Nominal Sets and Functional Programming

Andrew Pitts

Computer Science & Technology

FoPPS 2019

Nominal sets provide a mathematical theory of *names* based on some simple math to do with properties invariant under permuting names.

Nominal sets provide a mathematical theory of *names* based on some simple math to do with properties invariant under permuting names.

Application area:

computing with / proving properties of data involving name-binding & scoped local names in functional programming languages and theorem-proving systems.

Theory of nominal sets yields principles of structural recursion and induction for syntax modulo renaming of bound names which is close to informal practice and yet fully formal.

Outline

L1 Structural recursion and induction in the presence of name-binding operations. Introducing the category of nominal sets.

L2 Nominal algebraic data types and α -structural recursion.

L3 Dependently typed λ -calculus with locally fresh names and name-abstraction.

References:

AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.

AMP, J. Matthiesen and J. Derikx, *A Dependent Type Theory with Abstractable Names*, ENTCS 312(2015)19-50.

Lecture 1

For semantics, concrete syntax

is unimportant compared to abstract syntax (ASTs):

We should aim for compositional semantics of program constructions, rather than of whole programs.

ASTs enable two fundamental (and inter-linked) tools in programming language semantics:

- Definition of functions on syntax by recursion on its structure.
- Proof of properties of syntax by induction on its structure.

Structural recursion

Recursive definitions of functions whose values at a *structure* are given functions of their values at *immediate substructures*.

► Gödel System T (1958):

structure = numbers structural recursion = primitive recursion for **IN**.

 Burstall, Martin-Löf *et al* (1970s) generalized this to ASTs.

Running example

Set of ASTs for λ -terms

$$Tr \triangleq \{t ::= V a \mid A(t, t) \mid L(a, t)\}$$

where $a \in A$, fixed infinite set of names of variables. Operations for constructing these ASTs:

$$V : A \to Tr$$

$$A : Tr \times Tr \to Tr$$

$$L : A \times Tr \to Tr$$

Theorem.

 $f_1 \in \mathbb{A} \to X$ Given $f_2 \in X \times X \to X$ $f_3 \in A \times X \to X$ exists unique $\hat{f} \in Tr \to X$ satisfying $\hat{f}(Va) = f_1a$ $\hat{f}(\mathbf{A}(t,t')) = f_2(\hat{f}t,\hat{f}t')$ $\hat{f}(L(a,t)) = f_3(a, \hat{f}t)$

E.g. the finite set var *t* of variables occurring in $t \in Tr$:

 $var(Va) = \{a\}$ $var(A(t, t')) = (var t) \cup (var t')$ $var(L(a, t)) = (var t) \cup \{a\}$

is defined by structural recursion using

- $X = P_f(A)$ (finite sets of variables)
- $f_1 a = \{a\}$
- $\blacktriangleright f_2(S,S') = S \cup S'$
- $\blacktriangleright f_3(a,S) = S \cup \{a\}.$

E.g. swapping: $(a \ b) \cdot t$ = result of transposing all occurrences of *a* and *b* in *t*

For example

 $(a b) \cdot L(a, A(V b, V c)) = L(b, A(V a, V c))$

E.g. swapping: $(a \ b) \cdot t$ = result of transposing all occurrences of a and b in t

$$(a b) \cdot Vc = if c = a then V b else$$

$$if c = b then V a else V c$$

$$(a b) \cdot A(t, t') = A((a b) \cdot t, (a b) \cdot t')$$

$$(a b) \cdot L(c, t) = if c = a then L(b, (a b) \cdot t)$$

$$else if c = b then L(a, (a b) \cdot t)$$

$$else L(c, (a b) \cdot t)$$

is defined by structural recursion using...

Theorem.

Given	$f_1 \in A \to X$	
	$f_2 \in X \times X X$	
	$f_3 \in A \times X \to X$	
exists unique	$\hat{f} \in Tr ightarrow X$ satisfying	
(V	$J(a) = f_1 a$	
$\hat{f}(\mathbf{A}(t,t')) = f_2(\hat{f}t,\hat{f}t')$		
$\hat{f}(L(a,$	$f(t)) = f_3(a, \hat{f} t)$	

Alpha-equivalence

Smallest binary relation $=_{\alpha}$ on *Tr* closed under the rules:

$a \in A$	$t_1 =_{\alpha} t'_1 \qquad t_2 =_{\alpha} t'_2$	
$\overline{\mathrm{V}a} =_{\alpha} \mathrm{V}a$	$A(t_1, t_2) =_{\alpha} A(t_1', t_2')$	
$(a b) \cdot t =_{\alpha} (a' b) \cdot t'$	$b \notin \{a, a'\} \cup \operatorname{var}(t) \cup \operatorname{var}(t')$	
$L(a,t) =_{\alpha} L(a',t')$		

E.g. $A(L(a, A(\forall a, \forall b)), \forall c) =_{\alpha} A(L(c, A(\forall c, \forall b)), \forall c)$ $\neq_{\alpha} A(L(b, A(\forall b, \forall b)), \forall c)$

Fact: $=_{\alpha}$ is transitive (and reflexive & symmetric). [Ex. 1]

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- <u>difficult</u> to formalise/mechanise without losing sight of common informal practice:

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- <u>difficult</u> to formalise/mechanise without losing sight of common informal practice:

"We identify expressions up to alpha-equivalence"...

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- <u>difficult</u> to formalise/mechanise without losing sight of common informal practice:

"We identify expressions up to alpha-equivalence"... ... and then forget about it, referring to alpha-equivalence classes $[t]_{\alpha}$ only via representatives t.

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- <u>difficult</u> to formalise/mechanise without losing sight of common informal practice:

E.g. notation for λ -terms:

		$\Lambda \triangleq \{ [t]_{\alpha} \mid t \in Tr \}$
а	means	$[V a]_{\alpha} (= \{V a\})$
e e'	means	$[A(t, t')]_{\alpha}$, where $e = [t]_{\alpha}$ and $e' = [t']_{\alpha}$
λa.e	means	$[L(a, t)]_{\alpha}$ where $e = [t]_{\alpha}$

Informal structural recursion E.g. capture-avoiding substitution: $f = (-)[e_1/a_1] : \Lambda \to \Lambda$ $f a = \text{if } a = a_1 \text{ then } e_1 \text{ else } a$ f(e e') = (f e)(f e') $f(\lambda a, e) = \text{if } a \notin \text{var}(a_1, e_1) \text{ then } \lambda a. (f e)$ else don't care!

<u>Not</u> an instance of structural recursion for *Tr*. Why is *f* well-defined and total?

Informal structural recursion

E.g. denotation of λ -term in a suitable domain D: $\llbracket - \rrbracket : \Lambda \to ((A \to D) \to D)$

> $\llbracket a \rrbracket \rho = \rho a$ $\llbracket e e' \rrbracket \rho = app(\llbracket e \rrbracket \rho, \llbracket e' \rrbracket \rho)$ $\llbracket \lambda a. e \rrbracket \rho = fun(\lambda(d \in D) \to \llbracket e \rrbracket (\rho \llbracket a \to d \rrbracket))$

where
$$\begin{cases} app \in D \times D \rightarrow_{cts} D \\ fun \in (D \rightarrow_{cts} D) \rightarrow_{cts} D \\ are continuous functions satisfying... \end{cases}$$

Informal structural recursion

E.g. denotation of λ -term in a suitable domain D: $\llbracket - \rrbracket : \Lambda \to ((A \to D) \to D)$

> $\llbracket a \rrbracket \rho = \rho a$ $\llbracket e e' \rrbracket \rho = app(\llbracket e \rrbracket \rho, \llbracket e' \rrbracket \rho)$ $\llbracket \lambda a. e \rrbracket \rho = fun(\lambda(d \in D) \to \llbracket e \rrbracket (\rho[a \to d]))$

why is this very standard definition independent of the choice of bound variable *a*?

 $\rho[a \rightarrow d]$ is the element of $A \rightarrow D$ that maps *a* to *d* and otherwise acts like ρ

Yes! – α -structural recursion.

Yes! – α -structural recursion.

What about other languages with binders?

Yes! – α -structural recursion.

What about other languages with binders?

Yes! – available for any nominal signature.

Yes! – α -structural recursion.

What about other languages with binders?

Yes! – available for any nominal signature.

Great. What's the catch?

Yes! – α -structural recursion.

What about other languages with binders?

Yes! – available for any nominal signature.

Great. What's the catch?

Need to learn a bit of possibly unfamiliar math, to do with permutations and support.

• A = fixed countably infinite set of names (a,b,...)

- A = fixed countably infinite set of names (a,b,...)
- Perm A = group of finite permutations of A $(\pi, \pi', ...)$
 - π finite means: $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite.
 - group: multiplication is composition of functions π' π; identity is identity function ι.

- A = fixed countably infinite set of names (a,b,...)
- Perm A = group of finite permutations of A $(\pi, \pi', ...)$
 - π finite means: $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite.
 - group: multiplication is composition of functions π' π; identity is identity function ι.
- Swapping: (a b) ∈ Perm A is the function mapping a to b, b to a and fixing all other names.

Fact: every $\pi \in \text{Perm } \mathbb{A}$ is equal to $(a_1 \ b_1) \circ \cdots \circ (a_n \ b_n)$ for some $a_i \& b_i$ (with $\pi \ a_i \neq a_i \neq b_i \neq \pi \ b_i$).

- A = fixed countably infinite set of names (a,b,...)
- Perm A = group of finite permutations of A $(\pi, \pi',...)$
- action of Perm A on a set X is a function

 $(-) \cdot (-) : \operatorname{Perm} A \times X \to X$

satisfying for all $x \in X$

- $\blacktriangleright \iota \cdot x = x$

Running example

Action of Perm A on set of ASTs for λ -terms

 $Tr \triangleq \{t ::= \mathbb{V} \ a \mid \mathbb{A}(t,t) \mid \mathbb{L}(a,t)\}$

$$\pi \cdot V a = V(\pi a)$$

$$\pi \cdot A(t, t') = A(\pi \cdot t, \pi \cdot t')$$

$$\pi \cdot L(a, t) = L(\pi a, \pi \cdot t)$$

This respects α -equivalence and so induces an action on set of λ -terms $\Lambda = \{[t]_{\alpha} \mid t \in Tr\}$:

$$\pi \cdot [t]_{\alpha} = [\pi \cdot t]_{\alpha}$$

Nominal sets

are sets X with with a Perm Al-action satisfying

Finite support property: for each $x \in X$, there is a finite subset $\overline{a} \subseteq A$ that supports x, in the sense that for all $\pi \in \text{Perm } A$

$$((\forall a \in \overline{a}) \ \pi \ a = a) \implies \pi \cdot x = x$$

Fact: in a nominal set every $x \in X$ possesses a *smallest* finite support, written supp x.

(Swan: this **Fact** relies on a (weak form of) the Law of Excluded Middle in classical logic; see arXiv:1702.01556.)

Nominal sets

are sets X with with a Perm A-action satisfying

Finite support property: for each $x \in X$, there is a finite subset $\overline{a} \subseteq A$ that supports x, in the sense that for all $\pi \in \text{Perm } A$

$$((\forall a \in \overline{a}) \ \pi \ a = a) \implies \pi \cdot x = x$$

Fact: in a nominal set every $x \in X$ possesses a *smallest* finite support, written supp x.

E.g. Tr and Λ are nominal sets—any \overline{a} containing all the variables occurring (free, binding, or bound) in $t \in Tr$ supports t and (hence) $[t]_{\alpha}$.

Fact: for $e \in \Lambda$, supp e = set of *free variables* of e. [Ex. 2]

[Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$]

What is a support for the following sets of names?

 $\blacktriangleright S_1 \triangleq \{a\}$

 $\blacktriangleright S_2 \triangleq \mathbb{A} - \{a\}$

• $S_3 \triangleq \{a_0, a_2, a_4, \ldots\}$, where $A = \{a_0, a_1, a_2, \ldots\}$

[Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$]

What is a support for the following sets of names?

- $S_1 \triangleq \{a\}$ Answer: $\{a\}$ is smallest support.
- $\blacktriangleright S_2 \triangleq \mathsf{A} \{a\}$
- $S_3 \triangleq \{a_0, a_2, a_4, \ldots\}$, where $A = \{a_0, a_1, a_2, \ldots\}$

[Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$]

What is a support for the following sets of names?

- $S_1 \triangleq \{a\}$ Answer: $\{a\}$ is smallest support.
- $\blacktriangleright S_2 \triangleq \mathbb{A} \{a\}$

Answer: {*a*} is smallest support.

• $S_3 \triangleq \{a_0, a_2, a_4, \ldots\}$, where $A = \{a_0, a_1, a_2, \ldots\}$

[Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$]

What is a support for the following sets of names?

- $S_1 \triangleq \{a\}$ Answer: $\{a\}$ is smallest support.
- $\blacktriangleright S_2 \triangleq \mathbf{A} \{a\}$

Answer: {*a*} is smallest support.

► $S_3 \triangleq \{a_0, a_2, a_4, ...\}$, where $A = \{a_0, a_1, a_2, ...\}$ Answer: $\{a_0, a_2, a_4, ...\}$ is a support

[Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$]

What is a support for the following sets of names?

- $S_1 \triangleq \{a\}$ Answer: $\{a\}$ is smallest support.
- $\blacktriangleright S_2 \triangleq A \{a\}$

Answer: {*a*} is smallest support.

 S₃ ≜ {a₀, a₂, a₄, ...}, where A = {a₀, a₁, a₂, ...} Answer: {a₀, a₂, a₄, ...} is a support, and so is {a₁, a₃, a₅, ...}—but there is no finite support. S₃ does not exist in the 'world of nominal sets'—in that world A is infinite, but not enumerable.

- objects are nominal sets
- ► morphisms are functions f ∈ X → Y that are equivariant:

$$\pi \cdot (f x) = f(\pi \cdot x)$$

for all $\pi \in \operatorname{Perm} A$, $x \in X$.

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

So in particular **Nom** is a model of Church's classical higher-order logic.

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Finite products: $X_1 \times \cdots \times X_n$ is cartesian product of sets with Perm Al-action

$$\pi \cdot (x_1,\ldots,x_n) \triangleq (\pi \cdot x_1,\ldots,\pi \cdot x_n)$$

which satisfies

 $supp(x, \ldots, x_n) = (supp x_1) \cup \cdots \cup (supp x_n)$

[Ex. 3]

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Coproducts are given by disjoint union. [Ex. 7]

Natural number object: $\mathbb{N} = \{0, 1, 2, ...\}$ with trivial Perm Al-action: $\pi \cdot n \triangleq n$ (so supp $n = \emptyset$).

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Exponentials: $X \rightarrow_{fs} Y$ is the set of functions $f \in Y^X$ that are finitely supported w.r.t. the Perm Al-action

$$\pi \cdot f \triangleq \lambda(x \in X) \to \pi \cdot (f(\pi^{-1} \cdot x))$$

[Ex. 5]

(Can be tricky to see when $f \in Y^X$ is in $X \rightarrow_{fs} Y$.)

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Subobject classifier: $\Omega = \{\text{true, false}\}\ \text{with trivial}\ \text{Perm Al-action:}\ \pi \cdot b \triangleq b\ (\text{so supp } b = \emptyset).$

(Nom is a Boolean topos: $\Omega = 1 + 1$.)

Power objects: $X \rightarrow_{fs} \Omega \cong P_{fs} X$, the set of subsets $S \subseteq X$ that are finitely supported w.r.t. the Perm Al-action

$$\pi \cdot S \triangleq \{\pi \cdot x \mid x \in S\}$$

The nominal set of names

A is a nominal set once equipped with the action

 $\pi \cdot a = \pi(a)$

which satisfies supp $a = \{a\}$.

N.B. A is not N! Although $A \in$ Set is a countable, any $f \in \mathbb{N} \rightarrow_{fs} A$ has to satisfy

 $\{f n\} = \operatorname{supp}(f n) \subseteq \operatorname{supp} f \cup \operatorname{supp} n = \operatorname{supp} f$ for all $n \in \mathbb{N}$, and so f cannot be surjective.

Nom ⊭ choice

Nom models classical higher-order logic, but not Hilbert's ε -operation εx . $\varphi(x)$, which satisfies

 $(\forall x : X) \ \varphi(x) \Rightarrow \varphi(\varepsilon x. \ \varphi(x))$

Theorem. There is no equivariant function $c : \{S \in P_{fs} \land | S \neq \emptyset\} \rightarrow \land$ satsifying $c(S) \in S$ for all non-empty $S \in P_{fs} \land$.

Proof. Suppose there were such a *c*. Putting $a \triangleq c \land$ and picking some $b \in \land - \{a\}$, we get a contradiction to $a \neq b$:

 $a = c \mathbb{A} = c((a \ b) \cdot \mathbb{A}) = (a \ b) \cdot c \mathbb{A} = (a \ b) \cdot a = b$

Nom ⊭ choice

Nom models classical higher-order logic, but not Hilbert's ε -operation εx . $\varphi(x)$, which satisfies

 $(\forall x : X) \ \varphi(x) \Rightarrow \varphi(\varepsilon x. \ \varphi(x))$

In fact **Nom** does not model even very weak forms of choice, such as Dependent Choice.

Freshness

For each nominal set *X*, we can define a relation $\# \subseteq A \times X$ of freshness:

 $a \# x \triangleq a \notin \operatorname{supp} x$

Freshness

For each nominal set *X*, we can define a relation $\# \subseteq A \times X$ of freshness:

 $a # x \triangleq a \notin \operatorname{supp} x$

- ▶ In \mathbb{N} , *a* # *n* always.
- ▶ In A, a # b iff $a \neq b$.
- ▶ In Λ , a # t iff $a \notin fv t$.
- In $X \times Y$, a # (x, y) iff a # x and a # y.
- ► In $X \rightarrow_{fs} Y$, a # f can be subtle! (and hence ditto for $P_{fs}X$)

Lecture 2

Outline

L1 Structural recursion and induction in the presence of name-binding operations. Introducing the category of nominal sets.

L2 Nominal algebraic data types and α -structural recursion.

L3 Dependently typed λ -calculus with locally fresh names and name-abstraction.

References:

AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.

AMP, J. Matthiesen and J. Derikx, *A Dependent Type Theory with Abstractable Names*, ENTCS 312(2015)19-50.

Recall: Alpha-equivalence

Smallest binary relation $=_{\alpha}$ on *Tr* closed under the rules:

$a \in A$	$t_1 =_{\alpha} t'_1 \qquad t_2 =_{\alpha} t'_2$		
$\overline{\mathrm{V}a} =_{\alpha} \mathrm{V}a$	$A(t_1, t_2) =_{\alpha} A(t_1', t_2')$		
$(a b) \cdot t =_{\alpha} (a' b) \cdot t'$	$b \notin \{a, a'\} \cup \operatorname{var}(t) \cup \operatorname{var}(t')$		
$L(a,t) =_{\alpha} L(a',t')$			

E.g. $A(L(a, A(V a, V b)), V c) =_{\alpha} A(L(c, A(V c, V b)), V c)$ $\neq_{\alpha} A(L(b, A(V b, V b)), V c)$

Fact: $=_{\alpha}$ is transitive (and reflexive & symmetric). [Ex. 1]

Each $X \in Nom$ yields a nominal set [A]X of name-abstractions $\langle a \rangle x$ are ~-equivalence classes of pairs $(a, x) \in A \times X$, where

$$\begin{array}{l} (a,x)\sim (a',x') \iff \exists b\ \#\ (a,x,a',x') \\ (b\ a)\cdot x = (b\ a')\cdot x' \end{array}$$

The Perm A-action on [A]X is well-defined by

 $\pi \cdot \langle a \rangle x = \langle \pi(a) \rangle (\pi \cdot x)$

Fact: supp $(\langle a \rangle x) = \operatorname{supp} x - \{a\}$, so that

 $b # \langle a \rangle x \iff b = a \lor b \# x$

Each $X \in Nom$ yields a nominal set [A]X of name-abstractions $\langle a \rangle x$ are ~-equivalence classes of pairs $(a, x) \in A \times X$, where

$$\begin{array}{l} (a,x)\sim (a',x') \ \Leftrightarrow \ \exists b\ \#\ (a,x,a',x') \\ (b\ a)\cdot x = (b\ a')\cdot x' \end{array}$$

We get a functor $[A](-) : Nom \rightarrow Nom$ sending $f \in Nom(X, Y)$ to $[A]f \in Nom([A]X, [A]Y)$ where

 $[\mathbb{A}]f(\langle a\rangle x) = \langle a\rangle(fx)$

 $[A](-): Nom \rightarrow Nom$ is a kind of (affine) function space—it is right adjoint to the functor $A \otimes (-): Nom \rightarrow Nom$ sending X to $A \otimes X = \{(a, x) \mid a \# x\}.$

Co-unit of the adjunction is 'concretion' of an abstraction

 $_@_:([\mathbb{A}]X)\otimes\mathbb{A}\to X$

defined by computation rule:

 $(\langle a \rangle x) @ b = (b a) \cdot x$, if $b \# \langle a \rangle x$

[Ex. 6]

Generalising concretion, we have the following characterization of morphisms out of [A]X

Theorem. $f \in (A \times X) \to_{fs} Y$ factors through the subquotient $A \times X \supseteq \{(a, x) \mid a \# f\} \twoheadrightarrow [A]X$ to give a unique element of $\overline{f} \in ([A]X) \to_{fs} Y$ satisfying

$$\overline{f}(\langle a \rangle x) = f(a, x)$$
 if $a \# f$

 $\mathsf{iff} \; (\forall a \in \mathbb{A}) \; a \ \# f \; \Rightarrow \; (\forall x \in X) \; a \ \# f(a, x)$

iff $(\exists a \in A) a \# f \land (\forall x \in X) a \# f(a, x).$

Initial algebras

[A](-) has excellent exactness properties. It can be combined with ×, + and X →_{fs} (-) to give functors T : Nom → Nom that have initial algebras I : T D → D

Initial algebras

 [A](-) has excellent exactness properties. It can be combined with ×, + and X →_{fs} (-) to give functors T : Nom → Nom that have initial algebras
 I : T D → D

Initial algebras

- [A](-) has excellent exactness properties. It can be combined with ×, + and X →_{fs} (-) to give functors T : Nom → Nom that have initial algebras I : T D → D
- For a wide class of such functors (nominal algebraic functors) the initial algebra *D* coincides with ASTs/α-equivalence.

E.g. Λ is the initial algebra for

 $T(-) \triangleq A + (- \times -) + [A](-)$

- Sorts S ::= N name-sort (here just one, for simplicity)
 D data-sorts
 1 unit
 S, S pairs
 N. S name-binding
- Typed operations $op : S \rightarrow D$

Signature Σ is specified by the stuff in red.

Example: λ -calculus

name-sort Var for variables, data-sort Term for terms, and operations

 $V: Var \rightarrow Term$ A: Term, Term \rightarrow Term L: Var, Term \rightarrow Term

Example: π -calculus

name-sort Chan for channel names, data-sorts Proc, Pre and Sum for processes, prefixed processes and summations, and operations

 $S: Sum \rightarrow Proc$ $Comp: Proc, Proc \rightarrow Proc$ $Nu: Chan \cdot Proc \rightarrow Proc$ $!: Proc \rightarrow Proc$ $P: Pre \rightarrow Sum$ $0:1 \rightarrow Sum$ $Plus : Sum, Sum \rightarrow Sum$ $Out: Chan, Chan, Proc \rightarrow Pre$ In : Chan, (Chan. Proc) \rightarrow Pre Tau : Proc \rightarrow Pre Match: Chan, Chan, Pre \rightarrow Pre

Closely related notions:

- *binding signatures* of Fiore, Plotkin & Turi (LICS 1999)
- nominal algebras of Honsell, Miculan & Scagnetto (ICALP 2001)

N.B. all these notions of signature restrict attention to iterated, but *unary* name-binding—there are other kinds of lexically scoped binder (e.g. see Pottier's $C\alpha$ ml language, or Blanchette *et al* POPL 2019.)

$\Sigma(S)$ = raw terms over Σ of sort S

$a \in A$	$t \in \Sigma(S)$	$\texttt{op}: \texttt{S} \to \texttt{D}$		
$\overline{a \in \Sigma(\mathbb{N})}$	op <i>t</i> ∈	$\Sigma(D)$	$() \in \Sigma(1)$	
$t_1 \in \Sigma(S_1)$	$t_2 \in \Sigma(S_2)$	$a \in A$	$t \in \Sigma(S)$	
$t_1, t_2 \in \Sigma(\mathbb{S}_1, \mathbb{S}_2)$		<i>a</i> . <i>t</i> ($a \cdot t \in \Sigma(\mathbb{N} \cdot \mathbb{S})$	

Each $\Sigma(S)$ is a nominal set once equipped with the obvious Perm Al-action—any finite set of atoms containing all those occurring in *t* supports $t \in \Sigma(S)$.

Alpha-equivalence $=_{\alpha} \subseteq \Sigma(S) \times \Sigma(S)$

$$\frac{a \in \mathbb{A}}{a =_{\alpha} a} \qquad \frac{t =_{\alpha} t'}{\operatorname{op} t =_{\alpha} \operatorname{op} t'} \qquad \overline{() =_{\alpha} ()}$$
$$\frac{t_1 =_{\alpha} t'_1 \qquad t_2 =_{\alpha} t'_2}{t_1, t_2 =_{\alpha} t'_1, t'_2}$$
$$\frac{(a_1 a) \cdot t_1 =_{\alpha} (a_2 a) \cdot t_2 \qquad a \# (a_1, t_1, a_2, t_2)}{a_1 \cdot t_1 =_{\alpha} a_2 \cdot t_2}$$

Alpha-equivalence $=_{\alpha} \subseteq \Sigma(S) \times \Sigma(S)$

Fact: $=_{\alpha}$ is equivariant $(t_1 =_{\alpha} t_2 \implies \pi \cdot t_1 =_{\alpha} \pi \cdot t_2)$ and each quotient

 $\Sigma_{\alpha}(S) \triangleq \{[t]_{\alpha} \mid t \in \Sigma(S)\}$

is a nominal set with

 $\pi \cdot [t]_{\alpha} = [\pi \cdot t]_{\alpha}$ supp $[t]_{\alpha} = fn t$ where $fn(a \cdot t) = fn t - \{a\}$ $fn(t_1, t_2) = fn t_1 \cup fn t_2$ etc. **Theorem.** Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N) $\Sigma_{\alpha}(D)$ is an initial algebra for the associated functor T_{Σ} : Nom \rightarrow Nom. **Theorem.** Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N) $\Sigma_{\alpha}(D)$ is an initial algebra for the associated functor T_{Σ} : Nom \rightarrow Nom.

$$\mathbf{T}_{\Sigma}(-) = \llbracket \mathbf{S}_1 \rrbracket (-) + \dots + \llbracket \mathbf{S}_n \rrbracket (-)$$

where Σ has operations op_{*i*} : S_{*i*} \rightarrow *D* (*i* = 1..*n*)

and $\llbracket S \rrbracket(-) : Nom \to Nom$ is defined by:

$$\begin{bmatrix} N \end{bmatrix} (-) = A \\ \begin{bmatrix} D \end{bmatrix} (-) = (-) \\ \begin{bmatrix} 1 \end{bmatrix} (-) = 1 \\ \begin{bmatrix} S_1, S_2 \end{bmatrix} (-) = \begin{bmatrix} S_1 \end{bmatrix} (-) \times \begin{bmatrix} S_2 \end{bmatrix} (-) \\ \begin{bmatrix} N \cdot S \end{bmatrix} (-) = [A] (\begin{bmatrix} S \end{bmatrix} (-))$$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N) $\Sigma_{\alpha}(D)$ is an initial algebra for the associated functor T_{Σ} : Nom \rightarrow Nom.

E.g. for the λ -calculus signature with operations

- $V: Var \rightarrow Term$
- $\texttt{A}:\texttt{Term}\,,\,\texttt{Term}\,\rightarrow\,\texttt{Term}$
- $\texttt{L}:\texttt{Var}.\texttt{Term}\rightarrow\texttt{Term}$

we have

 $T_{\Sigma}(-) = A + (- \times -) + [A](-)$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N) $\Sigma_{\alpha}(D)$ is an initial algebra for the associated enriched functor T_{Σ} : Nom \rightarrow Nom.

 T_{Σ} not only acts on equivariant (=emptily supported) functions, but also on finitely supported functions:

$$\begin{array}{rcl} (X \to_{\mathrm{fs}} Y) & \to & (\mathrm{T}_{\Sigma} X \to_{\mathrm{fs}} \mathrm{T}_{\Sigma} Y) \\ F & \mapsto & \mathrm{T}_{\Sigma} F \end{array}$$

For λ -terms: **Theorem.** Given any $X \in Nom$ and $\begin{cases} f_1 \in A \to_{f_S} X \\ f_2 \in X \times X \to_{f_S} X \\ f_3 \in [A]X \to_{f_S} X \end{cases}$ $\exists ! \ \hat{f} \in A \to_{f_S} X \begin{cases} \hat{f} a = f_1 a \\ \hat{f} (e_1 e_2) = f_2(\hat{f} e_1, \hat{f} e_2) \\ \hat{f}(\lambda a. e) = f_3(\langle a \rangle (\hat{f} e)) & \text{if} a \# (f_1, f_2, f_3) \end{cases}$

The enriched functor $[A](-) : Nom \to Nom$ sends $f \in X \to_{fs} Y$ to $[A]f \in [A]X \to_{fs} [A]Y$ where

 $[A]f(\langle a\rangle x) = \langle a\rangle(f x) \quad \text{if } a \# f$

For λ -terms: Theorem. Given any $X \in Nom$ and $\begin{cases} f_1 \in A \to_{f_S} X \\ f_2 \in X \times X \to_{f_S} X \\ f_3 \in A \times X \to_{f_S} X \end{cases}$ $(\forall a) \ a \ \# (f_1, f_2, f_3) \Rightarrow (\forall x) \ a \ \# f_3(a, x) \qquad (FCB)$ $\exists! \ \hat{f} \in \Lambda \to_{f_S} X \begin{cases} \hat{f} \ a = f_1 \ a \\ s.t. \end{cases} \begin{cases} \hat{f} \ (e_1 \ e_2) = f_2(\hat{f} \ e_1, \hat{f} \ e_2) \\ \hat{f}(\lambda a.e) = f_3(a, \hat{f} \ e) & \text{if } a \ \# (f_1, f_2, f_3) \end{cases}$

Name abstraction

Recall:

Theorem. $f \in (A \times X) \to_{fs} Y$ factors through the subquotient $A \times X \supseteq \{(a, x) \mid a \# f\} \twoheadrightarrow [A]X$ to give a unique element of $\overline{f} \in ([A]X) \to_{fs} Y$ satisfying

 $f(\langle a \rangle x) = f(a, x)$ if a # f

iff $(\forall a \in A) a \# f \implies (\forall x \in X) a \# f(a, x)$

iff $(\exists a \in A) a \# f \land (\forall x \in X) a \# f(a, x).$

For λ -terms: Theorem. Given any $X \in Nom$ and $\begin{cases} f_1 \in A \rightarrow_{f_S} X \\ f_2 \in X \times X \rightarrow_{f_S} X \\ f_3 \in A \times X \rightarrow_{f_S} X \end{cases}$ $(\forall a) \ a \ \# (f_1, f_2, f_3) \implies (\forall x) \ a \ \# f_3(a, x) \qquad (FCB)$ $\exists! \ \hat{f} \in A \rightarrow_{f_S} X \begin{cases} \hat{f} \ a = f_1 \ a \\ s.t. \end{cases} \begin{cases} \hat{f} \ (e_1 \ e_2) = f_2(\hat{f} \ e_1, \hat{f} \ e_2) \\ \hat{f}(\lambda a.e) = f_3(a, \hat{f} \ e) & \text{if } a \ \# (f_1, f_2, f_3) \end{cases}$

E.g. capture-avoiding substitution $(-)[e'/a'] : \Lambda \to \Lambda$ is the \hat{f} for

 $\begin{array}{rcl} f_1 a & \triangleq & \text{if } a = a' \text{ then } e' \text{ else } a \\ f_2(e_1, e_2) & \triangleq & e_1 e_2 \\ f_3(a, e) & \triangleq & \lambda a.e \end{array}$

for which (FCB) holds, since $a # \lambda a.e$

For λ -terms: Theorem. Given any $X \in Nom$ and $\begin{cases} f_1 \in A \to_{f_S} X \\ f_2 \in X \times X \to_{f_S} X \\ f_3 \in A \times X \to_{f_S} X \end{cases}$ $(\forall a) \ a \ \# (f_1, f_2, f_3) \implies (\forall x) \ a \ \# f_3(a, x) \qquad (FCB)$ $\exists! \ \hat{f} \in \Lambda \to_{f_S} X \begin{cases} \hat{f} \ a = f_1 \ a \\ s.t. \end{cases} \begin{cases} \hat{f} \ (e_1 \ e_2) = f_2(\hat{f} \ e_1, \hat{f} \ e_2) \\ \hat{f}(\lambda a.e) = f_3(a, \hat{f} \ e) & \text{if } a \ \# (f_1, f_2, f_3) \end{cases}$

E.g. size function $\Lambda \to \mathbb{N}$ is the \hat{f} for

$$\begin{array}{rcl} f_1 a & \triangleq & 0 \\ f_2(n_1, n_2) & \triangleq & n_1 + n_2 \\ f_3(a, n) & \triangleq & n+1 \end{array}$$

for which (FCB) holds, since a # (n + 1)

For λ -terms: Theorem. Given any $X \in Nom$ and $\begin{cases} f_1 \in A \to_{f_S} X \\ f_2 \in X \times X \to_{f_S} X \\ f_3 \in A \times X \to_{f_S} X \end{cases}$ $(\forall a) \ a \ \# \ (f_1, f_2, f_3) \Rightarrow (\forall x) \ a \ \# \ f_3(a, x) \qquad (FCB)$ $\exists! \ \hat{f} \in \Lambda \to_{f_S} X \begin{cases} \hat{f} \ a = f_1 \ a \\ s.t. \end{cases} \begin{cases} \hat{f} \ (e_1 \ e_2) = f_2(\hat{f} \ e_1, \hat{f} \ e_2) \\ \hat{f}(\lambda a.e) = f_3(a, \hat{f} \ e) & \text{if } a \ \# \ (f_1, f_2, f_3) \end{cases}$

Non-example: trying to list the bound variables of a λ -term

$$\begin{array}{rcl} f_1 a & \triangleq & \mathsf{nil} \\ f_2(\ell_1, \ell_2) & \triangleq & \ell_1 @ \ell_2 \\ f_3(a, \ell) & \triangleq & a :: \ell \end{array}$$

for which (FCB) does not hold, since $a \in \text{supp}(a :: \ell)$.

For λ -terms: Theorem. Given any $X \in Nom$ and $\begin{cases} f_1 \in A \rightarrow_{f_S} X \\ f_2 \in X \times X \rightarrow_{f_S} X \\ f_3 \in A \times X \rightarrow_{f_S} X \end{cases}$ $(\forall a) \ a \ \# \ (f_1, f_2, f_3) \Rightarrow (\forall x) \ a \ \# \ f_3(a, x) \qquad (FCB)$ $\exists! \ \hat{f} \in \Lambda \rightarrow_{f_S} X \begin{cases} \hat{f} \ a = f_1 \ a \\ s.t. \end{cases} \begin{cases} \hat{f} \ (e_1 \ e_2) = f_2(\hat{f} \ e_1, \hat{f} \ e_2) \\ \hat{f}(\lambda a.e) = f_3(a, \hat{f} \ e) & \text{if } a \ \# \ (f_1, f_2, f_3) \end{cases}$

Similar results hold for any nominal algebraic signature—see J ACM 53(2006)459-506.

Implemented in Urban & Berghofer's Nominal package for Isabelle/HOL (classical higher-order logic).

Seems to capture informal usage well, but (FCB) can be tricky...

Counting occurrences of bound variables

For each
$$e \in \Lambda$$
, $\operatorname{cbv} e \triangleq f e \rho_0 \in \mathbb{N}$

where we want $f \in \Lambda \rightarrow_{\mathrm{fs}} X$ with $X = (\mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}) \rightarrow_{\mathrm{fs}} \mathbb{N}$ to satisfy

$$f a \rho = \rho a$$

$$f (e_1 e_2) \rho = (f e_1 \rho) + (f e_2 \rho)$$

$$f (\lambda a.e) \rho = f e (\rho[a \mapsto 1])$$

and where $\rho_0 \in \mathbb{A} \to_{\mathrm{fs}} \mathbb{N}$ is $\lambda(a \in \mathbb{A}) \to 0$.

E.g. when $e = (\lambda a, \lambda b, a) b$ (with $a \neq b$), then e has a single occurrence of a bound variable (called a) and cbv e = 1.

Counting occurrences of bound variables

For each
$$e \in \Lambda$$
, $\operatorname{cbv} e \triangleq f e \rho_0 \in \mathbb{N}$

where we want $f \in \Lambda \rightarrow_{\mathrm{fs}} X$ with $X = (\mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}) \rightarrow_{\mathrm{fs}} \mathbb{N}$ to satisfy

$$f a \rho = \rho a$$

$$f (e_1 e_2) \rho = (f e_1 \rho) + (f e_2 \rho)$$

$$f (\lambda a.e) \rho = f e (\rho[a \mapsto 1])$$

and where $\rho_0 \in \mathbb{A} \to_{\mathrm{fs}} \mathbb{N}$ is $\lambda(a \in \mathbb{A}) \to 0$.

Looks like we should take $f_3(a, x) = \lambda(\rho \in \mathbb{A} \to_{f_s} \mathbb{N}) \to x(\rho[a \mapsto 1])$, but this does not satisfy (FCB). Solution: take X to be a certain nominal subset of $(\mathbb{A} \to_{f_s} \mathbb{N}) \to_{f_s} \mathbb{N}$. [See Nominal Sets book, Example 8.20]

Lecture 3

Outline

L1 Structural recursion and induction in the presence of name-binding operations. Introducing the category of nominal sets.

L2 Nominal algebraic data types and α -structural recursion.

L3 Dependently typed λ -calculus with locally fresh names and name-abstraction.

References:

AMP, Alpha-Structural Recursion and Induction, JACM 53(2006)459-506.

AMP, J. Matthiesen and J. Derikx, A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50. Original motivation for Gabbay & AMP to introduce nominal sets and name abstraction:

[A](_) can be combined with \times and + to give functors **Nom** \rightarrow **Nom** that have initial algebras coinciding with sets of abstract syntax trees modulo α -equivalence.

E.g. the initial algebra for $A + (_ \times _) + [A](_)$ is isomorphic to the usual set of untyped λ -terms.

Recall: α -Structural recursion

For λ -terms: Theorem. Given any $X \in Nom$ and $\begin{cases} f_1 \in A \rightarrow_{f_S} X \\ f_2 \in X \times X \rightarrow_{f_S} X \\ f_3 \in A \times X \rightarrow_{f_S} X \end{cases}$ ($\forall a$) $a # (f_1, f_2, f_3) \Rightarrow (\forall x) a # f_3(a, x)$ (FCB) $\exists ! \hat{f} \in A \rightarrow_{f_S} X$ $s.t. \begin{cases} \hat{f} a = f_1 a \\ \hat{f} (e_1 e_2) = f_2(\hat{f} e_1, \hat{f} e_2) \\ \hat{f} (\lambda a. e) = f_3(a, \hat{f} e) \end{cases}$ if $a # (f_1, f_2, f_3)$

Can we avoid explicit reasoning about finite support, # and (FCB) when computing 'mod α '?

Want definition/computation to be separate from proving.

Q: how to get rid of this inconvenient proof obligation?

$$\hat{f} = f_1 a
\hat{f}(e_1 e_2) = f_2(\hat{f} e_1, \hat{f} e_2)
\hat{f}(\lambda a, e) = va. f_3(a, \hat{f} e) [a \# (f_1, f_2, f_2)]
= \lambda a'. e' = va'. f_3(a', \hat{f} e') OK!$$

Q: how to get rid of this inconvenient proof obligation? A: use a local scoping construct *va*. (–) for names

$$\hat{f} = f_1 a
\hat{f}(e_1 e_2) = f_2(\hat{f} e_1, \hat{f} e_2)
\hat{f}(\lambda a, e) = va. f_3(a, \hat{f} e) [a \# (f_1, f_2, f_2)]
= \lambda a'. e' = va'. f_3(a', \hat{f} e') OK!$$

Q: how to get rid of this inconvenient proof obligation? A: use a local scoping construct va. (–) for names

which one?!

Dynamic allocation

- Stateful: va. t means "add a fresh name a' to the current state and return t[a'/a]".
- Used in Shinwell's Fresh OCaml = OCaml +
 - name types and name-abstraction type former
 - name-abstraction patterns

-matching involves dynamic allocation of fresh names [MR Shinwell, AMP, MJ Gabbay,

FreshML: Programming with Binders Made Simple, Proc. ICFP 2003.]

[www.cl.cam.ac.uk/users/amp12/fresh-ocam1]

Sample Fresh OCaml code

```
(* svntax *)
type t;;
type var = t name::
type term = Var of var | Lam of <<var>>term | App of term*term::
 (* semantics *)
type sem = L of ((unit -> sem) -> sem) | N of neu
and neu = V of var | A of neu*sem::
 (* reifv : sem -> term *)
let rec reify d =
  match d with L f -> let x = fresh in Lam(<<x>>(reify(f(function () -> N(V x)))))
              | N n -> reifvn n
and reifvn n =
  match n with V x -> Var x
              | A(n',d') -> App(reifyn n', reify d');;
(* evals : (var * (unit -> sem))list -> term -> sem *)
let rec evals env t =
  match t with Var x -> (match env with [] \rightarrow N(V x)
                                         |(x',v)::env \rightarrow if x=x' then v() else evals env (Var x))
              | Lam(\langle\langle x \rangle t) \rightarrow L(function v \rightarrow evals ((x,v)::env) t)
              | App(t1.t2) -> (match evals env t1 with L f -> f(function () -> evals env t2)
                                                        | N n -> N(A(n.evals env t2)));;
(* eval : term -> sem *)
let rec eval t = evals [] t::
(* norm : lam -> lam *)
let norm t = reifv(eval t)::
```

Dynamic allocation

- Stateful: va. t means "add a fresh name a' to the current state and return t[a'/a]".
- Used in Shinwell's Fresh OCaml = OCaml +
 - name types and name-abstraction type former
 - name-abstraction patterns

-matching involves dynamic allocation of fresh names [MR Shinwell, AMP, MJ Gabbay,

FreshML: Programming with Binders Made Simple, Proc. ICFP 2003.]

[www.cl.cam.ac.uk/users/amp12/fresh-ocam1]

Dynamic allocation

Stateful: va. t means "add a fresh name a' to the current state and return t[a'/a]".

Statefulness disrupts familiar mathematical properties of pure datatypes. So let's try to reject it in favour of...

Aim

A version of Martin-Löf Type Theory enriched with constructs for locally fresh names and name-abstraction

from the theory of nominal sets.

Motivation:

Machine-assisted construction of humanly understandable formal proofs about software (PL semantics).

Aim

More specifically: extend (dependently typed) λ -calculus with

```
names a
name swapping swap a, b in t
name abstraction \langle a \rangle t and concretion t @ a
locally fresh names fresh a in t
name equality if t = a then t_1 else t_2
```

Locally fresh names

For example, here are some isomorphisms, described in an informal pseudocode:

$$i : [A](X + Y) \cong [A]X + [A]Y$$
$$i(z) = \text{ fresh } a \text{ in case } z @ a \text{ of } inl(x) \to \langle a \rangle x$$
$$| inr(y) \to \langle a \rangle y$$

Locally fresh names

For example, here are some isomorphisms, described in an informal pseudocode:

 $i : [A](X + Y) \cong [A]X + [A]Y$ i(z) =fresh *a* in case *z* @ *a* of $\operatorname{inl}(x) \to \langle a \rangle x$ $|\operatorname{inr}(y) \rightarrow \langle a \rangle y$ given $f \in Nom(X * \mathbb{A}, Y)$ satisfying $a \# x \implies a \# f(x, a)$, we get $\hat{f} \in Nom(X, Y)$ well-defined by: f(x) = f(x, a) for some/any a # x. Notation: fresh *a* in $f(x, a) \triangleq \hat{f}(x)$

Locally fresh names

For example, here are some isomorphisms, described in an informal pseudocode:

 $i : [A](X + Y) \cong [A]X + [A]Y$ $i(z) = \text{ fresh } a \text{ in case } z @ a \text{ of } inl(x) \to \langle a \rangle x$ $| inr(y) \to \langle a \rangle y$ $j : ([A]X \to [A]Y) \cong [A](X \to Y)$ $j(f) = \text{ fresh } a \text{ in } \langle a \rangle (\lambda x. f(\langle a \rangle x) @ a)$

Can one turn the pseudocode into terms in a formal 'nominal' λ -calculus?

Prior art

Stark-Schöpp [CSL 2004]

bunched contexts (+), extensional & undecidable (-)

- Westbrook-Stump-Austin [LFMTP 2009] CNIC semantics/expressivity?
- Cheney [LMCS 2012] DNTT

bunched contexts (+), no local fresh names (-)

- Fairweather-Fernández-Szasz-Tasistro [2012]
 based on nominal terms (+), explicit substitutions (-), first-order (±)
- Crole-Nebel [MFPS 2013]

simple types (-), definitional freshness (+)

Our art

Stark-Schöpp [CSL 2004]

bunched contexts (+), extensional & undecidable (-)

- Westbrook-Stump-Austin [LFMTP 2009] CNIC semantics/expressivity?
- Cheney [LMCS 2012] DNTT

bunched contexts (+), no local fresh names (-)

Fairweather-Fernández-Szasz-Tasistro [2012]

based on nominal terms (+), explicit substitutions (–), first-order (\pm)

Crole-Nebel [MFPS 2013]

simple types (-), definitional freshness (+)

AMP, J. Matthiesen and J. Derikx, *A Dependent Type Theory with Abstractable Names*, ENTCS 312(2015)19-50.

Aim

More specifically: extend (dependently typed) $\lambda\text{-calculus}$ with

```
names a
name swapping swap a, b in t
name abstraction \langle a \rangle t and concretion t @ a
locally fresh names fresh a in t
name equality if t = a then t_1 else t_2
```

Difficulty: concretion and locally fresh names are partially defined – have to check freshness conditions.

e.g. for fresh a in
$$f(x, a)$$
 to
be well-defined, we need
 $a \# x \implies a \# f(x, a)$

In a nominal set of (higher-order) functions, proving a # f can be tricky (undecidable). Common proof pattern:

Given *a*, *f*, . . ., pick a fresh name *b* and prove $(a \ b) \cdot f = f$. (For functions, equivalent to proving $\forall x. (a \ b) \cdot f(x) = f((a \ b) \cdot x)$.)

In a nominal set of (higher-order) functions, proving *a* # *f* can be tricky (undecidable). Common proof pattern:

Given a, f, \ldots , pick a fresh name b and prove $(a \ b) \cdot f = f$. Since by choice of b we have b # f, we also get $a = (a \ b) \cdot b \# (a \ b) \cdot f = f$, QED.

 $\frac{\Gamma \vdash a \ \# \ T \qquad \Gamma \vdash t : T}{\Gamma \# (b : \mathbb{A}) \vdash (\text{swap } a, b \text{ in } t) = t : T}{\Gamma \vdash a \# \ t : T}$

Freshness info in bunched contexts gets used via: $\frac{\Gamma(x:T)\Gamma' \text{ ok } a, b \in \Gamma'}{\Gamma(x:T)\Gamma' \vdash (\text{swap } a, b \text{ in } x) = x:T}$

A type theory

$\Gamma \vdash$	
$\frac{\Gamma \vdash a \notin \operatorname{dom} \Gamma}{\Gamma(\mathfrak{m} a) \vdash} (\operatorname{arm-inv})$	$\Gamma \vdash a \neq (e:T)$
$[\Gamma \vdash T]$	$\frac{\Gamma \vdash a \# T \qquad \Gamma \vdash e: T \qquad \Gamma(\# a') \vdash (a a') * e = e: T}{\Gamma \vdash a \# (e: T)} (def-fresh-2)$
$\frac{\Gamma \vdash}{\Gamma \vdash Atm} (ATM\text{-}FORM) \qquad \frac{\Gamma(\emptyset \: \mathfrak{a}) \vdash T}{\Gamma \vdash (\emptyset \: \mathfrak{a}) \Rightarrow T} (ABS\text{-}FORM) \qquad \frac{\Gamma(\emptyset \: \mathfrak{a}) \vdash \mathfrak{a} \: \emptyset \: T}{\Gamma \vdash \mathscr{a} \: \mathfrak{a} \: T} (LOCAL\text{-}FORM)$	$\Gamma \vdash e = e': T$
$[T \vdash a \neq T]$	$\frac{\Gamma\Gamma' \vdash e: T \qquad \Gamma\Gamma' \vdash e': T \qquad \Gamma(\# a)\Gamma' \vdash e = e': T}{\Gamma\Gamma' \vdash e = e': T} \text{ (ATM-STRENGTHEN)}$
$\frac{a \in \operatorname{dom} \Gamma \Gamma \vdash T \Gamma(\# a') \vdash (a a') + T = T}{\Gamma \vdash a \# T} \text{ (our-reason-1)}$ $\boxed{\Gamma \vdash T = T'}$	$\frac{\Gamma(x:T)\Gamma' \vdash a, a' \in \operatorname{dom} \Gamma'}{\Gamma(x:T)\Gamma' \vdash (a a') * x = x:T} (swar-freesh-var)$
$\frac{\Gamma(\theta a) + a \oplus T}{\Gamma(\theta a) \Gamma' \vdash va, T = T} (\text{local-comp})$	$\frac{a \in \operatorname{dom}_{\mathbb{A}} \Gamma \Gamma \vdash e_1 : T \Gamma \vdash e_2 : T}{\Gamma \vdash (\operatorname{if} a = a \operatorname{ then} e_1 \operatorname{ else} e_2) = e_1 : T} (\operatorname{II-COMP-1})$
$\Gamma \vdash \epsilon : T$	$\frac{\Gamma \vdash a \# (e : Atm) \qquad \Gamma \vdash e_1 : T \qquad \Gamma \vdash e_2 : T}{\Gamma \vdash (if e = a then e_1 else e_2) = e_2 : T} (IF-COMP-2)$
$\frac{\Gamma(x:T)\Gamma' \vdash \text{supp } \pi \subseteq \text{dom } \Gamma T'}{\Gamma(x:T)\Gamma' \vdash \pi * x : \pi * T} \text{ (supp)} \qquad \frac{\Gamma \vdash a \in \text{dom } \Gamma}{\Gamma \vdash a : \text{Atm}} \text{ (ATM-INTRO)}$	$\frac{\Gamma(\#a) \vdash a \# (e:T) \qquad \Gamma(\#a)\Gamma' \vdash}{\Gamma(\#a)\Gamma' \vdash va. e = e:T} (\text{local-comp-2})$
$ \frac{\Gamma \vdash e: \operatorname{Atm} a \in \operatorname{dom} \Gamma}{\Gamma \vdash if e = a \operatorname{then} e_1 \operatorname{egs} : T} \frac{(p-\operatorname{sym} r)}{(p-\operatorname{sym} r)} \qquad \qquad \frac{\Gamma(\# a) \vdash a \# (e:T)}{\Gamma \vdash va.e: va.T} (\operatorname{local-intro}) $	$\frac{\Gamma(\emptyset a) \vdash e: T}{\Gamma \vdash (\alpha(\emptyset a) \rightarrow e) \in \mathfrak{a}' = va. (a a') * e : va. (a a') * T} \xrightarrow{a \neq a'} (ABS-COMT)$
$\frac{\Gamma(\emptyset a) \vdash e: T}{\Gamma \vdash a(\emptyset a) \Rightarrow e: (\emptyset a) \Rightarrow T} \xrightarrow{\text{(ABI-DYRO)}} \frac{\Gamma \vdash a' \# (e: (\emptyset a) \Rightarrow T)}{\Gamma \vdash e \oplus a': \forall a. (a a') * T} \xrightarrow{\text{(ABI-RIM)}}$	$\frac{\Gamma \vdash e : (\# a) \Rightarrow T}{\Gamma \vdash e = \alpha(\# a) \Rightarrow (e \circ a) : (\# a) \Rightarrow T} (\texttt{ABS-UNIQ})$

A type theory

Nominal set semantics of dependent type theory

A family over $X \in Nom$ is specified by:

- ▶ *X*-indexed family of sets $(Y_x | x \in X)$
- dependently type permutation action

$$\prod_{\pi \in \operatorname{Perm} A} \prod_{x \in X} (Y_x \to Y_{\pi \cdot x})$$

with dependent version of finite support property: for all $x \in X$, $e \in Y_x$ there is a finite set A of names supporting x in X and such that any π fixing each $a \in A$ satisfies $\begin{array}{ccc} \pi \cdot e &= & e \\ & \cap & & \\ Y_{\pi \cdot x} &= & Y_x \end{array}$

Nominal set semantics of dependent type theory

A family over $X \in Nom$ is specified by...

Get a category with families (CwF) [Dybjer] modelling extensional MLTT, plus

nominal logic's Curry- dependent freshness quantifier Howard name-abstraction $\forall a. \ \varphi(a, \vec{x}) \qquad \longleftrightarrow \qquad [a \in A]Y_a$ Nominal set semantics of dependent type theory

A family over $X \in Nom$ is specified by...

Get a category with families (CwF) [Dybjer] modelling extensional MLTT, plus

For more details, see

AMP, J. Matthiesen and J. Derikx,

A Dependent Type Theory with Abstractable Names, ENTCS 312(2015)19-50

But much remains to do, e.g.

- Explore inductively defined types involving
 [a : A](_) (e.g. propositional freshness).
- Dependently typed pattern-matching with name-abstraction patterns.

Difficulties:

- Is definitional freshness too weak? (cf. experience with FreshML2000)
- Name-swapping with variables of type A

Advert

Nominal Sets

Names and Symmetry in Computer Science

Cambridge Tracts in Theoretical Computer Science, Vol. 57 (CUP, 2013)