FoPSS 2019

3rd Summer School on Foundations of Programming and Software Systems

Nominal Techniques

Warsaw, IO-I5 September, 2019

FoPSS

Summer Schools on Foundations of Programming and Software Systems

Supported by:

This time also by:

FoPSS

2017: Braga (Portugal)
 Probabilistic Programming

FoPSS

FoPSS

2017: Braga (Portugal)

Programming

2018: Oxford (UK)

Logic
and Learning

2019: Warsaw (Poland)

FoPSS 2019

Our lecturers:

- Andrew M. Pitts:

Nominal sets and functional programming

- Mikołaj Bojańczyk:

Computation theory with atoms

- Andrzej Murawski:

Nominal game semantics

- Maribel Fernández:

Nominal rewriting and unification

- Johannes Borgström:

Nominal process calculi and modal logics

- Murdoch J. Gabbay:

Advanced nominal techniques

- Sławomir Lasota:

Computation theory with atoms II

FoPSS 2019

Basic Nominal Techniques

Bartek Klin
University of Warsaw

Warsaw, IO-II September, 2019

What is it all about?

Nominal techniques:
mathematics of, and computation with:

local names and name dependence

What is it all about?

Nominal techniques:
mathematics of, and computation with:

local names and name dependence

highly symmetrical structures

What is it all about?

Nominal techniques:
mathematics of, and computation with:

local names
 and name dependence

highly symmetrical
"slightly infinite" structures

What is it all about?

Nominal techniques:
mathematics of, and computation with:

What is it all about?

Nominal techniques:
mathematics of, and computation with:

local names
 and name dependence

highly symmetrical structures
structures
acessible via
limited interfaces

Concrete and abstract syntax

$$
2 * 3+3 *(7-2)
$$

parsing

Concrete and abstract syntax

$$
2 * 3+3 *(7-2)
$$

Complications with local names

$$
\text { let } x=3 \text { in let } x=x+1 \text { in } x+5
$$

parsing

Complications with local names

$$
\text { let } x=3 \text { in let } x=x+1 \text { in } x+5
$$

parsing

Complications with local names

$$
\text { let } x=3 \text { in let } x=x+1 \text { in } x+5
$$

parsing

Complications with local names

$$
\text { let } x=3 \text { in let } x=x+1 \text { in } x+5
$$

parsing

Expressions
depend
on names!

Name dependence

Idea:

> Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

Name dependence

Idea:
nominal expressions
Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

Name dependence

Idea:

nominal expressions

Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

More ambitious idea:
Let everything come equipped with an explicit dependence on some names (or: atoms) that occur in it

Name dependence

Idea:

nominal expressions

Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

More ambitious idea: nominal sets

Let everything come equipped with an explicit dependence on some names (or: atoms) that occur in it

Name dependence

Q:
What does it mean to depend on a name?

Name dependence

Q:
What does it mean to depend on a name?
A:
X depends on a name a
if renaming a to any other name would alter X

Name dependence

Q :
What does it mean to depend on a name?
A:
X depends on a name a
if renaming a to any other name would alter X

Idea revisited:
nominal sets
Let everything come equipped with information on how renaming names affects it

What is it all about?

Nominal techniques:
mathematics of, and computation with:

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$
atom renaming:

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$
atom renaming:

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$

A graph built of atoms

atomic names: a, b, c, d, e, \ldots

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c \quad a \neq c$

What is it all about?

Nominal techniques:
mathematics of, and computation with:

Slightly infinite

The same graph:
$\begin{array}{lcl}\text { - nodes: } a b & a \neq b \\ \text { - edges: } & a b — b c & a \neq c\end{array}$

Slightly infinite

The same graph:
$\begin{array}{lcl}\text { - nodes: } & a b & a \neq b \\ \text { - edges: } & a b — b c & a \neq c\end{array}$

- nodes: $\{(a, b): a, b \in \mathbb{A}: a \neq b\}$
- edges: $\{\{(a, b),(b, c)\}: a, b, c \in \mathbb{A}$
$: a \neq b \wedge b \neq c \wedge a \neq c\}$

Slightly infinite

The same graph:
$\begin{array}{lcl}\text { - nodes: } a b & a \neq b \\ \text { - edges: } & a b-b c & a \neq c\end{array}$

- nodes: $\{(a, b): a, b \in \mathbb{A}: a \neq b\}$
- edges: $\{\{(a, b),(b, c)\}: a, b, c \in \mathbb{A}$

$$
: a \neq b \wedge b \neq c \wedge a \neq c\}
$$

Infinite, but presented by finite means

An example problem

$\begin{array}{lcl}\text { - nodes: } & a b & a \neq b \\ \text { - edges: } & a b-b c & a \neq c\end{array}$

An example problem

$\begin{array}{lcl}\text { - nodes: } \quad a b & a \neq b \\ \text { - edges: } & a b-b c & a \neq c\end{array}$
Is it 3-colorable?

An example problem

- nodes:
$a b$
$a \neq b$
- edges:
$a b-b c$
$a \neq c$
Is it 3-colorable?

An example problem

- nodes:
$a b$
$a \neq b$
- edges:
$a b-b c$
$a \neq c$
Is it 3-colorable?

Is 3-colorability decidable?

What is it all about?

Nominal techniques:
mathematics of, and computation with:

Computer Science IOI

Theorem:

Every algorithm to sort n numbers must work in time $\Omega(n \log n)$.

Computer Science IOI

Theorem:
Every algorithm to sort n numbers must work in time $\Omega(n \log n)$.
in the comparison model

Computer Science IOI

Theorem:

Every algorithm to sort n numbers must work in time $\Omega(n \log n)$.
in the comparison model

Here, numbers are atoms accessible via relations:

Computer Science IOI

Theorem:

Every algorithm to sort n numbers must work in time $\Omega(n \log n)$.
in the comparison model

Here, numbers are atoms accessible via relations:

This amounts to restricting the class of legal atom renamings.

Nominal Sets: Basic Defnitions

or: Sets with Atoms
Nominal Sets:
Basic Defnitions

Atoms

Let \mathbb{A} be an infinite, countable set of atoms.

$$
a, b, c, d, e, \ldots \in \mathbb{A}
$$

Atoms

Let \mathbb{A} be an infinite, countable set of atoms.

$$
a, b, c, d, e, \ldots \in \mathbb{A}
$$

$\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

Atoms

Let \mathbb{A} be an infinite, countable set of atoms.

$$
a, b, c, d, e, \ldots \in \mathbb{A}
$$

$\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$
\begin{aligned}
(\pi \cdot \sigma) \cdot \rho & =\pi \cdot(\sigma \cdot \rho) \\
\pi \cdot \pi^{-1} & =\mathrm{id} \\
\pi \cdot \mathrm{id} & =\pi=\mathrm{id} \cdot \pi
\end{aligned}
$$

Atoms

Let \mathbb{A} be an infinite, countable set of atoms.

$$
a, b, c, d, e, \ldots \in \mathbb{A}
$$

$\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$
\begin{aligned}
(\pi \cdot \sigma) \cdot \rho & =\pi \cdot(\sigma \cdot \rho) \\
\pi \cdot \pi^{-1} & =\mathrm{id} \\
\pi \cdot \mathrm{id} & =\pi=\mathrm{id} \cdot \pi
\end{aligned}
$$

the dot omitted frow now on

Atoms

Let \mathbb{A} be an infinite, countable set of atoms.

$$
a, b, c, d, e, \ldots \in \mathbb{A}
$$

$\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$
\begin{aligned}
(\pi \cdot \sigma) \cdot \rho & =\pi \cdot(\sigma \cdot \rho) \\
\pi \cdot \pi^{-1} & =\mathrm{id} \\
\pi \cdot \mathrm{id} & =\pi=\mathrm{id} \cdot \pi
\end{aligned}
$$

the dot omitted frow now on
$(a b) \in \operatorname{Aut}(\mathbb{A})$ - the swap of a and b

Atoms

Let \mathbb{A} be an infinite, countable set of atoms.

$$
a, b, c, d, e, \ldots \in \mathbb{A}
$$

$\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$
\begin{aligned}
(\pi \cdot \sigma) \cdot \rho & =\pi \cdot(\sigma \cdot \rho) \\
\pi \cdot \pi^{-1} & =\mathrm{id} \\
\pi \cdot \mathrm{id} & =\pi=\mathrm{id} \cdot \pi
\end{aligned}
$$

the dot omitted frow now on
$(a b) \in \operatorname{Aut}(\mathbb{A})$ - the swap of a and b
For example: $(a b)(b c)(c a)=(b c)$

$$
(a b)^{-1}=(a b)
$$

Von Neumann hierarchy

A hierarchy of universes:

$$
\begin{aligned}
\mathcal{U}_{0} & =\emptyset \\
\mathcal{U}_{\alpha+1} & =\mathcal{P} \mathcal{U}_{\alpha} \\
\mathcal{U}_{\beta} & =\bigcup_{\alpha<\beta} \mathcal{U}_{\alpha}
\end{aligned}
$$

defined for every ordinal number.

Von Neumann hierarchy

A hierarchy of universes:

$$
\begin{aligned}
\mathcal{U}_{0} & =\emptyset \\
\mathcal{U}_{\alpha+1} & =\mathcal{P} \mathcal{U}_{\alpha} \\
\mathcal{U}_{\beta} & =\bigcup_{\alpha<\beta} \mathcal{U}_{\alpha}
\end{aligned}
$$

defined for every ordinal number.
Elements of sets are other sets, in a well founded way

Von Neumann hierarchy

A hierarchy of universes:

$$
\begin{aligned}
\mathcal{U}_{0} & =\emptyset \\
\mathcal{U}_{\alpha+1} & =\mathcal{P} \mathcal{U}_{\alpha} \\
\mathcal{U}_{\beta} & =\bigcup_{\alpha<\beta} \mathcal{U}_{\alpha}
\end{aligned}
$$

defined for every ordinal number.

Elements of sets are other sets, in a well founded way

Every set sits somewhere in this hierarchy.

Sets with atoms

\mathbb{A} - a countable set of atoms

Sets with atoms

A - a countable set of atoms

A hierarchy of universes:

$$
\begin{aligned}
\mathcal{U}_{0} & =\emptyset \\
\mathcal{U}_{\alpha+1} & =\mathcal{P} \mathcal{U}_{\alpha}+\mathbb{A} \\
\mathcal{U}_{\beta} & =\bigcup_{\alpha<\beta} \mathcal{U}_{\alpha}
\end{aligned}
$$

Sets with atoms

A - a countable set of atoms

A hierarchy of universes:

$$
\begin{aligned}
\mathcal{U}_{0} & =\emptyset \\
\mathcal{U}_{\alpha+1} & =\mathcal{P} \mathcal{U}_{\alpha}+\mathbb{A} \\
\mathcal{U}_{\beta} & =\bigcup_{\alpha<\beta} \mathcal{U}_{\alpha}
\end{aligned}
$$

Elements of sets with atoms are atoms or other sets with atoms, in a well founded way

Renaming atoms

A canonical renaming action:

$$
__{-} \cdot: \mathcal{U} \times \operatorname{Aut}(\mathbb{A}) \rightarrow \mathcal{U}
$$

Renaming atoms

A canonical renaming action:

$$
\begin{aligned}
& \cdot_{-}: \mathcal{U} \times \operatorname{Aut}(\mathbb{A}) \rightarrow \mathcal{U} \\
& a \cdot \pi=\pi(a) \\
& X \cdot \pi=\{x \cdot \pi \mid x \in X\}
\end{aligned}
$$

Renaming atoms

A canonical renaming action:

$$
\begin{aligned}
& \cdot_{-}: \mathcal{U} \times \operatorname{Aut}(\mathbb{A}) \rightarrow \mathcal{U} \\
& a \cdot \pi=\pi(a) \\
& X \cdot \pi=\{x \cdot \pi \mid x \in X\}
\end{aligned}
$$

This is a group action of $\operatorname{Aut}(\mathbb{A})$:

$$
\begin{aligned}
x \cdot(\pi \sigma) & =(x \cdot \pi) \cdot \sigma \\
x \cdot \mathrm{id} & =x
\end{aligned}
$$

Renaming atoms

A canonical renaming action:

$$
\begin{aligned}
& f_{-}: \mathcal{U} \times \operatorname{Aut}(\mathbb{A}) \rightarrow \mathcal{U} \\
& \\
& \quad a \cdot \pi=\pi(a) \\
& X \cdot \pi=\{x \cdot \pi \mid x \in X\}
\end{aligned}
$$

This is a group action of $\operatorname{Aut}(\mathbb{A})$:

$$
\begin{aligned}
x \cdot(\pi \sigma) & =(x \cdot \pi) \cdot \sigma \\
x \cdot \mathrm{id} & =x
\end{aligned}
$$

Fact: For every π, the function ${ }_{-} \cdot \pi$ is a bijection on \mathcal{U}.

Finite support
$S \subseteq \mathbb{A}$ supports x if
$\forall a \in S . \pi(a)=a \quad$ implies $\quad x \cdot \pi=x$

Finite support
$S \subseteq \mathbb{A}$ supports x if
$\left\{\begin{array}{l}\forall a \in S . \pi(a)=a \\ \pi \in \operatorname{Aut}_{S}(\mathbb{A})\end{array}\right.$

Finite support

$S \subseteq \mathbb{A}$ supports x if

$$
\forall a \in S . \pi(a)=a \quad \text { implies } \quad x \cdot \pi=x
$$

A legal set with atoms, or nominal set:

- has a finite support,
- every element of it has a finite support,
- and so on.

Finite support

$S \subseteq \mathbb{A}$ supports x if

$$
\{a \in S . \pi(a)=a \quad \text { implies } \quad x \cdot \pi=x
$$

A legal set with atoms, or nominal set:

- has a finite support,
- every element of it has a finite support,
- and so on.

A set is equivariant if it has empty support.

Examples

$a \in \mathbb{A} \quad$ is supported by $\quad\{a\}$

Examples

$a \in \mathbb{A} \quad$ is supported by $\quad\{a\}$
 \mathbb{A} is equivariant

Examples

$a \in \mathbb{A} \quad$ is supported by $\quad\{a\}$
 \mathbb{A} is equivariant
 $S \subseteq \mathbb{A} \quad$ is supported by $\quad S$

Examples

$a \in \mathbb{A} \quad$ is supported by $\quad\{a\}$
$\mathbb{A} \quad$ is equivariant
$S \subseteq \mathbb{A} \quad$ is supported by $\quad S$
$\mathbb{A} \backslash S$ is supported by $\quad S$

Examples

$$
\begin{array}{clc}
a \in \mathbb{A} & \text { is supported by } & \{a\} \\
\mathbb{A} & \text { is equivariant } & \\
S \subseteq \mathbb{A} & \text { is supported by } & S \\
\mathbb{A} \backslash S & \text { is supported by } & S
\end{array}
$$

Fact: $S \subseteq \mathbb{A}$ is fin. supp. iff it is finite or co-finite

Examples

$a \in \mathbb{A} \quad$ is supported by $\quad\{a\}$
$\mathbb{A} \quad$ is equivariant
$S \subseteq \mathbb{A} \quad$ is supported by $\quad S$
$\mathbb{A} \backslash S$ is supported by S
Fact: $S \subseteq \mathbb{A}$ is fin. supp. iff it is finite or co-finite
$\mathbb{A}^{(2)}=\{(d, e) \mid d, e \in \mathbb{A}, d \neq e\}$ is equivariant

Examples

$a \in \mathbb{A} \quad$ is supported by $\quad\{a\}$
$\mathbb{A} \quad$ is equivariant
$S \subseteq \mathbb{A} \quad$ is supported by $\quad S$
$\mathbb{A} \backslash S \quad$ is supported by $\quad S$
Fact: $S \subseteq \mathbb{A}$ is fin. supp. iff it is finite or co-finite
$\mathbb{A}^{(2)}=\{(d, e) \mid d, e \in \mathbb{A}, d \neq e\}$ is equivariant
$\binom{\mathbb{A}}{2}=\{\{d, e\} \mid d, e \in \mathbb{A}, d \neq e\}$ is equivariant

Basic Properties

Closure properties

Fact: if X and Y are legal sets then

$$
X \cup Y, \quad X \cap Y, X+Y, X \backslash Y, X \times Y \text { are legal. }
$$

Closure properties

Fact: if X and Y are legal sets then

$$
X \cup Y, \quad X \cap Y, X+Y, X \backslash Y, X \times Y \text { are legal. }
$$

Indeed: if

$$
S \text { supports } X \quad \text { and } \quad T \text { supports } Y
$$

then

$$
S \cup T \text { supports } X \cup Y, X \cap Y, \ldots
$$

Closure properties

Fact: if X and Y are legal sets then

$$
X \cup Y, \quad X \cap Y, X+Y, X \backslash Y, X \times Y \text { are legal. }
$$

Indeed: if

$$
S \text { supports } X \quad \text { and } \quad T \text { supports } Y
$$

then

$$
S \cup T \text { supports } X \cup Y, X \cap Y, \ldots
$$

(But: $S \cap T$ does not support $X \cap Y$!)

Closure properties

Fact: if X and Y are legal sets then

$$
X \cup Y, \quad X \cap Y, X+Y, X \backslash Y, X \times Y \text { are legal. }
$$

Indeed: if

$$
S \text { supports } X \quad \text { and } \quad T \text { supports } Y
$$

then

$$
S \cup T \text { supports } X \cup Y, X \cap Y, \ldots
$$

(But: $S \cap T$ does not support $X \cap Y$!)
Fact: if X is legal and $Y \subseteq X$ is finitely supported then Y is legal.

Powersets

Fact: $\mathcal{P} \mathbb{A}$ is not legal (though it is equivariant).

Powersets

Fact: $\mathcal{P} \mathbb{A}$ is not legal (though it is equivariant).
Define:

$$
\mathcal{P}_{\mathrm{fs}} X=\{Y \subseteq X \mid Y \text { is finitely supported }\}
$$

Powersets

Fact: $\mathcal{P} \mathbb{A}$ is not legal (though it is equivariant).
Define:

$$
\mathcal{P}_{\mathrm{fs}} X=\{Y \subseteq X \mid Y \text { is finitely supported }\}
$$

Fact: if X is legal then $\mathcal{P}_{\mathrm{fs}} X$ is legal.

Powersets

Fact: $\mathcal{P} \mathbb{A}$ is not legal (though it is equivariant).
Define:

$$
\mathcal{P}_{\mathrm{fs}} X=\{Y \subseteq X \mid Y \text { is finitely supported }\}
$$

Fact: if X is legal then $\mathcal{P}_{\mathrm{fs}} X$ is legal.

Key step: if S supports X then $S \cdot \pi$ supports $X \cdot \pi$.

Powersets

Fact: $\mathcal{P} \mathbb{A}$ is not legal (though it is equivariant).
Define:

$$
\mathcal{P}_{\mathrm{fs}} X=\{Y \subseteq X \mid Y \text { is finitely supported }\}
$$

Fact: if X is legal then $\mathcal{P}_{\mathrm{fs}} X$ is legal.

Key step: if S supports X

 then $S \cdot \pi$ supports $X \cdot \pi$.$$
\sigma \in \operatorname{Aut}_{S \cdot \pi}(\mathbb{A}) \quad \Longrightarrow \quad \pi \sigma \pi^{-1} \in \operatorname{Aut}_{S}(\mathbb{A})
$$

Powersets

Fact: $\mathcal{P} \mathbb{A}$ is not legal (though it is equivariant).
Define:

$$
\mathcal{P}_{\mathrm{fs}} X=\{Y \subseteq X \mid Y \text { is finitely supported }\}
$$

Fact: if X is legal then $\mathcal{P}_{\mathrm{fs}} X$ is legal.
Key step: if S supports X then $S \cdot \pi$ supports $X \cdot \pi$.

$$
\begin{gathered}
\sigma \in \operatorname{Aut}_{S \cdot \pi}(\mathbb{A}) \Longrightarrow \pi \sigma \pi^{-1} \in \operatorname{Aut}_{S}(\mathbb{A}) \\
X \cdot \pi=\left(X \cdot \pi \sigma \pi^{-1}\right) \cdot \pi=(X \cdot \pi) \cdot \sigma
\end{gathered}
$$

Actions and supports

Fact: if S supports X and $\left.\pi\right|_{S}=\left.\sigma\right|_{S}$ then $X \cdot \pi=X \cdot \sigma$.

Actions and supports

Fact: if S supports X and $\left.\pi\right|_{S}=\left.\sigma\right|_{S}$ then $X \cdot \pi=X \cdot \sigma$.

Proof: if $\left.\pi\right|_{S}=\left.\sigma\right|_{S}$ then

$$
\pi \sigma^{-1} \in \operatorname{Aut}_{S}(\mathbb{A})
$$

so

$$
X \cdot \sigma=\left(X \cdot \pi \sigma^{-1}\right) \cdot \sigma=X \cdot \pi
$$

Actions and supports

Fact: if S supports X and $\left.\pi\right|_{S}=\left.\sigma\right|_{S}$ then $X \cdot \pi=X \cdot \sigma$.

Proof: if $\left.\pi\right|_{S}=\left.\sigma\right|_{S}$ then

$$
\pi \sigma^{-1} \in \operatorname{Aut}_{S}(\mathbb{A})
$$

so

$$
X \cdot \sigma=\left(X \cdot \pi \sigma^{-1}\right) \cdot \sigma=X \cdot \pi
$$

NB. these proofs are "easy".

Equivariant relations

A (binary) relation is a set of pairs.
Let's see what equivariance means for such sets:

$$
R \cdot \pi=R \quad \text { iff } \quad(x, y) \in R \Longrightarrow(x, y) \cdot \pi \in R
$$

Equivariant relations

A (binary) relation is a set of pairs.
Let's see what equivariance means for such sets:

$$
R \cdot \pi=R \quad \text { iff } \quad(x, y) \in R \Longrightarrow(x, y) \cdot \pi \in R
$$

$R \subseteq X \times Y$ is equivariant iff

$$
x R y \text { implies }(x \cdot \pi) R(y \cdot \pi) \text { for all } \pi
$$

Equivariant relations

A (binary) relation is a set of pairs.
Let's see what equivariance means for such sets:

$$
R \cdot \pi=R \quad \text { iff } \quad(x, y) \in R \Longrightarrow(x, y) \cdot \pi \in R
$$

$R \subseteq X \times Y$ is equivariant iff

$$
x R y \text { implies }(x \cdot \pi) R(y \cdot \pi) \text { for all } \pi
$$

Similarly for S-supported relations, but for

$$
\pi \in \operatorname{Aut}_{S}(\mathbb{A})
$$

Equivariant function

A function is a binary relation.

$R \subseteq X \times Y$ is equivariant iff

$$
x R y \text { implies }(x \cdot \pi) R(y \cdot \pi) \text { for all } \pi
$$

Equivariant function

A function is a binary relation.

$$
\begin{aligned}
& R \subseteq X \times Y \text { is equivariant iff } \\
& \quad x R y \text { implies }(x \cdot \pi) R(y \cdot \pi) \text { for all } \pi
\end{aligned}
$$

$f: X \rightarrow Y$ is equivariant iff

$$
f(x \cdot \pi)=f(x) \cdot \pi \text { for all } \pi
$$

Equivariant function

A function is a binary relation.

$R \subseteq X \times Y$ is equivariant iff

$$
x R y \text { implies }(x \cdot \pi) R(y \cdot \pi) \text { for all } \pi
$$

$f: X \rightarrow Y$ is equivariant iff

$$
f(x \cdot \pi)=f(x) \cdot \pi \text { for all } \pi
$$

Similarly for S-supported functions, but for

$$
\pi \in \operatorname{Aut}_{S}(\mathbb{A})
$$

Examples

For fixed $2,5 \in \mathbb{A}$:

Examples

For fixed $2,5 \in \mathbb{A}$:

$$
R=\{(5,2)\} \cup\{(2, d) \mid d \neq 5\} \cup\{(d, d)\}
$$

Examples

For fixed $2,5 \in \mathbb{A}$:

$$
R=\{(5,2)\} \cup\{(2, d) \mid d \neq 5\} \cup\{(d, d)\}
$$

Examples

For fixed $2,5 \in \mathbb{A}$:

$$
R=\{(5,2)\} \cup\{(2, d) \mid d \neq 5\} \cup\{(d, d)\}
$$

R, R^{*} are supported by $\{2,5\}$

Examples ctd.

Equivariant binary relations on \mathbb{A} :

Examples ctd.

Equivariant binary relations on \mathbb{A} :

- empty
- equality
- total
- inequality

Examples ctd.

Equivariant binary relations on \mathbb{A} :

- empty
- total
- equality
- inequality

No equivariant function from $\binom{\mathbb{A}}{2}$ to \mathbb{A}, but

$$
\{(\{a, b\}, a) \mid a, b \in \mathbb{A}\}
$$

is an equivariant relation.

Examples ctd.

Equivariant binary relations on \mathbb{A} :

- empty
- equality
- total
- inequality

No equivariant function from $\binom{\mathbb{A}}{2}$ to \mathbb{A}, but

$$
\{(\{a, b\}, a) \mid a, b \in \mathbb{A}\}
$$

is an equivariant relation.
Only equiv. functions from \mathbb{A}^{2} to \mathbb{A} are projections
Only equiv. function from \mathbb{A} to \mathbb{A}^{2} is the diagonal

Intuition

A relation/function/... is equivariant iff
it only "checks" equality of atoms, and does not mention specific atoms.

Intuition

A relation/function/... is equivariant iff
it only "checks" equality of atoms, and does not mention specific atoms.

A relation/function/... supported by S, may additionally mention specific atoms from S.

Equivariant functions preserve supports

Fact: if S supports $x \in X$
and T supports $f: X \rightarrow Y$ then $S \cup T$ supports $f(x)$.

Equivariant functions preserve supports

Fact: if S supports $x \in X$
and T supports $f: X \rightarrow Y$ then $S \cup T$ supports $f(x)$.

$$
\operatorname{Proof:} \quad \operatorname{Aut}_{S \cup T}(\mathbb{A})=\operatorname{Aut}_{S}(\mathbb{A}) \cap \operatorname{Aut}_{T}(\mathbb{A})
$$

so if $\pi \in \operatorname{Aut}_{S \cup T}(\mathbb{A})$
then $f(x) \cdot \pi=f(x \cdot \pi)=f(x)$

Equivariant functions preserve supports

Fact: if S supports $x \in X$
and T supports $f: X \rightarrow Y$ then $S \cup T$ supports $f(x)$.

$$
\operatorname{Proof:~}^{\operatorname{Aut}_{S \cup T}(\mathbb{A})=\operatorname{Aut}_{S}(\mathbb{A}) \cap \operatorname{Aut}_{T}(\mathbb{A}), ~}
$$

so if $\pi \in \operatorname{Aut}_{S \cup T}(\mathbb{A})$
then $f(x) \cdot \pi=f(x \cdot \pi)=f(x)$

NB. another "easy" proof.

Least supports

Fact: for finite S and T,
if S supports X and T supports X then $S \cap T$ supports X.

Least supports

Fact: for finite S and T,
if S supports X and T supports X then $S \cap T$ supports X.

So: every legal X has the least support $\operatorname{supp}(X)$.

Least supports

Fact: for finite S and T,
if S supports X and T supports X then $S \cap T$ supports X.

So: every legal X has the least support $\operatorname{supp}(X)$.

NB.This is harder to prove!
One way: induction on $|S \triangle T|$.

Proof

Assume S and T support X.

Proof

Assume S and T support X.

Proof

Assume S and T support X.

Goal: $S \backslash a$ supports X.

Proof

Assume S and T support X. Goal: $S \backslash a$ supports X.

Take any $\pi \in \operatorname{Aut}_{S \backslash a}(\mathbb{A})$.

Proof

Assume S and T support X.

Take any $\pi \in \operatorname{Aut}_{S \backslash a}(\mathbb{A})$.
Pick a fresh $b: \quad b, \pi(b) \notin S \cup T$.

Proof

Assume S and T support X.
 Goal: $S \backslash a$ supports X.

Take any $\pi \in \operatorname{Aut}_{S \backslash a}(\mathbb{A})$.
Pick a fresh $b: \quad b, \pi(b) \notin S \cup T$.
Put $\sigma=(a b), \theta=(a \pi(b))$. Then:

$$
\sigma, \theta=\operatorname{Aut}_{T}(\mathbb{A})
$$

Proof

Assume S and T support X.
 Goal: $S \backslash a$ supports X.

Take any $\pi \in \operatorname{Aut}_{S \backslash a}(\mathbb{A})$.
Pick a fresh $b: \quad b, \pi(b) \notin S \cup T$.
Put $\sigma=(a b), \theta=(a \pi(b))$. Then:

$$
\sigma, \theta=\operatorname{Aut}_{T}(\mathbb{A}) \quad \sigma \pi \theta=\operatorname{Aut}_{S}(\mathbb{A})
$$

Proof

Assume S and T support X. Goal: $S \backslash a$ supports X.

Take any $\pi \in \operatorname{Aut}_{S \backslash a}(\mathbb{A})$.

Pick a fresh $b: \quad b, \pi(b) \notin S \cup T$.
Put $\sigma=(a b), \theta=(a \pi(b))$. Then:

$$
\sigma, \theta=\operatorname{Aut}_{T}(\mathbb{A}) \quad \sigma \pi \theta=\operatorname{Aut}_{S}(\mathbb{A})
$$

so:

$$
X \cdot \pi=((X \cdot \sigma) \cdot \sigma \pi \theta) \cdot \theta=X
$$

Name abstraction

For an (equivariant) set X, define a relation \approx on $\mathbb{A} \times X$ so:

$$
(a, x) \approx(b, y) \Longleftrightarrow x \cdot(a c)=y \cdot(b c)
$$

for fresh c :

$$
c \notin\{a, b\} \cup \operatorname{supp}(x, y)
$$

Name abstraction

For an (equivariant) set X, define a relation \approx on $\mathbb{A} \times X$ so:

$$
(a, x) \approx(b, y) \Longleftrightarrow x \cdot(a c)=y \cdot(b c)
$$

for fresh c :

$$
c \notin\{a, b\} \cup \operatorname{supp}(x, y)
$$

Fact: \approx is an equivariant equivalence relation.

Name abstraction

For an (equivariant) set X, define a relation \approx on $\mathbb{A} \times X$ so:

$$
(a, x) \approx(b, y) \Longleftrightarrow x \cdot(a c)=y \cdot(b c)
$$

for fresh c :

$$
c \notin\{a, b\} \cup \operatorname{supp}(x, y)
$$

Fact: \approx is an equivariant equivalence relation.
Define: $\quad[\mathbb{A}] X=(\mathbb{A} \times X) / \approx$

Name abstraction

For an (equivariant) set X, define a relation \approx on $\mathbb{A} \times X$ so:

$$
(a, x) \approx(b, y) \Longleftrightarrow x \cdot(a c)=y \cdot(b c)
$$

for fresh c :

$$
c \notin\{a, b\} \cup \operatorname{supp}(x, y)
$$

Fact: \approx is an equivariant equivalence relation.
Define: $\quad[\mathbb{A}] X=(\mathbb{A} \times X) / \approx$
Fact: $[\mathbb{A}] X$ is an equivariant set.

$$
\operatorname{supp}([a, x] \approx)=\operatorname{supp}(x) \backslash\{a\}
$$

Name abstraction

For an (equivariant) set X, define a relation \approx on $\mathbb{A} \times X$ so:

$$
(a, x) \approx(b, y) \Longleftrightarrow x \cdot(a c)=y \cdot(b c)
$$

for fresh c :

$$
c \notin\{a, b\} \cup \operatorname{supp}(x, y)
$$

Fact: \approx is an equivariant equivalence relation.
Define: $\quad[\mathbb{A}] X=(\mathbb{A} \times X) / \approx$
Fact: $[\mathbb{A}] X$ is an equivariant set.

$$
\operatorname{supp}([a, x] \approx)=\operatorname{supp}(x) \backslash\{a\}
$$

Exercises

I. If S supports $f: X \rightarrow Y$ and T supports $g: Y \rightarrow Z$ then $S \cup T$ supports $f ; g: X \rightarrow Z$.

Exercises

I. If S supports $f: X \rightarrow Y$ and T supports $g: Y \rightarrow Z$ then $S \cup T$ supports $f ; g: X \rightarrow Z$.
2. For an equivariant set X, the transitive closure function $(-)^{*}: \mathcal{P}_{\mathrm{fs}}(X \times X) \rightarrow \mathcal{P}_{\mathrm{fs}}(X \times X)$ is equivariant.

Exercises

I. If S supports $f: X \rightarrow Y$ and T supports $g: Y \rightarrow Z$ then $S \cup T$ supports $f ; g: X \rightarrow Z$.
2. For an equivariant set X, the transitive closure function $(-)^{*}: \mathcal{P}_{\mathrm{fs}}(X \times X) \rightarrow \mathcal{P}_{\mathrm{fs}}(X \times X)$ is equivariant.
3. For an equivariant set X, the least support function supp : $X \rightarrow \mathcal{P}_{\text {fin }} \mathbb{A}$ is equivariant.

Exercises

I. If S supports $f: X \rightarrow Y$ and T supports $g: Y \rightarrow Z$ then $S \cup T$ supports $f ; g: X \rightarrow Z$.
2. For an equivariant set X, the transitive closure function $(-)^{*}: \mathcal{P}_{\mathrm{fs}}(X \times X) \rightarrow \mathcal{P}_{\mathrm{fs}}(X \times X)$ is equivariant.
3. For an equivariant set X, the least support function supp : $X \rightarrow \mathcal{P}_{\text {fin }} \mathbb{A}$ is equivariant.
4. In a finite equivariant set, every element is equivariant.

