Nominal Process Calculi
and Modal Logics

Johannes Borgstrom
Uppsala University

i‘ Based on joint work since 2015 with |
Ramiinas Gutkovas |
Lars-Henrik Eriksson
Joachim Parrow
Tjark Weber

= = = —— ————

Introduction to
Nominal Process Calculi

CCS with restriction

Nominal Process Calculi

® Process calculus: modelling language for systems of
communicating processes.

® Three main traditions:

® CSP (Hoare 1978)
° CCS (Mllner ~1980) ’1
S What is nominal
* ACP (1 982) process algebra process algebra?

~

W,

Calculus of Communicating Systems

® Binary synchronization

® Action (input) and coaction (output)

0 Nil
a.P Input
a.P Output
P+ () Choice

P | Q@ Parallel

(va)P Restriction

Example 1a

Beverage machine M(tea, coffee, coin)

M(tea, coffee, coin) := coin.tea.M(tea, coffee, coin) +

coin.coin.coffee.M(tea, coffee, coin)

Example 1b

Dining philosophers Philo(left,right,eat)

Philo(left,right,eat) := left.right.eat.left.right.Philo(...)

(v esI)(v ¢s2)(v cs3)(Philo(csi,cs2,eatl)|Philo(cs2,cs3,eat?)]
Philo(cs3,cs1,eat3) | c¢s1 | cs2| ¢s3)

We write a for a.0, and a for a.0

6

Labelled Semantics

IN OuT

a.P% P aP% P
P p P pf
SUM-L = PAR-L
P+Q = P PlQ=3PQ

P2 pf Q> Q'

CoM-L —
PlQ—=P|Q

P> P
SCOPE ~ b#
(vb)P — (vb)P’

Example 2

Dining philosophers Philo(left,right,eat)

Philo(left,right,eat) := left.right.eat.left.right.Philo(...)

(v es)(v cs2)(v cs3)(Philo(cs1,cs2,eatl)|Philo(cs2,cs3,eat?)]
Philo(cs3,cs1,eat3) | c¢s1 | ¢s2 | ¢s3)

Philo2(left,right,eat) := left.(right.eat. (left |right|Philo(...)
+ Teft.Philo(...))

Observational Equivalence

® When can an external observer
distinguish between two systems!?

® |dea: when either of them can perform an action
® that the other one cannot perform; or

® that leads the other system into a state that can be
distinguished from the new state of the first system.

® An inductive definition!

® |[ts negation is coinductive: bisimulation (Park 1981)

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation 1R on processes satisfying:
if R(P,() then

if P> P’ then
3Q’.Q = Q' and R(P', Q")

Simulation

P ~ Q if R(P,(Q) for some bisimulation R

10

Examples 3

® Check that M(tea, coffee, coin)

and M2(tea, coffee, coin) below are not bisimilar.

M2(tea, coffee, coin) := coin.(tea.M2(tea, coffee, coin) +
coin.coffee. M2(tea, coffee, coin))

® Check that the system below is weakly bisimilar to
Spec(eatl,eat2, eaty) =
eatl.Spec(...) + eat2.Spec(...) + eat3.Spec(...)

(v es)(v cs2)(v cs3)(Philo2(cs1,cs2,eatl)
Philo2(cs2,cs3,eat?2) | Philo2(cs3,cs1,eat3)
csl | cs2 | cs3)

11

Com-po-si-tio-na-li-ty

® Bisimilarity is an equivalence relation,
and a congruence for all operators

® Allows to substitute bisimilar processes in any
context: compositional reasoning

® Structural congruence =

® The smallest congruence relation on processes
containing commutative monoid laws for

| (parallel) and + (choice) with 0 as unit.

® = s a bisimulation

12

The zm-calculus

Scope extension, scope extrusion, and residuals

Milner, Parrow, Walker: A calculus of mobile processes.
Information and Computation 100(1) 1992.

13

The z-calculus

® An extension of CCS with nhame communication

® Value-passing can be encoded in CCS using
summation

® General name-passing needs infinite summation:
not finitely supported!

® Turing-complete, can easily encode the untyped
lambda-calculus

® Current research on behavioural (session) types

14

Syntax of x

0 Nil

a(x).P Input
a b.P Output

P+ () Choice
P | @Q Parallel

(va)P Restriction

15

Examples 1

Truth values (at location)

True(l) := l(t,]‘).(t__\ True(l))
False(l) := I(t,f).(f | False(l))

Let’s do lists!
Nil(l) := l(n,c).(n | Nil(]))

Cons(Lvalue,tail) :== I(n,c).(¢ value,tail | Cons(...))

What does (vb)a b.P do?

We write a for @ a.0 and @ b,c for @ b.@ ¢ and a(b,c) for a(b).a(c)
16

Labelled Semantics

IN - OU@SUT =

(ﬁ VEN/JUAY . a.P _ b
m But What about (|

SUM-L PAR-L —
R BrEYar

CoM-L

Structural congruence

® The smallest congruence relation containing

® commutative monoid laws for
| (parallel) and + (choice) with 0 as unit;

® and the scope extension laws

P|l(wh)Q = (vb)(P | Q)whenb#P
P+ (vb)Q = (vb)(P+ Q)whenb#P
(va)(vb)P = (vb)(va)P

18

Reduction Semantics

RED

(a(x).P+ P | (ab.Q+ Q") — P{b/x} Q

P=P P — Q Q
P — Q'

P — P’ P — P

Q/

STRUCT

CTX-PAR ; CTXx-RES ;
P|Q—P|Q (vb)P — P

19

Examples 2

1f true then P else O

(v D(v t)(v {)(True(l) | 1(t,f) | t.P | £.Q)

case 1 of Nil -> P | Cons(v,1’) -> 0

(vn)(ve)(l(n,c) | n.P | c(v,]').Q)

20

Set binders

(as, x) ~R, fa,p (bs, y) iy

(i) fax—as=fay— bs
(ii) fax—as#"p

(iii) (pex)RYy

(iv) peas = bs

Urban, Kaliszyk: General Bindings and
Alpha-Equivalence in Nominal Isabelle. ESOP 2011

21

NTS Labelled Semantlcs

SUM-L P=s PAR-L P = {O)la Pl) C'H#Q
+Q— S T PlQ—{(O)a, P Q)
Conit P — (0)(ab, P Q — (0)(@b, Q")

SCOPE P = (O)la, Pl) b# o
(vb)P — (CY(a, (vb)P)

22

NTS Labelled Semantics

P — (0)(ab, P Q — (D)(ab, Q)
P1Q— (0)(r, P'| Q)
P — (CY(«a, P

SCOPE P = (Ch(a, ()P T

CowMm-L

oy, 7 W@h P) Qo (1)@h Q)

PlQ—= (0)(r, (v0)(P"] Q"))

P — (B)(@b, P')
(vh) P — ({b})(@b, P')

Based on Gabbay: The z-Calculus in FM,

in "Thirty Five Years of Automating Mathematics", Kluwer 2004
23

OPEN

b#a

Examples 3

1f true then a else b

(v (v O)(v H(True(]) | Ut.f) | t.a] f.D)

Connect(c, P(1)) = (v 1) L.P(])

Connect(c,(l a)(l)) | ¢(b).b(z).z

What are the transitions of (va)c a | (vc)c a?

24

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation R on processes satisfying:
if R(P,()) then

Ifp % p and (0)#Q)
5010 Q' and R(P, Q)

Simulation

P ~ @ if R(P,(Q) for some bisimulation R

25

Examples 4

® Check that (vc)¢ a is bisimilar to 0.

® Check that (va)c ais bisimilar to (va)c a | (vc)c a

26

Com-po-si-tio-na-li-ty

® Bisimilarity is an equivalence relation,
and a congruence for all operators except input

® Allows to substitute bisimilar processes in any
non-input context: compositional reasoning

® Structural congruence = is a bisimulation

27

Nominal Transition
Systems

Based on slides by Joachim Parrow, OPCT 2017/
(I omit predicates for now.)

Nominal Transition Systems

What are NTS? Why?

NTS are a general framework that fits
almost all advanced process algebras,

by generalising standard transition systems to
include binders in actions

29

Transitions

Actions

Binding names

- \.,‘S\Tn}f \
Cctions Contain names

_/ >
a(z, v, Z)\A./\ /. a(vh) @

‘/
Statgs contain names)

ch(i) —
M\.L/Mf(g(a)v b))

States and actions

o ©
O ® : i
° . STATES: A nominal
o O
e
a b
N . ACT: A nominal set
a(z,y, z) a(vb)
bn : ACT — Pgn (W)
hG)M a(f(g(a),b))

a(vb, c,d) bn(&) g Supp(&)

34

set P, ()

X

equivariant

Transitions

ubcd/ . ab\/\b

xyz\f

— C STATES X [Pin(N)](ACT X STATES) equivariant

~

(P, (a,Q)) € — implies b= bn(a)

We write P = Q for (P, (bn(a))(a, Q)) € —

35

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation R on processes satisfying:
if R(P,()) then

If P2 P’ and bn(a)#Q then
3Q’.Q = Q' and R(P', Q")

Simulation

P ~ @ if R(P,(Q) for some bisimulation R

36

Summary

Three process calculi: CCSish, pi, fusion
Reduction semantics

Residual-based labelled semantics
Bisimulation

Generalization: Nominal Transition Systems (NTS)

Saturday: Psi-calculi, modal logic for NTSs

® Weak bisimilarity, weak logic, effects

37

The W-calculus

Jesper Bengtson, Magnus Johansson, Joachim Parrow,
Bjorn Victor, Johannes Aman Pohjola, et al.

38

From pi to psi

(vz)(@z) | a(x). [z = b|P Ordinary pi-calculus

arbitrary X Data structures
Zett of (v2)(@M) | a(z). [z =blP can be sent
ata g
(Vz)(iM) a(AZ)N.|x = b|P Pattern matching
(v2)(KM) DOF)N. [z = b|P Channels can be

arbitrary structures
arbitrary B
logic (vz)(KM) | L(AZ)N.if ¢ then P

new construct
N

(VZ) (FM) () | L()@)N. if ¢ then P Facts about
data

Tests can be
arbitrary predicates

Cook a psi-calculus

Define terms T' (data terms, channels)
and conditions C (used in case stmt)

and assertions A (facts about data)

can be any nominal set (nhot syntactic)

Define term substitution, and operators:

—:TxT —C Channel equivalence

®:AXA—=A Composition \A\

1:A Unit assertlon Q
XS

—FC A xC Entallment ,:9\
Q &
>

40

M,N
0
U

Axioms for substitution

Assume all the g distinct, all the b distinct.

if @ C n(X)andb € n(T) then b € n(X[a := T])

if b#X, @ then X[d := T] = ((b @) - X)[b := T]

4]

Easy as pi!

- M < K - M < K
IN KNG —I] — ouTt — =~
M\y)N.P === Ply:= L] MN.P == P
CASE —
case 0 : P = P
T FM &S K
M (va)N / KN /
P > P - —
CoMm . — @ @ a#Q)
PlQ — (va)(P'| Q')
P = P P = P
PAR bn(a)#Q SCOPE b#a
PlQ = P'|Q (vb)P = (vb) P’
H(V&)N / « /
P > P 3 PP — P
OPEN byra, V., M REP ‘

(vp)p MEAHN, - pr b En(N) P & p

/4
42

Results

Mchme-checked \

® Generic results for all | stances ProOfS

LICS'09 E s
LICS'10 ® compositional semantics
LMCS 201 |
— ® bisimulation theory (strong and weak)

® a|gebraic properties, congruence

® Results for many instances

09
JLﬁSz%,zJ ® symbolic semantics and bisimulation

® procedure for computing bisimilarity constraint

43

Algebraic properties

The usual structural laws, in particular
Scope extension

Pl(va)Q ~ (va)(P|Q) a#P

44

Nominal Isabelle
Formalization

Mainly by
Jesper Bengtson and Johannes Aman Pohjola

Making it this simple is hard work!

® FEasy to get things wrong, even when they are
“obviously right”

® FEasy to miss a requirement
® Fasy to miss generalisations

® Especially true when (name) binding is involved

. Easy to get worried! |

46

Isabelle from day |

® use Interactive theorem prover lIsabelle
with Nominal package

® supports nominal datatypes, under active
development, produces readable proofs

® use during development, not only afterwards!

47

Adaptable proofs: case example

Original rule, tau action: easy induction proofs

-

OLD-CASE

_

\If|_907;

~~

T

U > case p: P — P,

~N

J

New rule: more standard, can express the above

-

\IJDPi&P/

CASE

~~

U > case p: P — P

~N

~ Change requires re-checking
L - —

48

Adaptable proofs: higher-order

To get higher-order psi-calculi, just add the following:

run M

M« P n(M)2n(P)

Invocation agent |

-
]
p

| Clauses |

| Invocation VH-M«-P v > P & P’

rule
—— UprunM % P

MSCS 2016

- Now prove all meta-t

Parrow, oBo rgstrom,
Raabjerg, Aman Pohjola,

|

With Isabelle: meta-theory took a day and a night
More effort: locales, canonical instances, encodings

49

T ——

Broadcast: harder

To get broadcast communication:
M < K
K> M

M Output connectiity ‘

M Input connectiviy

M<K WFK>M
BrOuT — BrIN —
i e ————— > MN.P EN p ¥ > M(A\J)N.P 7K N(g: Plj=1I]
~ Five new semantics rules, | e Weve P BN P housq Y g
RMERGE

v>PlQ 2N P

two hew aCtIOHS

) R (vi)N
_ _ _ —_— Iovsp HCON p g gy @ KN,
- Brcoy 2 ® : N® Q Q 340
v p|Q ECON,

Quite some work gettlng it |gt'
a“ Adds about 12700 lines of Isabelle proofs

SEFM’| |
SoSyM 201

|

‘Even with Isabelle: two years, seven coauthorsl

50

The power of Isabelle

~ What about combmlng ;;

|

ﬁ hlgher order and broadcast’

. Re-prove all the
meta-theory... |

51

It must take a lot of time to |
use Isabelle, surely? {a

= ——

® Theory development is not only about doing
proofs — most time spent elsewhere

® Doing false proofs is a waste of time

® Correct proofs make it worthwhile!

‘ No worries! I

52

Nominal Transition
Systems

Based on slides by Joachim Parrow, OPCT 2017/

Nominal Transition Systems

What are NTS? Why?

NTS are a general framework that fits
almost all advanced process algebras,

by generalising standard transition systems to
include binders in actions

54

State predicates

X=2

X_

y>z O o @ c=encrypt(m,k)
rime(x
® . @prime(x)
O
& ® V%, k. c # encrypt(m, k)

Transitions

Actions

Binding names

™ a @
contain names

—-m——

2 Actions

59

States, predicates, and actions

e _ o
.' ® ® o STATES: A nominal set P, ()
e © ©
z; o PRED: A nominal set ©

prime(z) - C STATES X PRED equivariant

c = encrypt(m,k)
Vm, k. ¢ # encrypt(m, k)

ACT: A nominal set 8
" o) bn : ACT = Pgy(N) equivariant

. bn(a) C supp(a)

Transitions

ubcd/ . ab\/\b

xyz\f

— C STATES X [Pin(N)](ACT X STATES) equivariant

~

(P, (a,Q)) € — implies b= bn(a)

We write P = Q for (P, (bn(a))(a, Q)) € —

61

Bisimulation

DEFINITION (Strong Bisimulation)

A symmetric relation R on processes satisfying:
if R(P,()) then

If P> P and bn(a)#Q then
Q. Q = Q' and R(P',Q’)
If P then QF ¢ Static implication

Simulation

P ~ @ if R(P,(Q) for some bisimulation R

62

Modal Logics for Nominal
Transition Systems

Based on CONCUR 2015 paper with
»' Raminas Gutkovas 1

Lars-Henrik Eriksson

Joachim Parrow |
Tjark Weber ”

:-f Presentatlon based on slldes l
’& Joachlm Parrow ”

— —

63

Logic

Our objectives:

A set of formulas A, B

A satisfaction relation between states and
formulas p | 4

Expressive wrt existing work

Fully formal

¢
Simple

64

Formulas

A = o | (A | -4 | NA

A<y

Four basic constructors

65

State Predicates

PEoy P satisfies the formula

holds if

P the state predicate holds in P

66

Action modality

P can do o and then satisty A
PE (A

holds if

AP’ P3P and P A

we consider formulas up to alpha equivalence, ie
If a € bn(a), b#a, A
then () A = (ab) - ({a)A)

67

Negation

P=-A

holds if

not P=A

Conjunction

Assume A; a formula for each 7 € 1

P

:/\Ai

el

it for all 2 € I 1t holds P

The million dollar question: which
such conjunctions should be allowed!?

69

ite conjunctie

/7
7 9(95 GSS;[,

P N A, Allowed only for finite |
Same as binary conjunction A, A A,

Easy to make fully formal
Quite limited expressiveness

(suitable only for finite-branching
transition systems)

70

itrary conjunctio.», e

P N A, Allowed for any |

Enormous expressiveness:
greater than the systems we study!

Formulas might not be finitely supported,
alpha-conversion might be impossible

71

° ° 4&)
Uniformly bounded conjun 7ss;"<,

' _ A 4. Allowed for any | such that
" conjuncts have common finite support

el
for some finite set of names S
Vi € I.supp(4;) C S

Still of limited expressiveness

OK to make fully formal ?

72

Example: quantifiers

PEVreN. A

some
substitution

holds if function

for all z € N it holds P = Alx := 7]

Can this be represented as

veeN. A= N\ Alz:=2]
zeN .

73

Is this conjunction

uniformly bounded!?
No. At least not

if

z € supp(Alz := z|)

Quantification cannot be expressed by
uniformly bounded conjunction!

74

Finitely supported conjunctti(%;g\oo
o T

o
A A, requires that the set of formulas
el {A,|i € I} has finite support .S

Assume F'is the set of formulas supported by 5.
.‘i

' Consider the different formulas A{A | A € B} |

where B ranges over the subsets of F.

. — . — —— E——————— ===

~ Solution: cardinality bound on conjunction width |

L - — = = — —— = - — = — — -

75

Is this conjunction
finitely supported?
Yes!

Assuming substitution is equivariant.

76

Expressiveness

Dualities

V4= A
el el

Expressiveness

Quantifiers

V. A = /\ Alx := 7]
dr. A = Z\/ Alx := 2|

z€V

Assumes Vs finitely supported
and substitution is equivariant

78

Expressiveness

Fresh Quantifier

— [lx. A if for some n#P it holds P

Ne. A = \/ /\(mn)A

SECOF neSs

(xn)- A

COF is the set of cofinite sets of names

1 There is a coflnlte set such that
A holds for all its members

__

79

|

Expressiveness

Next step modality

Fixpoints
minimal fixpoint defined as
disjunction of all unfoldings

With next and fixpoints
we get all of CTL* Emerson 1997

80

F Finite conjunction
A Arbitrary conjunction

AP P I I Catl O nU Uniformly bounded conjunction

Hennessy-Milner Logic for CCS Miner 1989 1
Abramsky 1991 17

fOI" PI-CaICUIUS Milner, Parrow, Walker 1993 1J

fOI" VaIUe PaSSing Hennessy, Liu 1995

F' + quantifiers

fOI" SPi'CaICUIUS Frendrup, Huttel, Jensen 2002 7

for applied pi-calculus redersen, 2006 F
fOI" fusion calculus Haugstad, Terkelsen, Vindum 2006 A

for multi-labelled systems Dpe Nicola, Loreti 2008 F + quantifiers

for concurrent constraint calculus BuiYeey Montanari 2007
O Mody|

for psi-calculi Bengtson et al 2011 IOglc

81

Adequacy

Most often:

A kind of sanity check: bisimulation

If two states "behave the same’”’
then they satisfy exactly the same
formulas

If two states do not ‘behave the same”™’

then there is a formula satisfied by one
and not the other

82

Bisimulation

DEFINITION (Bisimulation)
A symmetric relation 12 on states satisfying:

if R(P,() then
If P> P and bn(a)#Q then 3Q’.Q = Q' and R(P’,

It P

— ¢ then @)

— ¢

P ~ Q if R(P,Q) for some bisimulation ()

i

THEOREM (Adequacy) -
| P Q iff for all formulas A P

S _

_Alfo .1

83

P~ @ iff for all formulas A: PEATQEA

In direction < show that
logical equivalence

= defined as {(P,Q) |VA.P = Aif Q = A}

is a bisimulation.

Assume not, then P has an a-transition to P’

that () cannot simulate:

For each a-derivative ()’ there is a distinguishing

formula A between P’and ().

Let B be the conjunction of all these A (one for each Q)

Then P = () B and not Q = (o) B ad'\ct'\o“

QA

Let B be the conjunction of all these A (one for each Q")

Can this conjunction be defined in the logic!?

If the transition system is finitely branching

then there are finitely many ()’ Eg CCS with ;
so finite conjunction suffices |guarded recursion |

If all the formulas A have |
| calculus |

a common finite support then el
uniformly bounded conjunction sufflces

In general use finitely supported conjunction

ms |

Arbltrary nomlnal transmonf systems

85

In general use finitely supported conjunction

= — ——

If there is a distinguising formula for P’ and ()’,

then there is one with the support bounded by F’

Proof idea:
Let PERM be the name permutations that fix P’

86

Formalisation

All definitions and the adequacy
theorem formalised in

Nominal Isabelle (~2700 loc)

Out of which 150 loc are
definitions and theorems

Significant new ideas for alpha-equivalence
and finite support in data types with
infinitary constructors.

First ever mechanisation of an
infinitely branching nominal datatype.

87

Presentation based on slides E ‘

|

Equivalences
and Modal Logics for
Unobservable Actions

i“ Based on FORTE 2017 plapérwiﬁ N
»' Raminas Gutkovas |

Lars-Henrik Eriksson

Joachim Parrow
Tjark Weber |

Joachlm Parrow ”

— —

Weak = disregard silent transitions

T action with empty support (implies bn(7)=2)
representing an unobservable action

T
P— P
P can evolve to P’

without the environment noticing

without interacting with the environment
spontaneously
silently

89

Weak transitions

P — P’ defined inductively as
P=P VP->o=PF

P2 p definedas P=o05% 0= P

P = P it oo =71

P2 P defined as { |
P = p otherwise

w— e — == =

P can evolve to P’through zero or more |
| *

transitions with observable content «

— = — = = — = S

90

Simulation

DEFINITION (simulation)

A relation R on states satisfying: if R(P,Q) then

If P> P and bn(a)#Q then 3Q".Q = Q' and R(P’,(

4

91

Weak simulation

¥

DEFINITION (weak simulation)

A relation R on states satisfying: if R(P,Q) then

If P-% P’ and bn(a)#Q then 3Q".Q 2 Q' and R(P', Q'

4

92

Static implication?

Can we re-use the static implication NO!

It PF o then QF ¢

Example: transition |
| system with two states,

T
P —_—i Q one transition, and

(p |one state predicate |

Should P and Q be equivalent?

YES!

93

Weak static implication?

If PFpthen Q= Q' F ¢ ()

Yes - No
P —DR 4—@

@1 ¥1 ¥0

P and Q are weakly similar and satlsfy (*)

= Ea—

Observe (01 and then observe 0o

94

Weak static implication!

S is a weak static implication if S(P,Q) implies

If PFothen Q = Q' F ¢ and S(P, Q")

T T
P —» R 44— ()
ol
01 ¥1 0

{(P,Q),(P,R)} NOT a WSI

Weak static implication

- Not enoughﬁ
by itself! |

If PFothen Q = Q' F ¢ and S(P, Q")

Yes / \ No
\ P1 /

P and () are weakly similar and the relation
{(P,Q), (P, Py)} satisfies (*)

L

Are P and () observationally equivalent?

Observe ¢ and then perform o

96

Weak static implication!
Q FPo o
p/ \Q
© Xpl /
((P,Q), (Py, Py, (P, P)} is a weak simulation

is NOT a WS

is a VWSI
is NOT a weak simulation

WP, Q), (P, Py)}

Must require the relation to be
.a

_ both WSl and weak simulation! |

Weak bisimulation

DEFINITION

A weak bisimulation is a symmetric relation R on
states which is both a weak simulation and a
weak static implication

R(P, () implies:

|§

P % P and bn(a)#Q then 3Q".Q 2 Q' and R(P', Q')

|§

fPF pthen Q = Q' F ¢ and R(P,Q")

P~ Q if R(P, Q) for some weak bisimulation R

98

P —% P~Q

{(P,Q),(Q,Q)} is a weak simulation and a WSI

P,——»> R *——Q P#Q
¥1 ©0
#1 No relation is a WSI

o Fo o
P/ \Q
L a— P#Q

No relation is both a weak simulation and a WSI

99

Exercise

P, —>P1 Q
©o — I L1 Yo 1

Which of the three states are weakly bisimilar?

Note: g A 1 1s not a state predicate

All of them!
Let U be the universal relation on all three states

U is a weak simulation
U is a weak static implication

100

Eliminating state
predicates

Eliminating state predicates

T S(T)
01 P1
o »© o Q
QQ ./; X
\ 90.0 1 ‘\A\(}dl
zﬁo C.) vl
Y0

Transformation on transition systems
Replace state predicates by self-loop
transitions

102

Result

| THEOREM (State predicate elimination)
P ~T Q iff P %S(T)

= —_————————

For a corresponding transformation on
formulas, replacing predicates by actions

103

Conclusion

® Generic HML
® Suitable for embedding other logics in
® Guaranteed soundness!
® A sublogic characterises weak bisimulation
® A uniform extension/encoding for

® early bisimulation, early congruence,
late bisimulation, late congruence,
open bisimulation, hyperbisimulation

104

