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FoPSS 2019

Our lecturers:

- Andrew M. Pitts:

Nominal sets and functional programming
- Mikofaj Bojanczyk:

Combputation theory with atoms
- Andrzej Murawski:

Nominal game semantics
- Maribel Fernandez:

Nominal rewriting and unification
- Johannes Borgstrom:

Nominal process calculi and modal logics
- Murdoch |. Gabbay:

Advanced nominal techniques

- Stawomir Lasota:
Combputation theory with atoms Il
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What is it all about!?

Nominal techniques:

mathematics of, and computation with:

local names
and name dependence
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Concrete and abstract syntax

2% 3+ 3% (7 —2)

parsing

N

VANRWAN
/\
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Concrete and abstract syntax

2% 3+ 3% (7 —2)

parsing

Algebraic features:

- definitions by recursion |

/ - proofs by induction
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Complications with local names

let x=31nletx=x+11nx+5

parsing

let

W
/I
X/ \1 X/ \5
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Complications with local names

let x=31nletx=x+11nx+5

parsing
let
/ | \ Expessions
X 3 let (

X/ \—I— n n!
/N /N
X 1 x b5
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Name dependence

|dea;

Let every expression come equipped
with an explicit dependence on some names
(or:atoms) that occur in it

FoPSS,Warsaw, 10-11/09/19

10



Name dependence

|dea: nominal expressions

Let every expression come equipped
with an explicit dependence on some names
(or:atoms) that occur in it

FoPSS,Warsaw, 10-11/09/19

10



Name dependence

|dea: nominal expressions

Let every expression come equipped
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(or:atoms) that occur in it
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Let everything come equipped
with an explicit dependence on some names
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Name dependence

|dea: nominal expressions

Let every expression come equipped
with an explicit dependence on some names
(or:atoms) that occur in it

More ambitious idea: nominal sets

Let everything come equipped
with an explicit dependence on some names
(or:atoms) that occur in it
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Name dependence

Q:

What does it mean to depend on a name!
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Name dependence

Q:

What does it mean to depend on a name!
A:

X depends on a name @

if renaming a to any other name

would alter X
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Name dependence

Q:

What does it mean to depend on a name!
A:

X depends on a name @

if renaming a to any other name

would alter X
ldea revisited: nominal sets

Let everything come equipped
with information on how renaming names
affects it
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What is it all about!?

Nominal techniques:

mathematics of, and computation with:

local names
and name dependence

_ highly symmetrical
! structures

“slightly infinite”
structures
structures

acessible via
limited interfaces
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A graph built of atoms

atomic names: a,b,c,d, e, ...

- nodes:  ab a #+ b
- edges: ab—bc a # c
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A graph built of atoms

atomic names: a,b,c,d, e, ...

- nodes:  ab a #+ b
- edges: ab—bc a # c

atom renaming:

a b \”

2\
/ \\:

CL
FoPSS,Warsaw, 10-11/09/19
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A graph built of atoms

atomic names: a,b,c,d, e, ...
- nodes: ab a #+ b
- edges: ab—bc a #

atom renaming:

a b
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What is it all about!?

Nominal techniques:

mathematics of, and computation with:

local names
and name dependence

highly symmetrical

, P structures
“slightly infinite

structures

/
/
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structures
acessible via
limited interfaces
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Slightly infinite

The same graph:

- nodes: ab
- edges:  ab—bc
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Slightly infinite

The same graph:

- nodes: ab a+~b
- edges:  ab—bc a % c

- nodes: {(a,b) : a,b € A :a # b}
- edges: {{(a,b), (b,¢)} :a,b,c € A
ca#£bANb#cNa#c}
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Slightly infinite

The same graph:
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An example problem

- nodes: ab
- edges:  ab—bc
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An example problem

- nodes: ab
- edges:  ab—bc

Is it 3-colorable?
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An example problem

- nodes: ab a + b
- edges: ab—1bc a 7+ C
ab ad
Is it 3-colorable? 7/
/ be
/‘/
ea ec No.
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An example problem

- nodes: ab a + b
- edges:  ab—bc a7 ¢
ab ad
|s it 3-colorable? 4
/ be
%‘ P
eq ec No.

Is 3-colorability decidable?
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What is it all about!?

Nominal techniques:

mathematics of, and computation with:

local names
and name dependence

highly symmetrical

, P structures
“slightly infinite

structures
structures

acessible via
limited interfaces
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Computer Science 101

Theorem:

Every algorithm to sort n numbers must work
in time (2(nlogn).
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Theorem:

Every algorithm to sort n numbers must work
in time (2(nlogn).
in the comparison model

Here, numbers are atoms accessible via relations:

= <
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Computer Science 101

Theorem:

Every algorithm to sort n numbers must work
in time (2(nlogn).
in the comparison model

Here, numbers are atoms accessible via relations:

= <

This amounts to restricting the class
of legal atom renamings.
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Basic Defnitions
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Nominal Sets:
Basic Defnitions




Atoms

Let A be an infinite, countable set of atoms.

a,b,c,d,e, ... €A
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Atoms

Let A be an infinite, countable set of atoms.

a,b,c,d,e, ... €A
Aut(A) - the of all bijections of A

(m-0)-p=m-(c-p)
Tt =id

m-ild=m7=1d- -7
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Atoms

Let A be an infinite, countable set of atoms.

a,b,c,d,e, ... €A
Aut(A) - the of all bijections of A

(m-0)-p=m-(0-p) the dot omitted

-1
m-m - =1d frow now on
m-ild=m7=1d- -7

(a b) € Aut(A) - the swap of ¢ and b

For example: (a 0)(b ¢)(c a) = (b ¢)
(ab)™" = (ab)
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Von Neumann hierarchy

A hierarchy of universes:

Uy = ()
Z/{oz—l—l — 7)2/{@
Z/{B — Uoz<ﬁ Ua

defined for every ordinal number.
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Von Neumann hierarchy

A hierarchy of universes:

Uy =
Z/{oz—l—l = PU,,
Z/{B — Uoz<ﬁ Z/{O‘

defined for every ordinal number.

Elements of sets are other sets,
in a well founded way
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Von Neumann hierarchy

A hierarchy of universes:

Uy =
Z/{oz—l—l = PU,,
Z/{B — Uoz<ﬁ Z/{O‘

defined for every ordinal number.

Elements of sets are other sets,
in a well founded way

Every set sits somewhere in this hierarchy.
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Sets with atoms

A - a countable set of atoms
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Sets with atoms

A - a countable set of atoms

A hierarchy of universes:
Uy =0
Z/{a_|_1 — PZ/{Q —|— A

Mﬁ — Uoz<ﬁ Ua
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Sets with atoms

A - a countable set of atoms

A hierarchy of universes:

Uy = ()
Z/{a_|_1 — PZ/{Q -+ A
Mﬁ — Ua<ﬁ Ua

Elements of sets with atoms are atoms
or other sets with atoms, in a well founded way
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Renaming atoms

A canonical renaming action:

U X Aut(A) - U
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Renaming atoms

A canonical renaming action:

U X Aut(A) - U

a-m=m(a)

X-m={zx-n|zeX}
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Renaming atoms

A canonical renaming action:

U X Aut(A) - U

a-m=mn(a)

X-m={zx-n|zeX}

This is a group action of Aut(A):

r-(mo)=(x -m)- -0
r-id==x
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Renaming atoms

A canonical renaming action:

U X Aut(A) - U

a-m=mn(a)

X-m={zx-n|zeX}

This is a group action of Aut(A):
r-(mo)=(x -m)- -0

r-1d =z

Fact: For every 7 , the function _- 7
is a bijection on /.
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Finite support

S CA T if
Va € S.m(a) = a

FoPSS,Warsaw, 10-11/09/19

implies

X

M=

24



Finite support

5 C A T if

\V/CL - S.’]T(a,) — q
N - /

f o e —— \
| c Aut g
e eec—
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Finite support

S C A T if

{a c Sm(a) =a implies x-m=ux

T € Autg |

A legal , or
- has a finite support,

- every element of it has a finite support,
- and so on.
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Finite support

S C A T if

{a c Sm(a) =a implies x-m=ux

m € Autg j

N e

A legal , or
- has a finite support,

- every element of it has a finite support,
- and so on.

A set is if it has empty support.
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Examples

a € A is supported by
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Examples

a € A is supported by
A is equivariant

S C A is supported by
A\ S s supported by
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Examples

a € A issupportedby {a}
A is equivariant
S C A is supported by S

A\S issupportedby S

Fact: S C A is fin. supp. iff it is finite or co-finite
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Examples

a € A issupportedby {a}
A is equivariant
S C A is supported by S

A\S issupportedby S
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AP ={(d e)|d,ec A d+#e} isequivariant
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Examples

a € A issupportedby {a}
A is equivariant
S C A is supported by S

A\S issupportedby S

Fact: S C A is fin. supp. iff it is finite or co-finite

AP ={(d e)|d,ec A d+#e} isequivariant

A
(2> ={{d,e} | d,e € A,d # e} is equivariant

FoPSS,Warsaw, 10-11/09/19 25
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Closure properties

Fact:if X and Y are legal sets then
XUY, XNY, X+4+Y, X\Y, X XY are legal.
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Closure properties

Fact:if X and Y are legal sets then
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Indeed: if

S supports X and 1 supports Y

then
SUT supports X UY, X NY,..
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Closure properties

Fact:if X and Y are legal sets then
XUY, XNY, X+4+Y, X\Y, X XY are legal.

Indeed: if

S supports X and 1 supports Y

then
SUT supports X UY, X NY,..

(But: S NI does not support X NY !)
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Closure properties

Fact:if X and Y are legal sets then
XUY, XNY, X+4+Y, X\Y, X XY are legal.

Indeed: if

S supports X and 1 supports Y

then
SUT supports X UY, X NY,..

(But: S NI does not support X NY !)

Fact:if X islegal and Y C X is finitely supported
then Y is legal.
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Powersets

Fact: PA is not legal (though it is equivariant).
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Powersets

Fact: PA is not legal (though it is equivariant).

P X ={Y C X | Yis finitely supported }

Fact:if X is legal then Pg X is legal.

Key step: if S supports X
then S - 7 supports X - 7.
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Powersets

Fact: PA is not legal (though it is equivariant).

P X ={Y C X | Yis finitely supported }

Fact:if X is legal then Pg X is legal.

Key step: if S supports X
then S - 7 supports X - 7.

o€ Autg..(A) = mwor '€ Autg(A)
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Powersets

Fact: PA is not legal (though it is equivariant).

P X ={Y C X | Yis finitely supported }

Fact:if X is legal then Pg X is legal.

Key step: if S supports X
then S - 7 supports X - 7.

o€ Autg..(A) = mwor '€ Autg(A)
X rm=X-mon ) 7=(X-7)-0

FoPSS,Warsaw, 10-11/09/19 28



Actions and supports

Fact:if .S supports X and m|s = olg
then X -m =X . 0.
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Actions and supports

Fact:if .S supports X and m|s = olg
then X -m =X . 0.

Proof: if 7T‘S = U‘S then
ro b € Autg(A)

Yo
Xo=X-mc")0=X-7
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Actions and supports

Fact:if .S supports X and m|s = olg
then X -m =X . 0.

Proof: if 7T‘S = U‘S then
ro b € Autg(A)

Yo
Xo=X-mc")0=X-7

these proofs are “easy’’.
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Equivariant relations

A (binary) relation is a set of pairs.

Let’s see what equivariance means for such sets:

R-m=R iff (x,y) € R= (z,y) - T € R
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Equivariant relations

A (binary) relation is a set of pairs.

Let’s see what equivariance means for such sets:

R-m=R iff (x,y) € R= (z,y) - T € R

R C X xY is equivariant iff

rRy implies (x-m)R(y-m) forall 7
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Equivariant relations

A (binary) relation is a set of pairs.

Let’s see what equivariance means for such sets:

R-m=R iff (x,y) € R= (z,y) - T € R

R C X xY is equivariant iff

rRy implies (x-m)R(y-m) forall 7

Similarly for S-supported relations, but for
T & Auts(A)
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Equivariant function

A function is a binary relation.

R C X xY is equivariant iff

rRy implies (x-m)R(y-m) forall 7
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Equivariant function

A function is a binary relation.

R C X xY is equivariant iff

rRy implies (x-m)R(y-m) forall 7

f : X — Y is equivariant iff
flr-m)= f(x) -7 forall
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Equivariant function

A function is a binary relation.

R C X xY is equivariant iff

rRy implies (x-m)R(y-m) forall 7

f : X — Y is equivariant iff
flr-m)= f(x) -7 forall

Similarly for S-supported functions, but for
T € Auts(A)
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Examples

For fixed 2,5 € A:
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Examples

For fixed 2,5 € A:

R=1(5,2)}U(2,d) | d# 5; U(d,d)}
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Examples

For fixed 2,5 € A:

R=1(5,2)}U(2,d) | d# 5; U(d,d)}

FoPSS,Warsaw, 10-11/09/19

R*



Examples

For fixed 2,5 € A:

R=1(5,2)}U(2,d) | d# 5; U(d,d)}

R, R" are supported by {2,5}

FoPSS,Warsaw, 10-11/09/19
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Examples ctd.

Equivariant binary relations on A:
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Examples ctd.

Equivariant binary relations on A:

- empty - total
- equality - inequality
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Examples ctd.

Equivariant binary relations on A:

- empty - total
- equality - inequality
No equivariant function from (‘g) to A, but

{({a,b},a) | a,b e A}

is an equivariant relation.

FoPSS,Warsaw, 10-11/09/19

33



Examples ctd.

Equivariant binary relations on A:

- empty - total
- equality - inequality
No equivariant function from (‘g) to A, but

{({a,b},a) | a,b e A}

is an equivariant relation.

Only equiv. functions from A? to A are projections
Y €4 proj

Only equiv. function from A to AZis the diagonal
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Intuition

A relation/function/... is equivariant
iff

it only “checks” equality of atomes,
and does not mention specific atomes.
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Intuition

A relation/function/... is equivariant
iff
it only “checks” equality of atoms,
and does not mention specific atomes.

A relation/function/... supported by 5 ,
may additionally mention
specific atoms from S .
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Equivariant functions preserve supports

Fact:if S supports z € X
and 1" supports f: X = Y
then S UT supports f(x).
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Equivariant functions preserve supports

Fact:if S supports z € X
and 1" supports f: X = Y
then S UT supports f(x).

Proof: Autgur(A) = Autg(A) N Autp(A)
so if ™€ Autgur(A)

then f(z) 7= f(x-m) = f(x)
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Equivariant functions preserve supports

Fact:if S supports z € X
and 1" supports f: X = Y
then S UT supports f(x).

Proof: Autgur(A) = Autg(A) N Autp(A)
so if ™€ Autgur(A)

then f(z) 7= f(x-m) = f(x)

another “easy” proof.

FoPSS,Warsaw, 10-11/09/19

35



Least supports

Fact: for finite S and 1T,
if S5 supports X and 7' supports X
then SNT supports X.
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Least supports

Fact: for finite S and 1T,
if S5 supports X and 7' supports X
then SNT supports X.

So: every legal X has the least support supp(X).

NB. This is harder to prove!
One way: induction on |SAT].
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Proof

Assume S and 7' support X.
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Proof
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Proof

Assume S and 7' support X.
Goal: S\ a supports X.

Take any 7 € Autg,(A). S

Pickafreshb: b,w(b) & SUT.
Put 0 =(ab), 0 = (a w(b)). Then:
g, 0 = AUtT(A)
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Proof
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0,0 = Autp(A) omf = Autg(A)

FoPSS,Warsaw, 10-11/09/19

37



Proof

Assume S and 7' support X. b
Goal: S\ a supports X.

Take any 7 € Autg,(A). S

Pickafreshb: b,w(b) & SUT.
Put 0 =(ab), 0 = (a w(b)). Then:

0,0 = Autp(A) omf = Autg(A)

| X m=(X-0)-0omf)-0=X
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Name abstraction

For an (equivariant) set X,
define a relation = on A x X so:

(a,x) =~ (byy) <= x-(ac)=y-(bc)

for fresh c:
¢ ¢ {a,b} Usupp(z, y)
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Name abstraction

For an (equivariant) set X,
define a relation = on A x X so:

(a,z) = (byy) <= z-(ac)=y-(bc)
for fresh c:

¢ ¢ {a,b} Usupp(z, y)

Fact: = is an equivariant equivalence relation.

Define: AlX = (A X X)/~

Fact: |[A]X is an equivariant set.

supp([a, ¥]~) = supp(z) \ {a}
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Exercises

|.If .S supports f : X — Y and 1" supports
g:Y — Z thenS U T supportsf;g: X — Z.
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Exercises

|.If .S supports f : X — Y and 1" supports
g:Y — Z thenS U T supportsf;g: X — Z.

2. For an equivariant set X, the transitive closure
function (—)" : P (X X X) = P (X x X)

IS equivariant.

3. For an equivariant set X, the least support
function supp : X — PrnA is equivariant.

4.In a finite equivariant set, every element
IS equivariant.
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