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Nominal sets provide a mathematical theory of names
based on some simple math to do with properties
invariant under permuting names.
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Nominal sets provide a mathematical theory of names
based on some simple math to do with properties
invariant under permuting names.

Application area:
computing with / proving properties of
data involving name-binding & scoped local names
in functional programming languages and
theorem-proving systems.

Theory of nominal sets yields principles of structural
recursion and induction for syntax modulo renaming of
bound names which is close to informal practice and yet
fully formal.
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Outline
L1 Structural recursion and induction in the presence of
name-binding operations. Introducing the category of
nominal sets.

L2 Nominal algebraic data types and α-structural
recursion.

L3 Dependently typed λ-calculus with locally fresh
names and name-abstraction.
References:

AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.

AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50.
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Lecture 1
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For semantics, concrete syntax

letrec f x = if x > 100 then x − 10

else f ( f ( x + 11 ) ) in f ( x + 100 )

is unimportant compared to abstract syntax (ASTs):

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

We should aim for compositional semantics of program
constructions, rather than of whole programs.
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ASTs enable two fundamental (and inter-linked) tools in
programming language semantics:

! Definition of functions on syntax
by recursion on its structure.

! Proof of properties of syntax
by induction on its structure.
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Structural recursion

Recursive definitions of functions whose values at a
structure are given functions of their values at immediate
substructures.

! Gödel System T (1958):

structure = numbers
structural recursion = primitive recursion for N.

! Burstall, Martin-Löf et al (1970s) generalized this to
ASTs.
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Running example

Set of ASTs for λ-terms

Tr " {t ::= Va | A(t, t) | L(a, t)}

where a ∈ A, fixed infinite set of names of variables.

Operations for constructing these ASTs:

V : A ! Tr
A : Tr × Tr ! Tr
L : A × Tr ! Tr
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Structural recursion for Tr
Theorem.

Given f1 ∈ A ! X
f2 ∈ X × X ! X
f3 ∈ A × X !X

exists unique f̂ ∈ Tr !X satisfying

f̂ (Va) = f1 a

f̂ (A(t, t ′)) = f2( f̂ t, f̂ t ′)

f̂ (L(a, t)) = f3(a, f̂ t)
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Structural recursion for Tr
E.g. the finite set var t of variables occurring in t ∈ Tr :

var(Va) = {a}
var(A(t, t ′)) = (var t) ∪ (var t ′)
var(L(a, t)) = (var t) ∪ {a}

is defined by structural recursion using

! X = Pf(A) (finite sets of variables)
! f1 a = {a}

! f2(S, S
′) = S ∪ S′

! f3(a, S) = S ∪ {a}.
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Structural recursion for Tr
E.g. swapping: (a b) · t = result of transposing all
occurrences of a and b in t

For example

(a b) · L(a, A(Vb, V c)) = L(b, A(Va, V c))
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Structural recursion for Tr
E.g. swapping: (a b) · t = result of transposing all
occurrences of a and b in t

(a b) · V c = if c = a then Vb else
if c = b then Va else V c

(a b) · A(t, t ′) = A((a b) · t, (a b) · t ′)
(a b) · L(c, t) = if c = a then L(b, (a b) · t)

else if c = b then L(a, (a b) · t)
else L(c, (a b) · t)

is defined by structural recursion using. . .
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Structural recursion for Tr
Theorem.

Given f1 ∈ A ! X
f2 ∈ X × X ! X
f3 ∈ A × X !X
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Structural recursion for Tr
Theorem.

Given f1 ∈ A ! X
f2 ∈ X × X ! X
f3 ∈ A × X !X

exists unique f̂ ∈ Tr !X satisfying

f̂ (Va) = f1 a

f̂ (A(t, t ′)) = f2( f̂ t, f̂ t ′)

f̂ (L(a, t)) = f3(a, f̂ t)
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Alpha-equivalence

Smallest binary relation =α on Tr closed under the rules:

a ∈ A

Va =α Va

t1 =α t ′1 t2 =α t ′2

A(t1, t2) =α A(t ′1, t
′
2)

(a b) · t =α (a′ b) · t ′ b ! {a, a′} ∪ var(t) ∪ var(t ′)

L(a, t) =α L(a′, t ′)

E.g. A(L(a, A(Va, Vb)), V c) =α A(L(c, A(V c, Vb)), V c)
̸=α A(L(b, A(Vb, Vb)), V c)

Fact: =α is transitive (and reflexive & symmetric). [Ex. 1]
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ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

! pervasive (very many languages involve binding
operations)

! difficult to formalise/mechanise without losing
sight of common informal practice:
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ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

! pervasive (very many languages involve binding
operations)

! difficult to formalise/mechanise without losing
sight of common informal practice:

“We identify expressions up to alpha-equivalence”. . .
. . . and then forget about it, referring to
alpha-equivalence classes [t]α only via representatives t .
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ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

! pervasive (very many languages involve binding
operations)

! difficult to formalise/mechanise without losing
sight of common informal practice:

E.g. notation for λ-terms:

Λ " {[t]α | t ∈ Tr}
a means [Va]α ( = {Va})

e e′ means [A(t, t ′)]α , where e = [t]α and e′ = [t ′]α
λa.e means [L(a, t)]α where e = [t]α
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Informal structural recursion
E.g. capture-avoiding substitution:

f = (−)[e1/a1] : Λ ! Λ

f a = if a = a1 then e1 else a

f (e e′) = (f e) (f e′)

f (λa. e) = if a ! var(a1, e1) then λa. (f e)
else don’t care!

Not an instance of structural recursion for Tr .

Why is f well-defined and total?
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Informal structural recursion
E.g. denotation of λ-term in a suitable domain D:

"−# : Λ ! ((A ! D) ! D)

"a#ρ = ρ a

"e e′#ρ = app("e#ρ , "e′#ρ)

"λa. e#ρ = fun(λ(d ∈ D) ! "e#(ρ[a ! d]))

where

{
app ∈ D × D !cts D
fun ∈ (D !cts D) !cts D

are continuous functions satisfying. . .
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Informal structural recursion
E.g. denotation of λ-term in a suitable domain D:

"−# : Λ ! ((A ! D) ! D)

"a#ρ = ρ a

"e e′#ρ = app("e#ρ , "e′#ρ)

"λa. e#ρ = fun(λ(d ∈ D) ! "e#(ρ[a ! d]))

why is this very standard
definition independent of the
choice of bound variable a?

ρ[a ! d] is the element of
A ! D that maps a to d
and otherwise acts like ρ
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Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ ! Λ and "−# : Λ ! D (and

many other e.g.s)?
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Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ ! Λ and "−# : Λ ! D (and

many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.
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Preliminaries on name-permutations

! A = fixed countably infinite set of names (a,b,. . . )
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Preliminaries on name-permutations

! A = fixed countably infinite set of names (a,b,. . . )
! PermA = group of finite permutations of A

(π , π ′,. . . )
! π finite means: {a ∈ A | π (a) " a} is finite.
! group: multiplication is composition of functions π ′ ◦ π ;

identity is identity function ι.

! swapping: (a b) ∈ PermA is the function mapping a
to b, b to a and fixing all other names.

Fact: every π ∈ PermA is equal to
(a1 b1) ◦ · · · ◦ (an bn)

for some ai & bi (with π ai " ai " bi " π bi).
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Preliminaries on name-permutations

! A = fixed countably infinite set of names (a,b,. . . )
! PermA = group of finite permutations of A

(π , π ′,. . . )
! action of PermA on a set X is a function

(−) · (−) : PermA × X !X

satisfying for all x ∈ X
! π ′ · (π · x) = (π ′ ◦ π ) · x
! ι · x = x
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Running example

Action of PermA on set of ASTs for λ-terms

Tr " {t ::= Va | A(t, t) | L(a, t)}

π · Va = V(π a)
π · A(t, t ′) = A(π · t, π · t ′)
π · L(a, t) = L(π a, π · t)

This respects α-equivalence and so induces an action on
set of λ-terms Λ = {[t]α | t ∈ Tr}:

π · [t]α = [π · t]α
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Nominal sets
are sets X with with a PermA-action satisfying

Finite support property: for each x ∈ X , there is a
finite subset a ⊆ A that supports x , in the sense that for
all π ∈ PermA

((∀a ∈ a) π a = a) ⇒ π · x = x

Fact: in a nominal set every x ∈ X possesses a smallest
finite support, written suppx .

(Swan: this Fact relies on a (weak form of) the Law of Excluded Middle in
classical logic; see arXiv:1702.01556.)
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Nominal sets
are sets X with with a PermA-action satisfying

Finite support property: for each x ∈ X , there is a
finite subset a ⊆ A that supports x , in the sense that for
all π ∈ PermA

((∀a ∈ a) π a = a) ⇒ π · x = x

Fact: in a nominal set every x ∈ X possesses a smallest
finite support, written suppx .

E.g. Tr and Λ are nominal sets—any a containing all the variables
occurring (free, binding, or bound) in t ∈ Tr supports t and (hence)
[t]α .

Fact: for e ∈ Λ, supp e = set of free variables of e. [Ex. 2]
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Further examples of support

[PermA acts of sets of names S ⊆ A pointwise:

π · S " {π a | a ∈ S}.]

What is a support for the following sets of names?

! S1 " {a}

! S2 " A − {a}

! S3 " {a0,a2, a4, . . .}, where A = {a0,a1, a2, . . .}
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Further examples of support

[PermA acts of sets of names S ⊆ A pointwise:

π · S " {π a | a ∈ S}.]

What is a support for the following sets of names?

! S1 " {a}
Answer: {a} is smallest support.

! S2 " A − {a}
Answer: {a} is smallest support.

! S3 " {a0,a2, a4, . . .}, where A = {a0,a1, a2, . . .}
Answer: {a0, a2,a4, . . .} is a support, and so is
{a1,a3, a5, . . .}—but there is no finite support. S3 does not exist
in the ‘world of nominal sets’—in that world A is infinite, but
not enumerable.
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Category of nominal sets, Nom

! objects are nominal sets
! morphisms are functions f ∈ X ! Y that are

equivariant:

π · (f x) = f (π · x)

for all π ∈ PermA, x ∈ X .
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Category of nominal sets, Nom
Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the
geometric theory of an infinite decidable object.

So in particular Nom is a model of Church’s classical
higher-order logic.
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Category of nominal sets, Nom
Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the
geometric theory of an infinite decidable object.

Finite products: X1 × · · · ×Xn is cartesian product of
sets with PermA-action

π · (x1, . . . , xn) " (π · x1, . . . , π · xn)

which satisfies

supp(x, . . . , xn) = (suppx1) ∪ · · · ∪ (suppxn)

[Ex. 3]
21/56



Category of nominal sets, Nom
Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the
geometric theory of an infinite decidable object.

Coproducts are given by disjoint union. [Ex. 7]

Natural number object: N = {0, 1, 2, . . .} with trivial
PermA-action: π · n " n (so suppn = ∅).
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Category of nominal sets, Nom
Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the
geometric theory of an infinite decidable object.

Exponentials: X !fs Y is the set of functions f ∈ YX

that are finitely supported w.r.t. the PermA-action

π · f " λ(x ∈ X ) ! π · (f (π−1 · x))

[Ex. 5]

(Can be tricky to see when f ∈ YX is in X !fs Y .)
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Category of nominal sets, Nom
Fact. Nom is equivalent to the Schanuel topos, a
well-known Grothendieck topos classifying the
geometric theory of an infinite decidable object.

Subobject classifier: Ω = {true, false} with trivial
PermA-action: π · b " b (so suppb = ∅).

(Nom is a Boolean topos: Ω = 1 + 1.)

Power objects: X !fs Ω # PfsX , the set of subsets
S ⊆ X that are finitely supported w.r.t. the
PermA-action

π · S " {π · x | x ∈ S}
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The nominal set of names
A is a nominal set once equipped with the action

π · a = π (a)

which satisfies suppa = {a}.

N.B. A is not N! Although A ∈ Set is a countable, any
f ∈ N !fs A has to satisfy

{ f n} = supp(f n) ⊆ supp f ∪ suppn = supp f

for all n ∈ N, and so f cannot be surjective.
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Nom ̸|= choice

Nom models classical higher-order logic, but not
Hilbert’s ε-operation εx .φ(x), which satisfies

(∀x : X ) φ(x)⇒ φ(εx .φ(x))

Theorem. There is no equivariant function
c : {S ∈ PfsA | S " ∅} → A satsifying c(S) ∈ S for all
non-empty S ∈ PfsA.

Proof. Suppose there were such a c. Putting a " c A and picking
some b ∈ A − {a}, we get a contradiction to a " b:

a = c A = c((a b) · A) = (a b) · c A = (a b) · a = b
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Nom ̸|= choice

Nom models classical higher-order logic, but not
Hilbert’s ε-operation εx .φ(x), which satisfies

(∀x : X ) φ(x)⇒ φ(εx .φ(x))

In fact Nom does not model even very weak forms of
choice, such as Dependent Choice.
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Freshness
For each nominal set X , we can define a relation
# ⊆ A × X of freshness:

a # x " a ! suppx
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Freshness
For each nominal set X , we can define a relation
# ⊆ A × X of freshness:

a # x " a ! suppx

! In N, a # n always.

! In A, a # b iff a " b.

! In Λ, a # t iff a ! fv t .

! In X × Y , a # (x,y) iff a # x and a # y.

! In X !fs Y , a # f can be subtle!
(and hence ditto for PfsX )
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Lecture 2
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Outline
L1 Structural recursion and induction in the presence of
name-binding operations. Introducing the category of
nominal sets.

L2 Nominal algebraic data types and α-structural
recursion.

L3 Dependently typed λ-calculus with locally fresh
names and name-abstraction.
References:

AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.

AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50.

26/56

https://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf
https://www.cl.cam.ac.uk/~amp12/papers/deptta/deptta.pdf


Recall: Alpha-equivalence

Smallest binary relation =α on Tr closed under the rules:

a ∈ A

Va =α Va

t1 =α t ′1 t2 =α t ′2

A(t1, t2) =α A(t ′1, t
′
2)

(a b) · t =α (a′ b) · t ′ b ! {a, a′} ∪ var(t) ∪ var(t ′)

L(a, t) =α L(a′, t ′)

E.g. A(L(a, A(Va, Vb)), V c) =α A(L(c, A(V c, Vb)), V c)
̸=α A(L(b, A(Vb, Vb)), V c)

Fact: =α is transitive (and reflexive & symmetric). [Ex. 1]
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Name abstraction
Each X ∈ Nom yields a nominal set [A]X of

name-abstractions ⟨a⟩x are ∼-equivalence classes of
pairs (a, x) ∈ A × X , where

(a, x) ∼ (a′, x′) ⇔ ∃b # (a, x, a′, x′)
(b a) · x = (b a′) · x′

The PermA-action on [A]X is well-defined by

π · ⟨a⟩x = ⟨π (a)⟩(π · x)

Fact: supp(⟨a⟩x) = suppx − {a}, so that

b # ⟨a⟩x ⇔ b = a ∨ b # x
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Name abstraction
Each X ∈ Nom yields a nominal set [A]X of

name-abstractions ⟨a⟩x are ∼-equivalence classes of
pairs (a, x) ∈ A × X , where

(a, x) ∼ (a′, x′) ⇔ ∃b # (a, x, a′, x′)
(b a) · x = (b a′) · x′

We get a functor [A](−) : Nom ! Nom sending f ∈ Nom(X ,Y ) to
[A]f ∈ Nom([A]X , [A]Y ) where

[A]f (⟨a⟩x) = ⟨a⟩(f x)
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Name abstraction
[A](−) : Nom ! Nom is a kind of (affine) function space—it is right
adjoint to the functor A ⊗ (−) : Nom ! Nom sending X to
A ⊗ X = {(a, x) | a # x}.

Co-unit of the adjunction is ‘concretion’ of an abstraction

@ : ([A]X ) ⊗ A→ X

defined by computation rule:

(⟨a⟩x) @ b = (b a) · x , if b # ⟨a⟩x

[Ex. 6]
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Name abstraction
Generalising concretion, we have the following
characterization of morphisms out of [A]X

Theorem. f ∈ (A × X ) !fs Y factors through the
subquotient A × X ⊇ {(a, x) | a # f } # [A]X to give a
unique element of f ∈ ([A]X ) !fs Y satisfying

f (⟨a⟩x) = f (a, x) if a # f

iff (∀a ∈ A) a # f ⇒ (∀x ∈ X ) a # f (a, x)

iff (∃a ∈ A) a # f ∧ (∀x ∈ X ) a # f (a, x).
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Initial algebras

! [A](−) has excellent exactness properties. It can be
combined with ×, + and X !fs (−) to give functors
T : Nom ! Nom that have initial algebras
I : TD ! D

TD

I

TX

Ffor all

D X
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Initial algebras

! [A](−) has excellent exactness properties. It can be
combined with ×, + and X !fs (−) to give functors
T : Nom ! Nom that have initial algebras
I : TD ! D

TD T F̂

I

TX

F

D
F̂

exists unique
X
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Initial algebras

! [A](−) has excellent exactness properties. It can be
combined with ×, + and X !fs (−) to give functors
T : Nom ! Nom that have initial algebras
I : TD ! D

! For a wide class of such functors (nominal algebraic
functors) the initial algebra D coincides with
ASTs/α-equivalence.
E.g. Λ is the initial algebra for

T(−) " A + (− × −) + [A](−)
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Nominal algebraic signatures

! Sorts S ::= N name-sort (here just one, for simplicity)

| D data-sorts
| 1 unit
| S , S pairs
| N . S name-binding

! Typed operations op : S ! D

Signature Σ is specified by the stuff in red.
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Nominal algebraic signatures

Example: λ-calculus

name-sort Var for variables, data-sort Term for terms,
and operations

V : Var→ Term

A : Term , Term→ Term

L : Var . Term→ Term
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Nominal algebraic signatures

Example: π -calculus
name-sort Chan for channel names, data-sorts Proc, Pre and Sum
for processes, prefixed processes and summations, and operations

S : Sum→ Proc

Comp : Proc , Proc→ Proc

Nu : Chan . Proc→ Proc

! : Proc→ Proc

P : Pre→ Sum

O : 1→ Sum

Plus : Sum , Sum→ Sum

Out : Chan , Chan , Proc→ Pre

In : Chan , (Chan . Proc)→ Pre

Tau : Proc→ Pre

Match : Chan , Chan , Pre→ Pre
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Nominal algebraic signatures

Closely related notions:

! binding signatures of Fiore, Plotkin & Turi (LICS
1999)

! nominal algebras of Honsell, Miculan & Scagnetto
(ICALP 2001)

N.B. all these notions of signature restrict attention to iterated, but unary
name-binding—there are other kinds of lexically scoped binder (e.g. see Pottier’s
Cαml language, or Blanchette et al POPL 2019.)
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Σ(S) = raw terms over Σ of sort S

a ∈ A

a ∈ Σ(N)

t ∈ Σ(S) op : S→ D

op t ∈ Σ(D) () ∈ Σ(1)

t1 ∈ Σ(S1) t2 ∈ Σ(S2)

t1 , t2 ∈ Σ(S1 , S2)

a ∈ A t ∈ Σ(S)

a . t ∈ Σ(N . S)

Each Σ(S) is a nominal set once equipped with the
obvious PermA-action—any finite set of atoms
containing all those occurring in t supports t ∈ Σ(S).
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Alpha-equivalence =α ⊆ Σ(S) × Σ(S)

a ∈ A

a =α a

t =α t ′

op t =α op t ′ () =α ()

t1 =α t ′1 t2 =α t ′2

t1 , t2 =α t ′1 , t
′
2

(a1 a) · t1 =α (a2 a) · t2 a # (a1, t1, a2, t2)

a1 . t1 =α a2 . t2
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Alpha-equivalence =α ⊆ Σ(S) × Σ(S)

Fact: =α is equivariant (t1 =α t2 ⇒ π · t1 =α π · t2) and
each quotient

Σα (S) " {[t]α | t ∈ Σ(S)}

is a nominal set with

π · [t]α = [π · t]α
supp [t]α = fn t

where
fn(a . t) = fn t − {a}
fn(t1 , t2) = fn t1 ∪ fn t2

etc.
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Theorem. Given a nominal algebraic signature Σ
(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα (D) is an initial algebra for the
associated functor TΣ : Nom→ Nom.
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Theorem. Given a nominal algebraic signature Σ
(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα (D) is an initial algebra for the
associated functor TΣ : Nom→ Nom.

TΣ(−) = "S1#(−) + · · · + "Sn#(−)

where Σ has operations opi : Si → D (i = 1..n)

and "S#(−) : Nom→ Nom is defined by:

"N#(−) = A

"D#(−) = (−)
"1#(−) = 1

"S1 , S2#(−) = "S1#(−) × "S2#(−)
"N . S#(−) = [A]("S#(−))
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Theorem. Given a nominal algebraic signature Σ
(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα (D) is an initial algebra for the
associated functor TΣ : Nom→ Nom.

E.g. for the λ-calculus signature with operations

V : Var→ Term

A : Term , Term→ Term

L : Var . Term→ Term

we have

TΣ(−) = A + (− × −) + [A](−)
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Theorem. Given a nominal algebraic signature Σ
(for simplicity, assume Σ has a single data-sort D as well as a single

name-sort N)

Σα (D) is an initial algebra for the
associated enriched functor TΣ : Nom→ Nom.

TΣ not only acts on equivariant (=emptily supported)
functions, but also on finitely supported functions:

(X !fs Y ) → (TΣX !fs TΣ Y )
F 6→ TΣ F
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α-Structural recursion
For λ-terms:
Theorem.
Given any X ∈ Nom and

⎧⎪⎪⎨

⎪⎪
⎩

f1 ∈ A !fs X
f2 ∈ X ×X !fs X
f3 ∈ [A]X !fs X

∃! f̂ ∈ Λ !fs X
s.t.

⎧⎪⎪⎨

⎪⎪
⎩

f̂ a = f1 a

f̂ (e1 e2)= f2( f̂ e1, f̂ e2)

f̂ (λa.e)= f3(⟨a⟩( f̂ e)) ifa # (f1, f2, f3)

The enriched functor [A](−) : Nom ! Nom sends f ∈ X !fs Y to
[A]f ∈ [A]X !fs [A]Y where

[A]f (⟨a⟩x) = ⟨a⟩(f x) if a # f
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α-Structural recursion
For λ-terms:
Theorem.
Given any X ∈ Nom and

⎧⎪⎪⎨

⎪⎪
⎩

f1 ∈ A !fs X
f2 ∈ X ×X !fs X
f3 ∈ A × X !fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ !fs X
s.t.

⎧⎪⎪⎨

⎪⎪
⎩

f̂ a = f1 a

f̂ (e1 e2)= f2( f̂ e1, f̂ e2)

f̂ (λa.e)= f3(a, f̂ e) if a # (f1, f2, f3)
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Name abstraction
Recall:
Theorem. f ∈ (A × X ) !fs Y factors through the
subquotient A × X ⊇ {(a, x) | a # f } # [A]X to give a
unique element of f ∈ ([A]X ) !fs Y satisfying

f (⟨a⟩x) = f (a, x) if a # f

iff (∀a ∈ A) a # f ⇒ (∀x ∈ X ) a # f (a, x)

iff (∃a ∈ A) a # f ∧ (∀x ∈ X ) a # f (a, x).
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α-Structural recursion
For λ-terms:
Theorem.
Given any X ∈ Nom and

⎧⎪⎪⎨

⎪⎪
⎩

f1 ∈ A !fs X
f2 ∈ X ×X !fs X
f3 ∈ A × X !fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ !fs X
s.t.

⎧⎪⎪⎨

⎪⎪
⎩

f̂ a = f1 a

f̂ (e1 e2)= f2( f̂ e1, f̂ e2)

f̂ (λa.e)= f3(a, f̂ e) if a # (f1, f2, f3)

E.g. capture-avoiding substitution (−)[e′/a′] : Λ ! Λ is the f̂ for

f1 a " if a = a′ then e ′ else a
f2(e1, e2) " e1 e2
f3(a, e) " λa.e

for which (FCB) holds, since a # λa.e
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α-Structural recursion
For λ-terms:
Theorem.
Given any X ∈ Nom and

⎧⎪⎪⎨

⎪⎪
⎩

f1 ∈ A !fs X
f2 ∈ X ×X !fs X
f3 ∈ A × X !fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ !fs X
s.t.

⎧⎪⎪⎨

⎪⎪
⎩

f̂ a = f1 a

f̂ (e1 e2)= f2( f̂ e1, f̂ e2)

f̂ (λa.e)= f3(a, f̂ e) if a # (f1, f2, f3)

E.g. size function Λ ! N is the f̂ for

f1 a " 0
f2(n1,n2) " n1 + n2
f3(a,n) " n + 1

for which (FCB) holds, since a # (n + 1)
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α-Structural recursion
For λ-terms:
Theorem.
Given any X ∈ Nom and

⎧⎪⎪⎨

⎪⎪
⎩

f1 ∈ A !fs X
f2 ∈ X ×X !fs X
f3 ∈ A × X !fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ !fs X
s.t.

⎧⎪⎪⎨

⎪⎪
⎩

f̂ a = f1 a

f̂ (e1 e2)= f2( f̂ e1, f̂ e2)

f̂ (λa.e)= f3(a, f̂ e) if a # (f1, f2, f3)

Non-example: trying to list the bound variables of a λ-term

f1 a " nil
f2(ℓ1, ℓ2) " ℓ1 @ ℓ2
f3(a, ℓ) " a :: ℓ

for which (FCB) does not hold, since a ∈ supp(a :: ℓ).
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α-Structural recursion
For λ-terms:
Theorem.
Given any X ∈ Nom and

⎧⎪⎪⎨

⎪⎪
⎩

f1 ∈ A !fs X
f2 ∈ X ×X !fs X
f3 ∈ A × X !fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ !fs X
s.t.

⎧⎪⎪⎨

⎪⎪
⎩

f̂ a = f1 a

f̂ (e1 e2)= f2( f̂ e1, f̂ e2)

f̂ (λa.e)= f3(a, f̂ e) if a # (f1, f2, f3)

Similar results hold for any nominal algebraic signature—see
J ACM 53(2006)459–506.

Implemented in Urban & Berghofer’s Nominal package for
Isabelle/HOL (classical higher-order logic).

Seems to capture informal usage well, but (FCB) can be tricky. . .
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Counting occurrences
of bound variables

For each e ∈ Λ, cbv e " f e ρ0 ∈ N

where we want f ∈ Λ !fs X with X = (A !fs N) !fs N to
satisfy

f a ρ = ρ a
f (e1 e2) ρ = (f e1ρ) + (f e2 ρ)
f (λa.e) ρ = f e (ρ[a 6→ 1])

and where ρ0 ∈ A !fs N is λ(a ∈ A) ! 0.
E.g. when e = (λa. λb . a)b (with a " b), then e has a single occurrence of a bound
variable (called a) and cbv e = 1.
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Counting occurrences
of bound variables

For each e ∈ Λ, cbv e " f e ρ0 ∈ N

where we want f ∈ Λ !fs X with X = (A !fs N) !fs N to
satisfy

f a ρ = ρ a
f (e1 e2) ρ = (f e1ρ) + (f e2 ρ)
f (λa.e) ρ = f e (ρ[a 6→ 1])

and where ρ0 ∈ A !fs N is λ(a ∈ A) ! 0.

Looks like we should take f3(a, x) = λ(ρ ∈ A !fs N) ! x(ρ[a 6→ 1]),
but this does not satisfy (FCB). Solution: take X to be a certain
nominal subset of (A !fs N) !fs N. [See Nominal Sets book,
Example 8.20]
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Lecture 3
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Outline
L1 Structural recursion and induction in the presence of
name-binding operations. Introducing the category of
nominal sets.

L2 Nominal algebraic data types and α-structural
recursion.

L3 Dependently typed λ-calculus with locally fresh
names and name-abstraction.
References:

AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.

AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50.
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Original motivation for Gabbay & AMP to introduce
nominal sets and name abstraction:

[A]( ) can be combined with × and + to give
functors Nom→ Nom that have initial
algebras coinciding with sets of abstract syntax
trees modulo α-equivalence.

E.g. the initial algebra for A + ( × ) + [A]( ) is
isomorphic to the usual set of untyped λ-terms.
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Recall: α-Structural recursion
For λ-terms:
Theorem.
Given any X ∈ Nom and

⎧⎪⎪⎨

⎪⎪
⎩

f1 ∈ A !fs X
f2 ∈ X ×X !fs X
f3 ∈ A × X !fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ !fs X
s.t.

⎧⎪⎪⎨

⎪⎪
⎩

f̂ a = f1 a

f̂ (e1 e2)= f2( f̂ e1, f̂ e2)

f̂ (λa.e)= f3(a, f̂ e) if a # (f1, f2, f3)

Can we avoid explicit reasoning about finite support, # and (FCB)
when computing ‘mod α ’?

Want definition/computation to be separate from proving.
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f̂ = f1 a

f̂ (e1 e2) = f2( f̂ e1, f̂ e2)

f̂ (λa. e) = f3(a, f̂ e) if a # (f1, f2, f2)

= λa′. e′ = f3(a′, f̂ e′)

Q: how to get rid of this inconvenient proof obligation?
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f̂ = f1 a

f̂ (e1 e2) = f2( f̂ e1, f̂ e2)

f̂ (λa. e) = νa. f3(a, f̂ e) [ a # (f1, f2, f2) ]

= λa′. e′ = νa′. f3(a′, f̂ e′) OK !

Q: how to get rid of this inconvenient proof obligation?

A: use a local scoping construct νa. (−) for names
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f̂ = f1 a

f̂ (e1 e2) = f2( f̂ e1, f̂ e2)

f̂ (λa. e) = νa. f3(a, f̂ e) [ a # (f1, f2, f2) ]

= λa′. e′ = νa′. f3(a′, f̂ e′) OK !

Q: how to get rid of this inconvenient proof obligation?

A: use a

which one?!

local scoping construct νa. (−) for names
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Dynamic allocation

! Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

! Used in Shinwell’s Fresh OCaml = OCaml +
! name types and name-abstraction type former
! name-abstraction patterns

—matching involves dynamic allocation of fresh names
[MR Shinwell, AMP, MJ Gabbay,
FreshML: Programming with Binders Made Simple, Proc. ICFP 2003.]

[www.cl.cam.ac.uk/users/amp12/fresh-ocaml]
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Sample Fresh OCaml code
(* syntax *)
type t;;
type var = t name;;
type term = Var of var | Lam of <<var>>term | App of term*term;;

(* semantics *)
type sem = L of ((unit -> sem) -> sem) | N of neu
and neu = V of var | A of neu*sem;;

(* reify : sem -> term *)
let rec reify d =

match d with L f -> let x = fresh in Lam(<<x>>(reify(f(function () -> N(V x)))))
| N n -> reifyn n

and reifyn n =
match n with V x -> Var x

| A(n’,d’) -> App(reifyn n’, reify d’);;

(* evals : (var * (unit -> sem))list -> term -> sem *)
let rec evals env t =

match t with Var x -> (match env with [] -> N(V x)
| (x’,v)::env -> if x=x’ then v() else evals env (Var x))

| Lam(<<x>>t) -> L(function v -> evals ((x,v)::env) t)
| App(t1,t2) -> (match evals env t1 with L f -> f(function () -> evals env t2)

| N n -> N(A(n,evals env t2)));;

(* eval : term -> sem *)
let rec eval t = evals [] t;;

(* norm : lam -> lam *)
let norm t = reify(eval t);;
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Dynamic allocation

! Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

! Used in Shinwell’s Fresh OCaml = OCaml +
! name types and name-abstraction type former
! name-abstraction patterns

—matching involves dynamic allocation of fresh names
[MR Shinwell, AMP, MJ Gabbay,
FreshML: Programming with Binders Made Simple, Proc. ICFP 2003.]

[www.cl.cam.ac.uk/users/amp12/fresh-ocaml]
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Dynamic allocation

! Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

Statefulness disrupts familiar mathematical properties
of pure datatypes. So let’s try to reject it in favour of. . .
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Aim

A version of Martin-Löf Type Theory
enriched with constructs for

locally fresh names and name-abstraction

from the theory of nominal sets.

Motivation:

Machine-assisted construction of
humanly understandable formal proofs

about software (PL semantics).
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Aim
More specifically: extend (dependently typed) λ-calculus
with

names a
name swapping swap a,b in t
name abstraction ⟨a⟩t and concretion t @ a
locally fresh names fresh a in t
name equality if t = a then t1 else t2
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Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i : [A](X + Y ) # [A]X + [A]Y
i(z) = fresh a in case z @ a of

inl(x) ! ⟨a⟩x
| inr(y) ! ⟨a⟩y

[Ex. 7]
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Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i : [A](X + Y ) # [A]X + [A]Y
i(z) = fresh a in case z @ a of

inl(x) ! ⟨a⟩x
| inr(y) ! ⟨a⟩y

given f ∈ Nom(X ∗ A,Y )
satisfying a # x ⇒ a # f (x,a),

we get f̂ ∈ Nom(X ,Y ) well-defined by:
f̂ (x) = f (x,a) for some/any a # x .

Notation: fresh a in f (x,a) " f̂ (x)
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Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i : [A](X + Y ) # [A]X + [A]Y
i(z) = fresh a in case z @ a of

inl(x) ! ⟨a⟩x
| inr(y) ! ⟨a⟩y

j : ([A]X ! [A]Y ) # [A](X ! Y )
j(f ) = fresh a in

⟨a⟩(λx . f (⟨a⟩x) @ a)

Can one turn the pseudocode into terms in a formal
‘nominal’ λ-calculus?
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Prior art

! Stark-Schöpp [CSL 2004]
bunched contexts (+), extensional & undecidable (−)

! Westbrook-Stump-Austin [LFMTP 2009] CNIC
semantics/expressivity?

! Cheney [LMCS 2012] DNTT
bunched contexts (+), no local fresh names (−)

! Fairweather-Fernández-Szasz-Tasistro [2012]
based on nominal terms (+), explicit substitutions (−), first-order (±)

! Crole-Nebel [MFPS 2013]
simple types (−), definitional freshness (+)
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Our art

! Stark-Schöpp [CSL 2004]
bunched contexts (+), extensional & undecidable (−)

! Westbrook-Stump-Austin [LFMTP 2009] CNIC
semantics/expressivity?

! Cheney [LMCS 2012] DNTT
bunched contexts (+), no local fresh names (−)

! Fairweather-Fernández-Szasz-Tasistro [2012]
based on nominal terms (+), explicit substitutions (−), first-order (±)

! Crole-Nebel [MFPS 2013]
simple types (−), definitional freshness (+)

AMP, J. Matthiesen and J. Derikx, A Dependent Type Theory with Abstractable
Names, ENTCS 312(2015)19-50.
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Aim
More specifically: extend (dependently typed) λ-calculus
with

names a
name swapping swap a,b in t
name abstraction ⟨a⟩t and concretion t @ a
locally fresh names fresh a in t
name equality if t = a then t1 else t2

Difficulty: concretion and locally fresh names are
partially defined – have to check freshness conditions.

e.g. for fresh a in f (x,a) to
be well-defined, we need
a # x ⇒ a # f (x,a)
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Definitional freshness
In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f , . . ., pick a fresh name b and prove
(a b) · f = f . (For functions, equivalent to prov-
ing ∀x . (a b) · f (x) = f ((a b) · x).)
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Definitional freshness
In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f , . . ., pick a fresh name b and prove
(a b) · f = f .
Since by choice of b we have b # f , we also get
a = (a b) · b # (a b) · f = f , QED.
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Definitional freshness

Γ ⊢ a # T Γ ⊢ t : T
Γ#(b : A) ⊢ (swap a,b in t)= t : T

Γ ⊢ a# t : T

bunched contexts, generated by
Γ 6→ Γ(x : T )
Γ 6→ Γ#(a : A)

definitional
equality

definitional
freshness
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Definitional freshness

Γ ⊢ a # T Γ ⊢ t : T
Γ#(b : A) ⊢ (swap a,b in t)= t : T

Γ ⊢ a# t : T

Freshness info in bunched contexts gets used via:

Γ(x : T )Γ′ ok a,b ∈ Γ′

Γ(x : T )Γ′ ⊢ (swap a,b in x) = x : T
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Definitional freshness

Γ ⊢ a # T Γ ⊢ t : T
Γ#(b : A) ⊢ (swap a,b in t)= t : T

Γ ⊢ a# t : T

definitional freshness for types:
Γ ⊢ T a ∈ Γ

Γ#(b : A) ⊢ (swap a,b inT ) = T

Γ ⊢ a # T
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A type theory
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Nominal set semantics of
dependent type theory

A family over X ∈ Nom is specified by:

! X -indexed family of sets (Yx | x ∈ X )
! dependently type permutation action

∏
π∈PermA

∏
x∈X (Yx ! Yπ ·x)

with dependent version of finite support property:
for all x ∈ X , e ∈ Yx there is a finite set A of
names supporting x in X and such that any π

fixing each a ∈ A satisfies
π · e = e∈ ∈

Yπ ·x = Yx
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Nominal set semantics of
dependent type theory

A family over X ∈ Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT, plus

nominal logic’s Curry- dependent

freshness quantifier Howard name-abstraction

Na. φ(a, 9x) ←→ [a ∈ A]Ya
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Nominal set semantics of
dependent type theory

A family over X ∈ Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT, plus

nominal logic’s Curry- dependent

freshness quantifier Howard name-abstraction

Na. φ(a, 9x) ←→ [a ∈ A]Ya

= ∃a # 9x . φ(a, 9x)
= ∀a # 9x . φ(a, 9x)

‘some/any fresh a’
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For more details, see
AMP, J. Matthiesen and J. Derikx,
A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50

But much remains to do, e.g.

! Explore inductively defined types involving
[a : A]( ) (e.g. propositional freshness).

! Dependently typed pattern-matching with
name-abstraction patterns.

Difficulties:

! Is definitional freshness too weak? (cf. experience
with FreshML2000)

! Name-swapping with variables of type A

55/56

https://www.cl.cam.ac.uk/~amp12/papers/deptta/deptta.pdf


Advert

Nominal Sets

Names and Symmetry in Computer
Science

Cambridge Tracts in Theoretical
Computer Science, Vol. 57
(CUP, 2013)
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