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Algebraic features:

- definitions by recursion
- proofs by induction
- ...
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3

parsing

let x = 3 in let x = x+ 1 in x+ 5

let

x

let

x

+

x 1

+

x 5

Expressions

depend

on names!
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Name dependence
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What does it mean to depend on a name?
Q:

A:
depends on a name   X a

aif renaming    to any other name
would alter X

Idea revisited:

Let everything come equipped

affects it
with information on how renaming names

nominal sets
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Slightly infinite

15

- nodes: {(a, b) : a, b 2 A : a 6= b}
- edges: 

�
{(a, b), (b, c)} : a, b, c 2 A

: a 6= b ^ b 6= c ^ a 6= c
 

- nodes: 
- edges: 

ab a 6= b
a 6= cab bc

The same graph:

Infinite, but presented by finite means
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Is it 3-colorable?

Is 3-colorability decidable?
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- edges: 

ab a 6= b
a 6= cab bc

No.

ab ad

bc be

ca cd

db de

ea ec
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Computer Science 101

18

Theorem:

Every algorithm to sort     numbers must work
in time                  .

n
⌦(n log n)

in the comparison model

Here, numbers are atoms accessible via relations: 

= <

This amounts to restricting the class 
of legal atom renamings.
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Let     be an infinite, countable set of atoms.A
a, b, c, d, e, . . . 2 A

Aut(A) - the group of all bijections of A

(a b) 2 Aut(A) - the swap of    and    a b

(a b)(b c)(c a) = (b c)For example:
(a b)�1 = (a b)

(⇡ · �) · ⇢ = ⇡ · (� · ⇢)
⇡ · ⇡�1 = id

⇡ · id = ⇡ = id · ⇡

the dot omitted
frow now on
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Von Neumann hierarchy

21

U0 = ;

U� =
S

↵<� U↵

A hierarchy of universes:

U↵+1 = PU↵

defined for every ordinal number.

Elements of sets are other sets,
in a well founded way

Every set sits somewhere in this hierarchy.
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U0 = ;
U↵+1 = PU↵ + A

U� =
S

↵<� U↵

A hierarchy of universes:

Sets with atoms

22

A - a countable set of atoms

Elements of sets with atoms are atoms
or other sets with atoms, in a well founded way
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Renaming atoms

23

A canonical renaming action:

· : U ⇥Aut(A) ! U
a · ⇡ = ⇡(a)

X · ⇡ = {x · ⇡ | x 2 X}

This is a group action of             :Aut(A)
x · (⇡�) = (x · ⇡) · �

x · id = x

Fact: For every    , the function       ⇡ · ⇡
is a bijection on    .U
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Finite support

24

S ✓ A supports     if

8a 2 S.⇡(a) = a
x · ⇡ = ximplies

A legal set with atoms, or nominal set:
- has a finite support,
- every element of it has a finite support,
- and so on.

A set is equivariant if it has empty support.

⇡ 2 AutS(A)

x
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Examples

25

{a}a 2 A is supported by

SS ✓ A is supported by

A \ S Sis supported by

A is equivariant

Fact:             is fin. supp. iff it is finite or co-finiteS ✓ A

A(2) = {(d, e) | d, e 2 A, d 6= e} is equivariant
✓
A
2

◆
= {{d, e} | d, e 2 A, d 6= e} is equivariant
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Closure properties

27

Fact: if     and     are legal sets then

          ,             ,            ,           ,             are legal.

X Y

X [ Y X \ Y X + Y X \ Y X ⇥ Y

Indeed:  if
S supports        and        supportsX T Y

then
S [ T supports           ,            , ...X [ Y X \ Y

(But:            does not support            !) S \ T X \ Y

Fact: if      is legal and             is finitely supported 
 then     is legal.

X Y ✓ X
Y
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Powersets

28

Fact:        is not legal (though it is equivariant).PA

Define:       

is finitely supportedPfsX = {Y ✓ X | Y }

Fact: if      is legal then          is legal.X PfsX

Key step: if     supports     
then          supports         .
S X

S · ⇡ X · ⇡

� 2 AutS·⇡(A) =) ⇡�⇡�1 2 AutS(A)

X · ⇡ = (X · ⇡�⇡�1) · ⇡ = (X · ⇡) · �
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Actions and supports

29

Fact: if     supports      and      

then                      .

S X ⇡|S = �|S
X · ⇡ = X · �

Proof:  if                  then ⇡|S = �|S
⇡��1 2 AutS(A)

so

X · � = (X · ⇡��1) · � = X · ⇡

NB. these proofs are “easy”.
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30

A (binary) relation is a set of pairs.

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies                           for all ⇡

Let’s see what equivariance means for such sets:

R · ⇡ = R (x, y) 2 R =) (x, y) · ⇡ 2 Riff

Similarly for    -supported relations, but for S
⇡ 2 AutS(A)
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Equivariant function

31

A function is a binary relation.

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies                           for all ⇡

Similarly for    -supported functions, but for S
⇡ 2 AutS(A)

⇡

f : X ! Y is equivariant iff

f(x · ⇡) = f(x) · ⇡ for all
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2

R

For fixed              :2, 5 2 A
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5

5

2

R
2

5

5

2

R⇤

For fixed              :2, 5 2 A
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Examples

32

R = {(5, 2)} ⇥ {(2, d) | d �= 5} ⇥ {(d, d)}

2

5

5

2

R
2

5

5

2

R⇤

For fixed              :2, 5 2 A

R ,       are supported byR⇤ {2, 5}
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Equivariant binary relations on    :A
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Examples ctd.

33

Equivariant binary relations on    :A
- empty - total
- equality - inequality

No equivariant function from        to    , but     
�A
2

�
A

{({a, b}, a) | a, b 2 A}
is an equivariant relation.
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Examples ctd.

33

Equivariant binary relations on    :A
- empty - total
- equality - inequality

No equivariant function from        to    , but     
�A
2

�
A

{({a, b}, a) | a, b 2 A}
is an equivariant relation.

Only equiv. functions from       to     are projections A2

Only equiv. function from     to      is the diagonal 

A
A A2
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Intuition

34

A relation/function/... is equivariant
iff

it only “checks” equality of atoms,
and does not mention specific atoms.
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Intuition

34

A relation/function/... is equivariant
iff

it only “checks” equality of atoms,
and does not mention specific atoms.

A relation/function/... supported by     ,
may additionally mention
specific atoms from    .

S

S
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Equivariant functions preserve supports

35

Fact: if     supports          

then            supports        .

S

 and     supports          T f : X ! Y

S [ T f(x)

x 2 X
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Equivariant functions preserve supports

35

Fact: if     supports          

then            supports        .

S

 and     supports          T f : X ! Y

S [ T f(x)

x 2 X

Proof:   AutS[T (A) = AutS(A) \AutT (A)
so if           ⇡ 2 AutS[T (A)

then f(x) · ⇡ = f(x · ⇡) = f(x)
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Equivariant functions preserve supports

35

Fact: if     supports          

then            supports        .

S

 and     supports          T f : X ! Y

S [ T f(x)

x 2 X

Proof:   AutS[T (A) = AutS(A) \AutT (A)
so if           ⇡ 2 AutS[T (A)

then f(x) · ⇡ = f(x · ⇡) = f(x)

NB. another “easy” proof.
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Least supports
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Fact: for finite     and     ,         S T

if     supports     and     supports             XS T X

then            supports    . S \ T X
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So: every legal     has the least support                .      X supp(X)
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Least supports

36

Fact: for finite     and     ,         S T

if     supports     and     supports             XS T X

then            supports    . S \ T X

NB. This is harder to prove!
One way: induction on           .|S4T |

So: every legal     has the least support                .      X supp(X)
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Assume     and     support    .         S T X

S T



FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume     and     support    .         S T X

S T

a



FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume     and     support    .         S T X

S T

a
Goal:           supports    .XS \ a



FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume     and     support    .         S T X

S T

a
Goal:           supports    .XS \ a

Take any                        .⇡ 2 AutS\a(A)
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Assume     and     support    .         S T X

S T

a
Goal:           supports    .XS \ a

Take any                        .⇡ 2 AutS\a(A)

b ⇡(b)

Pick a fresh    :                          .b b,⇡(b) 62 S [ T

Put                 ,                     .   Then: � = (a b) ✓ = (a ⇡(b))

�, ✓ = AutT (A) �⇡✓ = AutS(A)
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Proof

37

Assume     and     support    .         S T X

S T

a
Goal:           supports    .XS \ a

Take any                        .⇡ 2 AutS\a(A)

b ⇡(b)

Pick a fresh    :                          .b b,⇡(b) 62 S [ T

Put                 ,                     .   Then: � = (a b) ✓ = (a ⇡(b))

�, ✓ = AutT (A) �⇡✓ = AutS(A)

so:
X · ⇡ = ((X · �) · �⇡✓) · ✓ = X
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Name abstraction

38

For an (equivariant) set    ,    X
define a relation      on             so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh   :c
c 62 {a, b} [ supp(x, y)
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define a relation      on             so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh   :c
c 62 {a, b} [ supp(x, y)

Fact:      is an equivariant equivalence relation.        ⇡



FoPSS, Warsaw, 10-11/09/19

Name abstraction

38

For an (equivariant) set    ,    X
define a relation      on             so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh   :c
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Name abstraction

38

For an (equivariant) set    ,    X
define a relation      on             so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh   :c
c 62 {a, b} [ supp(x, y)

Fact:      is an equivariant equivalence relation.        ⇡

Define: [A]X = (A⇥X)/⇡

Fact:           is an equivariant set.       [A]X

supp([a, x]⇡) = supp(x) \ {a}
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Name abstraction

38

For an (equivariant) set    ,    X
define a relation      on             so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh   :c
c 62 {a, b} [ supp(x, y)

Fact:      is an equivariant equivalence relation.        ⇡

Define: [A]X = (A⇥X)/⇡

Fact:           is an equivariant set.       [A]X

supp([a, x]⇡) = supp(x) \ {a}

↵-equivalence
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1. If     supports                   and     supportsf : X ! Y

 then           supports                     . 
S T

g : Y ! Z S [ T f ; g : X ! Z
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Exercises

39

1. If     supports                   and     supportsf : X ! Y

 then           supports                     . 

3. For an equivariant set    , the least support
is equivariant.function supp : X ! PfinA

X

2. For an equivariant set    , the transitive closureX

function
is equivariant.

(�)⇤ : Pfs(X ⇥X) ! Pfs(X ⇥X)

4. In a finite equivariant set, every element
is equivariant.

S T

g : Y ! Z S [ T f ; g : X ! Z


