FoPSS 2019

Basic Nominal Techniques

Bartek Klin University of Warsaw

Warsaw, 10-11 September, 2019

Alternative Formulations

Finite vs. arbitrary atom renamings

Let $Perm(\mathbb{A})$ be the group of finite bijections on \mathbb{A} . (i.e. such that $\pi(a) = a$ for all but finitely many a)

 $\operatorname{Perm}(\mathbb{A})$ canonically acts on the universe \mathcal{U} , and the definition of support may be repeated.

Fact: whether we use Aut(A) or Perm(A), the same sets are legal and they have the same finite supports.

NB. Not so easy to prove! Essentially a topological argument.

Legal nominal sets and finitely supported functions form a category.

- A category \mathcal{C} :
 - a collection $|\mathcal{C}|$ of objects
 - for each $X,Y\!\in\!|\mathcal{C}|$, a set $\mathcal{C}(X,Y)\,$ of morphisms

- composition operations:

 $_{-}\circ_{-}: \mathcal{C}(Y,Z) \times \mathcal{C}(X,Y) \to \mathcal{C}(X,Z)$

- identity morphisms: $\mathrm{id}_X \in \mathcal{C}(X,X)$

+ axioms

Nom

Another category: equivariant sets and functions.

For an equivariant set X, atom renaming acts on X: $_\cdot_:X \times \operatorname{Aut}(\mathbb{A}) \to X$

Fact: for each $x \in X$ there is a finite $S \subseteq \mathbb{A}$ s.t. for every $\pi, \sigma \in \operatorname{Aut}(\mathbb{A})$ if $\pi|_S = \sigma|_S$ then $x \cdot \pi = x \cdot \sigma$. we know this!

In other words: $_\cdot_$ is a continuous group action (X discrete, $Aut(\mathbb{A})$ with product topology)

 $Nom\approx$ continuous ${\rm Aut}(\mathbb{A})\mbox{-sets}$ with equivariant functions between them

Fix an equivariant set X.

For a finite $S \subset \mathbb{A}$, define: $\hat{X}(S) = \{x \in X \mid \operatorname{supp}(x) \subseteq S\} \subseteq X$ For an injective function $f: S \to T \subseteq \mathbb{A}$: - pick any $\pi \in Aut(\mathbb{A})$ that extends f- define $\hat{X}(f) : \hat{X}(S) \to \hat{X}(T)$ by: $\hat{X}(f)(x) = x \cdot \pi$ Fact: $\hat{X}(f)(x) \in \hat{X}(T)$ we know this! Fact: $\hat{X}(f)$ does not depend on the choice of π

We have just shown that \hat{X} is a functor: $\hat{X}: \mathbf{I} \to \mathbf{Set}$

- ${\bf I}$: the category of finite subsets of ${\mathbb A}$ sets and injective functions
- This extends to a correspondence between equivariant functions and natural transformations!
- But: not all functors from I to Set arise in this way. Sheaves do.
 - $Nom \approx \text{sheaves}$ on I and natural transformations

Orbit Finite Sets

An example problem revisited

- nodes:ab $a \neq b$ edges:ab-bc $a \neq c$
 - ab ad bc be be ca cd db de de ec

Is 3-colorability decidable?

FoPSS, Warsaw, 10-11/09/19

The orbit of x is the set $\{x \cdot \pi \mid \pi \in Aut(\mathbb{A})\}$ Every equivariant set is a disjoint union of orbits. Orbit-finite set if the union is finite.

More generally: the S-orbit of x is $\{x \cdot \pi \mid \pi \in \operatorname{Aut}_S(\mathbb{A})\}$

Fact: An orbit-finite set is S-orbit-finite for every finite S.

Orbit-finite sets:

$$\mathbb{A} \quad \mathbb{A}^n \quad \begin{pmatrix} \mathbb{A} \\ n \end{pmatrix}$$

 $\mathbb{A}^{\triangleleft} = \{\{(a,b,c), (b,c,a), (c,a,b)\} \mid a,b,c \in \mathbb{A}\}$

- closed under finite union, intersection
 difference, finite Cartesian product
- but not under (even finite) powerset!

Not orbit-finite:

 $\mathbb{A}^* \qquad \mathcal{P}_{\mathrm{fin}}(\mathbb{A})$

FoPSS, Warsaw, 10-11/09/19

Group representation

More generally, for $n \in \mathbb{N}$ and $G \leq \text{Sym}(n)$ define an equiv. relation \sim_G on $\mathbb{A}^{(n)}$:

$$(a_1, \ldots, a_n) \sim_G (a_{\sigma(1)}, \ldots, a_{\sigma(n)})$$

for $\sigma \in G$.

Fact: $\mathbb{A}^{(n)}/_{\sim_G}$ is an equivariant, single-orbit set. Theorem: Every equivariant, single-orbit set is in equivariant bijection with one of this form. Remember the graph?

- nodes:
$$\{ \begin{array}{c} ab \\ n = 2 \end{array} \mid a \neq b \in \mathbb{A} \}$$

- edges: {
$$ab$$
 bc $| a \neq c \in \mathbb{A}$ }
 $n = 3$ $G = 1$

Problems:

- not well suited for modular representation
- inefficient: \mathbb{A}^n has exponentially many orbits

Still the same puzzle:

- nodes: $\{ab \mid a \neq b \in \mathbb{A}\}$ - edges: $\{ab \mid bc \mid a \neq c \in \mathbb{A}\}$

This is a reasonable finite presentation already!

We keep writing down finite descriptions of infinite sets all the time.

Let's make that formal.

Fact: s.-b. e. + interpretation of free vars. as atoms = a hereditarily orbit-finite set with atoms

Fact: Every h. o.-f. set is of this form.

The graph:

$$G = (V, E)$$

$$V = \{(a, b) \mid a, b \in \mathbb{A}, a \neq b\}$$

$$E = \{\{(a, b), (b, c)\} \mid a, b, c \in \mathbb{A}, a \neq b \neq c\}$$

(encode pairs with standard set-theoretic trickery)

Descriptions like this can be input to algorithms, for example:

Is 3-colorability of orbit-finite graphs decidable?

- I.An equivariant orbit-finite set has only finitely many equivariant subsets.
- 2. For equivariant, orbit-finite sets X and Y, there are finitely many equivariant functions from X to Y.
- 3. If X is orbit-finite then every $S \subseteq_{\text{fin}} \mathbb{A}$ supports only finitely many elements of X.

4. The converse implication to 3. does not hold.

Set theory with atoms

Nominal sets form a topos

A lot of mathematics can be done with atoms

set ->>> nominal set finite ->>>> orbit-finite function ->>>>>>>>> equivariant function

EXCEPT:

- axiom of choice fails, even orbit-finite choice
- powerset does not preserve orbit-finiteness

Slogans

X = set, function, relation, automaton,
 Turing machine, grammar, graph,
 system of equations...

Infinite but with lots of symmetries

orbit-finite

Infinite but symbolically finitely presentable

We can compute on them