Nominal Sets and
 Functional Programming

Andrew Pitts

翻图 UNIVERSITY OF
 CAMBRIDGE

Computer Science \& Technology

FoPPS 2019

Nominal sets provide a mathematical theory of names based on some simple math to do with properties invariant under permuting names.

Nominal sets provide a mathematical theory of names based on some simple math to do with properties invariant under permuting names.

Application area:

computing with / proving properties of data involving name-binding \& scoped local names in functional programming languages and theorem-proving systems.

Theory of nominal sets yields principles of structural recursion and induction for syntax modulo renaming of bound names which is close to informal practice and yet fully formal.

Outline

L1 Structural recursion and induction in the presence of name-binding operations. Introducing the category of nominal sets.

L2 Nominal algebraic data types and α-structural recursion.

L3 Dependently typed λ-calculus with locally fresh names and name-abstraction.

References:
AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.
AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50.

Lecture 1

For semantics, concrete syntax
letrec $f x=$ if $x>100$ then $x-10$
else $f(f(x+11))$ in $f(x+100)$
is unimportant compared to abstract syntax (ASTs):

We should aim for compositional semantics of program constructions, rather than of whole programs.

ASTs enable two fundamental (and inter-linked) tools in programming language semantics:

- Definition of functions on syntax by recursion on its structure.
- Proof of properties of syntax by induction on its structure.

Structural recursion

Recursive definitions of functions whose values at a structure are given functions of their values at immediate substructures.

- Gödel System T (1958):

$$
\begin{aligned}
\text { structure } & =\text { numbers } \\
\text { structural recursion } & =\text { primitive recursion for } \mathbb{N} .
\end{aligned}
$$

- Burstall, Martin-Löf et al (1970s) generalized this to ASTs.

Running example

Set of ASTs for λ-terms

$$
\operatorname{Tr} \triangleq\{t::=\mathrm{V} a|\mathrm{~A}(t, t)| \mathrm{L}(a, t)\}
$$

where $a \in \mathrm{Al}$, fixed infinite set of names of variables.
Operations for constructing these ASTs:

$$
\begin{aligned}
& \mathrm{V}: \mathrm{Al} \rightarrow \operatorname{Tr} \\
& \mathrm{~A}: \operatorname{Tr} \times \operatorname{Tr} \rightarrow \operatorname{Tr} \\
& \mathrm{L}:
\end{aligned} \mathrm{Al} \times \operatorname{Tr} \rightarrow \operatorname{Tr}
$$

Structural recursion for Tr

Theorem.

Given

$$
\begin{aligned}
& f_{1} \in \mathrm{Al} \rightarrow X \\
& f_{2} \in X \times X \rightarrow X \\
& f_{3} \in \mathrm{Al} \times X \rightarrow X
\end{aligned}
$$

exists unique $\hat{f} \in \operatorname{Tr} \rightarrow X$ satisfying

$$
\begin{aligned}
\hat{f}(\mathrm{~V} a) & =f_{1} a \\
\hat{f}\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & =f_{2}\left(\hat{f} t, \hat{f} t^{\prime}\right) \\
\hat{f}(\mathrm{~L}(a, t)) & =f_{3}(a, \hat{f} t)
\end{aligned}
$$

Structural recursion for Tr

E.g. the finite set var t of variables occurring in $t \in T r$:

$$
\begin{aligned}
\operatorname{var}(\mathrm{V} a) & =\{a\} \\
\operatorname{var}\left(\mathrm{A}\left(t, t^{\prime}\right)\right) & =(\operatorname{var} t) \cup\left(\operatorname{var} t^{\prime}\right) \\
\operatorname{var}(\mathrm{L}(a, t)) & =(\operatorname{var} t) \cup\{a\}
\end{aligned}
$$

is defined by structural recursion using

- $X=\mathrm{P}_{\mathrm{f}}(\mathrm{Al})$ (finite sets of variables)
- $f_{1} a=\{a\}$
- $f_{2}\left(S, S^{\prime}\right)=S \cup S^{\prime}$
- $f_{3}(a, S)=S \cup\{a\}$.

Structural recursion for Tr

E.g. swapping: $(a b) \cdot t=$ result of transposing all occurrences of a and b in t

For example

$$
(a b) \cdot \mathrm{L}(a, \mathrm{~A}(\mathrm{~V} b, \mathrm{~V} c))=\mathrm{L}(b, \mathrm{~A}(\mathrm{~V} a, \mathrm{~V} c))
$$

Structural recursion for Tr

E.g. swapping: $(a b) \cdot t=$ result of transposing all occurrences of a and b in t

$$
\begin{aligned}
(a b) \cdot \mathrm{V} c= & \text { if } c=a \text { then } \mathrm{V} b \text { else } \\
& \text { if } c=b \text { then } \mathrm{V} a \text { else } \mathrm{V} c \\
(a b) \cdot \mathrm{A}\left(t, t^{\prime}\right)= & \mathrm{A}\left((a b) \cdot t,(a b) \cdot t^{\prime}\right) \\
(a b) \cdot \mathrm{L}(c, t)= & \text { if } c=a \text { then } \mathrm{L}(b,(a b) \cdot t) \\
& \text { else if } c=b \text { then } \mathrm{L}(a,(a b) \cdot t) \\
& \text { else } \mathrm{L}(c,(a b) \cdot t)
\end{aligned}
$$

is defined by structural recursion using...

Structural recursion for Tr

Theorem.

Given

$$
\begin{aligned}
& f_{1} \in \mathrm{Al} \rightarrow X \\
& f_{2} \in X \times X \rightarrow X \\
& f_{3} \in \mathrm{Al} \times X \rightarrow X
\end{aligned}
$$

exists unique $\hat{f} \in \operatorname{Tr} \rightarrow X$ satisfying

$$
\begin{aligned}
\hat{f}(\mathrm{~V} a) & =f_{1} a \\
\hat{f}\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & =f_{2}\left(\hat{f} t, \hat{f} t^{\prime}\right) \\
\hat{f}(\mathrm{~L}(a, t)) & =f_{3}(a, \hat{f} t)
\end{aligned}
$$

Structural recursion for Tr

Theorem.

Given

$$
\begin{aligned}
& f_{1} \in A l \rightarrow X \\
& f_{2} \in X \times \text { into } 2 C
\end{aligned}
$$

$$
f_{1} \in \mathrm{Al} \rightarrow X
$$ exists unique

$$
\left.=f\left(a, t^{\prime}\right)\right)=f_{2}\left(\hat{f} t, \hat{f} t^{\prime}\right)
$$

Alpha-equivalence

Smallest binary relation $={ }_{\alpha}$ on Tr closed under the rules:

$$
\begin{array}{cl}
\frac{a \in \mathrm{Al}}{\mathrm{~V} a={ }_{\alpha} \mathrm{V} a} & \frac{t_{1}={ }_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{\mathrm{A}\left(t_{1}, t_{2}\right)={ }_{\alpha} \mathrm{A}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)} \\
\frac{(a b) \cdot t={ }_{\alpha}\left(a^{\prime} b\right) \cdot t^{\prime}}{\mathrm{L}(a, t)={ }_{\alpha} \mathrm{L}\left(a^{\prime}, t^{\prime}\right)} & b \notin\left\{a, a^{\prime}\right\} \cup \operatorname{var}(t) \cup \operatorname{var}\left(t^{\prime}\right) \\
\hline
\end{array}
$$

$$
\begin{array}{lll}
\text { E.g. } \quad \mathrm{A}(\mathrm{~L}(a, \mathrm{~A}(\mathrm{~V} a, \mathrm{~V} b)), \mathrm{V} c) & =\alpha_{\alpha} & \mathrm{A}(\mathrm{~L}(c, \mathrm{~A}(\mathrm{~V} c, \mathrm{~V} b)), \mathrm{V} c) \\
& \neq \alpha & \mathrm{A}(\mathrm{~L}(b, \mathrm{~A}(\mathrm{~V} b, \mathrm{~V} b)), \mathrm{V} c)
\end{array}
$$

Fact: $={ }_{\alpha}$ is transitive (and reflexive $\&$ symmetric). [Ex. 1]

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding $\overline{\text { operations) }}$
- difficult to formalise/mechanise without losing sight of common informal practice:

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- difficult to formalise/mechanise without losing sight of common informal practice:
"We identify expressions up to alpha-equivalence"...

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- difficult to formalise/mechanise without losing sight of common informal practice:
"We identify expressions up to alpha-equivalence"...
\ldots and then forget about it, referring to
alpha-equivalence classes $[t]_{\alpha}$ only via representatives t.

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- difficult to formalise/mechanise without losing sight of common informal practice:
E.g. notation for λ-terms:

$$
\begin{array}{rll}
& \Lambda \triangleq\left\{[t]_{\alpha} \mid t \in \operatorname{Tr}\right\} \\
a & \text { means } & {[\mathrm{V} a]_{\alpha}(=\{\mathrm{V} a\})} \\
e e^{\prime} & \text { means } & {\left[\mathrm{A}\left(t, t^{\prime}\right)\right]_{\alpha}, \text { where } e=[t]_{\alpha} \text { and } e^{\prime}=\left[t^{\prime}\right]_{\alpha}}
\end{array}
$$

$$
a \text { means }[\mathrm{V} a]_{\alpha}(=\{\mathrm{V} a\})
$$

$$
\text { גa.e means }[\mathrm{L}(a, t)]_{\alpha} \text { where } e=[t]_{\alpha}
$$

Informal structural recursion

$$
\begin{gathered}
\text { E.g. capture-avoiding substitution: } \\
f=(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda \\
f a=\text { if } a=a_{1} \text { then } e_{1} \text { else } a \\
f\left(e e^{\prime}\right)=(f e)\left(f e^{\prime}\right) \\
f(\lambda a . e)=\text { if } a \notin \operatorname{var}\left(a_{1}, e_{1}\right) \text { then } \lambda a .(f e) \\
\quad \text { else don't care! }
\end{gathered}
$$

Not an instance of structural recursion for Tr .
Why is f well-defined and total?

Informal structural recursion

E.g. denotation of λ-term in a suitable domain D :

$$
\begin{aligned}
& \llbracket-\rrbracket: \Lambda \rightarrow((\mathrm{A} \rightarrow D) \rightarrow D) \\
& \llbracket a \rrbracket \rho=\rho a \\
& \llbracket e e^{\prime} \rrbracket \rho=\operatorname{app}\left(\llbracket e \rrbracket \rho, \llbracket e^{\prime} \rrbracket \rho\right) \\
& \llbracket \lambda a \cdot e \rrbracket \rho=\operatorname{fun}(\lambda(d \in D) \rightarrow \llbracket e \rrbracket(\rho[a \rightarrow d]))
\end{aligned}
$$

$$
\text { where }\left\{\begin{array}{lll}
a p p & \in D \times D \rightarrow_{c t s} D \\
\text { fun } & \in\left(D \rightarrow \rightarrow_{c t s} D\right) \rightarrow_{c t s} D
\end{array}\right.
$$

are continuous functions satisfying...

Informal structural recursion

E.g. denotation of λ-term in a suitable domain D :

$$
\begin{aligned}
& \llbracket-\rrbracket: \Lambda \rightarrow((\mathrm{A} \rightarrow D) \rightarrow D) \\
& \llbracket a \rrbracket \rho=\rho a \\
& \llbracket e e^{\prime} \rrbracket \rho=\operatorname{app}\left(\llbracket e \rrbracket \rho, \llbracket e^{\prime} \rrbracket \rho\right) \\
& \llbracket \lambda a \cdot e \rrbracket \rho=\operatorname{fun}(\lambda(d \in D) \rightarrow \llbracket e \rrbracket(\rho[a \rightarrow d]))
\end{aligned}
$$

why is this very standard definition independent of the choice of bound variable a ?
$\rho[a \rightarrow d]$ is the element of
$\mathrm{Al} \rightarrow D$ that maps a to d and otherwise acts like ρ

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda$ and $\llbracket-\rrbracket: \Lambda \rightarrow D$ (and many other e.g.s)?

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda$ and $\llbracket-\rrbracket: \Lambda \rightarrow D$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda$ and $\llbracket-\rrbracket: \Lambda \rightarrow D$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda$ and $\llbracket-\rrbracket: \Lambda \rightarrow D$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?
Yes! - available for any nominal signature.

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda$ and $\llbracket-\rrbracket: \Lambda \rightarrow D$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?
Yes! - available for any nominal signature.
Great. What's the catch?

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda$ and $\llbracket-\rrbracket: \Lambda \rightarrow D$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?
Yes! - available for any nominal signature.

Great. What's the catch?

Need to learn a bit of possibly unfamiliar math, to do with permutations and support.

Preliminaries on name-permutations

- $\mathrm{Al}=$ fixed countably infinite set of names (a, b, \ldots)

Preliminaries on name-permutations

- $\mathrm{Al}=$ fixed countably infinite set of names (a, b, \ldots)
- Perm $\mathrm{Al}=$ group of finite permutations of Al $\left(\pi, \pi^{\prime}, \ldots\right)$
- π finite means: $\{a \in \mathrm{~A} \mid \pi(a) \neq a\}$ is finite.
- group: multiplication is composition of functions $\pi^{\prime} \circ \pi$; identity is identity function l.

Preliminaries on name-permutations

- $\mathrm{Al}=$ fixed countably infinite set of names (a, b, \ldots)
- Perm $\mathrm{Al}=$ group of finite permutations of Al $\left(\pi, \pi^{\prime}, \ldots\right)$
- π finite means: $\{a \in \mathrm{~A} \mid \pi(a) \neq a\}$ is finite.
- group: multiplication is composition of functions $\pi^{\prime} \circ \pi$; identity is identity function l.
- swapping: $(a b) \in \operatorname{Perm} \mathrm{Al}$ is the function mapping a to b, b to a and fixing all other names.

Fact: every $\pi \in \operatorname{Perm} A l$ is equal to

$$
\left(a_{1} b_{1}\right) \circ \cdots \circ\left(a_{n} b_{n}\right)
$$

for some $a_{i} \& b_{i}$ (with $\pi a_{i} \neq a_{i} \neq b_{i} \neq \pi b_{i}$).

Preliminaries on name-permutations

- $\mathrm{Al}=$ fixed countably infinite set of names (a, b, \ldots)
- Perm Al = group of finite permutations of Al $\left(\pi, \pi^{\prime}, \ldots\right)$
- action of Perm Al on a set X is a function

$$
(-) \cdot(-): \text { Perm Al } \times X \rightarrow X
$$

satisfying for all $x \in X$
$\rightarrow \pi^{\prime} \cdot(\pi \cdot x)=\left(\pi^{\prime} \circ \pi\right) \cdot x$

- $\quad \cdot x=x$

Running example

Action of Perm Al on set of ASTs for λ-terms

$$
\begin{aligned}
& \mathrm{Tr} \triangleq\{t::=\mathrm{V} a|\mathrm{~A}(t, t)| \mathrm{L}(a, t)\} \\
& \pi \cdot \mathrm{V} a=\mathrm{V}(\pi a) \\
& \pi \cdot \mathrm{A}\left(t, t^{\prime}\right)=\mathrm{A}\left(\pi \cdot t, \pi \cdot t^{\prime}\right) \\
& \pi \cdot \mathrm{L}(a, t)=\mathrm{L}(\pi a, \pi \cdot t)
\end{aligned}
$$

This respects α-equivalence and so induces an action on set of λ-terms $\Lambda=\left\{[t]_{\alpha} \mid t \in \operatorname{Tr}\right\}$:

$$
\pi \cdot[t]_{\alpha}=[\pi \cdot t]_{\alpha}
$$

Nominal sets

are sets X with with a Perm Al-action satisfying
Finite support property: for each $x \in X$, there is a finite subset $\bar{a} \subseteq$ Al that supports x, in the sense that for all $\pi \in \operatorname{Perm} \mathrm{Al}$

$$
((\forall a \in \bar{a}) \pi a=a) \Rightarrow \pi \cdot x=x
$$

Fact: in a nominal set every $x \in X$ possesses a smallest finite support, written supp x.
(Swan: this Fact relies on a (weak form of) the Law of Excluded Middle in classical logic; see arXiv:1702.01556.)

Nominal sets

are sets X with with a Perm Al-action satisfying
Finite support property: for each $x \in X$, there is a finite subset $\bar{a} \subseteq$ Al that supports x, in the sense that for all $\pi \in \operatorname{Perm} \mathrm{Al}$

$$
((\forall a \in \bar{a}) \pi a=a) \Rightarrow \pi \cdot x=x
$$

Fact: in a nominal set every $x \in X$ possesses a smallest finite support, written supp x.
E.g. Tr and Λ are nominal sets-any \bar{a} containing all the variables occurring (free, binding, or bound) in $t \in \operatorname{Tr}$ supports t and (hence) $[t]_{\alpha}$.

Fact: for $e \in \Lambda$, supp $e=$ set of free variables of e. [Ex.2]

Further examples of support

[Perm Al acts of sets of names $S \subseteq$ Al pointwise:
$\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]
What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$
- $S_{2} \triangleq \mathrm{Al}-\{a\}$
- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathrm{Al}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Further examples of support

[Perm Al acts of sets of names $S \subseteq$ Al pointwise:
$\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]
What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathrm{Al}-\{a\}$
- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathrm{Al}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Further examples of support

[Perm Al acts of sets of names $S \subseteq$ Al pointwise:
$\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]
What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathrm{Al}-\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathrm{Al}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Further examples of support

[Perm Al acts of sets of names $S \subseteq$ Al pointwise:
$\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]
What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathrm{Al}-\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathrm{Al}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Answer: $\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$ is a support

Further examples of support

[Perm Al acts of sets of names $S \subseteq$ Al pointwise:
$\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]
What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathrm{Al}-\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathrm{Al}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Answer: $\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$ is a support, and so is $\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}$-but there is no finite support. S_{3} does not exist in the 'world of nominal sets'-in that world $A 1$ is infinite, but not enumerable.

Category of nominal sets, Nom

- objects are nominal sets
- morphisms are functions $f \in X \rightarrow Y$ that are equivariant:

$$
\pi \cdot(f x)=f(\pi \cdot x)
$$

for all $\pi \in$ Perm Al, $x \in X$.

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

So in particular Nom is a model of Church's classical higher-order logic.

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Finite products: $X_{1} \times \cdots \times X_{n}$ is cartesian product of sets with Perm Al-action

$$
\pi \cdot\left(x_{1}, \ldots, x_{n}\right) \triangleq\left(\pi \cdot x_{1}, \ldots, \pi \cdot x_{n}\right)
$$

which satisfies

$$
\operatorname{supp}\left(x, \ldots, x_{n}\right)=\left(\operatorname{supp} x_{1}\right) \cup \cdots \cup\left(\operatorname{supp} x_{n}\right)
$$

[Ex. 3]

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Coproducts are given by disjoint union. [Ex. 7]
Natural number object: $\mathbb{I N}=\{0,1,2, \ldots\}$ with trivial Perm Al-action: $\pi \cdot n \triangleq n($ so supp $n=\emptyset)$.

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Exponentials: $X \rightarrow_{\mathrm{fs}} Y$ is the set of functions $f \in Y^{X}$ that are finitely supported w.r.t. the Perm Al-action

$$
\pi \cdot f \triangleq \lambda(x \in X) \rightarrow \pi \cdot\left(f\left(\pi^{-1} \cdot x\right)\right)
$$

[Ex. 5]
(Can be tricky to see when $f \in Y^{X}$ is in $X \rightarrow_{\mathrm{fs}} Y$.)

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Subobject classifier: $\Omega=\{$ true, false $\}$ with trivial Perm Al-action: $\pi \cdot b \triangleq b($ so supp $b=\emptyset)$.
(Nom is a Boolean topos: $\Omega=1+1$.)
Power objects: $X \rightarrow_{\mathrm{fs}} \Omega \cong \mathrm{P}_{\mathrm{fs}} X$, the set of subsets $S \subseteq X$ that are finitely supported w.r.t. the Perm Al-action

$$
\pi \cdot S \triangleq\{\pi \cdot x \mid x \in S\}
$$

The nominal set of names

$A l$ is a nominal set once equipped with the action

$$
\pi \cdot a=\pi(a)
$$

which satisfies supp $a=\{a\}$.
N.B. $A \mathbb{A}$ is not \mathbb{N} ! Although $\mathbb{A} \in$ Set is a countable, any $f \in \mathbb{N} \rightarrow_{\text {fs }}$ Al has to satisfy

$$
\{f n\}=\operatorname{supp}(f n) \subseteq \operatorname{supp} f \cup \operatorname{supp} n=\operatorname{supp} f
$$

for all $n \in \mathbb{N}$, and so f cannot be surjective.

Nom $\not \vDash$ choice

Nom models classical higher-order logic, but not Hilbert's ε-operation $\varepsilon x . \varphi(x)$, which satisfies

$$
(\forall x: X) \varphi(x) \Rightarrow \varphi(\varepsilon x \cdot \varphi(x))
$$

Theorem. There is no equivariant function
$c:\left\{S \in \mathrm{P}_{\mathrm{fs}} \mathrm{Al} \mid S \neq \emptyset\right\} \rightarrow$ Al satsifying $c(S) \in S$ for all non-empty $S \in \mathrm{P}_{\mathrm{fs}}$ Al.

Proof. Suppose there were such a c. Putting $a \triangleq c \mathrm{Al}$ and picking some $b \in \mathrm{Al}-\{a\}$, we get a contradiction to $a \neq b$:

$$
a=c \mathrm{~A}=c((a b) \cdot \mathrm{A})=(a b) \cdot c \mathrm{~A}=(a b) \cdot a=b
$$

Nom $\not \vDash$ choice

Nom models classical higher-order logic, but not Hilbert's ε-operation $\varepsilon x . \varphi(x)$, which satisfies

$$
(\forall x: X) \varphi(x) \Rightarrow \varphi(\varepsilon x \cdot \varphi(x))
$$

In fact Nom does not model even very weak forms of choice, such as Dependent Choice.

Freshness

For each nominal set X, we can define a relation $\# \subseteq A l \times X$ of freshness:

$$
a \# x \triangleq a \notin \operatorname{supp} x
$$

Freshness

For each nominal set X, we can define a relation $\# \subseteq A l \times X$ of freshness:

$$
a \# x \triangleq a \notin \operatorname{supp} x
$$

- In $\mathbb{N}, a \# n$ always.
- In Al, $a \# b$ iff $a \neq b$.
- In $\Lambda, a \# t$ iff $a \notin \mathrm{fv} t$.
- In $X \times Y, a \#(x, y)$ iff $a \# x$ and $a \# y$.
- In $X \rightarrow_{\mathrm{fs}} Y, a \# f$ can be subtle!
(and hence ditto for $\mathrm{P}_{\mathrm{fs}} X$)

Lecture 2

Outline

L1 Structural recursion and induction in the presence of name-binding operations. Introducing the category of nominal sets.

L2 Nominal algebraic data types and α-structural recursion.

L3 Dependently typed λ-calculus with locally fresh names and name-abstraction.

References:
AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.
AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50.

Recall: Alpha-equivalence

Smallest binary relation $={ }_{\alpha}$ on Tr closed under the rules:

$$
\begin{array}{cl}
\frac{a \in \mathrm{Al}}{\mathrm{~V} a={ }_{\alpha} \mathrm{V} a} & \frac{t_{1}={ }_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{\mathrm{A}\left(t_{1}, t_{2}\right)={ }_{\alpha} \mathrm{A}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)} \\
\frac{(a b) \cdot t={ }_{\alpha}\left(a^{\prime} b\right) \cdot t^{\prime}}{\mathrm{L}(a, t)={ }_{\alpha} \mathrm{L}\left(a^{\prime}, t^{\prime}\right)} & b \notin\left\{a, a^{\prime}\right\} \cup \operatorname{var}(t) \cup \operatorname{var}\left(t^{\prime}\right) \\
\hline
\end{array}
$$

$$
\begin{array}{rll}
\text { E.g. } \quad \mathrm{A}(\mathrm{~L}(a, \mathrm{~A}(\mathrm{~V} a, \mathrm{~V} b)), \mathrm{V} c) & =\alpha_{\alpha} & \mathrm{A}(\mathrm{~L}(c, \mathrm{~A}(\mathrm{~V} c, \mathrm{~V} b)), \mathrm{V} c) \\
& \neq \alpha & \mathrm{A}(\mathrm{~L}(b, \mathrm{~A}(\mathrm{~V} b, \mathrm{~V} b)), \mathrm{V} c)
\end{array}
$$

Fact: $={ }_{\alpha}$ is transitive (and reflexive $\&$ symmetric). [Ex. 1]

Name abstraction

Each $X \in$ Nom yields a nominal set [Al]X of

 name-abstractions $\langle a\rangle x$ are $\sim-$ equivalence classes of pairs $(a, x) \in \mathbb{A} \times X$, where$$
\begin{aligned}
(a, x) \sim\left(a^{\prime}, x^{\prime}\right) \Leftrightarrow \exists b \# & \left(a, x, a^{\prime}, x^{\prime}\right) \\
& (b a) \cdot x=\left(b a^{\prime}\right) \cdot x^{\prime}
\end{aligned}
$$

The Perm Al-action on [Al]X is well-defined by

$$
\pi \cdot\langle a\rangle x=\langle\pi(a)\rangle(\pi \cdot x)
$$

Fact: $\operatorname{supp}(\langle a\rangle x)=\operatorname{supp} x-\{a\}$, so that

$$
b \#\langle a\rangle x \Leftrightarrow b=a \vee b \# x
$$

Name abstraction

Each $X \in$ Nom yields a nominal set $[\mathrm{Al}] X$ of

 name-abstractions $\langle a\rangle x$ are $\sim-$ equivalence classes of pairs $(a, x) \in \mathbb{A} \times X$, where$$
\begin{aligned}
(a, x) \sim\left(a^{\prime}, x^{\prime}\right) \Leftrightarrow \exists b \# & \left(a, x, a^{\prime}, x^{\prime}\right) \\
& (b a) \cdot x=\left(b a^{\prime}\right) \cdot x^{\prime}
\end{aligned}
$$

We get a functor $[\mathrm{Al}](-): \operatorname{Nom} \rightarrow \operatorname{Nom}$ sending $f \in \operatorname{Nom}(X, Y)$ to $[\mathrm{Al}] f \in \operatorname{Nom}([\mathrm{Al}] X,[\mathrm{Al}] Y)$ where

$$
[\mathrm{A}] f(\langle a\rangle x)=\langle a\rangle(f x)
$$

Name abstraction

$[\mathrm{Al}](-):$ Nom \rightarrow Nom is a kind of (affine) function space-it is right adjoint to the functor $\mathrm{Al} \otimes(-):$ Nom \rightarrow Nom sending X to $\mathrm{Al} \otimes X=\{(a, x) \mid a \# x\}$.

Co-unit of the adjunction is 'concretion' of an abstraction

$$
-@ \operatorname{~}:([\mathrm{Al}] X) \otimes \mathrm{Al} \rightarrow X
$$

defined by computation rule:

$$
(\langle a\rangle x) @ b=(b a) \cdot x, \text { if } b \#\langle a\rangle x
$$

[Ex. 6]

Name abstraction

Generalising concretion, we have the following characterization of morphisms out of $[A l] X$
Theorem. $f \in(\mathbb{A} \times X) \rightarrow_{\mathrm{fs}} Y$ factors through the subquotient $\mathrm{Al} \times X \supseteq\{(a, x) \mid a \# f\} \rightarrow[\mathrm{Al}] X$ to give a unique element of $\bar{f} \in([\mathrm{Al}] X) \rightarrow_{\mathrm{fs}} Y$ satisfying

$$
\bar{f}(\langle a\rangle x)=f(a, x) \quad \text { if } a \# f
$$

iff $(\forall a \in \mathrm{Al}) a \# f \Rightarrow(\forall x \in X) a \# f(a, x)$
iff $(\exists a \in \mathrm{Al}) a \# f \wedge(\forall x \in X) a \# f(a, x)$.

Initial algebras

- $[A l](-)$ has excellent exactness properties. It can be combined with $\times,+$ and $X \rightarrow_{\mathrm{fs}}(-)$ to give functors $\mathrm{T}:$ Nom \rightarrow Nom that have initial algebras $I: \mathrm{T} D \rightarrow D$

Initial algebras

- $[A l](-)$ has excellent exactness properties. It can be combined with $\times,+$ and $X \rightarrow_{\mathrm{fs}}(-)$ to give functors $\mathrm{T}:$ Nom \rightarrow Nom that have initial algebras $I: \mathrm{T} D \rightarrow D$

Initial algebras

- $[A 1](-)$ has excellent exactness properties. It can be combined with $\times,+$ and $X \rightarrow_{\mathrm{fs}}(-)$ to give functors T: Nom \rightarrow Nom that have initial algebras $I: \mathrm{T} D \rightarrow D$
- For a wide class of such functors (nominal algebraic functors) the initial algebra D coincides with ASTs/ α-equivalence.
E.g. Λ is the initial algebra for

$$
T(-) \triangleq A \mathbb{A}+(-\times-)+[A \mathbb{}](-)
$$

Nominal algebraic signatures

- Sorts S ::= N name-sort (here just one, for simplicity)
| D data-sorts
| 1 unit
| S,S pairs
| N.S name-binding
- Typed operations op : S \rightarrow D

Signature Σ is specified by the stuff in red.

Nominal algebraic signatures

Example: λ-calculus

name-sort Var for variables, data-sort Term for terms, and operations

V : Var \rightarrow Term
A : Term, Term \rightarrow Term
L:Var. Term \rightarrow Term

Nominal algebraic signatures

Example: π-calculus

name-sort Chan for channel names, data-sorts Proc, Pre and Sum for processes, prefixed processes and summations, and operations

```
    S : Sum \(\rightarrow\) Proc
    Comp : Proc, Proc \(\rightarrow\) Proc
    \(\mathrm{Nu}:\) Chan. Proc \(\rightarrow\) Proc
        ! : Proc \(\rightarrow\) Proc
        P : Pre \(\rightarrow\) Sum
        0: 1 \(\rightarrow\) Sum
    Plus: Sum, Sum \(\rightarrow\) Sum
    Out: Chan, Chan, Proc \(\rightarrow\) Pre
        In : Chan, (Chan. Proc) \(\rightarrow\) Pre
    Tau: Proc \(\rightarrow\) Pre
Match : Chan, Chan, Pre \(\rightarrow\) Pre
```


Nominal algebraic signatures

Closely related notions:

- binding signatures of Fiore, Plotkin \& Turi (LICS 1999)
- nominal algebras of Honsell, Miculan \& Scagnetto (ICALP 2001)
N.B. all these notions of signature restrict attention to iterated, but unary name-binding-there are other kinds of lexically scoped binder (e.g. see Pottier's $\mathrm{C} \alpha \mathrm{ml}$ language, or Blanchette et al POPL 2019.)

$\Sigma(S)=$ raw terms over Σ of sort S

Each $\Sigma(S)$ is a nominal set once equipped with the obvious Perm Al-action-any finite set of atoms containing all those occurring in t supports $t \in \Sigma(\mathrm{~S})$.

Alpha-equivalence $=\alpha \subseteq \Sigma(\mathrm{S}) \times \Sigma(\mathrm{S})$

$$
\begin{gathered}
\frac{a \in \mathrm{Al}}{a={ }_{\alpha} a} \quad \frac{t={ }_{\alpha} t^{\prime}}{\mathrm{op} t={ }_{\alpha} \mathrm{op} t^{\prime}} \quad \overline{()={ }_{\alpha}()} \\
\frac{t_{1}={ }_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{t_{1}, t_{2}={ }_{\alpha} t_{1}^{\prime}, t_{2}^{\prime}} \\
\frac{\left(a_{1} a\right) \cdot t_{1}={ }_{\alpha}\left(a_{2} a\right) \cdot t_{2} \quad a \#\left(a_{1}, t_{1}, a_{2}, t_{2}\right)}{a_{1} \cdot t_{1}={ }_{\alpha} a_{2} \cdot t_{2}}
\end{gathered}
$$

Alpha-equivalence $=\alpha \subseteq \Sigma(\mathrm{S}) \times \Sigma(\mathrm{S})$

Fact: $={ }_{\alpha}$ is equivariant $\left(t_{1}={ }_{\alpha} t_{2} \Rightarrow \pi \cdot t_{1}={ }_{\alpha} \pi \cdot t_{2}\right)$ and each quotient

$$
\Sigma_{\alpha}(\mathrm{S}) \triangleq\left\{[t]_{\alpha} \mid t \in \Sigma(\mathrm{~S})\right\}
$$

is a nominal set with

$$
\begin{array}{rcl}
\pi \cdot[t]_{\alpha} & = & {[\pi \cdot t]_{\alpha}} \\
\operatorname{supp}[t]_{\alpha} & = & f n t \\
& \text { where } \\
f n(a \cdot t) & = & f n t-\{a\} \\
f n\left(t_{1}, t_{2}\right) & = & f n t_{1} \cup f n t_{2} \\
& \text { etc. } &
\end{array}
$$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.

Theorem. Given a nominal algebraic signature Σ
(for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.

$$
\mathrm{T}_{\Sigma}(-)=\llbracket \mathrm{S}_{1} \rrbracket(-)+\cdots+\llbracket \mathrm{S}_{n} \rrbracket(-)
$$

where Σ has operations $\mathrm{op}_{i}: \mathrm{S}_{i} \rightarrow D(i=1 . . n)$
and $\llbracket S \rrbracket(-):$ Nom \rightarrow Nom is defined by:

$$
\begin{aligned}
\llbracket \mathrm{N} \rrbracket(-) & =\mathrm{Al} \\
\llbracket \mathrm{D} \rrbracket(-) & =(-) \\
\llbracket 1 \rrbracket(-) & =1 \\
\llbracket \mathrm{~S}_{1}, \mathrm{~S}_{2} \rrbracket(-) & =\llbracket \mathrm{S}_{1} \rrbracket(-) \times \llbracket \mathrm{S}_{2} \rrbracket(-) \\
\llbracket \mathrm{N} . \mathrm{S} \rrbracket(-) & =[\mathrm{A} \rrbracket(\llbracket \mathrm{~S} \rrbracket(-))
\end{aligned}
$$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.
E.g. for the λ-calculus signature with operations

V : Var \rightarrow Term
A : Term, Term \rightarrow Term
L:Var. Term \rightarrow Term
we have
$\mathrm{T}_{\Sigma}(-)=\mathrm{Al}+(-\times-)+[\mathrm{Al}](-)$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated enriched functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.
T_{Σ} not only acts on equivariant (=emptily supported) functions, but also on finitely supported functions:

$$
\begin{aligned}
\left(X \rightarrow_{\mathrm{fs}} Y\right) & \rightarrow\left(\mathrm{T}_{\Sigma} X \rightarrow_{\mathrm{fs}} \mathrm{~T}_{\Sigma} Y\right) \\
F & \mapsto \mathrm{~T}_{\Sigma} F
\end{aligned}
$$

α-Structural recursion

For λ-terms:
Theorem.
Theorem.
Given any $X \in$ Nom and $\begin{cases}f_{1} & \in A \mid \mathrm{ff}_{\mathrm{s}} X \\ f_{2} \in X \times X \rightarrow \mathrm{fs}_{\mathrm{f}} X \\ f_{3} & \in[\mathrm{Al}] X \rightarrow_{\mathrm{fs}} X\end{cases}$

$$
\exists!\hat{f} \in \Lambda \rightarrow_{\text {fs }} X \text { s.t. }\left\{\begin{aligned}
\hat{f} a & =f_{1} a \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e) & =f_{3}(\langle a\rangle(\hat{f} e)) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{aligned}\right.
$$

The enriched functor $[\mathrm{Al}](-): \operatorname{Nom} \rightarrow$ Nom sends $f \in X \rightarrow_{\mathrm{fs}} Y$ to $[\mathrm{Al}] f \in[\mathrm{Al}] X \rightarrow_{\mathrm{fs}}[\mathrm{Al}] Y$ where

$$
[\mathrm{Al}] f(\langle a\rangle x)=\langle a\rangle(f x) \quad \text { if } a \# f
$$

α-Structural recursion

For λ-terms:
Theorem.
Given any $X \in$ Nom and $\left\{\begin{array}{lll}f_{1} & \in A \rightarrow \mathrm{fs}_{\mathrm{f}} X \\ f_{2} & \in X \times X \rightarrow \mathrm{fs} X \\ f_{3} & \in \mathrm{Al} \times X \rightarrow_{\mathrm{fs}} X\end{array}\right.$ s.t.

$$
\begin{equation*}
(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x) \tag{FCB}
\end{equation*}
$$

$$
\exists!\hat{f} \in \Lambda \rightarrow \mathrm{ff}_{\mathrm{s}} X\left\{\begin{array} { r l }
{ \hat { f } a } & { = f _ { 1 } a } \\
{ \text { s.t. } }
\end{array} \left\{\begin{array}{l}
\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{array}\right.\right.
$$

Name abstraction

Recall:

Theorem. $f \in(\mathrm{Al} \times X) \rightarrow_{\mathrm{fs}} Y$ factors through the subquotient $A l \times X \supseteq\{(a, x) \mid a \# f\} \rightarrow[\mathrm{Al}] X$ to give a unique element of $\bar{f} \in([A l] X) \rightarrow_{\mathrm{fs}} Y$ satisfying

$$
\bar{f}(\langle a\rangle x)=f(a, x) \quad \text { if } a \# f
$$

iff $(\forall a \in \mathrm{Al}) a \# f \Rightarrow(\forall x \in X) a \# f(a, x)$
iff $(\exists a \in \mathrm{Al}) a \# f \wedge(\forall x \in X) a \# f(a, x)$.

α-Structural recursion

For λ-terms:

Theorem.
Given any $X \in$ Nom and $\left\{f_{2} \in X \times X \rightarrow_{\mathrm{fs}} X\right.$ s.t.
$f_{3} \in \mathrm{Al} \times X \rightarrow_{\mathrm{fs}} X$

$$
\begin{equation*}
(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x) \tag{FCB}
\end{equation*}
$$

$$
\exists!\hat{f} \in \Lambda \rightarrow_{\text {fs }} X\left\{\begin{array} { r l }
{ \hat { f } a } & { = f _ { 1 } a } \\
{ \text { s.t. } }
\end{array} \left\{\begin{array}{c}
\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{array}\right.\right.
$$

E.g. capture-avoiding substitution $(-)\left[e^{\prime} / a^{\prime}\right]: \Lambda \rightarrow \Lambda$ is the \hat{f} for

$$
\begin{aligned}
f_{1} a & \triangleq \text { if } a=a^{\prime} \text { then } e^{\prime} \text { else } a \\
f_{2}\left(e_{1}, e_{2}\right) & \triangleq e_{1} e_{2} \\
f_{3}(a, e) & \triangleq \lambda a . e
\end{aligned}
$$

for which (FCB) holds, since a \# λ a.e

α-Structural recursion

For λ-terms:
Theorem.
Given any $X \in$ Nom and $\left\{f_{2} \in X \times X \rightarrow_{\mathrm{fs}} X\right.$ s.t.
$f_{3} \in \mathrm{Al} \times X \rightarrow_{\mathrm{fs}} X$

$$
\begin{equation*}
(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x) \tag{FCB}
\end{equation*}
$$

$\exists!\hat{f} \in \Lambda \rightarrow \rightarrow_{\text {fs }} X\left\{\begin{array}{c}\hat{f} a=f_{1} a \\ \text { s.t. }\end{array}\left\{\begin{array}{c}\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\ \hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)\end{array}\right.\right.$
E.g. size function $\Lambda \rightarrow \mathbb{N}$ is the \hat{f} for

$$
\begin{aligned}
f_{1} a & \triangleq 0 \\
f_{2}\left(n_{1}, n_{2}\right) & \triangleq n_{1}+n_{2} \\
f_{3}(a, n) & \triangleq n+1
\end{aligned}
$$

for which (FCB) holds, since a \# ($n+1$)

α-Structural recursion

For λ-terms:

Theorem.
Given any $X \in$ Nom and $\left\{\begin{array}{l}f_{2} \in X \times X \rightarrow_{\mathrm{fs}} X \text { s.t. } . ~ . ~\end{array}\right.$
$f_{3} \in \mathbb{A l} \times X \rightarrow_{\text {fs }} X$

$$
\begin{equation*}
(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x) \tag{FCB}
\end{equation*}
$$

$$
\exists!\hat{f} \in \Lambda \rightarrow_{\text {fs }} X\left\{\begin{array} { r l }
{ \hat { f } a } & { = f _ { 1 } a } \\
{ \text { s.t. } }
\end{array} \left\{\begin{array}{rl}
\hat{f}\left(e_{1} e_{2}\right) & =f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e) & =f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{array}\right.\right.
$$

Non-example: trying to list the bound variables of a λ-term

$$
\begin{aligned}
f_{1} a & \triangleq \text { nil } \\
f_{2}\left(\ell_{1}, \ell_{2}\right) & \triangleq \ell_{1} @ \ell_{2} \\
f_{3}(a, \ell) & \triangleq a:: \ell
\end{aligned}
$$

for which (FCB) does not hold, since $a \in \operatorname{supp}(a:: \ell)$.

α-Structural recursion

For λ-terms:

$$
\begin{align*}
& \text { Theorem. } \quad\left\{\begin{array}{l}
f_{1} \in \mathrm{Al} \rightarrow_{\text {fs }} X
\end{array}\right. \\
& \text { Given any } X \in \text { Nom and }\left\{\begin{array}{llll}
f_{2} & \in X \times X \rightarrow \rightarrow_{\mathrm{f}} X \\
f_{3} & \in \mathrm{Al} \times X \rightarrow_{\mathrm{fs}} X
\end{array}\right. \text { s.t. } \\
& (\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x) \tag{FCB}\\
& \exists!\hat{f} \in \Lambda \rightarrow{ }_{\mathrm{fs}} X\left\{\begin{array} { r l }
{ \hat { f } a } & { = f _ { 1 } a } \\
{ \text { s.t. } }
\end{array} \left\{\begin{array}{c}
\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right)
\end{array}\right.\right. \\
& \hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{align*}
$$

Similar results hold for any nominal algebraic signature-see J ACM 53(2006)459-506.
Implemented in Urban \& Berghofer's Nominal package for Isabelle/HOL (classical higher-order logic).
Seems to capture informal usage well, but (FCB) can be tricky...

Counting occurrences of bound variables

For each $e \in \Lambda, \quad \operatorname{cbv} e \triangleq f e \rho_{0} \in \mathbb{I N}$ where we want $f \in \Lambda \rightarrow_{\mathrm{fs}} X$ with $X=\left(\mathrm{Al} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow_{\mathrm{fs}} \mathbb{I N}$ to satisfy

$$
\begin{aligned}
f a \rho & =\rho a \\
f\left(e_{1} e_{2}\right) \rho & =\left(f e_{1} \rho\right)+\left(f e_{2} \rho\right) \\
f(\lambda a . e) \rho & =f e(\rho[a \mapsto 1])
\end{aligned}
$$

and where $\rho_{0} \in \mathbb{A} \rightarrow_{\text {fs }} \mathbb{I N}$ is $\lambda(a \in \mathrm{~A}) \rightarrow 0$.
E.g. when $e=(\lambda a . \lambda b . a) b$ (with $a \neq b$), then e has a single occurrence of a bound variable (called a) and $\operatorname{cbv} e=1$.

Counting occurrences of bound variables

For each $e \in \Lambda, \quad \operatorname{cbv} e \triangleq f e \rho_{0} \in \mathbb{I N}$
where we want $f \in \Lambda \rightarrow_{\mathrm{fs}} X$ with $X=\left(\mathrm{Al} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow_{\mathrm{fs}} \mathbb{I N}$ to satisfy

$$
\begin{aligned}
f a \rho & =\rho a \\
f\left(e_{1} e_{2}\right) \rho & =\left(f e_{1} \rho\right)+\left(f e_{2} \rho\right) \\
f(\lambda a . e) \rho & =f e(\rho[a \mapsto 1])
\end{aligned}
$$

and where $\rho_{0} \in \mathbb{A} \rightarrow_{\text {fs }} \mathbb{I N}$ is $\lambda(a \in \mathrm{Al}) \rightarrow 0$.
Looks like we should take $f_{3}(a, x)=\lambda\left(\rho \in \mathrm{Al} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow x(\rho[a \mapsto 1])$, but this does not satisfy (FCB). Solution: take X to be a certain nominal subset of $\left(A \mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow_{\mathrm{fs}} \mathbb{N}$. [See Nominal Sets book, Example 8.20]

Lecture 3

Outline

L1 Structural recursion and induction in the presence of name-binding operations. Introducing the category of nominal sets.

L2 Nominal algebraic data types and α-structural recursion.

L3 Dependently typed λ-calculus with locally fresh names and name-abstraction.

References:
AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.
AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50.

Original motivation for Gabbay \& AMP to introduce nominal sets and name abstraction:
[Al](_) can be combined with \times and + to give functors Nom \rightarrow Nom that have initial algebras coinciding with sets of abstract syntax trees modulo α-equivalence.
E.g. the initial algebra for $\mathrm{Al}+\left({ }_{-} \times_{-}\right)+[\mathrm{Al}]\left(\left(_{-}\right)\right.$is isomorphic to the usual set of untyped λ-terms.

Recall: α-Structural recursion

For λ-terms:
Theorem.

$$
\begin{aligned}
& f_{1} \in \mathrm{Al} \rightarrow_{\mathrm{fs}_{s}} \\
& f_{2} \in X \times X \rightarrow \rightarrow_{\mathrm{fs}} X \quad \text { s.t. } \\
& f_{3} \in \mathrm{Al} \times X \rightarrow_{\mathrm{fs}} X
\end{aligned}
$$

$$
\begin{equation*}
(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x) \tag{FCB}
\end{equation*}
$$

$$
\exists!\hat{f} \in \Lambda \rightarrow_{\text {fs }} X\left\{\begin{array} { r l }
{ \hat { f } a } & { = f _ { 1 } a } \\
{ \text { s.t. } }
\end{array} \left\{\begin{array}{rl}
\hat{f}\left(e_{1} e_{2}\right) & =f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e) & =f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{array}\right.\right.
$$

Can we avoid explicit reasoning about finite support, \# and (FCB) when computing ' $\bmod \alpha$ '?
Want definition/computation to be separate from proving.

$$
\begin{aligned}
& \hat{f}=f_{1} a \\
& \hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
& \hat{f}(\lambda a \cdot e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{2}\right) \\
&<=\lambda a^{\prime} \cdot e^{\prime}
\end{aligned}
$$

Q : how to get rid of this inconvenient proof obligation?

$$
\begin{aligned}
& \hat{f}=f_{1} a \\
& \hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
& \hat{f}(\lambda a \cdot e)=v a \cdot f_{3}(a, \hat{f} e)\left[a \#\left(f_{1}, f_{2}, f_{2}\right)\right] \\
&\left\langle=\lambda a^{\prime} \cdot e^{\prime}\right.
\end{aligned}
$$

Q : how to get rid of this inconvenient proof obligation?
A: use a local scoping construct va. (-) for names

$$
\begin{aligned}
& \hat{f}=f_{1} a \\
& \hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
& \hat{f}(\lambda a \cdot e)=v a \cdot f_{3}(a, \hat{f} e)\left[a \#\left(f_{1}, f_{2}, f_{2}\right)\right] \\
&\left\langle=\lambda a^{\prime} \cdot e^{\prime}\right.
\end{aligned}
$$

Q : how to get rid of this inconvenient proof obligation?
A: use a local scoping construct $v a$. (-) for names
which one?!

Dynamic allocation

- Stateful: va. t means "add a fresh name a^{\prime} to the current state and return $t\left[a^{\prime} / a\right]$ ".
- Used in Shinwell's Fresh OCaml = OCaml +
- name types and name-abstraction type former
- name-abstraction patterns
-matching involves dynamic allocation of fresh names
[MR Shinwell, AMP, MJ Gabbay, FreshML: Programming with Binders Made Simple, Proc. ICFP 2003.]
[www.cl.cam.ac.uk/users/amp12/fresh-ocaml]

Sample Fresh OCaml code

```
(* syntax *)
type t;;
type var = t name;;
type term = Var of var | Lam of <<var>>term | App of term*term;;
    (* semantics *)
type sem = L of ((unit -> sem) -> sem) | N of neu
and neu = V of var | A of neu*sem;;
    (* reify : sem -> term *)
let rec reify d =
    match d with L f -> let x = fresh in Lam(<<<>>>(reify(f(function () -> N(V x)))))
    | N n -> reifyn n
and reifyn n =
    match n with V x >> Var x
                            | A(n',d') -> App(reifyn n', reify d');;
(* evals : (var * (unit -> sem))list -> term -> sem *)
let rec evals env t =
    match t with Var x -> (match env with [] -> N(V x)
                            | (x',v)::env -> if x=x' then v() else evals env (Var x))
        | Lam(<<x>>t) -> L(function v -> evals ((x,v)::env) t)
        | App(t1,t2) -> (match evals env t1 with L f -> f(function () -> evals env t2)
                        | N n -> N(A(n, evals env t2)));;
(* eval : term -> sem *)
let rec eval t = evals [] t;;
(* norm : lam -> lam *)
let norm t = reify(eval t); ;
```


Dynamic allocation

- Stateful: va. t means "add a fresh name a^{\prime} to the current state and return $t\left[a^{\prime} / a\right]$ ".
- Used in Shinwell's Fresh OCaml = OCaml +
- name types and name-abstraction type former
- name-abstraction patterns
-matching involves dynamic allocation of fresh names
[MR Shinwell, AMP, MJ Gabbay, FreshML: Programming with Binders Made Simple, Proc. ICFP 2003.]
[www.cl.cam.ac.uk/users/amp12/fresh-ocaml]

Dynamic allocation

- Stateful: va. t means "add a fresh name a^{\prime} to the current state and return $t\left[a^{\prime} / a\right]$ ".

Statefulness disrupts familiar mathematical properties of pure datatypes. So let's try to reject it in favour of...

A version of Martin-Löf Type Theory enriched with constructs for locally fresh names and name-abstraction
from the theory of nominal sets.

Motivation:

Machine-assisted construction of humanly understandable formal proofs about software (PL semantics).

More specifically: extend (dependently typed) λ-calculus with
names a
name swapping swap a, b in t
name abstraction $\langle a\rangle t$ and concretion $t @ a$
locally fresh names fresh a in t
name equality if $t=a$ then t_{1} else t_{2}

Locally fresh names

For example, here are some isomorphisms, described in an informal pseudocode:

$$
\begin{aligned}
i:[A l](X+Y) \cong & {[A \mathrm{Al}] X+[\mathrm{Al}] Y } \\
i(z)= & \text { fresh } a \text { in case } z @ a \text { of } \\
& \operatorname{inl}(x) \rightarrow\langle a\rangle x \\
& \mid \operatorname{inr}(y) \rightarrow\langle a\rangle y
\end{aligned}
$$

[Ex. 7]

Locally fresh names

For example, here are some isomorphisms, described in an informal pseudocode:

$$
\begin{aligned}
i:[\mathrm{Al}](X+Y) & \cong[\mathrm{Al}] X+[\mathrm{Al}] Y \\
i(z) & =\operatorname{fresh} a \text { in case } z @ a \text { of } \\
& \begin{array}{l}
\operatorname{inl}(x) \rightarrow\langle a\rangle x \\
\mid \operatorname{inr}(y) \rightarrow\langle a\rangle y
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { given } f \in \operatorname{Nom}(X * \mathrm{Al}, Y) \\
\text { satisfying } a \# x \Rightarrow a \# f(x, a), \\
\text { we get } \hat{f} \in \operatorname{Nom}(X, Y) \text { well-defined by: } \\
\hat{f}(x)=f(x, a) \text { for some/any } a \# x \\
\text { Notation: fresh } a \text { in } f(x, a) \triangleq \hat{f}(x)
\end{gathered}
$$

Locally fresh names

For example, here are some isomorphisms, described in an informal pseudocode:

$$
\begin{aligned}
i:[\mathrm{Al}](X+Y) \cong & {[\mathrm{Al}] X+[\mathrm{Al}] Y } \\
i(z)= & \operatorname{fresh} a \text { in case } z @ a \text { of } \\
& \operatorname{inl}(x) \rightarrow\langle a\rangle x \\
& \mid \operatorname{inr}(y) \rightarrow\langle a\rangle y \\
j:([\mathrm{Al}] X \rightarrow[\mathrm{~A}] Y) \cong & {[\mathrm{Al}](X \rightarrow Y) } \\
j(f)= & \text { fresh } a \text { in } \\
& \langle a\rangle(\lambda x . f(\langle a\rangle x) @ a)
\end{aligned}
$$

Can one turn the pseudocode into terms in a formal 'nominal' λ-calculus?

Prior art

- Stark-Schöpp [CSL 2004] bunched contexts (+), extensional \& undecidable (-)
- Westbrook-Stump-Austin [LFMTP 2009] CNIC semantics/expressivity?
- Cheney [LMCS 2012] DNTT bunched contexts (+), no local fresh names (-)
- Fairweather-Fernández-Szasz-Tasistro [2012] based on nominal terms (+), explicit substitutions (-), first-order (\pm)
- Crole-Nebel [MFPS 2013]
simple types (-), definitional freshness (+)

Our art

- Stark-Schöpp [CSL 2004] bunched contexts $(+)$, extensional \& undecidable (-)
- Westbrook-Stump-Austin [LFMTP 2009] CNIC semantics/expressivity?
- Cheney [LMCS 2012] DNTT
bunched contexts (+), no local fresh names (-)
- Fairweather-Fernández-Szasz-Tasistro [2012] based on nominal terms (+), explicit substitutions (-), first-order (\pm)
- Crole-Nebel [MFPS 2013] simple types (-), definitional freshness (+)

AMP, J. Matthiesen and J. Derikx, A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50.

Aim

More specifically: extend (dependently typed) λ-calculus with

> names a
> name swapping swap a, b in t
> name abstraction $\langle a\rangle t$ and concretion $t @ a$
> locally fresh names fresh a in t
> name equality if $t=a$ then t_{1} else t_{2}

Difficulty: concretion and locally fresh names are partially defined - have to check freshness conditions.

$$
\begin{aligned}
& \text { e.g. for fresh } a \text { in } f(x, a) \text { to } \\
& \text { be well-defined, we need } \\
& a \# x \Rightarrow a \# f(x, a)
\end{aligned}
$$

Definitional freshness

In a nominal set of (higher-order) functions, proving $a \# f$ can be tricky (undecidable). Common proof pattern:

Given a, f, \ldots, pick a fresh name b and prove $(a b) \cdot f=f$. (For functions, equivalent to proving $\forall x$. $(a b) \cdot f(x)=f((a b) \cdot x)$.)

Definitional freshness

In a nominal set of (higher-order) functions, proving $a \# f$ can be tricky (undecidable). Common proof pattern:

Given a, f, \ldots, pick a fresh name b and prove $(a b) \cdot f=f$.
Since by choice of b we have b \# f, we also get $a=(a b) \cdot b \#(a b) \cdot f=f$, QED.

Definitional freshness

Definitional freshness

$$
\begin{gathered}
\Gamma \vdash a \# T \quad \Gamma \vdash t: T \\
\Gamma \#(b: \mathrm{Al}) \stackrel{(\operatorname{swap} a, b \text { in } t)=t: T}{\Gamma \vdash a \# t: T}
\end{gathered}
$$

Freshness info in bunched contexts gets used via:

$$
\frac{\Gamma(x: T) \Gamma^{\prime} \text { ok } \quad a, b \in \Gamma^{\prime}}{\Gamma(x: T) \Gamma^{\prime} \vdash(\operatorname{swap} a, b \text { in } x)=x: T}
$$

Definitional freshness

$$
\begin{gathered}
\Gamma \vdash a \# T \quad \Gamma \vdash t: T \\
\Gamma \#(b: A l) \hat{f}(\operatorname{swap} a, b \text { in } t)=t: T \\
\hline
\end{gathered} \frac{\Gamma \vdash a \# t: T}{}
$$

definitional freshness for types:

$$
\Gamma \vdash T \quad a \in \Gamma
$$

$\Gamma \#(b: A l) \vdash(\operatorname{swap} a, b$ in $T)=T$
$\Gamma \vdash a \# T$

A type theory

$$
\begin{aligned}
& \Gamma \vdash a \#(c: T) \\
& \frac{\Gamma \vdash a \# T \quad \Gamma \vdash e: T \quad \Gamma\left(\# a^{\prime}\right) \vdash\left(a a^{\prime}\right) * e=e: T}{\Gamma \vdash a \#(e: T)} \text { (DEP-FRESH-2) } \\
& \text { r }+e=e^{\prime}: T \\
& \frac{\Gamma \Gamma^{\prime} \vdash e: T \quad \mathrm{\Gamma} \mathrm{\Gamma}^{\prime} \vdash \boldsymbol{e}^{\prime}: T \quad \Gamma(\# a) \Gamma^{\prime} \vdash e=e^{\prime}: T}{\Gamma \Gamma^{\prime} \vdash e=e^{\prime}: T} \text { (ATM-strencthen) } \\
& \frac{\Gamma(x: T) \Gamma^{\prime} \vdash \quad a, a^{\prime} \in \operatorname{dom} \Gamma^{\prime}}{\Gamma(x: T) \Gamma^{\prime} \vdash\left(a a^{\prime}\right) * x=x: T} \text { (swAR-FRESH-VAR) } \\
& \frac{a \in \operatorname{dom}_{A} \Gamma \quad \Gamma \vdash e_{1}: T \quad \Gamma \vdash e_{2}: T}{\Gamma \vdash\left(\text { if } a=a \text { then } e_{1} \text { else } e_{2}\right)=e_{1}: T}(\text { (F-comp-1) } \\
& \frac{\Gamma \vdash a \#(e: A t m) \quad \Gamma \vdash e_{1}: T \quad \Gamma \vdash e_{2}: T}{\Gamma \vdash\left(\text { if } e=a \text { then } e_{1} \text { else } e_{2}\right)=e_{2}: T}(\text { IF-comp-2 }) \\
& \frac{\Gamma(\# a) \vdash a \#(e: T) \quad \Gamma(\# a) \Gamma^{\prime} \vdash}{\Gamma(\# a) \Gamma^{\prime} \vdash v a . e=e: T} \text { (LOcAl-COMP-2) } \\
& \frac{\Gamma(\# a) \vdash e: T \quad \Gamma(\# a) \vdash a^{\prime} \#(e: T) \quad a \neq a^{\prime}}{\Gamma \vdash(\alpha(\# a) \rightarrow e) \odot a^{\prime}=v a \cdot\left(a a^{\prime}\right) * e: v a .\left(a a^{\prime}\right) * T}(\text { ABS-COMP }) \\
& \frac{\Gamma \vdash e:(\# a) \rightarrow T}{\Gamma \vdash e=\alpha(\# a) \rightarrow(e Q a):(\# a) \rightarrow T} \text { (ABS-UNIQ) }
\end{aligned}
$$

A type theory

Nominal set semantics of dependent type theory

A family over $X \in$ Nom is specified by:

- X-indexed family of sets $\left(Y_{x} \mid x \in X\right)$
- dependently type permutation action

$$
\prod_{\pi \in \operatorname{Perm~Al}} \prod_{x \in X}\left(Y_{x} \rightarrow Y_{\pi \cdot x}\right)
$$

with dependent version of finite support property: for all $x \in X, e \in Y_{x}$ there is a finite set A of names supporting x in X and such that any π
fixing each $a \in A$ satisfies $\begin{aligned} \pi \cdot e & =\stackrel{e}{m} \\ Y_{\pi \cdot x} & =Y_{x}\end{aligned}$

Nominal set semantics of dependent type theory

A family over $X \in$ Nom is specified by...
Get a category with families (CwF) [Dybjer] modelling extensional MLTT, plus
nominal logic's Curry- dependent freshness quantifier Howard name-abstraction Иa. $\varphi(a, \vec{x}) \quad \longleftrightarrow \quad[a \in A l] Y_{a}$

Nominal set semantics of dependent type theory

A family over $X \in$ Nom is specified by...
Get a category with families (CwF) [Dybjer] modelling extensional MLTT, plus
nominal logic's
freshness quantifier
Иa. $\varphi(a, \vec{x})$
$=\exists a \# \vec{x} \cdot \varphi(a, \vec{x})$
$=\forall a \# \vec{x} . \varphi(a, \vec{x})$
'some/any fresh a '

Curry-
dependent
Howard name-abstraction
\longleftrightarrow
$[a \in \mathrm{Al}] Y_{a}$

For more details, see
AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50

But much remains to do, e.g.

- Explore inductively defined types involving [$a: \mathrm{Al}](-)$ (e.g. propositional freshness).
- Dependently typed pattern-matching with name-abstraction patterns.

Difficulties:

- Is definitional freshness too weak? (cf. experience with FreshML2000)
- Name-swapping with variables of type Al

Advert

Nominal Sets
Names and Symmetry in Computer Science

Cambridge Tracts in Theoretical Computer Science, Vol. 57 (CUP, 2013)

