊆ n(X) and b ∈ n(T̃) then b ∈ n(X[ã := T̃])
2: if b̃#X, ã then X[ã := T̃] = ((b̃ ã) · X)[b̃ := T̃]

The first says that a substitution X[ã := T̃] may not erase names in T̃ , and the second is a kind of alpha-conversion; see [7]
for further explanations.

2.2. Agents

A psi-calculus is defined by instantiating three nominal data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily disjoint) nominal data types:

T the (data) terms, ranged over byM,N

C the conditions, ranged over by ϕ

A the assertions, ranged over by "

and the four equivariant operators:

.↔: T × T → C Channel Equivalence

⊗ : A × A → A Composition

1 : A Unit

⊢ ⊆ A × C Entailment

and substitution functions [ã := M̃], substituting terms for names, on all of T, C, and A.

The binary functions above will be written in infix. Thus, if M and N are terms then M
.↔ N is a condition, pronounced

“M and N are channel equivalent” and if " and " ′ are assertions then so is "⊗" ′. Also we write " ⊢ ϕ, “" entails ϕ”, for
(", ϕ) ∈ ⊢.

The data terms are used to represent all kinds of data, including communication channels. Conditions are used as guards
in agents, and M

.↔ N is a particular condition saying that M and N represent the same channel. The assertions will be
used to declare information necessary to resolve the conditions. Assertions can be contained in agents and thus represent
information postulated by that agent; they can contain names and thereby be syntactically scoped and thus represent
information known only to the agents within that scope. The intuition of entailment is that " ⊢ ϕ means that given the
information in " , it is possible to infer ϕ. We say that two assertions are equivalent if they entail the same conditions:

Definition 2 (Assertion equivalence). Two assertions are equivalent, written " ≃ " ′, if for all ϕ we have that " ⊢ ϕ ⇔
" ′ ⊢ ϕ.

Apsi-calculus is formedby instantiating thenominaldata typesandoperators so that the following requisites are satisfied:

Definition 3 (Requisites on valid psi-calculus parameters).

Channel symmetry: " ⊢ M
.↔ N +⇒ " ⊢ N

.↔ M

Channel transitivity: " ⊢ M
.↔ N ∧ " ⊢ N

.↔ L +⇒ " ⊢ M
.↔ L

Composition: " ≃ " ′ +⇒ "⊗" ′′ ≃ " ′⊗" ′′

Identity: "⊗1 ≃ "

Associativity: ("⊗" ′)⊗" ′′ ≃ "⊗(" ′⊗" ′′)

Commutativity: "⊗" ′ ≃ " ′⊗"

Weakening: " ⊢ ϕ +⇒ "⊗" ′ ⊢ ϕ

Names are terms: N ⊆ T

Easy as pi!

In
� ⇧ M

.⌅ K

� B M(�ey)N.P
K N [ey:=eL]�������⇤ P [ey := eL]

Out
� ⇧ M

.⌅ K

� B M N.P
K N���⇤ P

Case
� B Pi

��⇤ P � � ⇧ ⇤i

� B case e⇤ : eP ��⇤ P �

Com

�⇥�P⇥�Q ⇧ M
.⌅ K

�Q⇥� B P
M (⇥ea)N������⇤ P � �P⇥� B Q

K N���⇤ Q�

� B P |Q ⇤�⇤ (⇥ea)(P � |Q�)
ea#Q

Par
�Q⇥� B P

��⇤ P �

� B P |Q ��⇤ P �|Q
bn(�)#Q Scope

� B P
��⇤ P �

� B (⇥b)P
��⇤ (⇥b)P �

b#�,�

Open
� B P

M (⇥ea)N������⇤ P �

� B (⇥b)P
M (⇥ea⇥{b})N���������⇤ P �

b#ea,�,M
b 2 n(N)

Rep
� B P | !P ��⇤ P �

�B !P
��⇤ P �

 42

Results

• Generic results for all instances:

• compositional semantics

• bisimulation theory (strong and weak)

• algebraic properties, congruence 

• Results for many instances

• symbolic semantics and bisimulation

• procedure for computing bisimilarity constraint

Machine-checked

proofs
LICS’09
LICS’10

LMCS 2011

SOS’09
JLAP 2012

 43

Algebraic properties

PSI-CALCULI: A FRAMEWORK FOR MOBILE PROCESSES WITH NOMINAL DATA AND LOGIC 33

The difference is that here bisimulation recurringly requires to hold for all assertions, not
only for those that are extensions of the ones passed so far. This would have the unintuitive
effect of making R and S in the example above non-bisimilar, even if weakening holds.

If there are inconsistent assertions, i.e. assertions that entail all conditions, the effect of
Clause 3 is very strong: Bisimilar agents are required to behave the same even if the envi-
ronment is inconsistent. For example, in this situation the agent (νa)a .0 is not equivalent
to 0, since an inconsistent assertion can make all names channel equivalent, and therefore
(νa)a .0 has actions with all names except a as subject. The algebraic properties to follow
hold for all psi-calculi, including those with inconsistent assertions. It remains to be seen if
and how bisimulation in such psi-calculi is useful to model applications.

Interestingly, there is an alternative way to define bisimulation as a binary relation
preserved by parallel contexts.

Definition 5.2 (Context bisimulation). A context bisimulation R is a binary relation on
agents such that R(P,Q) implies all of

(1) Static equivalence: F(P) ≃ F(Q)
(2) Symmetry: R(Q,P)
(3) Extension of contextual assertion: ∀Ψ. R((|Ψ|) | P, (|Ψ|) | Q)
(4) Simulation: for all α, P ′ such that bn(α)#Q there exists a Q′ such that

if 1 ✄ P
α−→ P ′ then 1 ✄ Q

α−→ Q′ ∧ R(P ′, Q′)

We define P
.
∼c Q to mean that there exists a context bisimulation R such that R(P,Q).

Such a definition is more in line with standard contextual bisimulations, and also the
way bisimulation is defined in the applied pi-calculus. The drawback is that it relies on an
operator in the calculus (parallel) for its definition. For conducting proofs our experience
is that Definition 5.1 is preferable. We have shown that these bisimilarities coincide, i.e.,
the definitions result in the same bisimulation equivalence:

Theorem 5.3 (Bisimilarity and context bisimilarity coincide).
.
∼ =

.
∼c

We now show that the usual strong early bisimilarity for the pi-calculus, denoted
.
∼π,

and bisimilarity in the instance Pi coincide.

Theorem 5.4 (pi-calculus bisimilarity and Pi bisimilarity coincide).

P
.
∼π Q ⇔ [[P]]

Pi

.
∼ [[Q]]

Pi

Proof. (⇒): Static equivalence and extension of arbitrary assertions hold trivially since the
only assertion is 1. Symmetry follows directly, and simulation follows from Lemma 3.3.
(⇐): Symmetry follows directly, and simulation follows from Lemma 3.3.

In addition, we conjecture that Inside-outside bisimilarity for the pi-F calculus [Wis01,
Definition 17] coincides with bisimilarity for the psi-calculus Fi (see Section 3.3.1).

5.2. Algebraic properties. Our results are that bisimilarity is preserved by the operators
in the expected way, and also satisfies the expected structural algebraic laws.

Theorem 5.5. For all Ψ:

(1) P
.
∼Ψ Q =⇒ P | R

.
∼Ψ Q | R.

(2) P
.
∼Ψ Q =⇒ (νa)P

.
∼Ψ (νa)Q if a#Ψ.

34 J. BENGTSON, M. JOHANSSON, J. PARROW, AND B. VICTOR

(3) P
.
∼Ψ Q =⇒ !P

.
∼Ψ !Q.

(4) ∀i.Pi
.
∼Ψ Qi =⇒ case ϕ̃ : P̃

.
∼Ψ case ϕ̃ : Q̃.

(5) P
.
∼Ψ Q =⇒ MN.P

.
∼Ψ MN.Q.

(6) (∀L̃. P [ã := L̃]
.
∼Ψ Q[ã := L̃]) =⇒

M(λã)N.P
.
∼Ψ M(λã)N.Q if ã#Ψ.

Definition 5.6. P ∼Ψ Q means that for all sequences σ of substitutions it holds that
Pσ

.
∼Ψ Qσ, and we write P ∼ Q for P ∼1 Q.

Our requirements on the substitution function are very weak. For example, we do not
require that P [ϵ := ϵ] (the substitution of length 0) is P , nor that sequences of substitutions
[x̃ := M̃][ỹ := Ñ] can be combined into one. For this reason, ∼Ψ is defined by closure under
sequences of substitutions rather than single substitutions [x̃ := M̃].

Theorem 5.7. ∼Ψ is a congruence for all Ψ.

Theorem 5.8. ∼ satisfies the following structural laws:

P ∼ P | 0
P | (Q | R) ∼ (P | Q) | R

P | Q ∼ Q | P
(νa)0 ∼ 0

P | (νa)Q ∼ (νa)(P | Q) if a#P
MN.(νa)P ∼ (νa)MN.P if a#M,N

M (λx̃)N.(νa)P ∼ (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : (̃νa)P ∼ (νa)case ϕ̃ : P̃ if a#ϕ̃
(νa)(νb)P ∼ (νb)(νa)P

!P ∼ P | !P

The most awkward part of the proofs is for Theorem 5.5(1), and historically this is
the proof that most often fails in calculi of this complexity; the intricate correspondences
between parallel processes and their assertions are hard to get completely right. We give
an outline of the proof and cover in detail the simulation case where the parallel processes
communicate with each other. In the following we tacitly assume F(P) = (ν b̃P)ΨP , where

b̃P#P , for any agent P , unless otherwise noted.
We pick the candidate relation R = {(Ψ, (νã)(P | R), (νã)(Q | R)) : P

.
∼Ψ⊗ΨR

Q} where
ã#Ψ, and prove that R is a bisimulation. Moreover we assume that b̃P#b̃Q, Q, b̃R, R,Ψ,

and b̃R#P,Q,Ψ, or, in other words, that bound names are distinct from all free names and
other bound names. Formally the proof is conducted by an induction on the length of ã.
The induction step is straightforward, so we focus on the base case. The agent P | R can
operate either by P or R doing individual actions, or by P and R communicating, where
we cover the latter case, as it is the most involved.

In this case we have, by theCom rule, that P does an input transition (Ψ⊗ΨR ✄P
M N−−−→

P ′), R does an output transition (Ψ⊗ΨP ✄ R
K (νã)N−−−−−→ R′), and that the subjects of the

transitions are channel equivalent (Ψ⊗ΨP⊗ΨR ⊢ M
.
↔ K). The resulting communication

between P and R is thus Ψ ✄ P | R τ−→ (νã)(P ′ | R′).

To complete this step of the proof we need to find a Q′ such that Ψ ✄ Q | R τ−→
(νã)(Q′ | R′), and (Ψ, (νã)(P ′ | R′), (νã)(Q′ | R′)) ∈ R.

34 J. BENGTSON, M. JOHANSSON, J. PARROW, AND B. VICTOR

(3) P
.
∼Ψ Q =⇒ !P

.
∼Ψ !Q.

(4) ∀i.Pi
.
∼Ψ Qi =⇒ case ϕ̃ : P̃

.
∼Ψ case ϕ̃ : Q̃.

(5) P
.
∼Ψ Q =⇒ MN.P

.
∼Ψ MN.Q.

(6) (∀L̃. P [ã := L̃]
.
∼Ψ Q[ã := L̃]) =⇒

M(λã)N.P
.
∼Ψ M(λã)N.Q if ã#Ψ.

Definition 5.6. P ∼Ψ Q means that for all sequences σ of substitutions it holds that
Pσ

.
∼Ψ Qσ, and we write P ∼ Q for P ∼1 Q.

Our requirements on the substitution function are very weak. For example, we do not
require that P [ϵ := ϵ] (the substitution of length 0) is P , nor that sequences of substitutions
[x̃ := M̃][ỹ := Ñ] can be combined into one. For this reason, ∼Ψ is defined by closure under
sequences of substitutions rather than single substitutions [x̃ := M̃].

Theorem 5.7. ∼Ψ is a congruence for all Ψ.

Theorem 5.8. ∼ satisfies the following structural laws:

P ∼ P | 0
P | (Q | R) ∼ (P | Q) | R

P | Q ∼ Q | P
(νa)0 ∼ 0

P | (νa)Q ∼ (νa)(P | Q) if a#P
MN.(νa)P ∼ (νa)MN.P if a#M,N

M (λx̃)N.(νa)P ∼ (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : (̃νa)P ∼ (νa)case ϕ̃ : P̃ if a#ϕ̃
(νa)(νb)P ∼ (νb)(νa)P

!P ∼ P | !P

The most awkward part of the proofs is for Theorem 5.5(1), and historically this is
the proof that most often fails in calculi of this complexity; the intricate correspondences
between parallel processes and their assertions are hard to get completely right. We give
an outline of the proof and cover in detail the simulation case where the parallel processes
communicate with each other. In the following we tacitly assume F(P) = (ν b̃P)ΨP , where

b̃P#P , for any agent P , unless otherwise noted.
We pick the candidate relation R = {(Ψ, (νã)(P | R), (νã)(Q | R)) : P

.
∼Ψ⊗ΨR

Q} where
ã#Ψ, and prove that R is a bisimulation. Moreover we assume that b̃P#b̃Q, Q, b̃R, R,Ψ,

and b̃R#P,Q,Ψ, or, in other words, that bound names are distinct from all free names and
other bound names. Formally the proof is conducted by an induction on the length of ã.
The induction step is straightforward, so we focus on the base case. The agent P | R can
operate either by P or R doing individual actions, or by P and R communicating, where
we cover the latter case, as it is the most involved.

In this case we have, by theCom rule, that P does an input transition (Ψ⊗ΨR ✄P
M N−−−→

P ′), R does an output transition (Ψ⊗ΨP ✄ R
K (νã)N−−−−−→ R′), and that the subjects of the

transitions are channel equivalent (Ψ⊗ΨP⊗ΨR ⊢ M
.
↔ K). The resulting communication

between P and R is thus Ψ ✄ P | R τ−→ (νã)(P ′ | R′).

To complete this step of the proof we need to find a Q′ such that Ψ ✄ Q | R τ−→
(νã)(Q′ | R′), and (Ψ, (νã)(P ′ | R′), (νã)(Q′ | R′)) ∈ R.

The usual structural laws, in particular
Scope extension

Compositionality, congruence
The usual congruence properties, in particular

(8eL. P [ea := eL] .⇠ Q[ea := eL])
=) M(�ea)N .P

.⇠ M(�ea)N .Q

Machine-checked

proofs

 44

Nominal Isabelle
Formalization

 45

Mainly by  
Jesper Bengtson and Johannes Åman Pohjola

Making it this simple is hard work!

• Easy to get things wrong, even when they are
“obviously right”

• Easy to miss a requirement

• Easy to miss generalisations

• Especially true when (name) binding is involved

Easy to get worried!

 46

Isabelle from day 1

• use Interactive theorem prover Isabelle  
with Nominal package

• supports nominal datatypes, under active
development, produces readable proofs

• use during development, not only afterwards!

 47

Adaptable proofs: case example

PSI-CALCULI: A FRAMEWORK FOR MOBILE PROCESSES WITH NOMINAL DATA AND LOGIC 33

If a proof requires the input agent to be alpha-converted to M(�p · �y)(p ·N).(p ·P) such
that p · ỹ is su⌅ciently fresh, it is necessary to convert N [�y := �L] to (p · N)[(p · �y) := �L],
and P [�y := �L] to (p · P)[(p · �y) := �L], to still be able to derive the input transition. The last
constraint accomplishes this. Additionally we require that the vectors x̃ and T̃ , and ỹ and
Ũ , have equal length. This locale is then instantiated three times: for terms, assertions and
conditions respectively.

The nominal morphisms in Definition 1 are modeled in a locale which specifies their
existence and equivariance properties. Inside this locale we also define equivalence for
assertions and frames and provide an infrastructure for reasoning about equivalence. This
locale is then extended with the requisites in Definition 3.

Finally, the substitution locale is combined with the locale for equivalence to form
an environment in which the rest of the theories can be proven. The locales o⇥er a very
intuitive way of reasoning about parametric systems, and without them this formalisation
would have been very hard.

6.3. Results and experiences. Formalising the proofs for psi-calculi in parallel to its
development has turned out to be invaluable, and we would certainly not have finished
successfully without it. Throughout the development we have uncountable times stumbled
over slightly incorrect definitions and not quite correct lemmas, prompting frequent changes
in the framework. For example, our mistake in [JPVB08] mentioned in Section 2.6 was found
during proof mechanisation and would probably not have been found at all without it; at
that time we had completed a manual “proof” which turned out incorrect. The Isabelle
formalisation gives us a high degree of confidence in the proven theorems, and equally
important, it gives us a repository of proofs and proof strategies that can be re-used when
some detail needs to change. Finding out which ramifications a change has on the proofs is
quick and straight forward. With manual proofs, changing a detail would mean the boring
and dangerously error prone process of going over each proof by hand.

As just one example, in a previous version, the Case rule looked as follows:

Old-Case
� ⌅ ⇥i

� ⇤ case �⇥ : �P ��⇤ Pi

In this rule, the choice of which branch to take in a case statement yields an internal
action, after which the process P evaluates as usual. An implication is that the requirement
that P is guarded can be omitted. We initially adopted this rule since it admits simpler
induction proofs. At a quite late stage we decided to change it to the present rule, since
this more closely resembles what is used in similar calculi. The change prompted a rework
of the entire proof tree from the semantics and up. The total e⇥ort was approximately
eight hours, after which we had complete certainty that the new rule does not cause any
problems.

Currently we have formally proven theorems 12–16 in this paper, including all support-
ing lemmas. The entire implementation in Isabelle is about 18000 lines of Isabelle code.
It includes infrastructure for smooth treatment of binding sequences, and it has developed
gradually over the last two years. The total e⇥ort for the present framework is hard to
assess, since it has followed us through many failed attempts and false starts. Once in place
the marginal e⇥ort of formalising more results is manageable. As an example, the total

Original rule, tau action: easy induction proofs

With Isabelle: took a day

10 JESPER BENGTSON, MAGNUS JOHANSSON, JOACHIM PARROW, AND BJÖRN VICTOR

In
� ⌦ M

.⌃ K

� ⇤ M(⇥�y)N.P
K N [ey:=eL]�������⇧ P [�y := �L]

Out
� ⌦ M

.⌃ K

� ⇤ M N.P
K N���⇧ P

Case
� ⇤ Pi

��⇧ P � � ⌦ ⌅i

� ⇤ case �⌅ : �P ��⇧ P �

Com
�Q⇤� ⇤ P

M (⇥ea)N�����⇧ P � �P⇤� ⇤ Q
K N���⇧ Q� �⇤�P⇤�Q ⌦ M

.⌃ K

� ⇤ P | Q ⇤�⇧ (⇤�a)(P � | Q�)
�a#Q

Par
�Q⇤� ⇤ P

��⇧ P �

� ⇤ P |Q ��⇧ P �|Q
bn(�)#Q Scope

� ⇤ P
��⇧ P �

� ⇤ (⇤b)P ��⇧ (⇤b)P �
b#�,�

Open
� ⇤ P

M (⇥ea)N�����⇧ P �

� ⇤ (⇤b)P M (⇥ea⇥{b})N��������⇧ P �
b#�a,�, M
b ⌥ n(N) Rep

� ⇤ P | !P ��⇧ P �

�⇤ !P ��⇧ P �

Table 1: Operational semantics. Symmetric versions of Com and Par are elided. In the
rule Com we assume that F(P) = (⇤�bP)�P and F(Q) = (⇤�bQ)�Q where �bP is
fresh for all of �,�bQ, Q,M and P , and that �bQ is correspondingly fresh. In the
rule Par we assume that F(Q) = (⇤�bQ)�Q where �bQ is fresh for �, P and �. In
Open the expression ⇤ã {b} means the sequence ã with b inserted anywhere.

that it does not occur on the transition label. We defer a more precise account of this to
Section 6.

The environmental assertions � ⇤ · · · in Table 1 express the e⇥ect that the environment
has on the agent: enabling conditions in Case, giving rise to action subjects in In and Out
and enabling interactions in Com. Thus � never changes between hypothesis and conclusion
except for the parallel operator, where an agent is part of the environment for another agent.
In a derivation tree for a transition, the assertion will therefore increase towards the leafs
by application of Par and Com. If all environmental assertions are erased and channel
equivalence replaced by identity we get the standard laws of the pi-calculus enriched with
data structures.

In comparison to the applied pi-calculus and the concurrent constraint pi calculus one
main novelty is the inclusion of environmental assertions in the rules. They are necessary to
make our semantics compositional, i.e., the e⇥ect of the environment on an agent is wholly
captured by the semantics. In contrast, the labelled transitions of the applied and the
concurrent constraint pi-calculi must rely on an auxiliary structural congruence, containing
axioms such as scope extension (⇤a)(P | Q) ⌅ (⇤a)P | Q if a#Q. With our semantics such
laws are derived rather than postulated. The advantage of our approach is that proofs of
metatheoretical results such as compositionality are much simpler since there is only the
one inductive definition of transitions.

New rule: more standard, can express the above

 48

Change requires re-checking all proofs!

Adaptable proofs: higher-order

transitions of the form ⇤ P
↵
�! P 0. This transition intuitively means that

P can perform an action ↵ leading to P 0, in an environment that asserts .

Definition 8 (Actions). The actions ranged over by ↵,� are of the following
three kinds:

M(⌫ã)N Output, where ã ✓ n(N)
M N Input
⌧ Silent

For actions we refer to M as the subject and N as the object. We define
bn(M(⌫ã)N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also define n(⌧) = ;

and n(↵) = n(N) [n(M) if ↵ is an output or input. As in the pi-calculus,
the output M(⌫ã)N represents an action sending N along M and opening the
scopes of the names ã. Note in particular that the support of this action includes
ã. Thus M(⌫a)a and M(⌫b)b are di↵erent actions.

Definition 9 (Transitions). A transition is of the kind ⇤ P
↵
�! P 0, mean-

ing that when the environment contains the assertion the well formed agent
P can do an ↵ to become P 0. The transitions are defined inductively in Table 1.

We write P
↵
�! P 0 to mean 1⇤ P

↵
�! P 0. In In the substitution is defined by

induction on agents, using substitution on terms, assertions and conditions for
the base cases and avoiding captures through alpha-conversion in the standard
way.

Both agents and frames are identified by alpha equivalence. This means that
we can choose the bound names fresh in the premise of a rule. In a transition the
names in bn(↵) count as binding into both the action object and the derivative,
and transitions are identified up to alpha equivalence. This means that the
bound names can be chosen fresh, substituting each occurrence in both the
object and the derivative. This is the reason why bn(↵) is in the support of the
output action: otherwise it could be alpha-converted in the action alone. Also,
for the side conditions in Scope and Open it is important that bn(↵) ✓ n(↵).
In rules Par and Com, the freshness conditions on the involved frames will
ensure that if a name is bound in one agent its representative in a frame is
distinct from names in parallel agents, and also (in Par) that it does not occur
on the transition label.

3 Higher-order Psi-calculi

We now proceed to formalize the extension to higher-order psi-calculi described
in the introduction.

3.1 Basic definitions

In a higher-order psi-calculus we use one additional nominal datatype of clauses:

Cl = {M (P : M 2 T ^ P 2 P ^ n(M) ◆ n(P) ^ P assertion guarded}

8

In
 ` M

.
$ K

 ⇤ M(�ey)N.P
K N [ey:=eL]
�������! P [ey := eL]

Out
 ` M

.
$ K

 ⇤ MN.P
KN
��! P

Case
 ⇤ Pi

↵
�! P 0 ` 'i

 ⇤ case e' : eP ↵
�! P 0

Com

 Q⌦ ⇤ P
M (⌫ea)N
������! P 0

 P⌦ ⇤ Q
K N
���! Q0 ⌦ P⌦ Q ` M

.
$ K

 ⇤ P | Q
⌧
�! (⌫ea)(P 0

| Q0)
ea#Q

Par
 Q⌦ ⇤ P

↵
�! P 0

 ⇤ P | Q
↵
�! P 0

| Q
bn(↵)#Q

Scope
 ⇤ P

↵
�! P 0

 ⇤ (⌫b)P
↵
�! (⌫b)P 0

b#↵,

Open
 ⇤ P

M (⌫ea)N
������! P 0

 ⇤ (⌫b)P
M (⌫ea[{b})N
���������! P 0

b#ea, ,M
b 2 n(N)

Rep
 ⇤ P | !P

↵
�! P 0

 ⇤ !P
↵
�! P 0

Table 1: Operational semantics. Symmetric versions of Com and Par are
elided. In the rule Com we assume that F(P) = (⌫ebP) P and F(Q) = (⌫ebQ) Q

where ebP is fresh for all of ,ebQ, Q,M and P , and that ebQ is correspondingly

fresh. In the rule Par we assume that F(Q) = (⌫ebQ) Q where ebQ is fresh
for , P and ↵. In Open the expression ã [{b} means the sequence ã with b
inserted anywhere.

and the entailment relation is extended to ` ✓ A ⇥ (C]Cl), where we write
 ` ' for ` (0,') and ` M (P for ` (1,M (P). We amend the
definition of assertion equivalence to mean that the assertions entail the same
conditions and clauses. This extension is not formally necessary since we could
instead adjoin Cl to the conditions, but calling M (P a “condition” is a
misnomer we want to avoid.

Definition 10 (Higher-order agents). The higher-order agents in a psi-calculus
extend those of an ordinary calculus with one new kind of agent:

run M Invoke an agent for which M is a handle

We define F(run M) to be 1.

9

Finally there is the new transition rule:

Definition 11 (Higher-order transitions). The transitions in a higher-order
psi-calculus are those that can be derived from the rules in Table 1 plus the one
additional rule

Invocation
 ` M (P ⇤ P

↵
�! P 0

 ⇤ run M
↵
�! P 0

We are free to choose any language we want for the assertions as long as the
requisites in Definition 3 hold. Let us in a few simple examples consider a lan-
guage where assertions are finite sets of clauses and composition ⌦ corresponds
to union.

A higher-order communication is simply an instance of ordinary communi-
cation inferred with the Com rule. As an example, if P (P is entailed by all
assertions, i.e. an agent is always a handle for itself,

aP .Q | a(x) . (run x | R)
⌧
�! Q | run P | R[x := P]

This corresponds to sending the program code. A recipient can both execute it
and use it as data. For example R can be if x = P 0 then . . ., checking if the
received P is syntactically the same as some other agent P 0. To prevent the
latter, instead send a handle M to represent P :

(aM .Q | (|{M (P}|)) | a(x) . (run x | R)
⌧
�! Q | (|{M (P}|) | (run M | R[x := M])

In Section 3.3 we shall define canonical higher-order calculi; in these receiving a
handle M means that the code of P cannot be directly inspected: all that can
be done with the process P is to execute it.

For another example, consider that there are shared private names between
a process being sent and its original environment:

(⌫b)aM . (Q | (|{M (P}|))
↵
�! Q | (|{M (P}|)

If b 2 n(P) then also b 2 n(M), and hence b is extruded whenever M is sent,
i.e. ↵ = a(⌫b)M . This means that wherever M is received the shared link b to
Q will still work.

As an example of an invocation, consider the following transition:

1⇤ (⌫b)(Q | (|{Mb (↵ . P}|) | (⌫c)(run Mb | R))
↵
!

(⌫b)(Q | (|{Mb (↵ . P}|) | (⌫c)(P | R))

A derivation of this transition uses the Invocation rule

{Mb (↵ . P} ` Mb (↵ . P {Mb (↵ . P} ⇤ ↵ . P
↵
�! P

{Mb (↵ . P} ⇤ run Mb
↵
�! P

10

transitions of the form ⇤ P
↵
�! P 0. This transition intuitively means that

P can perform an action ↵ leading to P 0, in an environment that asserts .

Definition 8 (Actions). The actions ranged over by ↵,� are of the following
three kinds:

M(⌫ã)N Output, where ã ✓ n(N)
M N Input
⌧ Silent

For actions we refer to M as the subject and N as the object. We define
bn(M(⌫ã)N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also define n(⌧) = ;

and n(↵) = n(N) [n(M) if ↵ is an output or input. As in the pi-calculus,
the output M(⌫ã)N represents an action sending N along M and opening the
scopes of the names ã. Note in particular that the support of this action includes
ã. Thus M(⌫a)a and M(⌫b)b are di↵erent actions.

Definition 9 (Transitions). A transition is of the kind ⇤ P
↵
�! P 0, mean-

ing that when the environment contains the assertion the well formed agent
P can do an ↵ to become P 0. The transitions are defined inductively in Table 1.

We write P
↵
�! P 0 to mean 1⇤ P

↵
�! P 0. In In the substitution is defined by

induction on agents, using substitution on terms, assertions and conditions for
the base cases and avoiding captures through alpha-conversion in the standard
way.

Both agents and frames are identified by alpha equivalence. This means that
we can choose the bound names fresh in the premise of a rule. In a transition the
names in bn(↵) count as binding into both the action object and the derivative,
and transitions are identified up to alpha equivalence. This means that the
bound names can be chosen fresh, substituting each occurrence in both the
object and the derivative. This is the reason why bn(↵) is in the support of the
output action: otherwise it could be alpha-converted in the action alone. Also,
for the side conditions in Scope and Open it is important that bn(↵) ✓ n(↵).
In rules Par and Com, the freshness conditions on the involved frames will
ensure that if a name is bound in one agent its representative in a frame is
distinct from names in parallel agents, and also (in Par) that it does not occur
on the transition label.

3 Higher-order Psi-calculi

We now proceed to formalize the extension to higher-order psi-calculi described
in the introduction.

3.1 Basic definitions

In a higher-order psi-calculus we use one additional nominal datatype of clauses:

Cl = {M (P : M 2 T ^ P 2 P ^ n(M) ◆ n(P) ^ P assertion guarded}

8

Clauses

Invocation agent

Invocation
rule

Now prove all meta-theory again!

To get higher-order psi-calculi, just add the following:

With Isabelle: meta-theory took a day and a night
More effort: locales, canonical instances, encodings

Parrow, Borgström,
Raabjerg, Åman Pohjola,

MSCS 2016

 49

Broadcast: harder
To get broadcast communication:

Broadcast Psi-calculi with an Application to Wireless Protocols 5

1. Static equivalence: ⌦ F(P) ' ⌦ F(Q)
2. Symmetry: R(, Q, P)
3. Extension of arbitrary assertion: 8 0. R(⌦ 0, P,Q)
4. Simulation: for all ↵, P 0

such that bn(↵)# , Q there exists a Q0
such that

 ⇤ P
↵�! P 0 =) ⇤ Q

↵�! Q0 ^R(, P 0, Q0)

We define P
.⇠ Q to mean that there exists a bisimulation R such that R(, P,Q),

and write
.⇠ for

.⇠1.

Strong bisimulation is preserved by all operators except input prefix and satisfies
the expected algebraic laws such as scope extension, for details see [3,4].

3 Broadcast semantics

In this section we extend the unicast psi-calculi of the previous section with
a broadcast semantics that models wireless (i.e., synchronous and unreliable)
broadcast. As an example, assume that the connectivity information allows
receivers M1 and M2 to listen to channel K. We would then expect the following

transition: ⇤ KN.P | M2(x).Q | M3(y).R
K N���! P | Q[x :=N] | R[y :=N].

To allow connectivity to depend on assertions, and to permit broadcast chan-
nels to be computed at run-time, we assume a psi-calculus with the following
extra predicates:

Definition 5 (Extra predicates for broadcast).

.
� : T⇥T ! C Output Connectivity
.
� : T⇥T ! C Input Connectivity

The first predicate, M
.
� K, is pronounced “M is out-connected to K” and

means that an output prefix M N can result in a broadcast on channel K. The
second, K

.
� M , is pronounced “M is in-connected to K” and means that an

input prefix M(�ex)N can receive broadcast messages from channel K. As usual
in broadcast calculi, the receivers need to be using the same broadcast channel
as the sender in order to receive a message.

As an example, we can model routing table lookup: if tab is a term corre-
sponding to a routing table we can let ` lookup(tab, id)

.
� ch be true if (id, ch)

appears in tab. We can also model connectivity: if contains connectivity infor-
mation between receivers n and channels ch we may let ` ch

.
� rcv(n, ch) be

true if n is connected to ch according to .
In contrast to unicast connectivity, we do not require broadcast connectedness

to be symmetric or transitive, so in particular M
.
� K might not be equivalent

to K
.
� M . Instead, for technical reasons related to scope extension, broadcast

channels must have no greater support than the input and output prefixes that
can make use of them.

Broadcast Psi-calculi with an Application to Wireless Protocols 5

1. Static equivalence: ⌦ F(P) ' ⌦ F(Q)
2. Symmetry: R(, Q, P)
3. Extension of arbitrary assertion: 8 0. R(⌦ 0, P,Q)
4. Simulation: for all ↵, P 0

such that bn(↵)# , Q there exists a Q0
such that

 ⇤ P
↵�! P 0 =) ⇤ Q

↵�! Q0 ^R(, P 0, Q0)

We define P
.⇠ Q to mean that there exists a bisimulation R such that R(, P,Q),

and write
.⇠ for

.⇠1.

Strong bisimulation is preserved by all operators except input prefix and satisfies
the expected algebraic laws such as scope extension, for details see [3,4].

3 Broadcast semantics

In this section we extend the unicast psi-calculi of the previous section with
a broadcast semantics that models wireless (i.e., synchronous and unreliable)
broadcast. As an example, assume that the connectivity information allows
receivers M1 and M2 to listen to channel K. We would then expect the following

transition: ⇤ KN.P | M2(x).Q | M3(y).R
K N���! P | Q[x :=N] | R[y :=N].

To allow connectivity to depend on assertions, and to permit broadcast chan-
nels to be computed at run-time, we assume a psi-calculus with the following
extra predicates:

Definition 5 (Extra predicates for broadcast).

.
� : T⇥T ! C Output Connectivity
.
� : T⇥T ! C Input Connectivity

The first predicate, M
.
� K, is pronounced “M is out-connected to K” and

means that an output prefix M N can result in a broadcast on channel K. The
second, K

.
� M , is pronounced “M is in-connected to K” and means that an

input prefix M(�ex)N can receive broadcast messages from channel K. As usual
in broadcast calculi, the receivers need to be using the same broadcast channel
as the sender in order to receive a message.

As an example, we can model routing table lookup: if tab is a term corre-
sponding to a routing table we can let ` lookup(tab, id)

.
� ch be true if (id, ch)

appears in tab. We can also model connectivity: if contains connectivity infor-
mation between receivers n and channels ch we may let ` ch

.
� rcv(n, ch) be

true if n is connected to ch according to .
In contrast to unicast connectivity, we do not require broadcast connectedness

to be symmetric or transitive, so in particular M
.
� K might not be equivalent

to K
.
� M . Instead, for technical reasons related to scope extension, broadcast

channels must have no greater support than the input and output prefixes that
can make use of them.

Output connectivity

Input connectivity
6 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

BrOut
 ` M

.
� K

 ⇤ M N .P
!K N���! P

BrIn
 ` K

.
� M

 ⇤ M(�ey)N .P
?K N [ey:=eL]�������! P [ey := eL]

BrMerge
 Q ⌦ ⇤ P

?K N���! P 0 P ⌦ ⇤ Q
?K N���! Q0

 ⇤ P | Q ?K N���! P 0 | Q0

BrCom
 Q ⌦ ⇤ P

!K (⌫ea)N������! P 0 P ⌦ ⇤ Q
?K N���! Q0

 ⇤ P | Q !K (⌫ea)N������! P 0 | Q0
ea#Q

BrClose
 ⇤ P

!K (⌫ea)N������! P 0

 ⇤ (⌫b)P
⌧�! (⌫b)(⌫ea)P 0

b 2 n(K)
b#

Table 2. Operational broadcast semantics. A symmetric version of BrCom is elided.
In rules BrCom and BrMerge we assume that F(P) = (⌫ebP) P and F(Q) = (⌫ebQ) Q
where ebP is fresh for P,ebQ, Q,K and , and that ebQ is fresh for Q,ebP , P,K and .

Definition 6 (Requirements for broadcast).

1. ` M
.
� K =) n(M) ◆ n(K)

2. ` K
.
� M =) n(K) ✓ n(M)

Definition 7 (Transitions of Broadcast Psi). To the actions of psi-calculi

we add broadcast input, written ?K N for a reception of N on K, and broadcast

output, written !K (⌫ea)N for a broadcast of N on K, with names ea fresh in K.

As before, we omit (⌫ea) when ea is empty, and in examples we omit N when it

is not relevant. The transitions of well-formed agents are defined inductively in

Tables 2 and 1, where we let ↵ range over both unicast and broadcast actions.

The rule BrOut, allows transmission on a broadcast channel K that the
subject M of an output prefix is out-connected to. Similarly, the rule BrIn

allows input from a broadcast channel K that the subject M of an input pre-
fix is in-connected to. When two parallel processes both receive a broadcast on
the same channel, the rule BrMerge combines the two actions. This rule is
necessary to ensure the associativity of parallel composition. After a broadcast
communication using BrCom, the resulting action is the original transmission.
This is di↵erent from the unicast Com rule, where a communication yields an in-
ternal action ⌧ . Finally, rule BrClose states that a broadcast transmission does
not reach beyond its scope. This allows for broadcasting on restricted channels.
Dually, the Res rule (of Table 1) ensures that broadcast receivers on restricted
channels cannot proceed unless a message is sent. We allow the Open rule to also
apply to broadcast output actions, in order to communicate scoped data. The
Par rule allows for broadcasts to bypass a process, as in most other broadcast
calculi for wireless systems.

Five new semantics rules,
two new actions

Quite some work getting it right!
Adds about 12700 lines of Isabelle proofs,  

reuses entire Psi codebase of about 20500 lines.

SEFM’11  
SoSyM 2015

Even with Isabelle: two years, seven coauthors

 50

The power of Isabelle

What about combining
higher-order and broadcast?

With Isabelle: took HALF a day, mostly waiting!

Re-prove all the  
meta-theory…

“could be done by a clever shell script”

 51

Effort

• Theory development is not only about doing
proofs – most time spent elsewhere

• Doing false proofs is a waste of time

• Correct proofs make it worthwhile!

It must take a lot of time to
use Isabelle, surely?

No worries!

 52

Nominal Transition
Systems

Based on slides by Joachim Parrow, OPCT 2017

 53

Nominal Transition Systems

What are NTS? Why?

NTS are a general framework that fits
almost all advanced process algebras,

by generalising standard transition systems to
include binders in actions

 54

States

 55

State predicates

x=1
y>z

x=2
c=encrypt(m,k)

prime(x)

8m, k. c 6= encrypt(m, k)

 56

Transitions

 57

Actions

⌧ a
b

ab a(x)

ahf(g(a), b)i

a(⌫b)

a(⌫b, c, d)

a(x, y, z)

ch(i)M

 58

Binding names

⌧ a
b

ab a(x)

ahf(g(a), b)i

a(⌫b)

a(⌫b, c, d)

a(x, y, z)

ch(i)M

Actions contain names

States contain names

Predicates contain names

 59

States, predicates, and actions

STATES: A nominal set P, Q

 60

ACT: A nominal set ↵

bn(↵) ✓ supp(↵)

bn : act ! Pfin(N) equivariant
⌧ a b
ab a(x)

ahf(g(a), b)i

a(⌫b)a(x, y, z)

ch(i)M

PRED: A nominal set '

` ✓ states⇥ pred equivariant

x = 1

y > z

x = 2

c = encrypt(m,k)

prime(x)

8m, k. c 6= encrypt(m, k)

Transitions

! ✓ states ⇥ [Pfin(N)](act⇥ states) equivariant

(P,<b̃> (↵, Q)) 2 ! implies b̃ = bn(↵)

 61

⌧ a
b

ab a(x)

ahf(g(a), b)i

a(⌫b)

a(⌫b, c, d)

a(x, y, z)

ch(i)M

Nominal Transition Systems
We write P

↵�! Q for (P, hbn(↵)i(↵, Q)) 2 !

5

Bisimulation

A symmetric relation R on processes satisfying:

if R(P,Q) then

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

DEFINITION (Strong Bisimulation)

Simulation

P
·⇠ Q if R(P,Q) for some bisimulation R

 62

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

If P ` ' then Q ` ' Static implication

Modal Logics for Nominal
Transition Systems

 63

Based on CONCUR 2015 paper with

 Ramūnas Gutkovas
 Lars-Henrik Eriksson

Joachim Parrow
 Tjark Weber

Presentation based on slides by
Joachim Parrow

Logic

 64

Our objectives:

A set of formulas A, B

A satisfaction relation between states and
formulas

Expressive wrt existing work

Not objectives: decidability, model checking

P |= A

Fully formal

Simple

Formulas

 65

Four basic constructors

A := ' | h↵iA | ¬A |
^

i2I

Ai

State Predicates

 66

P |= '

P ` '

holds if

P satisfies the formula

the state predicate holds in P

Action modality

 67

P |= h↵iA

holds if

9P 0. P
↵! P 0 and P 0 |= A

we consider formulas up to alpha equivalence, ie

If a 2 bn(↵), b#↵, A

then h↵iA = (a b) · (h↵iA)

P can do ↵ and then satisfy A

Negation

 68

P |= ¬A

holds if

not P |= A

Conjunction

 69

P |=
^

i2I

Ai

Assume Ai a formula for each i 2 I (I is some index set)

if for all i 2 I it holds P |= Ai

The million dollar question: which
such conjunctions should be allowed?

Finite conjunction

 70

P |=
^

i2I

Ai Allowed only for finite I

Same as binary conjunction A1 ^A2

Easy to make fully formal

Quite limited expressiveness
(suitable only for finite-branching
transition systems)

Safe but

not enough
As in Hennessy

Milner 1985

Arbitrary conjunction

 71

P |=
^

i2I

Ai Allowed for any I

Enormous expressiveness: 
greater than the systems we study!

Formulas might not be finitely supported,
alpha-conversion might be impossible

Needs

su
bsta

ntia
l

re
str

ictio
ns

As in Milner

1989

Uniformly bounded conjunction

 72

P |=
^

i2I

Ai
Allowed for any I such that
conjuncts have common finite support

for some finite set of names S

8i 2 I. supp(Ai) ✓ S

OK to make fully formal

Still of limited expressiveness

Sta
ndard

but n
ot

enough

As in Abramsky

1991

?

Example: quantifiers

 73

holds if

some
substitution

function

Can this be represented as

?

P |= 8x 2 N . A

for all z 2 N it holds P |= A[x := z]

8x 2 N . A =
^

z2N
A[x := z]

 74

Is this conjunction
uniformly bounded?

No. At least not
if

Quantification cannot be expressed by
uniformly bounded conjunction!

8x 2 N . A =
^

z2N
A[x := z]

z 2 supp(A[x := z])

Finitely supported conjunction

 75

^

i2I

Ai
requires that the set of formulas

has finite support S{Ai | i 2 I}

Our c
ontrib

utio
n

Assume F is the set of formulas supported by S.

Consider the different formulas ∧{A | A ∈ B} 
where B ranges over the subsets of F.

By Cantor’s Theorem, we have a contradiction.

Solution: cardinality bound on conjunction width

 76

?

Is this conjunction
finitely supported?

Yes!  
Assuming substitution is equivariant.

8x 2 N . A =
^

z2N
A[x := z]

Expressiveness

 77

Dualities

[↵]A = ¬h↵i¬A

_

i2I

Ai = ¬
^

i2I

¬Ai

Expressiveness

 78

Quantifiers

8x. A =
^

z2V

A[x := z]

Assumes V is finitely supported

and substitution is equivariant

9x. A =
_

z2V

A[x := z]

Expressiveness

 79

COF is the set of cofinite sets of names

P |= Nx.A if for some n#P it holds P |= (xn) · A

Nx.A =
_

S2cof

^

n2S

(xn) ·A

Fresh Quantifier

There is a cofinite set such that  
A holds for all its members

P |= Nx.A if for some n#P it holds P |= (xn) · A

Expressiveness

 80

Next step modality

Fixpoints
minimal fixpoint defined as
disjunction of all unfoldings

With next and fixpoints  
we get all of CTL* Emerson 1997

hiA =
_

↵2act
h↵iA

bn(𝛼)#A

Hennessy, Milner 1985

for concurrent constraint calculus Buscemi, Montanari 2007

for psi-calculi Bengtson et al 2011

Applications

 81

Hennessy-Milner Logic for CCS Milner 1989

Abramsky 1991

F
A
U

for value passing Hennessy, Liu 1995 F + quantifiers

for pi-calculus Milner, Parrow, Walker 1993 U

for spi-calculus Frendrup, Huttel, Jensen 2002 A
for applied pi-calculus Pedersen, 2006 F

for fusion calculus Haugstad, Terkelsen, Vindum 2006A

for multi-labelled systems De Nicola, Loreti 2008 F + quantifiers

F Finite conjunction
A Arbitrary conjunction
U Uniformly bounded conjunction

Yet no modal
logic

Adequacy

 82

If two states ``behave the same´´
then they satisfy exactly the same
formulas

A kind of sanity check:

If two states do not ``behave the same´´
then there is a formula satisfied by one
and not the other

Most often:
bisimulation

Bisimulation

 83

A symmetric relation R on states satisfying:

if R(P,Q) then

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

If P |= ' then Q |= '

P
·⇠ Q if R(P,Q) for some bisimulation Q

THEOREM (Adequacy)

P
·⇠ Q i↵ for all formulas A: P |= A i↵ Q |= A

DEFINITION (Bisimulation)

 84

P
·⇠ Q i↵ for all formulas A: P |= A i↵ Q |= A

In direction ⇐ show that

is a bisimulation.

Assume not, then P has an 𝛼-transition to P’  
that Q cannot simulate: 
For each 𝛼-derivative Q’ there is a distinguishing

formula A between P’ and Q’.

·
= defined as {(P,Q) | 8A.P |= A i↵ Q |= A}

Let B be the conjunction of all these A (one for each Q0)

Then P |= h↵iB and not Q |= h↵iB
Contradiction!

logical equivalence

 85

If all the formulas A have  
 a common finite support then
 uniformly bounded conjunction suffices

If the transition system is finitely branching

 then there are finitely many Q’
 so finite conjunction suffices

Eg CCS with
guarded recursion

Let B be the conjunction of all these A (one for each Q0)

Can this conjunction be defined in the logic?

Eg pi-
calculus

In general use finitely supported conjunction

Arbitrary nominal transition systems

 86

Lemma:

Proof idea:  
Let PERM be the name permutations that fix P’

B =
^

⇡2perm
⇡ ·A

If P 0 |= A ^ Q0 6|= A then

9B. P 0 |= B ^ Q0 6|= B ^ supp(B) ✓ supp(P 0)

If there is a distinguising formula for P’ and Q’,
then there is one with the support bounded by P’

In general use finitely supported conjunction

Formalisation

 87

All definitions and the adequacy  
theorem formalised in  
Nominal Isabelle (~2700 loc)

Significant new ideas for alpha-equivalence  
and finite support in data types with  
infinitary constructors.

First ever mechanisation of an  
infinitely branching nominal datatype.

Out of which 150 loc are
definitions and theorems

Equivalences  
and Modal Logics for
Unobservable Actions

 88

Based on FORTE 2017 paper with

 Ramūnas Gutkovas
 Lars-Henrik Eriksson

Joachim Parrow
 Tjark Weber

Presentation based on slides by
Joachim Parrow

Weak = disregard silent transitions

P
⌧! P 0

P can evolve to P’
without the environment noticing

without interacting with the environment

spontaneously

silently
 89

𝜏 action with empty support (implies bn(𝜏)=∅)  
representing an unobservable action

Weak transitions

P
↵) P 0

P) P 0

P
↵̂) P 0 P) P 0

P
↵) P 0

if ↵ = ⌧

P can evolve to P’ through zero or more

transitions with observable content 𝛼

{

defined inductively as

P = P 0 _ P
⌧! �) P 0

P) � ↵! �) P 0defined as

defined as
otherwise

 90

A relation R on states satisfying: if R(P,Q) then

DEFINITION (simulation)

Simulation

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵! Q0 and R(P 0, Q0)

 91

A relation R on states satisfying: if R(P,Q) then

DEFINITION (weak simulation)

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵̂) Q0 and R(P 0, Q0)

Weak simulation

 92

Static implication?

Should P and Q be equivalent?

YES!

If P ` ' then Q ` '

Can we re-use the static implication NO!

P Q
ϕ

τ
Example: transition
system with two states,
one transition, and  
one state predicate

 93

Weak static implication?

If P ` ' then Q) Q0 ` '

ϕ1 ϕ0ϕ1

ϕ0
R QP

τ τ

P and Q are weakly similar and satisfy (*)

(*)

Observe '1 and then observe '0

NoYes

 94

Are P and Q observationally equivalent?

Weak static implication!

S is a weak static implication if S(P,Q) implies

ϕ1 ϕ0ϕ1

ϕ0
R QP

τ τ

NOT a WSI{(P,Q), (P,R)}

If P ` ' then Q) Q0 ` ' and S(P,Q0)

 95

Weak static implication

P and Q are weakly similar and the relation  
 satisfies (*)

(*)

NoYes
P

P0

P1

Q
ϕ

ϕ

τ

α

τ

α

Observe ' and then perform ↵

Not enough
by itself!

{(P,Q), (P, P1)}

If P ` ' then Q) Q0 ` ' and S(P,Q0)

 96

Are P and Q observationally equivalent?

Weak static implication!

is NOT a WSI

P

P0

P1

Q
ϕ

ϕ

τ

α

τ

α

{(P,Q), (P0, P0), (P1, P1)}

is a WSI

is a weak simulation

is NOT a weak simulation

Must require the relation to be
both WSI and weak simulation!

{(P,Q), (P, P1)}

 97

Weak bisimulation

A weak bisimulation is a symmetric relation R on
states which is both a weak simulation and a
weak static implication

DEFINITION

If P
↵! P 0 and bn(↵)#Q then 9Q0. Q

↵̂) Q0 and R(P 0, Q0)

R(P,Q) implies:

If P ` ' then Q) Q0 ` ' and R(P,Q0)

P
·⇡ Q if R(P,Q) for some weak bisimulation R

 98

ϕ1 ϕ0ϕ1

ϕ0
R QP

τ τ

P Q
ϕ

τ

P

P0

P1

Q
ϕ

ϕ

τ

α

τ

α

P
·⇡ Q

P 6 ·⇡ Q

P 6 ·⇡ Q

No relation is a WSI

No relation is both a weak simulation and a WSI

{(P,Q), (Q,Q)} is a weak simulation and a WSI

 99

Exercise

P0 P1
ϕ0 ϕ1

τ

τ Q
ϕ0 ϕ1

Which of the three states are weakly bisimilar?

All of them!

Let U be the universal relation on all three states

U is a weak simulation

U is a weak static implication

Note: '0 ^ '1 is not a state predicate

 100

Eliminating state
predicates

 101

Eliminating state predicates

↵

�
⌧

⌧

'0

'0

'1

'1

T

↵

�
⌧

⌧

'0

'0

'1

'1

Transformation on transition systems
Replace state predicates by self-loop
transitions

S(T)

 102

 
THEOREM (State predicate elimination)

Result

P
·⇡T Q i↵ P

·⇡S(T) Q

For a corresponding transformation on
formulas, replacing predicates by actions

P |=S(T) A i↵ P |=T S�1(A)

 103

Conclusion

 104

• Generic HML

• Suitable for embedding other logics in

• Guaranteed soundness!

• A sublogic characterises weak bisimulation

• A uniform extension/encoding for

• early bisimulation, early congruence,  
late bisimulation, late congruence,  
open bisimulation, hyperbisimulation

