
FoPSS 2019
3rd Summer School

on Foundations of Programming
and Software Systems

Warsaw, 10-15 September, 2019

Nominal Techniques

[]A

FoPSS, Warsaw, 10-15/09/19

FoPSS

2

Summer Schools on Foundations of Programming
and Software Systems

Supported by:

This time also by:

FoPSS, Warsaw, 10-15/09/19

FoPSS

3

2017: Braga (Portugal)

Probabilistic
Programming

FoPSS, Warsaw, 10-15/09/19

FoPSS

3

2017: Braga (Portugal)

Probabilistic
Programming

2018: Oxford (UK)

Logic
and Learning

FoPSS, Warsaw, 10-15/09/19

FoPSS

3

2017: Braga (Portugal)

Probabilistic
Programming

2018: Oxford (UK)

Logic
and Learning

2019: Warsaw (Poland)

Nominal
Techniques

FoPSS, Warsaw, 10-15/09/19

- Andrzej Murawski:
Nominal game semantics

FoPSS 2019

4

Our lecturers:
- Andrew M. Pitts:
Nominal sets and functional programming

- Mikołaj Bojańczyk:
Computation theory with atoms

- Maribel Fernández:
Nominal rewriting and unification

- Johannes Borgström:
Nominal process calculi and modal logics

- Murdoch J. Gabbay:
Advanced nominal techniques

- Sławomir Lasota:
Computation theory with atoms II

FoPSS 2019

Warsaw, 10-11 September, 2019

Basic Nominal Techniques

[]A
Bartek Klin

University of Warsaw

FoPSS, Warsaw, 10-11/09/19

What is it all about?

6

local names
and name dependence

mathematics of, and computation with:

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

What is it all about?

6

local names
and name dependence

mathematics of, and computation with:

highly symmetrical
structures

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

What is it all about?

6

local names
and name dependence

mathematics of, and computation with:

highly symmetrical
structures

“slightly infinite”
structures

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

What is it all about?

6

local names
and name dependence

mathematics of, and computation with:

highly symmetrical
structures

“slightly infinite”
structures

structures
acessible via

limited interfaces

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

What is it all about?

7

local names
and name dependence

mathematics of, and computation with:

highly symmetrical
structures

“slightly infinite”
structures

structures
acessible via

limited interfaces

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

Concrete and abstract syntax

8

2 ⇤ 3+ 3 ⇤ (7� 2)

+

�

⇤

2

3

7

⇤

32

parsing

FoPSS, Warsaw, 10-11/09/19

Concrete and abstract syntax

8

2 ⇤ 3+ 3 ⇤ (7� 2)

+

�

⇤

2

3

7

⇤

32

parsing

Algebraic features:

- definitions by recursion
- proofs by induction
- ...

FoPSS, Warsaw, 10-11/09/19

Complications with local names

9

3

parsing

let x = 3 in let x = x+ 1 in x+ 5

let

x

let

x

+

x 1

+

x 5

FoPSS, Warsaw, 10-11/09/19

Complications with local names

9

3

parsing

let x = 3 in let x = x+ 1 in x+ 5

let

x

let

x

+

x 1

+

x 5

FoPSS, Warsaw, 10-11/09/19

Complications with local names

9

3

parsing

let x = 3 in let x = x+ 1 in x+ 5

let

x

let

x

+

x 1

+

x 5

FoPSS, Warsaw, 10-11/09/19

Complications with local names

9

3

parsing

let x = 3 in let x = x+ 1 in x+ 5

let

x

let

x

+

x 1

+

x 5

Expressions

depend

on names!

FoPSS, Warsaw, 10-11/09/19

Name dependence

10

Idea:

Let every expression come equipped

(or: atoms) that occur in it
with an explicit dependence on some names

FoPSS, Warsaw, 10-11/09/19

Name dependence

10

Idea:

Let every expression come equipped

(or: atoms) that occur in it
with an explicit dependence on some names

nominal expressions

FoPSS, Warsaw, 10-11/09/19

Name dependence

10

Idea:

Let every expression come equipped

(or: atoms) that occur in it
with an explicit dependence on some names

nominal expressions

More ambitious idea:

Let everything come equipped

(or: atoms) that occur in it
with an explicit dependence on some names

FoPSS, Warsaw, 10-11/09/19

Name dependence

10

Idea:

Let every expression come equipped

(or: atoms) that occur in it
with an explicit dependence on some names

nominal expressions

More ambitious idea:

Let everything come equipped

(or: atoms) that occur in it
with an explicit dependence on some names

nominal sets

FoPSS, Warsaw, 10-11/09/19

Name dependence

11

What does it mean to depend on a name?
Q:

FoPSS, Warsaw, 10-11/09/19

Name dependence

11

What does it mean to depend on a name?
Q:

A:
depends on a name X a

aif renaming to any other name
would alter X

FoPSS, Warsaw, 10-11/09/19

Name dependence

11

What does it mean to depend on a name?
Q:

A:
depends on a name X a

aif renaming to any other name
would alter X

Idea revisited:

Let everything come equipped

affects it
with information on how renaming names

nominal sets

FoPSS, Warsaw, 10-11/09/19

What is it all about?

12

local names
and name dependence

mathematics of, and computation with:

highly symmetrical
structures

“slightly infinite”
structures

structures
acessible via

limited interfaces

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

atom renaming:

a b

c

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

atom renaming:

a b

c

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

atom renaming:

a b

c

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

atom renaming:

a b

c

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

atom renaming:

a b

c

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

atom renaming:

a b

c

FoPSS, Warsaw, 10-11/09/19

A graph built of atoms

13

ab ac ad

ba bc bd

ca cb cd

da db dc

atomic names:
- nodes:
- edges:

ab a 6= b
a 6= cab bc

a, b, c, d, e, . . .

atom renaming:

a b

c

FoPSS, Warsaw, 10-11/09/19

What is it all about?

14

local names
and name dependence

mathematics of, and computation with:

highly symmetrical
structures

“slightly infinite”
structures

structures
acessible via

limited interfaces

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

Slightly infinite

15

- nodes:
- edges:

ab a 6= b
a 6= cab bc

The same graph:

FoPSS, Warsaw, 10-11/09/19

Slightly infinite

15

- nodes: {(a, b) : a, b 2 A : a 6= b}
- edges:

�
{(a, b), (b, c)} : a, b, c 2 A

: a 6= b ^ b 6= c ^ a 6= c

- nodes:
- edges:

ab a 6= b
a 6= cab bc

The same graph:

FoPSS, Warsaw, 10-11/09/19

Slightly infinite

15

- nodes: {(a, b) : a, b 2 A : a 6= b}
- edges:

�
{(a, b), (b, c)} : a, b, c 2 A

: a 6= b ^ b 6= c ^ a 6= c

- nodes:
- edges:

ab a 6= b
a 6= cab bc

The same graph:

Infinite, but presented by finite means

FoPSS, Warsaw, 10-11/09/19

An example problem

16

- nodes:
- edges:

ab a 6= b
a 6= cab bc

FoPSS, Warsaw, 10-11/09/19

An example problem

16

Is it 3-colorable?

- nodes:
- edges:

ab a 6= b
a 6= cab bc

FoPSS, Warsaw, 10-11/09/19

An example problem

16

Is it 3-colorable?

- nodes:
- edges:

ab a 6= b
a 6= cab bc

No.

ab ad

bc be

ca cd

db de

ea ec

FoPSS, Warsaw, 10-11/09/19

An example problem

16

Is it 3-colorable?

Is 3-colorability decidable?

- nodes:
- edges:

ab a 6= b
a 6= cab bc

No.

ab ad

bc be

ca cd

db de

ea ec

FoPSS, Warsaw, 10-11/09/19

What is it all about?

17

local names
and name dependence

mathematics of, and computation with:

highly symmetrical
structures

“slightly infinite”
structures

structures
acessible via

limited interfaces

Nominal techniques:

FoPSS, Warsaw, 10-11/09/19

Computer Science 101

18

Theorem:

Every algorithm to sort numbers must work
in time .

n
⌦(n log n)

FoPSS, Warsaw, 10-11/09/19

Computer Science 101

18

Theorem:

Every algorithm to sort numbers must work
in time .

n
⌦(n log n)

in the comparison model

FoPSS, Warsaw, 10-11/09/19

Computer Science 101

18

Theorem:

Every algorithm to sort numbers must work
in time .

n
⌦(n log n)

in the comparison model

Here, numbers are atoms accessible via relations:

= <

FoPSS, Warsaw, 10-11/09/19

Computer Science 101

18

Theorem:

Every algorithm to sort numbers must work
in time .

n
⌦(n log n)

in the comparison model

Here, numbers are atoms accessible via relations:

= <

This amounts to restricting the class
of legal atom renamings.

Nominal Sets:
Basic Defnitions

[]A

Nominal Sets:
Basic Defnitions

[]A
or: Sets with Atoms

FoPSS, Warsaw, 10-11/09/19

Atoms

20

Let be an infinite, countable set of atoms.A
a, b, c, d, e, . . . 2 A

FoPSS, Warsaw, 10-11/09/19

Atoms

20

Let be an infinite, countable set of atoms.A
a, b, c, d, e, . . . 2 A

Aut(A) - the group of all bijections of A

FoPSS, Warsaw, 10-11/09/19

Atoms

20

Let be an infinite, countable set of atoms.A
a, b, c, d, e, . . . 2 A

Aut(A) - the group of all bijections of A
(⇡ · �) · ⇢ = ⇡ · (� · ⇢)
⇡ · ⇡�1 = id

⇡ · id = ⇡ = id · ⇡

FoPSS, Warsaw, 10-11/09/19

Atoms

20

Let be an infinite, countable set of atoms.A
a, b, c, d, e, . . . 2 A

Aut(A) - the group of all bijections of A
(⇡ · �) · ⇢ = ⇡ · (� · ⇢)
⇡ · ⇡�1 = id

⇡ · id = ⇡ = id · ⇡

the dot omitted
frow now on

FoPSS, Warsaw, 10-11/09/19

Atoms

20

Let be an infinite, countable set of atoms.A
a, b, c, d, e, . . . 2 A

Aut(A) - the group of all bijections of A

(a b) 2 Aut(A) - the swap of and a b

(⇡ · �) · ⇢ = ⇡ · (� · ⇢)
⇡ · ⇡�1 = id

⇡ · id = ⇡ = id · ⇡

the dot omitted
frow now on

FoPSS, Warsaw, 10-11/09/19

Atoms

20

Let be an infinite, countable set of atoms.A
a, b, c, d, e, . . . 2 A

Aut(A) - the group of all bijections of A

(a b) 2 Aut(A) - the swap of and a b

(a b)(b c)(c a) = (b c)For example:
(a b)�1 = (a b)

(⇡ · �) · ⇢ = ⇡ · (� · ⇢)
⇡ · ⇡�1 = id

⇡ · id = ⇡ = id · ⇡

the dot omitted
frow now on

FoPSS, Warsaw, 10-11/09/19

Von Neumann hierarchy

21

U0 = ;

U� =
S

↵<� U↵

A hierarchy of universes:

U↵+1 = PU↵

defined for every ordinal number.

FoPSS, Warsaw, 10-11/09/19

Von Neumann hierarchy

21

U0 = ;

U� =
S

↵<� U↵

A hierarchy of universes:

U↵+1 = PU↵

defined for every ordinal number.

Elements of sets are other sets,
in a well founded way

FoPSS, Warsaw, 10-11/09/19

Von Neumann hierarchy

21

U0 = ;

U� =
S

↵<� U↵

A hierarchy of universes:

U↵+1 = PU↵

defined for every ordinal number.

Elements of sets are other sets,
in a well founded way

Every set sits somewhere in this hierarchy.

FoPSS, Warsaw, 10-11/09/19

Sets with atoms

22

A - a countable set of atoms

FoPSS, Warsaw, 10-11/09/19

U0 = ;
U↵+1 = PU↵ + A

U� =
S

↵<� U↵

A hierarchy of universes:

Sets with atoms

22

A - a countable set of atoms

FoPSS, Warsaw, 10-11/09/19

U0 = ;
U↵+1 = PU↵ + A

U� =
S

↵<� U↵

A hierarchy of universes:

Sets with atoms

22

A - a countable set of atoms

Elements of sets with atoms are atoms
or other sets with atoms, in a well founded way

FoPSS, Warsaw, 10-11/09/19

Renaming atoms

23

A canonical renaming action:

· : U ⇥Aut(A) ! U

FoPSS, Warsaw, 10-11/09/19

Renaming atoms

23

A canonical renaming action:

· : U ⇥Aut(A) ! U
a · ⇡ = ⇡(a)

X · ⇡ = {x · ⇡ | x 2 X}

FoPSS, Warsaw, 10-11/09/19

Renaming atoms

23

A canonical renaming action:

· : U ⇥Aut(A) ! U
a · ⇡ = ⇡(a)

X · ⇡ = {x · ⇡ | x 2 X}

This is a group action of :Aut(A)
x · (⇡�) = (x · ⇡) · �

x · id = x

FoPSS, Warsaw, 10-11/09/19

Renaming atoms

23

A canonical renaming action:

· : U ⇥Aut(A) ! U
a · ⇡ = ⇡(a)

X · ⇡ = {x · ⇡ | x 2 X}

This is a group action of :Aut(A)
x · (⇡�) = (x · ⇡) · �

x · id = x

Fact: For every , the function ⇡ · ⇡
is a bijection on .U

FoPSS, Warsaw, 10-11/09/19

Finite support

24

S ✓ A supports if

8a 2 S.⇡(a) = a
x · ⇡ = ximplies

x

FoPSS, Warsaw, 10-11/09/19

Finite support

24

S ✓ A supports if

8a 2 S.⇡(a) = a
x · ⇡ = ximplies

⇡ 2 AutS(A)

x

FoPSS, Warsaw, 10-11/09/19

Finite support

24

S ✓ A supports if

8a 2 S.⇡(a) = a
x · ⇡ = ximplies

A legal set with atoms, or nominal set:
- has a finite support,
- every element of it has a finite support,
- and so on.

⇡ 2 AutS(A)

x

FoPSS, Warsaw, 10-11/09/19

Finite support

24

S ✓ A supports if

8a 2 S.⇡(a) = a
x · ⇡ = ximplies

A legal set with atoms, or nominal set:
- has a finite support,
- every element of it has a finite support,
- and so on.

A set is equivariant if it has empty support.

⇡ 2 AutS(A)

x

FoPSS, Warsaw, 10-11/09/19

Examples

25

{a}a 2 A is supported by

FoPSS, Warsaw, 10-11/09/19

Examples

25

{a}a 2 A is supported by

A is equivariant

FoPSS, Warsaw, 10-11/09/19

Examples

25

{a}a 2 A is supported by

SS ✓ A is supported by

A is equivariant

FoPSS, Warsaw, 10-11/09/19

Examples

25

{a}a 2 A is supported by

SS ✓ A is supported by

A \ S Sis supported by

A is equivariant

FoPSS, Warsaw, 10-11/09/19

Examples

25

{a}a 2 A is supported by

SS ✓ A is supported by

A \ S Sis supported by

A is equivariant

Fact: is fin. supp. iff it is finite or co-finiteS ✓ A

FoPSS, Warsaw, 10-11/09/19

Examples

25

{a}a 2 A is supported by

SS ✓ A is supported by

A \ S Sis supported by

A is equivariant

Fact: is fin. supp. iff it is finite or co-finiteS ✓ A

A(2) = {(d, e) | d, e 2 A, d 6= e} is equivariant

FoPSS, Warsaw, 10-11/09/19

Examples

25

{a}a 2 A is supported by

SS ✓ A is supported by

A \ S Sis supported by

A is equivariant

Fact: is fin. supp. iff it is finite or co-finiteS ✓ A

A(2) = {(d, e) | d, e 2 A, d 6= e} is equivariant
✓
A
2

◆
= {{d, e} | d, e 2 A, d 6= e} is equivariant

Basic Properties

[]A

FoPSS, Warsaw, 10-11/09/19

Closure properties

27

Fact: if and are legal sets then

 , , , , are legal.

X Y

X [Y X \ Y X + Y X \ Y X ⇥ Y

FoPSS, Warsaw, 10-11/09/19

Closure properties

27

Fact: if and are legal sets then

 , , , , are legal.

X Y

X [Y X \ Y X + Y X \ Y X ⇥ Y

Indeed: if
S supports and supportsX T Y

then
S [T supports , , ...X [Y X \ Y

FoPSS, Warsaw, 10-11/09/19

Closure properties

27

Fact: if and are legal sets then

 , , , , are legal.

X Y

X [Y X \ Y X + Y X \ Y X ⇥ Y

Indeed: if
S supports and supportsX T Y

then
S [T supports , , ...X [Y X \ Y

(But: does not support !) S \ T X \ Y

FoPSS, Warsaw, 10-11/09/19

Closure properties

27

Fact: if and are legal sets then

 , , , , are legal.

X Y

X [Y X \ Y X + Y X \ Y X ⇥ Y

Indeed: if
S supports and supportsX T Y

then
S [T supports , , ...X [Y X \ Y

(But: does not support !) S \ T X \ Y

Fact: if is legal and is finitely supported
 then is legal.

X Y ✓ X
Y

FoPSS, Warsaw, 10-11/09/19

Powersets

28

Fact: is not legal (though it is equivariant).PA

FoPSS, Warsaw, 10-11/09/19

Powersets

28

Fact: is not legal (though it is equivariant).PA

Define:

is finitely supportedPfsX = {Y ✓ X | Y }

FoPSS, Warsaw, 10-11/09/19

Powersets

28

Fact: is not legal (though it is equivariant).PA

Define:

is finitely supportedPfsX = {Y ✓ X | Y }

Fact: if is legal then is legal.X PfsX

FoPSS, Warsaw, 10-11/09/19

Powersets

28

Fact: is not legal (though it is equivariant).PA

Define:

is finitely supportedPfsX = {Y ✓ X | Y }

Fact: if is legal then is legal.X PfsX

Key step: if supports
then supports .
S X

S · ⇡ X · ⇡

FoPSS, Warsaw, 10-11/09/19

Powersets

28

Fact: is not legal (though it is equivariant).PA

Define:

is finitely supportedPfsX = {Y ✓ X | Y }

Fact: if is legal then is legal.X PfsX

Key step: if supports
then supports .
S X

S · ⇡ X · ⇡

� 2 AutS·⇡(A) =) ⇡�⇡�1 2 AutS(A)

FoPSS, Warsaw, 10-11/09/19

Powersets

28

Fact: is not legal (though it is equivariant).PA

Define:

is finitely supportedPfsX = {Y ✓ X | Y }

Fact: if is legal then is legal.X PfsX

Key step: if supports
then supports .
S X

S · ⇡ X · ⇡

� 2 AutS·⇡(A) =) ⇡�⇡�1 2 AutS(A)

X · ⇡ = (X · ⇡�⇡�1) · ⇡ = (X · ⇡) · �

FoPSS, Warsaw, 10-11/09/19

Actions and supports

29

Fact: if supports and

then .

S X ⇡|S = �|S
X · ⇡ = X · �

FoPSS, Warsaw, 10-11/09/19

Actions and supports

29

Fact: if supports and

then .

S X ⇡|S = �|S
X · ⇡ = X · �

Proof: if then ⇡|S = �|S
⇡��1 2 AutS(A)

so

X · � = (X · ⇡��1) · � = X · ⇡

FoPSS, Warsaw, 10-11/09/19

Actions and supports

29

Fact: if supports and

then .

S X ⇡|S = �|S
X · ⇡ = X · �

Proof: if then ⇡|S = �|S
⇡��1 2 AutS(A)

so

X · � = (X · ⇡��1) · � = X · ⇡

NB. these proofs are “easy”.

FoPSS, Warsaw, 10-11/09/19

Equivariant relations

30

A (binary) relation is a set of pairs.

Let’s see what equivariance means for such sets:

R · ⇡ = R (x, y) 2 R =) (x, y) · ⇡ 2 Riff

FoPSS, Warsaw, 10-11/09/19

Equivariant relations

30

A (binary) relation is a set of pairs.

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies for all ⇡

Let’s see what equivariance means for such sets:

R · ⇡ = R (x, y) 2 R =) (x, y) · ⇡ 2 Riff

FoPSS, Warsaw, 10-11/09/19

Equivariant relations

30

A (binary) relation is a set of pairs.

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies for all ⇡

Let’s see what equivariance means for such sets:

R · ⇡ = R (x, y) 2 R =) (x, y) · ⇡ 2 Riff

Similarly for -supported relations, but for S
⇡ 2 AutS(A)

FoPSS, Warsaw, 10-11/09/19

Equivariant function

31

A function is a binary relation.

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies for all ⇡

FoPSS, Warsaw, 10-11/09/19

Equivariant function

31

A function is a binary relation.

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies for all ⇡

⇡

f : X ! Y is equivariant iff

f(x · ⇡) = f(x) · ⇡ for all

FoPSS, Warsaw, 10-11/09/19

Equivariant function

31

A function is a binary relation.

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies for all ⇡

Similarly for -supported functions, but for S
⇡ 2 AutS(A)

⇡

f : X ! Y is equivariant iff

f(x · ⇡) = f(x) · ⇡ for all

FoPSS, Warsaw, 10-11/09/19

Examples

32

For fixed :2, 5 2 A

FoPSS, Warsaw, 10-11/09/19

Examples

32

R = {(5, 2)} ⇥ {(2, d) | d �= 5} ⇥ {(d, d)}

2

5

5

2

R

For fixed :2, 5 2 A

FoPSS, Warsaw, 10-11/09/19

Examples

32

R = {(5, 2)} ⇥ {(2, d) | d �= 5} ⇥ {(d, d)}

2

5

5

2

R
2

5

5

2

R⇤

For fixed :2, 5 2 A

FoPSS, Warsaw, 10-11/09/19

Examples

32

R = {(5, 2)} ⇥ {(2, d) | d �= 5} ⇥ {(d, d)}

2

5

5

2

R
2

5

5

2

R⇤

For fixed :2, 5 2 A

R , are supported byR⇤ {2, 5}

FoPSS, Warsaw, 10-11/09/19

Examples ctd.

33

Equivariant binary relations on :A

FoPSS, Warsaw, 10-11/09/19

Examples ctd.

33

Equivariant binary relations on :A
- empty - total
- equality - inequality

FoPSS, Warsaw, 10-11/09/19

Examples ctd.

33

Equivariant binary relations on :A
- empty - total
- equality - inequality

No equivariant function from to , but
�A
2

�
A

{({a, b}, a) | a, b 2 A}
is an equivariant relation.

FoPSS, Warsaw, 10-11/09/19

Examples ctd.

33

Equivariant binary relations on :A
- empty - total
- equality - inequality

No equivariant function from to , but
�A
2

�
A

{({a, b}, a) | a, b 2 A}
is an equivariant relation.

Only equiv. functions from to are projections A2

Only equiv. function from to is the diagonal

A
A A2

FoPSS, Warsaw, 10-11/09/19

Intuition

34

A relation/function/... is equivariant
iff

it only “checks” equality of atoms,
and does not mention specific atoms.

FoPSS, Warsaw, 10-11/09/19

Intuition

34

A relation/function/... is equivariant
iff

it only “checks” equality of atoms,
and does not mention specific atoms.

A relation/function/... supported by ,
may additionally mention
specific atoms from .

S

S

FoPSS, Warsaw, 10-11/09/19

Equivariant functions preserve supports

35

Fact: if supports

then supports .

S

 and supports T f : X ! Y

S [T f(x)

x 2 X

FoPSS, Warsaw, 10-11/09/19

Equivariant functions preserve supports

35

Fact: if supports

then supports .

S

 and supports T f : X ! Y

S [T f(x)

x 2 X

Proof: AutS[T (A) = AutS(A) \AutT (A)
so if ⇡ 2 AutS[T (A)

then f(x) · ⇡ = f(x · ⇡) = f(x)

FoPSS, Warsaw, 10-11/09/19

Equivariant functions preserve supports

35

Fact: if supports

then supports .

S

 and supports T f : X ! Y

S [T f(x)

x 2 X

Proof: AutS[T (A) = AutS(A) \AutT (A)
so if ⇡ 2 AutS[T (A)

then f(x) · ⇡ = f(x · ⇡) = f(x)

NB. another “easy” proof.

FoPSS, Warsaw, 10-11/09/19

Least supports

36

Fact: for finite and , S T

if supports and supports XS T X

then supports . S \ T X

FoPSS, Warsaw, 10-11/09/19

Least supports

36

Fact: for finite and , S T

if supports and supports XS T X

then supports . S \ T X

So: every legal has the least support . X supp(X)

FoPSS, Warsaw, 10-11/09/19

Least supports

36

Fact: for finite and , S T

if supports and supports XS T X

then supports . S \ T X

NB. This is harder to prove!
One way: induction on .|S4T |

So: every legal has the least support . X supp(X)

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

a

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

a
Goal: supports .XS \ a

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

a
Goal: supports .XS \ a

Take any .⇡ 2 AutS\a(A)

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

a
Goal: supports .XS \ a

Take any .⇡ 2 AutS\a(A)

b ⇡(b)

Pick a fresh : .b b,⇡(b) 62 S [T

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

a
Goal: supports .XS \ a

Take any .⇡ 2 AutS\a(A)

b ⇡(b)

Pick a fresh : .b b,⇡(b) 62 S [T

Put , . Then: � = (a b) ✓ = (a ⇡(b))

�, ✓ = AutT (A)

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

a
Goal: supports .XS \ a

Take any .⇡ 2 AutS\a(A)

b ⇡(b)

Pick a fresh : .b b,⇡(b) 62 S [T

Put , . Then: � = (a b) ✓ = (a ⇡(b))

�, ✓ = AutT (A) �⇡✓ = AutS(A)

FoPSS, Warsaw, 10-11/09/19

Proof

37

Assume and support . S T X

S T

a
Goal: supports .XS \ a

Take any .⇡ 2 AutS\a(A)

b ⇡(b)

Pick a fresh : .b b,⇡(b) 62 S [T

Put , . Then: � = (a b) ✓ = (a ⇡(b))

�, ✓ = AutT (A) �⇡✓ = AutS(A)

so:
X · ⇡ = ((X · �) · �⇡✓) · ✓ = X

FoPSS, Warsaw, 10-11/09/19

Name abstraction

38

For an (equivariant) set , X
define a relation on so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh :c
c 62 {a, b} [supp(x, y)

FoPSS, Warsaw, 10-11/09/19

Name abstraction

38

For an (equivariant) set , X
define a relation on so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh :c
c 62 {a, b} [supp(x, y)

Fact: is an equivariant equivalence relation. ⇡

FoPSS, Warsaw, 10-11/09/19

Name abstraction

38

For an (equivariant) set , X
define a relation on so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh :c
c 62 {a, b} [supp(x, y)

Fact: is an equivariant equivalence relation. ⇡

Define: [A]X = (A⇥X)/⇡

FoPSS, Warsaw, 10-11/09/19

Name abstraction

38

For an (equivariant) set , X
define a relation on so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh :c
c 62 {a, b} [supp(x, y)

Fact: is an equivariant equivalence relation. ⇡

Define: [A]X = (A⇥X)/⇡

Fact: is an equivariant set. [A]X

supp([a, x]⇡) = supp(x) \ {a}

FoPSS, Warsaw, 10-11/09/19

Name abstraction

38

For an (equivariant) set , X
define a relation on so:⇡ A⇥X

(a, x) ⇡ (b, y) () x · (a c) = y · (b c)

for fresh :c
c 62 {a, b} [supp(x, y)

Fact: is an equivariant equivalence relation. ⇡

Define: [A]X = (A⇥X)/⇡

Fact: is an equivariant set. [A]X

supp([a, x]⇡) = supp(x) \ {a}

↵-equivalence

FoPSS, Warsaw, 10-11/09/19

Exercises

39

1. If supports and supportsf : X ! Y

 then supports .
S T

g : Y ! Z S [T f ; g : X ! Z

FoPSS, Warsaw, 10-11/09/19

Exercises

39

1. If supports and supportsf : X ! Y

 then supports .

2. For an equivariant set , the transitive closureX

function
is equivariant.

(�)⇤ : Pfs(X ⇥X) ! Pfs(X ⇥X)

S T

g : Y ! Z S [T f ; g : X ! Z

FoPSS, Warsaw, 10-11/09/19

Exercises

39

1. If supports and supportsf : X ! Y

 then supports .

3. For an equivariant set , the least support
is equivariant.function supp : X ! PfinA

X

2. For an equivariant set , the transitive closureX

function
is equivariant.

(�)⇤ : Pfs(X ⇥X) ! Pfs(X ⇥X)

S T

g : Y ! Z S [T f ; g : X ! Z

FoPSS, Warsaw, 10-11/09/19

Exercises

39

1. If supports and supportsf : X ! Y

 then supports .

3. For an equivariant set , the least support
is equivariant.function supp : X ! PfinA

X

2. For an equivariant set , the transitive closureX

function
is equivariant.

(�)⇤ : Pfs(X ⇥X) ! Pfs(X ⇥X)

4. In a finite equivariant set, every element
is equivariant.

S T

g : Y ! Z S [T f ; g : X ! Z

