3rd Summer School on Foundations of Programming and Software Systems

Nominal Techniques

Warsaw, 10-15 September, 2019

Summer Schools on Foundations of Programming and Software Systems

This time also by:

Probabilistic Programming

Our lecturers:

- Andrew M. Pitts:
 - Nominal sets and functional programming
- Mikołaj Bojańczyk: Computation theory with atoms
- Andrzej Murawski:
 - Nominal game semantics
- Maribel Fernández: Nominal rewriting and unification
- Johannes Borgström: Nominal process calculi and modal logics
- Murdoch J. Gabbay: Advanced nominal techniques
- Sławomir Lasota:

Computation theory with atoms II

Basic Nominal Techniques

Bartek Klin University of Warsaw

Warsaw, 10-11 September, 2019

Nominal techniques:

mathematics of, and computation with:

local names and name dependence

Nominal techniques:

mathematics of, and computation with:

local names and name dependence

highly symmetrical structures

Nominal techniques:

Nominal techniques:

Nominal techniques:

Concrete and abstract syntax

Concrete and abstract syntax

Idea:

Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

Idea:

nominal expressions

Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

Idea:

nominal expressions

Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

More ambitious idea:

Let everything come equipped with an explicit dependence on some names (or: atoms) that occur in it

Idea:

nominal expressions

Let every expression come equipped with an explicit dependence on some names (or: atoms) that occur in it

More ambitious idea:

nominal sets

Let everything come equipped with an explicit dependence on some names (or: atoms) that occur in it

Q:

What does it mean to depend on a name?

Q:

What does it mean to depend on a name?

A:

X depends on a name a if renaming a to any other name would alter X

Q: What does it mean to depend on a name?
A: X depends on a name a if renaming a to any other name would alter X

Idea revisited:

nominal sets

Let everything come equipped with information on how renaming names affects it

Nominal techniques:

atomic names: a, b, c, d, e, \ldots

- nodes: ab $a \neq b$
- edges: ab-bc $a \neq c$

atomic names: a, b, c, d, e, \ldots

- nodes: ab $a \neq b$
- edges: ab-bc $a \neq c$

atomic names: a, b, c, d, e, \ldots - nodes: ab $a \neq b$ - edges: ab-bc $a \neq c$ abad acbabcbdatom renaming: h \boldsymbol{a} cdcbcadcdadb

Nominal techniques:

The same graph:

- nodes: ab
 edges: ab—bc

 $\begin{array}{c} a \neq b \\ a \neq c \end{array}$

The same graph:

- nodes: ab $a \neq b$
- edges: ab-bc $a \neq c$
- nodes: $\{(a,b): a, b \in \mathbb{A} : a \neq b\}$
- edges: $\{\{(a,b),(b,c)\}: a,b,c \in \mathbb{A}$
 - $: a \neq b \land b \neq c \land a \neq c \big\}$

The same graph:

- nodes: ab $a \neq b$
- edges: ab-bc $a \neq c$
- nodes: $\{(a,b): a, b \in \mathbb{A} : a \neq b\}$
- edges: $\{\{(a,b), (b,c)\} : a, b, c \in \mathbb{A}\}$

$$: a \neq b \land b \neq c \land a \neq c \}$$

Infinite, but presented by finite means

- nodes:	ab	$a \neq b$
- edges:	ab-bc	$a \neq c$

- nodes:	ab	$a \neq b$
- edges:	ab-bc	$a \neq c$

Is it 3-colorable?

Is 3-colorability decidable?

FoPSS, Warsaw, 10-11/09/19

What is it all about?

Nominal techniques:

mathematics of, and computation with:

Computer Science 101

Theorem:

Every algorithm to sort n numbers must work in time $\Omega(n\log n)$.

Computer Science 101

Theorem:

Every algorithm to sort n numbers must work in time $\Omega(n\log n)$.

in the comparison model

Computer Science 101

Theorem:

Every algorithm to sort n numbers must work in time $\Omega(n\log n)$.

in the comparison model

Here, numbers are atoms accessible via relations:

= <

Theorem:

Every algorithm to sort n numbers must work in time $\Omega(n\log n)$.

in the comparison model

Here, numbers are atoms accessible via relations:

This amounts to restricting the class of legal atom renamings.

Nominal Sets: Basic Defnitions

or: Sets with Atoms Nominal Sets: **Basic Defnitions**

Atoms

Let \mathbb{A} be an infinite, countable set of atoms.

 $a, b, c, d, e, \ldots \in \mathbb{A}$

Let \mathbb{A} be an infinite, countable set of atoms. $a, b, c, d, e, \ldots \in \mathbb{A}$

 $\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

Atoms

Let \mathbb{A} be an infinite, countable set of atoms. $a, b, c, d, e, \ldots \in \mathbb{A}$

 $\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$(\pi \cdot \sigma) \cdot \rho = \pi \cdot (\sigma \cdot \rho)$$
$$\pi \cdot \pi^{-1} = \mathrm{id}$$
$$\pi \cdot \mathrm{id} = \pi = \mathrm{id} \cdot \pi$$

Atoms

Let \mathbb{A} be an infinite, countable set of atoms. $a, b, c, d, e, \ldots \in \mathbb{A}$

 $Aut(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$(\pi \cdot \sigma) \cdot \rho = \pi \cdot (\sigma \cdot \rho)$$
$$\pi \cdot \pi^{-1} = \mathrm{id}$$
$$\pi \cdot \mathrm{id} = \pi = \mathrm{id} \cdot \pi$$

the dot omitted frow now on

Let \mathbb{A} be an infinite, countable set of atoms. $a, b, c, d, e, \ldots \in \mathbb{A}$

 $\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$(\pi \cdot \sigma) \cdot \rho = \pi \cdot (\sigma \cdot \rho)$$
$$\pi \cdot \pi^{-1} = \mathrm{id}$$
$$\pi \cdot \mathrm{id} = \pi = \mathrm{id} \cdot \pi$$

the dot omitted frow now on

 $(a \ b) \in \operatorname{Aut}(\mathbb{A})$ - the swap of a and b

Let \mathbb{A} be an infinite, countable set of atoms. $a, b, c, d, e, \ldots \in \mathbb{A}$

 $\operatorname{Aut}(\mathbb{A})$ - the group of all bijections of \mathbb{A}

$$(\pi \cdot \sigma) \cdot \rho = \pi \cdot (\sigma \cdot \rho)$$
$$\pi \cdot \pi^{-1} = \mathrm{id}$$
$$\pi \cdot \mathrm{id} = \pi = \mathrm{id} \cdot \pi$$

the dot omitted frow now on

 $(a \ b) \in Aut(\mathbb{A})$ - the swap of a and b

For example:
$$(a \ b)(b \ c)(c \ a) = (b \ c)$$

 $(a \ b)^{-1} = (a \ b)$

A hierarchy of universes:

$$\begin{aligned} \mathcal{U}_0 &= \emptyset \\ \mathcal{U}_{\alpha+1} &= \mathcal{P}\mathcal{U}_{\alpha} \\ \mathcal{U}_{\beta} &= \bigcup_{\alpha < \beta} \mathcal{U}_{\alpha} \end{aligned}$$

defined for every ordinal number.

A hierarchy of universes:

$$\begin{aligned} \mathcal{U}_0 &= \emptyset \\ \mathcal{U}_{\alpha+1} &= \mathcal{P}\mathcal{U}_{\alpha} \\ \mathcal{U}_{\beta} &= \bigcup_{\alpha < \beta} \mathcal{U}_{\alpha} \end{aligned}$$

defined for every ordinal number.

Elements of sets are other sets, in a well founded way A hierarchy of universes:

$$\mathcal{U}_{0} = \emptyset$$
$$\mathcal{U}_{\alpha+1} = \mathcal{P}\mathcal{U}_{\alpha}$$
$$\mathcal{U}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{U}_{\alpha}$$

defined for every ordinal number.

Elements of sets are other sets, in a well founded way

Every set sits somewhere in this hierarchy.

Sets with atoms

 \mathbbm{A} - a countable set of atoms

 \mathbbm{A} - a countable set of atoms

A hierarchy of universes:

$$\mathcal{U}_{0} = \emptyset$$
$$\mathcal{U}_{\alpha+1} = \mathcal{P}\mathcal{U}_{\alpha} + \mathbb{A}$$
$$\mathcal{U}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{U}_{\alpha}$$

 \mathbbm{A} - a countable set of atoms

A hierarchy of universes:

$$\mathcal{U}_{0} = \emptyset$$
$$\mathcal{U}_{\alpha+1} = \mathcal{P}\mathcal{U}_{\alpha} + \mathbb{A}$$
$$\mathcal{U}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{U}_{\alpha}$$

Elements of sets with atoms are atoms or other sets with atoms, in a well founded way

A canonical renaming action:

 $_{-}\cdot _{-}:\mathcal{U}\times \mathrm{Aut}(\mathbb{A})\rightarrow \mathcal{U}$

A canonical renaming action:

A canonical renaming action: $_\cdot_: \mathcal{U} \times \operatorname{Aut}(\mathbb{A}) \to \mathcal{U}$ $a \cdot \pi = \pi(a)$ $X \cdot \pi = \{x \cdot \pi \mid x \in X\}$ This is a group action of $\operatorname{Aut}(\mathbb{A})$:

$$x \cdot (\pi\sigma) = (x \cdot \pi) \cdot \sigma$$
$$x \cdot \mathrm{id} = x$$

A canonical renaming action: $_\cdot_: \mathcal{U} \times \operatorname{Aut}(\mathbb{A}) \to \mathcal{U}$ $a \cdot \pi = \pi(a)$ $X \cdot \pi = \{x \cdot \pi \mid x \in X\}$

This is a group action of $Aut(\mathbb{A})$:

$$x \cdot (\pi\sigma) = (x \cdot \pi) \cdot \sigma$$
$$x \cdot \mathrm{id} = x$$

Fact: For every π , the function $\ _\cdot\ \pi$ is a bijection on $\mathcal U$.

FoPSS, Warsaw, 10-11/09/19

$S \subseteq \mathbb{A}$ supports x if $\forall a \in S.\pi(a) = a$ implies $x \cdot \pi = x$

$$S \subseteq \mathbb{A}$$
 supports x if
 $\forall a \in S.\pi(a) = a$ implies $x \cdot \pi = x$
 $\pi \in \operatorname{Aut}_S(\mathbb{A})$

A legal set with atoms, or nominal set:

- has a finite support,
- every element of it has a finite support,
- and so on.

A legal set with atoms, or nominal set:

- has a finite support,
- every element of it has a finite support,
- and so on.

A set is equivariant if it has empty support.

$a \in \mathbb{A} \quad \text{ is supported by } \quad \{a\}$

Examples

$a \in \mathbb{A}$ is supported by $\{a\}$

A is equivariant
- $a \in \mathbb{A}$ is supported by $\{a\}$
 - A is equivariant
- $S \subseteq \mathbb{A} \quad \text{ is supported by } \quad S$

- $a \in \mathbb{A}$ is supported by $\{a\}$
 - A is equivariant
- $S \subseteq \mathbb{A} \quad \text{ is supported by } \quad S$
- $\mathbb{A} \setminus S \qquad \text{is supported by} \qquad S$

- $a \in \mathbb{A}$ is supported by $\{a\}$
 - A is equivariant
- $S \subseteq \mathbb{A} \quad \text{ is supported by } \quad S$
- $\mathbb{A} \setminus S \qquad \text{is supported by} \qquad S$

Fact: $S\subseteq \mathbb{A}\,$ is fin. supp. iff it is finite or co-finite

- $a \in \mathbb{A}$ is supported by $\{a\}$
 - A is equivariant
- $S \subseteq \mathbb{A} \quad \text{ is supported by } \quad S$
- $\mathbb{A} \setminus S \qquad \text{is supported by} \qquad S$

Fact: $S \subseteq \mathbb{A}$ is fin. supp. iff it is finite or co-finite

 $\mathbb{A}^{(2)} = \{ (d, e) \mid d, e \in \mathbb{A}, d \neq e \} \text{ is equivariant}$

- $a \in \mathbb{A}$ is supported by $\{a\}$
 - A is equivariant
- $S \subseteq \mathbb{A} \quad \text{ is supported by } \quad S$
- $\mathbb{A} \setminus S \qquad \text{is supported by} \qquad S$
- Fact: $S \subseteq \mathbb{A}$ is fin. supp. iff it is finite or co-finite

$$\begin{split} \mathbb{A}^{(2)} &= \{ (d, e) \mid d, e \in \mathbb{A}, d \neq e \} \text{ is equivariant} \\ \begin{pmatrix} \mathbb{A} \\ 2 \end{pmatrix} &= \{ \{d, e\} \mid d, e \in \mathbb{A}, d \neq e \} \text{ is equivariant} \end{split}$$

Basic Properties

Fact: if X and Y are legal sets then $X \cup Y$, $X \cap Y$, X + Y, $X \setminus Y$, $X \times Y$ are legal.

Fact: if X and Y are legal sets then $X \cup Y$, $X \cap Y$, X + Y, $X \setminus Y$, $X \times Y$ are legal.

Indeed: if

S supports X and T supports Y then $S \cup T$ supports $X \cup Y$, $X \cap Y$,... Fact: if X and Y are legal sets then $X \cup Y$, $X \cap Y$, X + Y, $X \setminus Y$, $X \times Y$ are legal. Indeed: if S supports X and T supports Y then $S \cup T$ supports $X \cup Y$, $X \cap Y$,... (But: $S \cap T$ does not support $X \cap Y$!)

Fact: if X and Y are legal sets then $X \cup Y$, $X \cap Y$, X + Y, $X \setminus Y$, $X \times Y$ are legal. Indeed: if S supports X and T supports Y then $S \cup T$ supports $X \cup Y$, $X \cap Y$,... (But: $S \cap T$ does not support $X \cap Y$!) Fact: if X is legal and $Y \subseteq X$ is finitely supported then Y is legal.

Define:

 $\mathcal{P}_{\mathrm{fs}}X = \{Y \subseteq X \mid Y \text{ is finitely supported } \}$

Define:

 $\mathcal{P}_{\mathrm{fs}}X = \{Y \subseteq X \mid Y \text{ is finitely supported } \}$

Fact: if X is legal then $\mathcal{P}_{fs}X$ is legal.

Define:

 $\mathcal{P}_{\mathrm{fs}}X = \{Y \subseteq X \mid Y \text{ is finitely supported } \}$

Fact: if X is legal then $\mathcal{P}_{\mathrm{fs}}X$ is legal.

Key step: if S supports X then $S \cdot \pi$ supports $X \cdot \pi$.

Define: $\mathcal{P}_{\mathrm{fs}}X = \{Y \subseteq X \mid Y \text{ is finitely supported } \}$ Fact: if X is legal then $\mathcal{P}_{fs}X$ is legal. Key step: if S supports Xthen $S \cdot \pi$ supports $X \cdot \pi$. $\sigma \in \operatorname{Aut}_{S,\pi}(\mathbb{A}) \implies \pi \sigma \pi^{-1} \in \operatorname{Aut}_S(\mathbb{A})$

Define: $\mathcal{P}_{\mathrm{fs}}X = \{Y \subseteq X \mid Y \text{ is finitely supported } \}$ Fact: if X is legal then $\mathcal{P}_{fs}X$ is legal. Key step: if S supports Xthen $S \cdot \pi$ supports $X \cdot \pi$. $\sigma \in \operatorname{Aut}_{S,\pi}(\mathbb{A}) \implies \pi \sigma \pi^{-1} \in \operatorname{Aut}_S(\mathbb{A})$ $X \cdot \pi = (X \cdot \pi \sigma \pi^{-1}) \cdot \pi = (X \cdot \pi) \cdot \sigma$

Fact: if S supports X and $\pi|_S = \sigma|_S$ then $X \cdot \pi = X \cdot \sigma$.

Fact: if S supports X and
$$\pi|_S = \sigma|_S$$

then $X \cdot \pi = X \cdot \sigma$.

Proof: if
$$\pi|_S = \sigma|_S$$
 then $\pi \sigma^{-1} \in \operatorname{Aut}_S(\mathbb{A})$ so

$$X \cdot \sigma = (X \cdot \pi \sigma^{-1}) \cdot \sigma = X \cdot \pi$$

Fact: if S supports X and
$$\pi|_S = \sigma|_S$$

then $X \cdot \pi = X \cdot \sigma$.

Proof: if
$$\pi|_S = \sigma|_S$$
 then
 $\pi \sigma^{-1} \in \operatorname{Aut}_S(\mathbb{A})$
so

$$X \cdot \sigma = (X \cdot \pi \sigma^{-1}) \cdot \sigma = X \cdot \pi$$

NB. these proofs are "easy".

A (binary) relation is a set of pairs.

Let's see what equivariance means for such sets:

 $R\cdot \pi = R \qquad \text{iff} \qquad (x,y)\in R \Longrightarrow (x,y)\cdot \pi \in R$

A (binary) relation is a set of pairs.

Let's see what equivariance means for such sets:

$$R \cdot \pi = R \qquad \text{iff} \qquad (x, y) \in R \Longrightarrow (x, y) \cdot \pi \in R$$

 $R\subseteq X\times Y$ is equivariant iff $xRy \ \ \text{implies} \ \ (x\cdot\pi)R(y\cdot\pi) \ \ \text{for all} \ \ \pi$

A (binary) relation is a set of pairs.

Let's see what equivariance means for such sets:

$$R \cdot \pi = R \qquad \text{iff} \qquad (x, y) \in R \Longrightarrow (x, y) \cdot \pi \in R$$

 $R \subseteq X \times Y$ is equivariant iff xRy implies $(x \cdot \pi)R(y \cdot \pi)$ for all π

Similarly for S-supported relations, but for $\pi \in \operatorname{Aut}_S(\mathbb{A})$

Equivariant function

A function is a binary relation.

 $R \subseteq X \times Y$ is equivariant iff

xRy implies $(x\cdot\pi)R(y\cdot\pi)$ for all π

Equivariant function

A function is a binary relation.

$$R \subseteq X imes Y$$
 is equivariant iff

$$xRy$$
 implies $(x\cdot\pi)R(y\cdot\pi)$ for all π

$$f:X \to Y$$
 is equivariant iff $f(x\cdot \pi) = f(x)\cdot \pi$ for all π

Equivariant function

A function is a binary relation.

$$R\subseteq X imes Y\;$$
 is equivariant iff

$$xRy$$
 implies $(x\cdot\pi)R(y\cdot\pi)$ for all π

$$f: X \to Y$$
 is equivariant iff $f(x \cdot \pi) = f(x) \cdot \pi$ for all π

Similarly for S-supported functions, but for $\pi \in \operatorname{Aut}_S(\mathbb{A})$

For fixed $2, 5 \in \mathbb{A}$:

For fixed $2, 5 \in \mathbb{A}$:

For fixed $2, 5 \in \mathbb{A}$:

R , R^* are supported by $\{2,5\}$

- empty

- total

- equality

- inequality

- empty total
- equality inequality

No equivariant function from $\binom{\mathbb{A}}{2}$ to \mathbb{A} , but $\{(\{a,b\},a) \mid a,b \in \mathbb{A}\}$

is an equivariant relation.

- empty total
- equality inequality

No equivariant function from $\binom{\mathbb{A}}{2}$ to \mathbb{A} , but $\{(\{a,b\},a) \mid a,b \in \mathbb{A}\}$

is an equivariant relation.

Only equiv. functions from \mathbb{A}^2 to \mathbb{A} are projections Only equiv. function from \mathbb{A} to \mathbb{A}^2 is the diagonal A relation/function/... is equivariant iff it only "checks" equality of atoms, and does not mention specific atoms. A relation/function/... is equivariant iff it only "checks" equality of atoms, and does not mention specific atoms.

A relation/function/... supported by $S\,$, may additionally mention specific atoms from S .

Equivariant functions preserve supports

Fact: if S supports $x \in X$ and T supports $f: X \to Y$ then $S \cup T$ supports f(x).
Equivariant functions preserve supports

Fact: if S supports $x \in X$ and T supports $f: X \to Y$ then $S \cup T$ supports f(x).

Proof: $\operatorname{Aut}_{S\cup T}(\mathbb{A}) = \operatorname{Aut}_{S}(\mathbb{A}) \cap \operatorname{Aut}_{T}(\mathbb{A})$ so if $\pi \in \operatorname{Aut}_{S\cup T}(\mathbb{A})$ then $f(x) \cdot \pi = f(x \cdot \pi) = f(x)$

Equivariant functions preserve supports

Fact: if S supports $x \in X$ and T supports $f : X \to Y$ then $S \cup T$ supports f(x). Proof: $\operatorname{Aut}_{S \cup T}(\mathbb{A}) = \operatorname{Aut}_{S}(\mathbb{A}) \cap \operatorname{Aut}_{T}(\mathbb{A})$ so if $\pi \in \operatorname{Aut}_{S \cup T}(\mathbb{A})$

then $f(x) \cdot \pi = f(x \cdot \pi) = f(x)$

NB. another "easy" proof.

FoPSS, Warsaw, 10-11/09/19

Fact: for finite S and T, if S supports X and T supports Xthen $S \cap T$ supports X. Fact: for finite S and T, if S supports X and T supports Xthen $S \cap T$ supports X.

So: every legal X has the least support supp(X).

Fact: for finite S and T, if S supports X and T supports Xthen $S \cap T$ supports X.

So: every legal X has the least support supp(X).

NB. This is harder to prove! One way: induction on $|S \triangle T|$.

FoPSS, Warsaw, 10-11/09/19

Assume S and T support X.

Assume S and T support X.

Assume S and T support X. Goal: $S \setminus a$ supports X.

Assume S and T support X. Goal: $S \setminus a$ supports X.

Take any $\pi \in \operatorname{Aut}_{S \setminus a}(\mathbb{A})$.

Proof

$$X \cdot \pi = ((X \cdot \sigma) \cdot \sigma \pi \theta) \cdot \theta = X$$

$$(a, x) \approx (b, y) \iff x \cdot (a \ c) = y \cdot (b \ c)$$

for fresh c:

 $c \not\in \{a, b\} \cup \operatorname{supp}(x, y)$

$$\begin{array}{l} (a,x)\approx (b,y)\iff x\cdot (a\ c)=y\cdot (b\ c)\\ & \quad \mbox{for fresh }c:\\ & c\not\in\{a,b\}\cup {\rm supp}(x,y) \end{array}$$

Fact: \approx is an equivariant equivalence relation.

$$\begin{array}{l} (a,x)\approx (b,y)\iff x\cdot (a\ c)=y\cdot (b\ c)\\ & \quad \mbox{for fresh }c:\\ & c\not\in\{a,b\}\cup {\rm supp}(x,y) \end{array}$$

Fact: \approx is an equivariant equivalence relation.

Define:
$$[\mathbb{A}]X = (\mathbb{A} \times X)/_{\approx}$$

$$\begin{array}{ll} (a,x)\approx (b,y) \iff x\cdot (a\ c)=y\cdot (b\ c)\\ & \quad \mbox{for fresh }c\colon\\ & c\not\in\{a,b\}\cup {\rm supp}(x,y) \end{array}$$

Fact: \approx is an equivariant equivalence relation.

- **Define:** $[\mathbb{A}]X = (\mathbb{A} \times X)/_{\approx}$
- Fact: $[\mathbb{A}]X$ is an equivariant set. $supp([a, x]_{\approx}) = supp(x) \setminus \{a\}$

$$\begin{array}{ll} (a,x)\approx (b,y) \iff x\cdot (a\ c)=y\cdot (b\ c)\\ & \quad \mbox{for fresh }c:\\ & c\not\in\{a,b\}\cup {\rm supp}(x,y) \end{array}$$

Fact: \approx is an equivariant equivalence relation.

Define: $[\mathbb{A}]X = (\mathbb{A} \times X)/_{\approx}$

Fact: $[\mathbb{A}]X$ is an equivariant set.

 $\operatorname{supp}([a, x]_{\approx}) = \operatorname{supp}(x) \setminus \{a\}$

lpha-equivalence

I. If S supports $f: X \to Y$ and T supports $g: Y \to Z$ then $S \cup T$ supports $f; g: X \to Z$.

- I. If S supports $f: X \to Y$ and T supports $g: Y \to Z$ then $S \cup T$ supports $f; g: X \to Z$.
- 2. For an equivariant set X, the transitive closure function $(-)^* : \mathcal{P}_{\mathrm{fs}}(X \times X) \to \mathcal{P}_{\mathrm{fs}}(X \times X)$ is equivariant.

- I. If S supports $f: X \to Y$ and T supports $g: Y \to Z$ then $S \cup T$ supports $f; g: X \to Z$.
- 2. For an equivariant set X, the transitive closure function $(-)^* : \mathcal{P}_{\mathrm{fs}}(X \times X) \to \mathcal{P}_{\mathrm{fs}}(X \times X)$ is equivariant.
- 3. For an equivariant set X, the least support function $\operatorname{supp}: X \to \mathcal{P}_{\operatorname{fin}} \mathbb{A}$ is equivariant.

- I. If S supports $f: X \to Y$ and T supports $g: Y \to Z$ then $S \cup T$ supports $f; g: X \to Z$.
- 2. For an equivariant set X, the transitive closure function $(-)^* : \mathcal{P}_{\mathrm{fs}}(X \times X) \to \mathcal{P}_{\mathrm{fs}}(X \times X)$ is equivariant.
- 3. For an equivariant set X, the least support function $\operatorname{supp}: X \to \mathcal{P}_{\operatorname{fin}} \mathbb{A}$ is equivariant.

4. In a finite equivariant set, every element is equivariant.